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Chapter 4

Dissipation Effect on Local and Global
Fluid-Elastic Instabilities

4.1. Introduction

In many physical systems, damping has been observed to have a stabilizing or
destabilizing effect. Various discrete mechanical systems display this unusual feature.
The most famous is probably the one studied by Ziegler in 1952 [ZIE 52]. It consists
of a double-pendulum subjected to a follower force, which can practically be
achieved by dry friction [BIG 11, BIG 12]. It was found by Ziegler that the critical
value of the load at which the straight equilibrium position becomes unstable
decreases and changes in a discontinuous manner when an infinitesimal amount of
viscous damping is added in the model. Many gyroscopic systems present this
feature [RUI 93, KIR 10], as well as aeroelastic systems [LEE 97], and the
experimental evidence of a destabilizing effect of a viscous fluid has been obtained in
the context of rotor dynamics [ANT 96, GRU 96]. In the case of a general dynamical
system, Bottema [BOT 55] has described the required conditions for the damping to
induce instability. After Kirillov and Verhulst [KIR 10], the discontinuous behavior
of the critical value of the parameter for instability is linked to the existence of
singularities of maps between manifolds of dimension n to spaces of dimension
2n - 1, as studied by Whitney [WHI43] in a purely mathematical context,
independently of the effect of dissipation on mechanical systems.

Destabilizing the effect of damping in continuous but finite systems has also been
evidenced. The cantilevered beam subjected to a follower force has been studied by
Sugiyama and Langthjem [SUG 07] in terms of energy transfers at the free end. In

Chapter written by Olivier DOARE.



68 Nonlinear Physical Systems

the case of a fluid-conveying pipe, the stabilizing or destabilizing nature of damping
has been shown to depend on the fluid-solid mass ratio [LOT 86]. Similar conclusions
have been drawn for the fluttering flag [GUO 00].

In infinite systems described by wave equations, the effect of damping on stable
waves has also been the subject of a large number of papers. In the problem
consisting of a flow over a compliant panel, Landahl [LAN 62] showed that viscosity
was able to destabilize some neutral waves. The same phenomenon was observed in
the fluid-conveying pipe problem [ROT 64]. Such destabilizing phenomena were first
encountered in the plasma physics discipline, where the concept of wave of negative
energy was introduced [VON OS, BR164, BEK 69]. This concept has been a
considerable addition to the discussion of stability of these media and has been
introduced in the research field of mechanics by Cairns [CAl 79], who showed that
the classical expression of the wave energy introduced in plasma physics represents
here the work done on the system to generate the wave from t = - 00 to t = O.

The objective of this chapter is to present a joint local/global stability analysis of
a model problem of fluid-elastic instabilities: the fluid-conveying pipe. As
emphasized in a recent review by Paidoussis [PAl 08], the fluid-conveying pipe may
be seen as a model problem for many physical systems, where a slender structure is
coupled to an axial flow, and has applications in many fields, such as paper and
nuclear industries, aeronautics, musical acoustics and biomechanics . The
fluid-conveying pipe shares many similarities with all the systems mentioned above:
once a critical value of a parameter is reached (here the flow velocity), the finite
length system exhibits an instability and damping can, in some cases, lower the
critical velocity value. In the infinite length system, unstable waves (temporally or
spatially amplified) may be identified, as well as the neutral waves that become
unstable waves when a small amount of damping is added. However, in none of the
above-cited works, a joint local and global analysis is performed to determine the
role of the negative energy waves in the global instability.

This chapter is organized as follows: in section 4.2, the local and global analyses
are briefly described. In section 4.3, the linear equations governing the dynamics of a
fluid-conveying pipe are presented. Effect of damping on the local and global
stability of the fluid-conveying pipe is analyzed in section 4.4. An application to
energy harvesting is discussed in section 4.5 and, finally, section 4.6 concludes the
chapter.

4.2. Local and global stability analyses

In this section, the local and global stability analyses of a general one-dimensional
mechanical system are presented.

4.2.1. Local analysis

Consider an infinite leng
of the form

a2 a
at2 M [y(x,t) ] + at'
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estabilizing nature of damping
[LOT 86]. Similar conclusions

4.2.1. Local analysis

Consider an infinite length one-dimensional medium governed by a wave equation
of the form

a2 a
at2M [y(x , t)] + atC [y(x, t)] + K [y(x , t)] = 0 on n = [-00, + 00], [4.1]

where M, C and K are the mass, damping and rigidity operators, respectively. After
introducing, into this equation, a disturbance of the form of a plane harmonic wave

y = yoei(kx-wt), a dispersion relation that links frequency to wave number is
obtained,

ie effect of damping on stable
:r of papers. In the problem.
__AN 62] showed that viscosity
phenomenon was observed in

ibilizing phenomena were first
le concept of wave of negative
]. This concept has been a
of these media and has been
IS [CAl 79], who showed that
I in plasma physics represents
from t = - 00 to t = O.

D(k ,w) = O. [4.2]

4.2.2. Global analysis

This approach is called temporal because it consists of examining the temporal
evolution of waves in time.

The medium is stable if, for any sinusoidal wave of infinite extent in the
x -direction and associated with a real wave number k, the corresponding frequencies
given by equation [4.2] are such that the displacement remains finite in time. The
local instability criterion is then

The global analysis considers the same local wave equation [4.1] in a finite domain
n = [0, l], associated with a set of boundary conditions, denoted by Bi(y) = 0 i =

l ..N, where N is the maximal order of the spatial derivatives in operators K and

M. Considering ansatz solutions of the form y = ¢(x )e- iwt, we obtain a Sturm
Liouville problem whose solutions are an infinite set of eigenfunctions ¢n (x) and
eigenfrequencies wn . In this case, the instability condition is,

[4.3]Instability if:3k E lR \ Im[w(k)] > O.
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s of a general one-dimensional

Numerical methods are generally used to solve this kind of problems. In the
following, the Galerkin method is used to compute approximate solutions. The
solution y(x , t) is decomposed on a truncated function basis that satisfies the
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the approximated form of y defined in equation [4.5] is introduced in [4.1], which is
then projected on a mode 'l/Jm(x). We finally obtain a discrete set of coupled oscillator
equations

The coefficients of the matrices M, G and K result from the projection of the
inertia , damping and rigidity forces of equation [4.1]. Finally, looking for harmonic

solutions in the form of if = qae-iwt leads to a second-order eigenvalue problem
for the eigenfrequency. The criterion for global instability is then given by [4.4], and
the corresponding eigenvector gives the eigenmode in the form of a combination of
functions ej f,»).

boundary conditions

N

y(x , t) = L 'l/Jn(X)q(t).
n=l

After defining a scalar product

(f ,g) = In fgdx,

Mif+ Gif+ Kif = O.

[4.5]

[4.6]

[4.7]

considering a portion of the :
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After introducing the
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T - EI and
parameters, the wave equati
parameter j3

where j3 is the mass ratio

4.3. The fluid-conveying pipe: a model problem

The simplest equation describing the linear dynamics of this system consists of
an Euler-Bernoulli equation for a beam of mass per unit length m , flexural rigidity
EI, in which an internal fluid of mass per unit length M and of negligible viscosity is
flowing at constant velocity U. The dimensional wave equation governing the vertical
displacement Y(X,T) is [PA198]

M
j3 = m + M E [0,1].

Note that the case j3 = 0
force , referred to as the Bee
damping operators now are

[4.8]

The first two terms in this equation are the flexural rigidity and inertia terms of
the linearized Euler-Bernoulli equation. The third term is an inertia term that comes
from the presence of the fluid inside the pipe. The fourth term may be understood as a
centrifugal term that arises as soon as the beam experiences a local curvature. Finally,
the fifth term is generally referred to as a Coriolis force and may be interpreted by

When considering a fini
introduced

l=~=UL {NI
7J VEl '
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considering a portion of the pipe moving at a constant velocity. Due to the presence of
a moving mass inside , a force is exerted on this portion of the pipe .

When damping is to be considered, we may add one or both of these two additional
forces to the wave equation

[4.9]

[4.6]

is introduced in [4.1], which is
.iscrete set of coupled oscillator

[4.7]

sult from the projection of the
. Finally, looking for harmonic

.ond-order eigenvalue problem
ility is then given by [4.4], and
1 the form of a combination of

The first case is referred to as viscous damping and is generally a consequence of
the presence of a viscous fluid around the pipe, while the second is called structural
damping and is the consequence of a viscoelastic behavior of the material that
constitutes the pipe .

After introducing the characteristic length 'TJ (JJ2)1/2 and time

7 = ((m+
E
lIp1)4)1/2 and rescaling all dimensional quantities using these two

parameters, the wave equation takes a form that depends on only one independent
parameter (3

[4.10]

where (3 is the mass ratio

Note that the case (3 = °is stricly equivalent of cantilevered beam with a follower
force, referred to as the Beck's column [BEe 52]. In their dimensionless forms , the
damping operators now are

nics of this system consists of
unit length m, flexural rigidity
\If and of negligible viscosity is
equation governing the vertical

M
(3 = m + M E [0,1]. [4.11]

[4.8]
[4.12]

When considering a finite length system , the non-dimensional length has to be
introduced

al rigidity and inertia terms of
n is an inertia term that comes
th term may be understood as a
ences a local curvature. Finally,
rce and may be interpreted by
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and two boundary conditions have to be specified at each boundary. They are

y(x = Xo, t) = y'(x = Xo, t) = 0 , y"( x = Xo , t) = y"'( x = Xo, t) = 0,[4.14]

for a clamped end and a free end , respectively, where the primes (.)' denote the
derivation with respect to x and Xo takes the value °or l.

4.4. Effect of damping on the local and global stability of the fluid-conveying pipe

4.4.1. Local stability

The dispersion relation of the undamped fluid-conveying pipe is

Now consider that a smal
that the dispersion relation tal

where Ow « w is a small pe
which satisfies at order one

s: aDI .uw a =~cw.

w (k ,w)

We readily deduce from tl
Im(ow)

[4.15] cw
0(7 = aD/ow.

, "

The frequency associated with a real wave number k then becomes

[4.16]

For j3 E [0, 1[ and k E [0, yT"=71], frequencies w± are complex conjugate and
the positive imaginary part of one of them gives rise to a wave with an amplitude
exponentially growing in time. For k > yT"=71, w(k) E 1R and the waves are called
neutral. In conclusion, the medium is locally unstable, Vj3 E [0, 1[. Conversely for
j3 2:: 1, the medium is neutrally stable. However, it has to be noted that j3 > 1 has no
physical meaning in the present context.

In various studies on the effect of damping on wave propagation, the key role of
the wave energy has been evidenced. Although introduced in the context of shear layer
waves between two non-miscible fluids [CAl 79], the definition is generic and can be
readily used in any mechanical system. Consider a harmonic wave with wand k E 1R
and D(k ,w) = 0. The wave energy is defined as the work done on the system to
establish this neutral wave from t = - 00 to t = 0, and is expressed as

[4.17]

If E is negative, it means that energy has to be removed from the system to
establish the wave. The latter is referred to as a negative energy wave (NEW)
[VON OS].

This quantity has the op
destabilized by viscous darn]
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Now consider that a small amount of viscous damping is added in the system so
that the dispersion relation takes the form

l , t) = y'"(x = XO, t) = 0,[4.14]
D1(k ,w + Ow) = D(k ,w + Ow) - ic(w + Ow) = 0, [4.18]

ere the primes (.)' denote the
.z. where Ow « w is a small perturbation to the frequency introduced by the damping,

which satisfies at order one

ity of the fluid-conveying pipe OW ~D I = icw.
w (k ,w)

[4.19]

'eying pipe is
We readily deduce from this expression the perturbation on the growth rate OCJ =

Im(ow)

[4.15]
cw

OCJ = 8D/8w' [4.20]

k then becomes

[4.16]

iJ± are complex conjugate and
; to a wave with an amplitude
I E IR and the waves are called
e, V{3 E [0,1[. Conversely for
, to be noted that {3 > 1 has no

te propagation, the key role of
.ed in the context of shear layer
lefinition is generic and can be
monic wave with wand k E IR
~ work done on the system to
is expressed as

[4.17]

removed from the system to
iegative energy wave (NEW)

This quantity has the opposite sign of the wave energy E. A NEW is hence
destabilized by viscous damping. The same calculation performed with viscoelastic
damping gives

[4.21]

which leads us to the same conclusion.

In the fluid-conveying pipe case, the wave energy is expressed as

[4.22]

and E _ has negative values in the range k E]Vf=71, 1[. Hence, the range of
temporally unstable waves becomes [0, 1[ when damping is added, whereas it was
k E [0, yT=7j] in the conservative case. Damping enlarged the range of unstable
wave numbers. Moreover, the system is now temporally unstable for any value of {3,
when it was for {3 E [0 , 1[ in the conservative case.

In Figure 4.1, the ranges of unstable waves in the damped and undamped cases
are compared when parameter {3, quantifying the Coriolis force, varies from °to 1. It
can be concluded from the figure that the Coriolis force stabilizes waves, which are,
in tum, destabilized by a small amount of damping. The same kind of behavior was
observed by Thomson and Tait in discrete systems [THO 79].
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4.4.2. Global stability
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4.4.2.1. Evolution ofeigenfre.

The evolution of the eige
Figure 4.2 with four typical ca
{3 = 0, and a clamped-free pil
typical behaviors of the eigen
bifurcations are evidenced. In
arises through a saddle-node 1
buckling. In the case of a clar
the mass ratio {3. If (3 = 0, tlu
instability occurs via a Hopf
on the real axis. In the fluid-el
instability, as it results in self-s
of the solution has been satun
of the flow velocity has a sta
through the matrix C: all the
part half plane. When further iJ
its trajectory and crosses the n

[4.23]

0.8

Unstable range
with damping
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Figure 4.1. Range ofunstable wave numbers as a fun ction of /3. This
illustrates the fact that the range ofwave numbers ..;r=;J is stabilized

by the Coriolis force and this range is destabilized when damping is added
in the medium

Boundary conditions and the finite length parameter l are now introduced. The
dimensionless parameter l in equation [4.13] is proportional to both Land U,
indicating that it can be seen as a dimensionless length or flow velocity. Although the
limit l = 0 has no meaning when it is sought as a length, it can be achieved by letting
the flow velocity vanish. In the global approach, it is more convenient to use L to
rescale the lengths so that the dimensionless wave equation becomes

The Galerkin method presented in section 4.2.2 is used here to obtain the present
results. The chosen test functions are the eigenmodes of the pipe without flow. The
functions 'l/Jn(x) are hence the eigenfunctions of equation [4.23] with the same set of
boundary conditions and v = O. These eigenfunctions are basically the eigenmodes
of a beam and are known and well-documented analytic functions (see, for instance ,

where the length of the dimensionless problem is the unity and with,

v = l. [4.24]

4.4.2.2. Effect ofdamping on
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[BLE 90]). Equation [4.23] is then projected on each mode 7/Jm, leading to N ordinary
differential equations for the time variable, which is

:able range
I damping

[4.25]

0.8
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s~ is stabilized
when damping is added
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[4.23]

nity and with,

[4.24]

used here to obtain the present
of the pipe without flow. The
ion [4.23] with the same set of
; are basically the eigenmodes
ic functions (see, for instance,

The coefficients of the matrices C, Kd and K f result from the projection of the
Coriolis, flexural rigidity and centrifugal operators, respectively. Note that K d is
diagonal, as discussed above. The coefficients of these matrices can be found in
[GRE 66]. In the clamped-clamped case, C is skew-symmetric and K f is symmetric.
In the clamped-free case, C and K have both symmetric and skew-symmetric parts.
This has consequences on the bifurcation properties of these two systems. The
bifurcation types have been studied in such discrete systems. The role of matri x
symmetries in the bifurcation is out of the scope of this chapter and can be found in
other mathematical studies [KIR 07, KIR 10].

4.4.2.1 . Evolution ofeigenfrequencies and bifurcations

The evolution of the eigenfrequencies when v is increased from 0 is shown in
Figure 4.2 with four typical cases: a pipe clamped at both ends , a clamped-free pipe at
f3 = 0, and a clamped-free pipe at f3 = 0.2 and f3 = 0.95. These graphs illustrate the
typical behaviors of the eigenfrequencies when the flow velocity increase. Different
bifurcations are evidenced. In the case of a clamped-clamped pipe , instability always
arises through a saddle-node bifurcation. The instability is called static instability, or
buckling. In the case of a clamped-free pipe, the bifurcation depends on the value of
the mass ratio f3 . If f3 = 0, the dissipation matrix vanishes in equation [4.25] and the
instability occurs via a Hopf bifurcation after the merging of two eigenfrequencies
on the real axis. In the fluid-elastic community, this instability is referred to as flutter
instability, as it results in self-sustained oscillations of the structure once the amplitude
of the solution has been saturated by the nonlinear effects. When f3 -I- 0, the increase
of the flow velocity has a stabilizing effect at first , due to a flow-induced damping
through the matrix C: all the eigenfrequencies travel toward the negative imaginary
part half plane. When further increasing the flow velocity, one eigenfrequency changes
its trajectory and crosses the real axis , giving rise to a flutter instability.

4.4.2.2. Effect ofdamping on marginal stability of the clamped-free pipe

The global stability of the system is now characterized by plotting in the (f3 ,l)
plane the marginal stability curve (Figure 4.3(a)) for c = °(no damping). This curve
corresponds to the line in the (f3 , l) plane where the maximum growth rate
maxn[Im(wn)] = 0. In the same figure , the local stability criterion f3 = 1 is plotted. It
appears, then, that the long system limit for global instability is the local stability
criterion. In Figure 4.3(b), different values of the dimensionless damping c from 0 to
1,000 are considered. The resulting marginal stability curve moves continuously
from the undamped limit to a horizontal limit. For f3 E [0,0.2]' the damping appears
to have a stabilizing effect while it has a destabilizing effect for f3 > 0.2. Hence, also
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for the finite length clamped-free pipe, damping can have a destabilizing effect.
While in absence of damping the instability criterion of the finite length tends to the
local one when l is increased, no such limit can be observed in the damped case
because the damped medium is locally unstable V(3 . However, the horizontal limit
observed at high values of the damping cannot be predicted by a local criterion.
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Figure 4.2. Evolution in the complex plane of the eigenfrequencies of the
clamped-clamped and clamped-free pipe when the velocity parameter v is

increased from 0, for different values of the mass ratio {3

4.4.2.3. Kulikovskii 's criterion

We observed in section 4.4.2.2 that the long system limit of the marginal stability
curve in the undamped case is the local stability criterion. In the case of the
Ginzburg-Landau equation, which is a simplified amplitude equation describing
fluid-mechanics systems such as jets , vortices and shear layers, the long system limit
for global instability criterion was found to be that of transition from local convective
instability to absolute instability [TaB 98, cos 97]. Convective and absolute
instabilities distinguish the long time behavior the temporally growing wave packet
generated by an impulse forcing on an unstable medium. In the case of convective
instability, the growing wave packet is advected by the stream, while in the case of
absolute instability, the wave packet grows in place. For the fluid-conveying pipe, the
transition between these two kinds of local instabilities occurs at (3 = 8/9 [KUL 88].
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Hence, the long system limit is predicted by a local criterion, which is not unique.
A criterion introduced by Kulikovskii in 1966 in the context of electron beam
instability and cited in the book by Lifshitz and Pitaevskii [LIP 81] permits us to
determine which local criterion should prevail. Kulikovskii showed that as the length
of the system tends to infinity, the eigenvalues tend to a continuous line in the
complex frequency plane such that the most spatially amplified (or least evanescent)
downstream propagating wave is exactly balanced by the least spatially evansescent
(or most amplified) upstream propagating wave, which is formally written as:

eigenfr equencies of the
velocity parameter v is
e mass ratio (3

L limit of the marginal stability
criterion. In the case of the
mplitude equation describing
ir layers, the long system limit
.ansition from local convective
7]. Convective and absolute
nporally growing wave packet
um. In the case of convective
e stream, while in the case of
Irthe fluid-conveying pipe, the
occurs at f3 = 8/9 [KUL 88].

[4.26]

where k+ is the downstream wave number that has the minimum imaginary part, and
k: is the upstream wave number that has the maximum imaginary part. It can be
shown in the fluid mechanics media mentioned above that in case of convective
instability, no frequency of positive imaginary part satisfies this criterion. Conversely,
it is possible to satisfy this criterion with unstable frequencies in the fluid-conveying
pipe case when convectively unstable. Consequently, in the long system limit, the
convectively unstable pipe is unstable while it is not the case for the
Ginzburg-Landau equation. To illustrate this phenomenon, the Kulikovskii criterion
is shown in Figure 4.4 in the complex plane of frequencies and compared to the locii
of eigenfrequencies when the length of the system is increased to large values. The
value of f3 = 0.95 is chosen so that the medium is convectively unstable. Two
different sets of boundary conditions are presented. It seems that although the
occurences of bifurcations are different in both systems, the eigenfrequency maps
converge to the same limit when l --+ 00.
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Figure 4.4. Eigenfrequencies of the clamped-clamped and clamped-free pipe at /3 = 0.95 and
for different values ofthe length l, compared to the Kulikovsk ii criterion. In the upper left plot of
each case, the circles and crosses represent the locii ofthe eigenvalues just below and just above
the instability threshold, respectively. These plots illustrate the fact that although the apparition
ofinstability is different between these two sets ofboundary conditions, all the eigenfrequencies
approach a common limit when the length of the system is increased to infinity
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4.4.2.4. Length scale criterion

We discussed the long system limit in the previous section. We now address the
opposite case of short systems. In Figure 4.3(a), for the values of the parameters
comprised between the local and global stability curves, and below the dashed lines
in Figure 4.3(b), the system is globally stable although locally unstable. In this
situation, the confinement induced by considering a short system has, consequently,
to prevent unstable waves from playing a role in the dynamics. This confinement
effect can be quantified and can give an approximate criterion of stability. Let us state
that an unstable wave can give rise to an unstable mode of the finite system only if its
wavelength is smaller than the length of the system. The smallest unstable
wavelengths are

0.1 0.2 0.3 0.4
w

r

1.95

[4.27]

in the undamped and damped cases, respectively. Plotted against the marginal
stability curves in Figure 4.5, these criteria show a good agreement. The marginal
stability curve goes continuously from the length criterion without damping to that
with damping.
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4.5. Application to energy harvesting

Figure 4.5. Global stability curves of the pipe conveying fluid in the
(13 , l) plane for increasing values ofthe viscous damping (solid and dashed

lines), compared with the length criteria defined in equation [4.27]
(dashed-dotted lines)
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The possibility to take advantage of the energy transfer between a flow and a
structure through the flutter phenomenon has recently received significant attention .
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The uncoupled medium (a = 0) bears temporally unstable waves, as well as
neutral waves, some of them being negative energy waves. An analysis similar to that
performed in section 4.4.1 shows that the temporal growth rate of neutral waves is
perturbed by the following amount when piezoelectric coupling is added:

Various harvesting systems have been considered theoretically or experimentally,
such as the simple Kelvin-Voigt-type dampers [SIN 12], electromagnetic coupling
[TAN 09] and piezoelectric coupling [DOA 11, AKC 12]. In this section, we
summarize the study of a clamped-free plate equipped with a continuous distribution
of piezoelectric patches [DOA 11]. The piezoelectric effect couples deformation in
the plate to the electric field and electrical energy may then be harvested at the outlets
of a piezoelectric patch . Although more sophisticated circuits can be considered
[LEF 06], in the model presented here, the harvested energy is dissipated in a
shunting resistance. The dimensionless model presented here takes the form of two
coupled wave equations for the vertical displacement of the plate y and the electrical
charge displacement per unit length q:

In [4.28], the first two terms are the rigidity and inertia terms of the linear Euler
Bernoulli beam model, the third term quantifies the momentum exerted on the plate
consecutively to the electric field in the piezoelectric patches and the right-hand term
is the .pressure jump between both sides of the plate. The later can be written as a
linear function of the small amplitude displacement y and its effective expression may
take different forms depending on the approximations and geometries of the system.
For instance, if the typical length of deformation is large compared to the width of the
plate, the pressure jump has the same three fluid terms as in the fluid-conveying pipe
equation [4.8] [LEM 05]. In the opposing case of an infinite span plate, we obtain the
same three terms, scaled by 11k, where k is the wave number [CRI 91]. In equation
[4.29], the first two terms stand for Ohm's law, while the third term expresses the
inverse piezoelectric coupling: a deformation in the piezoelectric material leads to
an electrical charge displacement. The parameters of the problem are V, the non
dimensional flow velocity, a, the piezoelectric coupling coefficient, and "y is the ratio
between the fluid-solid and electrical characteristic timescales.

1 2 84y 82y a 82q
V2 (1 + a ) 8x4 + 8t2 - V 8x2

8q a 82w
"Y 8t + q - V 8x2

-[p],

o.

[4.28]

[4.29]

[4.30]
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This expression shows that the perturbation of the growth rate has the opposite
sign of the wave energy and scales as a 2

• Piezoelectric coupling hence destabilizes
negative energy waves. Moreover, Sa presents a maximum when "y = l/w, i.e. when
the time scale of the RC circuit is the same as that of the wave.

In the linear analysis, the conversion efficiency of the system can be defined for an
unstable wave as the ratio between the power dissipated in the resistances during one
period and the mean of the energy present in the system over this same period.

It is found in [DOA 11] that the maximum efficiency is always maximized for
a negative energy wave destabilized by piezoelectric coupling, when "y rv 1/w. In
other words, energy harvesting may destabilize negative energy waves, and conversion
efficiency is maximized with these waves.

The finite length system may also be analyzed and similar results to those in the
case of the fluid-conveying pipe are found. The system can, indeed, be destabilized or
stabilized by piezoelectric coupling. An analysis of the efficiency of the conversion
shows that the maximum efficiency exists in the domain of parameters where
destabilization by piezoelectric coupling occurs. This happens for long systems,
originating from the same confinement effect discussed in the previous section.

4.6. Conclusion

The counterintuitive effect of damping on the stability of the fluid-conveying pipe
has been analyzed both in terms of waves propagating in the infinite medium (local
approach) and in terms of modes in the finite length system (global approach). The
fluid-conveying pipe is a model problem for many fluid-elastic systems where a
compliant structure interacts with a flow, such as flags, plates, shells, walls and
wings .

It was shown that the Coriolis force has a stabilizing effect on the infinite medium
and damping paralyzes this effect. The destabilizing effect of damping was shown to
be due to the creation of negative energy waves by the Coriolis term . The finite length
system can be stabilized or destabilized by damping. A length scale analysis has shown
that destabilization by damping may be due to the destabilization of negative energy
waves . In [DOA 02, DOA 10], additional rigidity forces are considered on the pipe,
such as elastic foundation or tension. A more rich picture of stability properties is then
evidenced.

Extension to energy harvesting systems has been briefly discussed. It was shown
that energy harvesting has a similar destabilizing effect on such fluid-elastic systems
and that negative energy waves maximize the energy conversion efficiency.
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