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Piezoelectric energy harvesting from flag flutter instability
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Summary. The piezoelectric energy harvesting from a flutter instability is investigated. A long plate equipped with adjacent pairs of
piezoelectric elements shunted with independent resistive circuits is considered. When the length of the piezoelectric elements is low
compared to the wavelengths of waves propagating in the system, governing equations are derived in the form of coupled fluid-solid-
electrical wave equations. These equations are used to perform an optimization of the energy transfer between the fluid-solid system to
the electrical system.

Introduction
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Figure 1: Schematic view of a plate in an homogeneous ax-
ial flow, equipped with small length piezoelectric patches on
both sides. Each piezoelectric pair is shunted with a resis-
tance like the one sketched on the left, modeling the electrical
energy absorption.

Drawing profit from ambient vibrations to create electrical
power has received a growing attention over the last decades.
Among the various methods to convert mechanical energy to
electrical energy, we focus here on method using piezoelec-
tric elements, which generally investigated when distributed low
power is necessary (of the order of the mW) [1]. We investi-
gate here the energy harvesting potential of a plate in an axial
flow equipped with a distributed series of small piezoelectric el-
ements which size is much lower that typical wavelengths of de-
formations of the plate. The fully coupled fluid-solid-electrical
wave equations are derived. These equations are used to address
the optimization of energy conversion efficiency.

Linear model and optimal conversion efficiency

Consider the three layers laminate of Fig.1. Its bending rigidity is B and its surface densityµ. The problem is considered
infinite in the spanwise direction. The displacement of the plate is notedw(x, t). The surrounding fluid at both sides
of the plate flows at a constant velocityU∞. When the length of the piezoelectric elements are small compared to the
typical lengths of deformation, the charge surface densityq and the tensionv at the outlets of the piezoelectric elements
can be considered as continuous functions ofx and the coupled wave equations governing the mechanical andelectrical
displacements take the following form:
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q̇ + q − χw′′ = 0, (2)

wherec is the capacity per unit surface of the piezoelectric elements, g is the conductivity per unit surface of the resis-
tances,χ = e31(h0 + hp)/2 is the moment arm of the piezoelectric laminate and[P ] is the pressure jump between both
sides of the plate. For a given deformationw(x, t), the mechanical to electrical conversion efficiency is defined as,
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/
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0

〈E 〉dt , (3)

wherePel = vq̇ is the power dissipated in the electrical networks andE is the total energy density of the system, sum
of the solid kinetic and elastic energy as well as the electrical energy stored in the capacity of the piezoelectric material.
In this last expression〈.〉 stands for the spatial mean value for the considered mode, taken over either a wavelength in
the local analysis or the entire plate in the global analysis. Note that sincer is just a normalized energy output and not a
thermodynamic efficiency,r > 1 is allowed.

Energy conversion through bending waves (local analysis)
Considering mechanical and electrical displacements in the form of an harmonic propagative wave of wavenumberk and
frequencyω and introducing this form in the coupled wave equations (1) and (2), one obtain the dispersion relation of
the system that links the wavenumbers and frequency. Stability of the infinite medium is ensured if frequencies have a
zero or negative imaginary part for any real value of the wavenumberk. It is found that the medium is unstable for any
flow velocity different than 0. Moreover, it is found that piezoelectric coupling destabilize a range of wavenumbers that
is a range of neutral stable waves without coupling. These waves are referred to asNegative Energy Waves, after Cairns
[2], who studied the effect of damping on stability of Kelvin-Helmotlz waves. It is then found that for any values of the
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Figure 2: (a) Wavenumber of the unstable wave that maximizesthe conversion efficiency; grayed region indicates the range of
wavenumbers that are destabilized by piezoelectric coupling. (b) Contour levels of the optimal efficiency in the (M∗, β) plane; black
line indicates the region where piezoelectric coupling hasa destabilizing effect.

system’s parameters, the unstable wave that maximizesr is one of these neutral waves destabilized by the piezoelectric
coupling, as shown in Fig.2a, where the wavenumber that maximizes the efficiency is plotted as function of the non-
dimensional velocityV ∗ for different values of the coupling coefficientα = χ/

√
cB.

Energy conversion through bending modes (global analysis)
When a finite length system is taken into account, a similar analysis can be conducted on the eigenmodes of the system.
Now the plate is not always unstable. It is well known that a flutter instability appears at a finite value of the flow
velocity [3, 4]. In the finite length problem, it is found thatdepending on the mass ratioM∗ = ρL/µ, the piezoelectric
coupling can increase or decrease the critical velocity forinstability. Thus piezoelectric coupling can have a stabilizing
or destabilizing effect. On Fig.2b, color levels the conversion efficiency at marginal stability of the marginally unstable
mode are represented in the(M∗, β) plane. Here,β is a measure of the ratio between fluid-solid and electrical timescales.
On this figure is also represented with a black line the regionwhere piezoelectric coupling has a destabilizing effect.
Similarly to the wave analysis, efficiency is maximum where the system is destabilized by damping. We predict that this
is due to the fact thatNegative Energy Wavesare implied in the unstable mode.

Non-linear results
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Figure 3: (a) Experimental deformation during one
cycle of oscillation. (b) Tension at the outlets of the
piezoelectric element. (c) Harvested power as func-
tion of the shunting resistance.

The effect of piezoelectric coupling on the saturated mode as well as
the harvested power in the saturated regime are addressed numerically
and experimentally. As an illustration, Fig.3 presents some experimen-
tal results obtained with a mylar plate equipped with two piezoelectric
elements occupying the whole length of the plate. The unstable defor-
mation during the oscillation, involving an appropriate image process-
ing from a picture sequence obtained by a high speed camera isgiven
on Fig.3a. The tension at the outlets of the piezoelectric elements in se-
ries, with a 330kΩ resistance in parallel is plotted as function of time
in Fig.3b. Finally, the power harvested is plotted as function of the
value of the resistance and compared with a model in Fig.3c.

Conclusions

We have derived a fully coupled fluid-solid-electrical waveequation
which allows to address the optimization of energy conversion from a
flowing fluid to electrical circuits trough piezoelectric coupling. We
have found that this coupling has a destabilizing effect both on waves
propagating in the infinite medium (local stability) and modes of the
finite system (global stability). Moreover, the maximal efficiency of the energy conversion is observed in situations where
piezoelectric coupling has a destabilizing effect. Nonlinear saturation of the dynamics of the system is now considered,
to address the efficiency of energy conversion of saturated regimes.
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