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Abstract

We investigate the instability properties of one-dimensional systems of finite length that can be described by a local wave
equation and a set of boundary conditions. A method to quantify the respective contributions of the local instability and of wave
reflections in the global instability is proposed. This allows to differentiate instabilities that emanate from wave propagation from
instabilities due to wave reflections. This is illustrated on three different systems, that exhibit three different behaviors. The first
one is a model system in fluid mechanics (Ginzburg–Landau equation), the second one is the fluid-conveying pipe (Bourrières
equation), the third one is the fluid-conveying pipe resting on an elastic foundation (Roth equation).
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Numerous systems in mechanics can be addressed using one-dimensional wave equations, at which a set of bound-
ary conditions are to be added when dealing with finite length systems. Many studies have sought to establish the
instability conditions for systems of finite length in various geometrical and physical conditions (see for instance [1]
in fluid mechanics, or [2] in fluid–structure interaction). Such systems, with the same local properties but with infinite
length can also experience wave instability, i.e. local instability [1,3]. These unstable waves are often the main reason
of the instability of finite length systems, i.e. global instability. But recently it has been shown that boundary condi-
tions, through wave reflections, may induce instability of finite length systems despite local stability (see [4] in the
case of a cantilevered fluid conveying pipe on an elastic foundation and [5] in the case of a swirling jet). This phenom-
enon has been attributed to the existence of over-reflecting boundaries. The reflection of waves on such boundaries
results in an energy gain. On the other hand, over reflecting boundaries have been addressed in various fields, such as
astrophysics [6], fluid mechanics [7] and fluid structure interaction [8,9]. In [10], the effect of asymmetric boundary
conditions has been investigated in the Ginzburg–Landau equation. It has been found that the criterion for global insta-
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bility of long systems can be that of local convective instability or that of absolute instability, depending on the degree
of asymmetry and absorption of the boundaries. The aim of this paper is to provide a theoretical framework that can
unify these results when a global instability is found, by quantifying the respective roles of boundary conditions and
local waves in the unstable behavior of these finite length systems. The method presented here has been first detailed
in [11,12]. It has been used to emphasize the destabilizing role of wave reflections in a locally stable system using a
simplified model of vortex breakdown [5]. We extend here the approach to local instability.

1.1. Local stability

In this paper, local stability refers to the stability properties of waves borne by the medium. It is analyzed in terms
of the local dispersion relation, which has the general form,

D(k,ω;p)y(x, t) = 0, (1)

where p is a set of parameters, y(x, t) = y0 ei(kx−ωt) is the amplitude variable and x is the spatial coordinate. This links
the wavenumbers k to the frequencies ω. Local stability is ensured if for any wave of infinite extent, the associated
temporal evolution remains finite with time, so that for any real wavenumber k, Im(ω) < 0. Convective and absolute
instabilities may also be distinguished [13,1,3]. The convective or absolute nature of a local instability depends on the
long time behavior of the impulse response G(x, t) of the system. The system is linearly stable if G decreases to zero
for long times along all rays x/t = const, and unstable otherwise. If the unstable wavepacket is convected away from
the source, the instability is said convective. Conversely, if the unstable wavepacket grows in place, the system is said
to be absolutely unstable. The criterion for transition between convective and absolute instabilities is found in practice
in terms of the wavenumber and the frequency by a residue analysis of the complex k-branches, see [13].

1.2. Global stability

When considering finite length systems with particular boundary conditions, the stability analysis is referred to as
global. A particular value of the frequency ω is a global eigenfrequency of the finite length system if the associated
spatial waves, with the wavenumbers given by the dispersion relation, can be combined to satisfy the boundary condi-
tions at any time. This selects a discrete set of global eigenfrequencies, say ωj , associated to global eigenmodes, φj .
If one of these frequencies has a positive imaginary part, the system is said to be globally unstable, as the amplitude
of one of the modes grows exponentially with time.

1.3. Model equations

1.3.1. Ginzburg–Landau model
The Ginzburg–Landau equation is a simple amplitude equation describing the dynamics of systems near the onset

of linear instability. It can be seen as a model equation governing the disturbances of the velocity around an equilibrium
state in the Navier–Stokes equations [1]. Since we are only interested in the onset of the instability, a linearized
Ginzburg–Landau equation is considered here, as in [14]. The coefficients of the equation, although complex in the
general case, will be taken real. This does not change the qualitative results [10]. The dispersion relation then reads,

D(ω,k;μ) = i
(
μ − k2) + k − ω = 0. (2)

This readily gives the local instability condition: the medium is locally unstable if μ > 0. The critical value of μ for
transition between convective and absolute instability is also easily found as μa = 1/4 [1]. The particular boundary
conditions considered in this paper are

y(0, t) = y(l, t) = 0. (3)

The global stability analysis is then straightforward: the system is globally unstable if μ > μa + π2/l2 (see for
instance [15]). This critical value of μ for global instability is plotted as function of the length l in Fig. 1(a). The
criterion for transition between absolute and convective instabilities μ = μa is also shown.
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Fig. 1. Local versus global instability properties in the space of parameters; (GS), global stability; (GI), global instability; (AI), absolute instability;
(CI), convective instability; (LS), local stability; (a) Ginzburg–Landau equation; (b) Bourrières equation; (c), Roth equation with β = 0.1.

1.3.2. Bourrières model
The fluid-conveying pipe is a dynamical system that attracted a lot of investigators and is recognized as a model for

numerous fluid–structure interaction problems (see [2] for a detailed review). We consider here a pipe of mass per unit
length m with flexural rigidity EI , no external tension or dissipation, conveying a fluid of mass per unit length M .
The flow velocity is U . Using the reference length η = √

EI/MU2 and time τ = U−2√EI/βM , the non-dimensional
dispersion relation reads [2],

D(ω,k;β) = k4 − k2 + 2
√

β kω − ω2 = 0, (4)

where β = M/(M + m) is the mass ratio. In the following, Eq. (4) will be referred to as the Bourrières equation [16].
The system is known to bear unstable waves for any β < 1, instability being absolute if β < 8/9 and convective
otherwise [3,17]. The stability of a cantilevered pipe of length l can be assessed considering the boundary conditions

y(0) = y′(0) = y′′(l) = y′′′(l) = 0, (5)
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where l = L/η is the dimensionless length. Fig. 1(b) shows the critical value of β for global instability as function
of l. Here, a Galerkin method is needed to determine the instability threshold, as in [18]. The limit between local
absolute instability and convective instability is also shown. Note that the dimensionless length parameter l used here
is actually identical to the dimensionless velocity parameter u commonly used to analyze the effect of the flow velocity
U on the stability of a pipe of given length L (see [2]).

1.3.3. Roth model
When the fluid-conveying pipe lies on an elastic foundation the dispersion relation becomes [3,19],

D(ω,k;β,Σ) = k4 − k2 + 2
√

β kω − ω2 + Σ = 0, (6)

where Σ = Sη4/EI is the non-dimensional stiffness of the elastic foundation, S being the dimensional stiffness.
The local instability criterion is Σ < (1 − β)2/4 [19]. When locally unstable, the medium is absolutely unstable if
Σ < (8/9 − β)/(12β) [3]. A cantilevered pipe is again considered, the boundary conditions are thus given by Eq. (5).
The global stability analysis of the fluid-conveying pipe on an elastic foundation may be also studied using a Galerkin
method [20,4]. At a given value of β = 0.1, the critical value of Σ for global instability varies with length, as shown
on Fig. 1(c). Also shown is the limit between local stability and instability, here absolute, at 1/Σ = 4/(1−β)2 = 4.94.
This unusual transition from local stability to absolute instability has been discussed in a previous paper [4].

1.4. Relation between local and global stability

The three systems presented here exhibit three different behaviors, as it appears on Fig. 1. In case (a), the system
cannot be globally unstable when the local instability is of the convective type, while it is allowed in case (b). And in
case (c), the system can be globally unstable when locally stable. Concerning the long systems behavior, the three cases
exhibited here are again very different. In case (a), the marginal stability criterion the long system is the convective
to absolute instability transition criterion, while in case (b), it is the local stability to instability transition criterion. In
case (c), this transition arises in the domain of local stability.

We propose to address these major differences using a new method to identify the global eigenmodes and eigen-
frequencies of the system. The method is detailed in Section 2. It is then applied to the three above cited models in
Section 3. Finally we draw several conclusions in Section 4.

2. From waves to modes

2.1. Local response to harmonic forcing

We consider in this section a system defined by the dispersion relation (1) subjected to an harmonic forcing local-
ized in space,

F(x, t) = δ(x)H(t) eiωf t . (7)

As a global complex eigenfrequency of the system is searched, the circular frequency ωf is considered complex. Such
a forcing has hence an increasing or decreasing amplitude, depending on the imaginary part of ωf . By an analysis of
the residues in the complex ω- and k-planes, it is found [13] that the waves generated by this forcing are defined by the
frequency ωf and their associated wavenumbers through the dispersion relation. See for instance [1] for a complete
discussion about the waves generated by this particular forcing.

The method for identifying the side +x or −x of the propagation of the waves is the following: Let τmax =
maxk real Im[ω(k)] be the maximum growth rate of the system. If Im(ωf ) > τmax, wavenumbers with a positive
imaginary part define waves propagating downstream of the point of excitation while wavenumbers with a nega-
tive imaginary part define waves propagating upstream. By reducing Im(ω) to zero and following the evolution of
k-branches, upstream- and downstream-propagating waves are identified for values of ωf with imaginary part smaller
than τmax.

A downstream wavenumber with a positive imaginary part corresponds to a spatially evanescent wave and with a
negative imaginary part to a spatially amplified wave. A wavenumber that is real refers to a spatially neutral wave.
As in [1], k+ wavenumbers refer to waves propagating in the x > 0 space while k− wavenumbers refer to waves
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Fig. 2. Illustration of the waves generated by a forcing at a complex frequency, fluid-conveying pipe case at ω = 0.21 + 0.003i for β = 0.95.

propagating in the x < 0 space. As an illustration, Fig. 2 represents the waves generated by a forcing at the frequency
ω = 0.21 + 0.003i on an infinite fluid-conveying pipe modelized by the Bourrières equation for β = 0.95. On this
figure, and throughout the end of the paper, the subscript are chosen such that k+

1 and k−
1 refer to the most amplified

(or less evanescent) downstream and upstream waves respectively. One may keep in mind that the case of Fig. 2,
the forcing and the envelope of the waves have an exponentially amplifying amplitude associated to a growth rate
Im(ω) = 0.003.

2.2. The gain matrix

A system of finite length is considered now. It is forced at its downstream end. From the previous section, we know
that several upstream waves, say n, are generated, with corresponding wavenumbers k−

j , j = 1 to n. Their amplitudes

at the forcing point are denoted a−
j and they combine to form the displacement,

y−(x, t) =
n∑

j=1

a−
j ei[k−

j (x−l)−ωt]
. (8)

The amplitudes of the waves at the upstream boundary b−
j are therefore given by setting x = 0 so that b−

j = a−
j e−ik−

j l .
In a matrix form it reads

b− = P −a−, (9)

where P − is the diagonal matrix such that,

p−
jm = e−ik−

j l
δjm. (10)

The reflection of the n waves induces n downstream waves, with amplitudes at the upstream end b+
j . The more general

case where the number of upstream and downstream waves differ is discussed in the last section of the paper. At any
time, the n waves must satisfy the n upstream boundary conditions, which are expressed as n linear conditions on the
n unknowns b+

j , j = 1..n. This can be also expressed in a matrix form,

b+ = R−b−. (11)

Here, R−, referred to as a reflection matrix, is a full n × n matrix, with coefficients depending only on the boundary
conditions. In the following examples, the reflection matrices will only be functions of the wavenumbers. In the same
manner, the amplitudes at the downstream end of the downstream propagating waves are,

a+ = P +b+. (12)

And finally, the downstream waves, incident on the downstream end, generate n upstream waves of amplitudes a′−
j ,

which are related to the amplitudes a+
j of the impinging downstream waves by,

a′− = R+a+. (13)
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Fig. 3. Schematic view of the back and forth travel.

We may define a gain matrix G between the original upstream waves amplitudes a−
j and those obtained after a back

and forth travel a′−
j ,

a′− = Ga−, G = R+P +R−P −. (14)

This matrix is a function of the parameters p of the dispersion relation, of the length l and of ω through the wavenum-
bers. The method described here is illustrated in Fig. 3.

2.3. From the gain matrix to the global modes

If for a given set of parameters (p, l) and a given circular frequency ω we have a′− = a−, no external forcing is
necessary to sustain the waves. In that case a− is an eigenvector of G with the corresponding eigenvalue being

λ = 1. (15)

In this case the upstream waves obtained after a back and forth travel have the same amplitude and phase at the forcing
point than the initial upstream waves. Moreover, at this particular complex frequency, it is possible to combine the
four corresponding waves to satisfy the boundary conditions. This is the condition for ω to be an eigenfrequency of
the system. An eigenfrequency has thus been identified. The corresponding eigenmode is obtained by combining the
2n waves,

φ(x) = {
eik−

1 (x−l), . . . , eik−
n (x−l)

} · a− + {
eik+

1 (x−l), . . . , eik+
n (x−l)

} · a+ (16)

with, after Eqs. (9), (11) and (12), a+ = P +R−P −a−.

2.4. Respective roles of waves and boundary conditions

In the form of Eq. (14), the gain matrix G does not allow us to separate the contribution of propagation and the
contribution of the reflections. However, only the eigenvalues of G, referred to as λ, are relevant here, as they allow
to identify the eigenfrequencies through the criterion λ = 1, Eq. (15). These eigenvalues all satisfy

|λ| < |G|, (17)

where | · | is here the 2-norm of a matrix or a vector, defined by

|M| = max
v

|Mv|
|v| , |v| = √

tvv, (18)

where the superscript t refers to the conjugate transpose. The 2-norm of a matrix M is found in practice by calculating
the square root of the maximum eigenvalue of tMM . The 2-norm of G satisfies the following property,

|G| � ∣∣R+∣∣∣∣P +∣∣∣∣R−∣∣∣∣P −∣∣. (19)

By denoting P = |P +||P −| and R= |R+||R−|, we finally have, combining (17) and (19),

|λ| � PR. (20)

The upper bound for the eigenvalues of G is now expressed in terms of a product of two scalars P and R, exclusively
depending on the properties of the waves and their reflections respectively. As P + and P − are diagonal matrices, we
simply have

P = max
(
eik+

j l) × max
(
e−ik−

j l)
. (21)
j j
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If P > 1, the most amplified (or less evanescent) waves upstream and downstream have together an amplifying role.
Conversely, if P < 1, these waves have a damping role. Then, to allow the system to exhibit a global unstable fre-
quency, that is to have λ = 1 for some frequencies with positive imaginary part, the boundaries must compensate with
amplifying wave reflections, i.e. R > 1. This allows to identify the situations where the global instability originates
from a gain at boundary conditions. This is now applied to the particular systems described in Section 1.3.

3. Application

3.1. Ginzburg–Landau equation

This medium, defined by Eq. (2) bears two waves, one travelling upstream and one travelling downstream. The
matrices of propagation and reflection and the gain matrix are hence only scalars. The reflection matrices are such that
the boundary conditions (3) are satisfied, R+ = R− = −1. The gain matrix is therefore,

G(ω) = ei[k+(ω)−k−(ω)]l . (22)

The condition for ω to be an eigenfrequency of the finite length system is G(ω) = 1, which implies

Im
(
k+ − k−) = 0, Re

(
k+ − k−) = 2nπ

l
. (23)

The first condition is exactly the Kulikovskii criterion [15], see the discussion in the last section.
For this system, R = 1 and boundaries are neutral for all frequencies. When the medium is convectively unstable,

it is found using the dispersion relation (2) that Im(k+) < − Im(k−) for every frequencies with positive imaginary
part. Hence, P < 1 and |G| � PR < 1 for any unstable frequency. Global instability is therefore impossible in the
case of local convective instability, as it appears in Fig. 1(a).

3.2. Bourrières equation

The dispersion relation (4) is now used with the boundary conditions (5). The matrices of propagation read,

P + =
[

eik+
1 l 0

0 eik+
2 l

]
, P − =

[
e−ik−

1 l 0

0 e−ik−
2 l

]
. (24)

Hence,

P = ∣∣ei(k+
1 −k−

1 )l
∣∣ = eIm(k+

1 −k−
1 ). (25)

See Appendix A for the calculation of the reflection matrices.
In Fig. 4, two sets of parameters (β, l) such that a global instability arises are considered. The corresponding

unstable eigenfrequency is shown in the complex ω-plane. Here, the frequency is computed using a standard Galerkin
method, see [2]. On the same figures are shown the regions where P > 1 and P < 1, derived from the dispersion
relation (4) and using (21) and (24). For β = 0.95 and l = 17.7, Fig. 4(a), the global unstable eigenfrequency falls in
the region where P < 1. Wave propagations have hence a damping behavior and R> 1 is necessary for the existence
of this unstable eigenfrequency. Here, the global instability is due to wave reflections. Conversely, for β = 0.912 and
l = 15, Fig. 4(b), the global unstable eigenfrequency appears in the region where P > 1. In this case, R must be
computed to conclude on the driver of the instability.

On Fig. 5, the evolutions of P and R are plotted just after the onset of global instability as function of β , in
the range of convective instability. The length is equal to lc(β) + ε, ε � 1, where lc is the critical length of global
instability (see Fig. 1(b)). For β > 0.94, we have P < 1 and R > 1, and the global instability is therefore due to wave
reflections. For β < 0.94 P > 1 and R > 1, hence wave propagations and wave reflections may both contribute to the
global instability.

We have thus clearly shown that for β > 0.94, despite local instability, the global instability emanates from a gain
by wave reflections. On the other hand, for β < 0.94, both wave propagations and wave reflections may contribute to
the global instability.
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Fig. 4. Contour lines of P = 1 in the upper complex ω-plane (_____): ⊕, global eigenfrequencies; (a), β = 0.95, l = 17.7; (b), β = 0.912, l = 15.

3.3. Roth equation

The analysis is here straightforward. Using Eq. (6) in the range of local stability, it is found that all waves associated
to frequencies with positive imaginary part are evanescent. Hence P < 1 for any unstable global frequency that
might exist. This ensures that global instability is always due to wave reflections in the range of local stability of the
parameter Σ , see Fig. 1(c).

4. Concluding remarks

4.1. The role of wave propagation

For unidimensional systems described by a linear dispersion relation, four typical cases for the role of waves in a
global instability have bee distinguished,

(a) Absolute instability: As previously mentioned, this case is not described by the present approach but provided the
system is sufficiently long, global instability arises [15].

(b) Convective instability with P > 1 for some unstable frequencies: In this case, wave propagations can drive a
global instability.

(c) Convective instability with P < 1 for all unstable frequencies: Wave propagations cannot drive a global instability.
(d) Stability: Wave propagations cannot drive a global instability.

4.2. The particular role of neutral and evanescent waves

In each system studied in this paper, global instabilities due to wave reflections have been observed only when there
exists a range of real frequencies for which all corresponding wavenumbers are real, independently of the existence of
a local instability. This range has been referred to as neutral in a previous work, [4]. At these real frequencies, P = 1.
But in the evanescent case, due to the possible existence of at least one upstream and one downstream neutral wave for
some real frequencies, we may also have P = 1 for these frequencies. The possibility for a global instability in neutral
media is due to the fact that any combination of the waves is formed of only neutral waves and no energy is dissipated
in the medium. Hence, a gain by wave reflections is not dissipated in the medium and a global instability may arise.
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(a)

(b)

Fig. 5. (a) Value of P above the instability threshold as function of β in the range of convective instability; (b) value of R. The jump appearing for
both P and R at β = 0.925 corresponds to an abrupt change of lc , see Fig. 1(b).

Conversely, in the evanescent case, any combination of the waves forming a global mode contains evanescent waves.
These waves dissipate energy in the medium that cannot be compensated by a gain by wave reflections. Neutral

and evanescent media can be distinguished by the value of Pmin = minj (e
ik+

j l
) × minj (e

−ik−
j l

). For neutral media
P = Pmin = 1 for some real frequencies, for evanescent media P = 1 for some real frequencies but Pmin < 1 for these
frequencies.

4.3. Comparison with previous work

The Kulikovskii criterion [15] determines the global eigenfrequencies of the system when its length tends to infin-
ity. It is strictly equivalent to state that P = 1. For the Ginzburg–Landau equation, convective instability exists with
P < 1 in the upper half-plane of complex angular frequencies. This signifies that the Kulikovskii criterion is satisfied
only by frequencies with negative imaginary part, predicting global stability for long systems. Conversely, for the
Bourrières equation, convective instability exists with P > 1 in the upper ω-plane. We have hence global instability
for long systems. This criterion is able to explain the different behaviors of the marginal stability criteria for long
systems on Figs. 1(a) and 1(b). In the case of the Roth equation, instability always arises at a neutral frequency. The
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Fig. 6. Growth rate of the most unstable mode of a cantilevered fluid-conveying pipe on elastic foundation (Roth equation) as function of length for
β = 0.2 and Σ = 0.198; (.....) maximum growth rate for l → ∞ predicted by the Kulikovskii criterion.

criterion for global instability when the length grows to infinity has been found to be the criterion for transition from
evanescence to neutrality. But as neutrality means that there exist real frequencies with associated real wavenumbers,
the Kulikovskii criterion predicts global stability when l → ∞. In Fig. 6, the maximum growth rate of global stability
is compared to the maximum growth rate predicted by the Kulikovskii criterion when the length is increased. The
former becomes positive at l 	 20 and tends to zero when l → ∞ while the latter is zero. Hence our results and that of
Kulikovskii are consistent; the maximum global growth rate tends asymptotically to zero, i.e. marginal stability, but
has positive values for any length l > 20. This shows that although wave reflections may have an amplifying role that
can lead to global instability, the exponential nature of wave propagations dominates when the length tends to infinity.

In the work of Lee and Mote [9] on the stability of a fluid conveying pipe, using dispersion relation (4), it is assumed
that the bulk of the medium cannot contribute to the instability. More precisely, in their case which is in the range of
absolute instability, two real wavenumbers and two complex wavenumbers are found at a given real frequency. It is
argued in this paper that complex wavenumbers are associated to evanescent waves, which determines their direction
of propagation. The group velocity is then used to determine the direction of propagation of the two other waves
and the velocity at which energy is advected. Stating that only purely propagating waves (k real) convey energy, they
calculate the energy gain by a wave reflection. Using an energy balance, predictions are given on the unstable behavior
of the systems in presence of boundary conditions. This approach is erroneous for two distinct reasons: (a) when the
system is unstable, the direction of propagation of waves can only be given by a branch analysis in the complex k- and
ω-plane, [1], (b) the concept of group velocity as the velocity of energy transport is not valid when there is local
instability [21]. Indeed, in the range of parameters where absolute instability arises the absolute frequency dominates
the local response of the system and approaches based on the study of the waves generated by harmonic forcing, like
ours or that of Lee and Mote, are not applicable.

In the work of Fox and Proctor [10], two Ginzburg–Landau equations are coupled by the boundary conditions.
Unstable waves propagate in both directions, it is hence expected that P > 1 for this system and global instability can
exist even when the local instability is of the convective type. This is what was indeed observed.

4.4. Further applications

This general methodology can be useful for other systems that can be described by amplitude equations. For
instance when the number of downstream and upstream waves differ, the matrices used in Eq. (14) are not square,
but the main result, Eq. (20) remains. In the particular application of our method proposed by [5] for the stability of
swirling jets, one upstream and three downstream waves exist. The instability of this system, similarly to the instability
of the Roth equation presented here, is due to wave reflections, under the condition that there exist a neutral range.

These results can also be applied to active or passive control, since it makes possible to define the optimal design
of boundaries that prevents such instabilities. The transfer function of a system is the response to forcing ratio, it
is hence expected that the matrix gain can provide this global information on the system. Similarly, pseudospectra
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and transient growth properties help understand the instability transition, as it has been recently emphasized [22,23].
These properties should be contained in the gain matrix. These aspects are under current investigation.

Appendix A. Calculation of the reflection matrices for the Bourrières equation

Let us consider first the upstream boundary condition. Incident waves are the two upstream waves with local am-
plitudes b−

1 and b−
2 . Reflected waves are the two downstream waves with local amplitudes b+

1 and b+
2 . The amplitudes

of the reflected waves at the upstream end must be such that the total deformation,

y(x, t) = e−iωt
(
b+

1 eik+
1 x + b+

2 eik+
2 x + b−

1 eik−
1 x + b−

2 eik−
2 x

)
, (A.1)

satisfies the boundary condition, for all t , that is, for a clamped end, y = ∂y/∂x = 0. There are two conditions for this
boundary, leading to two algebraic equations with two unknowns b+

1 and b+
2 . This can be expressed in a matrix form,

b+ = R−b−, (A.2)

with,

R− = 1

k+
2 − k+

1

[
k−

1 − k+
2 k−

2 − k+
2

k+
1 − k−

1 k+
1 − k−

2

.

]
(A.3)

A similar calculation can be done for a free end and general form of a reflection matrix is finally obtained,{
ar

1

ar
2

}
=

[
r(ki

1, k
r
2, k

r
1) r(ki

2, k
r
2, k

r
1)

r(ki
1, k

r
1, k

r
2) r(ki

2, k
r
1, k

r
2)

]{
ai

1

ai
2

}
,

where the i and r indices refer to incident and reflected waves respectively. For a clamped end we have,

r(x, y, z) = (x − y)/(y − z), (A.4)

and for a free end,

r(x, y, z) = (
x3 − x2y

)/(
z2y − z3). (A.5)

For the Roth equation described in Section 1.3.3, the boundary conditions are the same, so are the reflection
matrices.
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