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ABSTRACT
Static instability of flexible structures forced by a paral-

lel flow, a.k.a. divergence, has been the subject of a relatively
small amount of studies, unlike flutter. In order to prepare fu-
ture studies of the collective behaviour of several slenderstruc-
tures coupled by the fluid in axial flow, the canonical case of a
flat flexible plate clamped at both ends is investigated numeri-
cally and experimentally. The onset of divergence is determined
throughout a series of calculation of the fluid forces generated
by a prescribed deformation of the plate. Using the Galerkin
method, these fluid forces are expanded in the basis of the natu-
ral modes; they exactly balance the mechanical forces when the
fluid velocity reaches the instability threshold. The instability ve-
locity can be determined by an eigenvalue calculation involving
the fluid force expansion and the modal stiffnesses of the plate.
Comparisons are provided with 2D analytical calculations and
with an experiment performed with a 0.3m×0.03m mylar plate
at Reynolds numbers varying between104 and105. A fair agree-
ment is observed between the 3D potential calculation and the
experiments, whereas the 2D analytical solution underestimates
the instability velocity by a factor higher than 2.

NOMENCLATURE
C plate-to-wall distance along the y axis
D plate-to-wall distance along the z axis
E Young modulus of the plate
H plate’s width
hp plate’s thickness

Kn wavenumber associated to the n-th mode of the plate
L plate’s length
p fluid pressure
U inlet fluid velocity
ν Poisson ratio
Φ potential function associated to the fluid flow
ρ volumic mass of the fluid

INTRODUCTION
When a slender deformable structure is placed in an axial

flow, the straight equilibrium position becomes unstable once a
critical flow velocity is reached. The instability can be of the
buckling or flutter type. In the first case, the structuredeforma-
tion undergoes exponentially growing until non-linearities act so
that the structurereachesa newstaticequilibrium position. In
the case of flutter instability, exponentially growing oscillations
occur until a steady regime is obtained.The type of instability,
buckling or flutter, is mainly influenced by the structural bound-
ary conditions [1, 2] and the present work focuses on buckling
type instabilities of clamped-clamped structures, which occur in
high speedtravelling platesin the printing industry [3], aeronau-
tics [4] andflat-type fuel assemblies in research nuclear reac-
tors[5].

Buckling of slender cylinders has been investigated in [6];
3-dimensional effectsin a channel flow have been studied theo-
retically [7] and experimentally [8] in the context of flag flutter,
but still have to be addressed in the context of buckling.
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FIGURE 1. NOTATIONS

In this paper, the case ofa single structure clamped at both
ends is consideredwith a focus on theinfluence of lateral con-
finement. First, the general equations of potential flow are de-
rived in order to estimate the aerodynamic efforts exerted on a
statically deformed plate. Then, a Galerkin method in the basis
of natural clamped-clamped modes brings out the equilibrium
between the fluid and mechanical forces at the precise flow ve-
locity associated with the onset of divergence. Calculations are
performed in both 2D and 3D; comparisons with experimental
data are provided for several wall-to-plate distanceD

L values.

THEORETICAL BACKGROUND
Structure equations

In this work, a plate of lengthL, width H is placed in a
rectangular channel of dimensionsH +2C and 2D, as sketched
in Fig.(1). The lateral plate deflectionζ is supposed to depend
only on the axial coordinatex. It is governed by the linearized
plate equation taking into account the effect of an externalforce
density fext [9,10] :

Eh3
p

12(1−ν2)

(

∂ 2

∂x2 +
∂ 2

∂z2

)2

ζ = fext, (1)

whereν andE are respectively Poisson’s ratio and Young’s mod-
ulus of the plate, andhp is the plate’s thickness.

The natural modes are of widespread use in flutter analy-
sis [7,11], and they can be used in divergence cases as well [4,12]
Expanding the structure linear equation on the basis of natural
modes, in a static context, is a choice motivated by practical con-
siderations: the differential operator in Eq. (1) is replaced by a
multiplication by the 4th power of the wavenumber.

The plate deflection due to an external force density can
indeed be expressed as a combination of the mode shapes, i.e.

ζ (x, t) = ∑nqnξn. Equation?? then reads,

Eh3
p

12(1−ν2) ∑
n

K4
nqnξn = fext (2)

whereqn, referred to as thenth modal displacement, has the di-
mension of meters. Eq. (2) comes in handy if the force density
can also be expanded in the basis of the natural modesas dis-
cussed in a further section.

Fluid equations
In the reference state where the plate remains undeformed,

the flow potential is equal toUx, which ensures that the velocity
is uniform and directed towardx. A prescribed bending of the
plate modifies the flow pattern, and the corresponding potential
can be denotedUx+ Φ. The potential functionΦ fulfills the
Laplace equation so that mass is conserved, and its boundary
conditions can be writtengradΦ.n = 0 at the inlet and the outlet
of the rig, and also along its surrounding walls. The boundary
condition along the deformed plate requires some more care:it
stipulates that the total flow velocityU+ gradΦ is parallel to the
deformed plate. In the framework of small perturbations, this
condition is referred to as the linearized permeability condition
[13,14]:

∂Φ
∂z

−U
∂ζ
∂x

= 0 (3)

namely, the sum of thezcomponent of the perturbation and of the
unperturbed flow multiplied by thex component of the normal
vector to the plate vanishes.

Expanding the plate deformation is terms similar to the ones
of Eq. (2), the potentialΦ is expanded in:

Φ =U ∑
n

qnϕn (4)

each dimensionless potentialϕn fulfilling the Laplace equation,

∆ϕn = 0, (5)

with boundary conditions,

∂ϕn

∂z
=

∂ξn

∂x
on the plate, (6)

∂ϕn

∂n
= 0 on the channel walls. (7)
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To further on, the pressure field generated by the fluid can
be determined with the help of the steady Bernoulli equation. At
the first order, the perturbed pressure is:

p=−ρU
∂Φ
∂x

=−ρU2∑
n

qn
∂ϕn

∂x
(8)

Eqs. (4), (6) and (8) summarize the resolution of the fluid
equations under the effect of a prescribed deformation of the
plate.

Fluid forces in the basis of plate modes
For a prescribed deflectionqpξp of the plate proportional to

thepth mode shape, Eq. (8) shows that the pressure fieldson both
sides ofthe plate generate a force distribution equal to:

fp = ρU2qp
∂
∂x

(ϕ+
p −ϕ−

p ), (9)

whereϕ−
p andϕ+

p are the potentialson each side of the plate.
It is now assumed that the derivatives of the potentialsϕ±

p
along the plate can be expanded in the basis of the natural modes.
A convenient way to determine the coefficients in such an expan-
sion consists in introducing cross-integrals of the mode shapes
and of the function considered. As an illustration, an arbitrary
functiong(x,y) should be expanded in:

g(x,y)≈ ∑
p

∫

gξpds
∫

ξ 2
pds

ξp(x,y) (10)

where the normalisation term
∫

ξ 2
pds is required to ensure that

the above procedure leaves any basis functionξn invariant. The
integral ratios in the r.h.s. term of Eq. (10) define in a unique
manner the coefficients of any functiong expanded in the basis
of the mode shapesξp. Introducing the lengthL of the plate
for dimensional consistency, this procedure can be appliedto the
pressure forces:

fp = ρU2qp

L ∑
n

Hpnξn,

whereHpn =
L

∫

ξ 2
n ds

∫ ∂
∂x

(ϕ+
p −ϕ−

p )ξnds. (11)

This equation highlights the fact that the fluid forces, due to a
modal deformationξp, generate secondary deformations involv-
ing other modes. The accuracy of such an expansion may be
questioned close to the plate ends where every mode shape van-
ishes, yet this discrepancy should not have effects upon themode

deflection nor the divergence threshold, as a force applied in the
vicinity of a fixed point does not generate a large deflection.An
illustration of this is provided in Appendix B: it holds reasonably
well for values of the reduced wall-to-plane distances lower than
0.25. Consistency of this approach was tested by examining the
convergence of the unstable mode and of the threshold velocity
with the number of modes.

Fluid structure coupling in the basis of plate modes
Merging the previous sections, the onset of divergence can

now be investigated: it is defined as the exact balance of the plate
stiffness force by the fluid force. In mathematical terms, this situ-
ation occurs when a non-vanishing solution of the fluid-structure
equations exists. Let for that purpose Eq. (11) be combined to
the plate equation (2). The onset of instability is associated with
a non-vanishing solution of:

Eh3
p

12(1−ν2) ∑
n

K4
nqnξn = ρU2∑

p

(

qp

L ∑
n

Hpnξn

)

(12)

Rearranging the terms, and equating the coefficients ofξn,
one gets:

1
12(1−ν2)

E
ρU2

h3
p

L3 (KnL)4qn = ∑
p

Hpnqp (13)

Consideringqp as a the components of a state vectorV, this
equation can be rewritten in matrix form by introducing a diago-
nal matrixK4, the coefficients of which being the dimensionless
termsKnL elevated to the fourth power, and a matrixH with co-
efficients along thep-th lines and then-th rows equal toHpn:

1
12(1−ν2)

E
ρU2

h3
p

L3 V = K−1
4 HV (14)

For any deformation, the two matricesK4 andH give the
flexural rigidity force and the pressure force in competition asso-
ciated to the deformation in the basis of natural modes. Writing
the physical problem as in Eq. (14) introduces a specific fluid
velocity for which a non-straight deformation of the plate exists
and such that the fluid and structure forces are exactly equal: for
a specific value of the fluid velocity, the system is on the verge of
instability. Divergence therefore occurs when the velocityU is
such thatthere is a non-trivial solution to Eq. (14),i.e. when the
ratio in the l.h.s. term of Eq. (14) coincides with an eigenvalue of
the matrixK−1

4 H.
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FIGURE 2. PARTIAL CUT VIEW OF THE MESH ALONG IN THE
X-Z PLANE

Ucrit =U

√

ρ
L3

h3
p

12(1−ν2)

E
=

√

1

eigenvalues(K−1
4 H)

(15)

Numerical computation of the 3-dimensionnal flow po-
tential

The fluid problem (5) with boundary conditions (6-7) is
solved numerically for a 3-dimensional geometry, as sketched
in Fig.(1). For the sake of comparison, an analytical derivation
of the solution for a 2D problem is shown in appendix A. The
plate is included in a 3D ’fluid box’; the plate is built with a
small thickness, which allows to have a clear separation between
the two facesof the plates. The inlet velocity profile isuniform
in this x direction; at the outlet, the conditionΦ = 0 is applied.
On the lateral walls of the box, anidealslip condition is applied:
gradΦ.n = 0. The plate profile in the normal direction follows
an analytical mode shape [15] with an amplitudeε, such that,
with the notations introduced before,qp

L = ε. The plate’s profile
is included in the Gmsh [16] generating script of the mesh, lead-
ing to a deformed plate as shown in Fig. 2. The plate’s width is
divided in 30 cells, and its length is divided in up to 200 cells
such that each cell is close to a perfect square: this resolution
allows to correctly discretize modes up to the fifth longitudinal
order, and to generate volumic hexaedra cells, thanks to thede-
fault algorithm (named ’Delaunay’ in Gmsh).

The stationary potential fluid flow is then computed in the
fluid domain around the static deformed plate. As a first step,
thepotential problem∆Φp = 0 is solvedin the ’fluid box’ with
finite elements method implemented in the open-source software
Code Aster [17], choosingL = 1 andU = 1. Then, the total
velocity field is computed as the gradient of potential, and the
pressure field is finally computed all over the fluid domain with

-0.279 -0.042 0.195

Non-dimensional pressure
XY

Z

-0.279 -0.042 0.195

Non-dimensional pressure
XY

Z

Inlet velocity U=1.0Inlet velocity U=1.0

FIGURE 3. DIMENSIONLESS PRESSURE ON THE UPPER SIDE
OF THE PLATE WITH A FIRST MODE SHAPE AND PROFILE OF
THE INLET VELOCITY

Bernoulli’s equation:

pp =−
1
2

ρ(∇Φp)
2 (16)

This sequence is repeated for each mode number, and for several
values of confinement.

In the second step, the fluid force exerted on the plate as-
sociated to a deformed plate in thepth mode is computed as
fp = −p+p + p−p , i.e. as the difference between the pressure on
each face of the plate. The fluid forces are expanded in the modes
basis in order to compute the coefficients in the matricesK and
H, such that:

Hpn =
1

∫

ξ 2
n ds

∫

fp

ρ
ξnds (17)

As described earlier, the eigenvalues of the matrixK−1
4 H

are finally computed, which therefore give the critical non-
dimensional velocity for each mode.

EXPERIMENTS
A flexible plate is cut in a Mylar sheet (thicknesshp =

250µm, Young modulusE = 5.2 GPa, Poisson coefficientν =
0.38, lengthL = 0.28 m, widthH = 0.03 m). In order to perform
clamped-clamped boundary conditions, a streamlined pieceis at-
tached to both ends of the plate with crossing screws; the assem-
bly is inserted and centered in a rectangular box made of trans-
parent Plexiglas (inner dimensions: 0.04 m x 0.10 m). A fan with
a honeycomb grid is connected to the box, which allows a uni-
form steady flow from 0 up to 50 m/s, measured with a Pitot tube
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FIGURE 4. EXPERIMENTAL SET-UP: THE PLATE (IN WHITE)
INSIDE THE PLEXIGLAS CELL CONNECTED TO THE AIR FAN;
ON THE LEFT, A PITOT TUBE CONNECTED TO A PRESSURE
SENSOR; IN THE FOREGROUND, THE LASER DISPLACEMENT
SENSOR

FIGURE 5. TWO MEASUREMENTS OF MEAN DISPLACE-
MENT AT 0.75L (D/L = 0.2). RED LINE: ESTIMATED DIVER-
GENCE THRESHOLD.

at the center of the box. A laser sensor is used to measure the
deflection of the plate locally, giving access to the plate’sshape
and amplitude of deformation. Due to small fluctuations, the
considered amplitude is the average over 10s of measurements
at sampling rate 1kHz. At the same time, the spectrum density
of the signal and the signal itself are checked to ensure thatthe
variation does not exceed 5% of the average value.

In Fig.5 the mean displacement of a point at 0.75L in the
flow direction is plotted against the square of measured inlet
velocity. The divergence threshold is determined by the slope
change; in this case, the critical velocity is approxiamtely 10
m/s, which gives a non-dimensional valueUdiv ≃ 18. The ex-
perimental value of the lateral confinementD

L can be modified
by joining small boards on to the walls; for three configurations
( D

L = 0.2, 0.1 and 0.05) the critical velocity has been determined
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FIGURE 6. DIMENSIONLESS DIVERGENCE VELOCITY AS A
FUNCTION OF THE WALL-TO-PLATE DISTANCE D

L . PLAIN
LINE: ANALYTICAL 2D SOLUTION, DASHED LINE: GUO’S SO-
LUTION AS GIVEN IN [2], DIAMONDS: NUMERICAL 3D SOLU-
TION, RED DOTS: EXPERIMENTAL.

experimentally.
Fig.6 shows the evolution of critical divergence velocity for

several values of the confinement parameterD
L . The 2D analyt-

ical model is in good agreement with Guo’s solution as given
in [2]; the critical velocities for divergence of the highermodes,
not shown here, can be also computed with this 2D model; but
these velocities can not be visualized experimentally, because
the less stable mode (first mode here) would have to be pre-
vented from diverging, in order to see the next mode’s diver-
gence threshold. The 3D analytical model seems to describe bet-
ter the experimental set-up, eventhough the experimental critical
velocities are consistently higher. This can be surprising, since
the strict clamped-clamped conditions are never obtained experi-
mentally; a more realistic description of the boundary conditions
would be a pinned-pinned plate, with a high stiffness spring, and
this configuration would lead to experimental values smaller than
the numerical 3D values. But in this set-up, the plate is slightly
stretched to ensure that it is as flat as it can be. This tension, un-
fortunately not measured, can postpone the onset of divergence.
A more realistic approach would be to measure the natural fre-
quencies of the platein situat zero flow velocity, and modify the
parameters in the 3D numerical model (the current geometry is
based on the analytical definition of the clamped-clamped natural
modes as in [15]).

CONCLUSION
In this work, a numerical 3D-model predicting the onset of

divergence instability of a clamped-clamped plate in an axial
channel flow has been derived. Results of the model have been
compared with experiments and a good aggrement was found.
Comparison to analytical and numerical critical velocities ob-
tained when a 2D potential flow is solved enlights the importance
of a 3D model for the flow around the structure to correctly pre-
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dict the critical velocity.
Future works on this include the complete parametric study

of the influence of the channel and plate geometries on the criti-
cal velocity and unstable deformations. The collective behavior
of a large number of plates will next be addressed.
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Appendix A: resolution of 2D fluid equations by com-
plex analysis

For the sake of illustration, the ideal case of a flexible plate
submitted to a potential flow in two dimensions can be analyt-
ically studied. LetL be the plate length in the flow direction,
denoted byx, and let the deformation occur in thez direction.
Assuming that all variables do not depend on they coordinate,
the fluid flow can be described with the help of complex func-
tions. Let first the half space between the plate and the upper
wall be considered, letH be the distance to the upper wall (in
m). Classical textbooks [18, 19] describe in details how com-
plex functions can be used to determine solutions of the Laplace
equation in two dimensions. More precisely, ifF is a function
of the complex variableZ = x+ iz, the real part ofF automati-
cally fulfills the Laplace equation, whereas the isovalues of the
imaginary part ofF are streamlines of the potential flow.

Following the same line of reasoning as in the main sections,
it is assumed that the plate deformation generates only a small
perturbation of the fluid flow. The complex potential can hence
be written as the sum of the unperturbed potentialUZ and of a
perturbationΦ. Due to mass conservation, the lower streamline
coincides with the plate boundary; this condition can be explic-
itly written for small deformations as the constancy of the imag-
inary part ofUZ+Φ alongZ = x+ iζ (x). At the first order of
the perturbation, it becomes:

Uζ (x)+ Im(Φ(Z = x)) = constant (18)

a relation equivalent to Eq. (3), yet easier to handle because no
space derivative is present. For practical purposes, the constant
in Eq. (18) can be chosen equal to zero without loss of generality.

Having in mind that the mode shapes of the plate are combi-
nations of trigonometric and hyperbolic functions, it makes sense
to look for a similar expansion ofΦ extended to the complex do-
main. In a manner similar to Eq. (4), the potential is writtenas
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the summation of weighted dimensionless termsϕn:

Φ =U ∑
n

qnϕn(KnZ− iKnD) (19)

so that the continuity condition along the plate (18) reduces to:

ξn(x) =−Im(ϕn(Knx− iKnD)) (20)

the term−iD being added to the complex coordinateZ for ensur-
ing that the overall variable inside the functionϕn is real along
the upper wall. Provided thatϕn is also real, the upper wall is
a streamline and the upper boundary condition is automatically
fulfilled.

As shown by Eq. (8), the pressure field generated by the fluid
can be determined with the help of the steady Bernoulli equation.
At the first order, the perturbed pressure obeys:

p
ρ
=−U

∂
∂x

Re(Φ) =−URe

(

dΦ
dZ

)

(21)

Expanding the potential according to Eq. (19), the dimensionless
pressure becomes:

p
ρU2 =−∑

n
KnqnRe

(

ϕ ′
n(KnZ− iKnD)

)

(22)

whereϕ ′
n is the derivative ofϕn along the variableKnZ. Eqs. (19),

(20) and (22) summarize the resolution of the fluid equations
based on the complex potentialsϕn: for a prescribed mode shape
ξn, an adequate combination of trigonometric and hyperbolic
complex functions builds up the potentialϕn, which can be used
to detemine the pressure. This procedure also holds for the half
space below the plate, by replacingD by−D.

The dimensionless matrixH can be written:

Hpn=
KpL

∫

Re(ϕ+
p
′
−ϕ−

p
′
)ξn ds

∫

ξ 2
n ds

(23)

As an illustration, a clamped-clamped plate of lengthL ex-
hibits mode shapes defined by [15]

ξn = cos(knx/L)− cosh(knx/L)−σn(sin(knx/L)− sinh(knx/L))
(24)

kn being a dimensionless wavenumber fulfilling coskncoshkn = 1
and σn being equal to(coskn − coshkn)/(sinkn − sinhkn). The
potentialϕn is expanded in terms:

ϕn = Ancos(Z̃n)+Bncosh(Z̃n)+Cnsin(Z̃n)+Dnsinh(Z̃n) (25)
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0

2

4

pn

kn ρU
2

D
L
=0.25D

L
=0.25D

L
=0.25

FIGURE 7. COMPARISON OF THE FIRST PLATE MODES
(UPPER CURVE) AND OF THE PRESSURE THEY GENERATE
(LOWER CURVES) FOR TWO REDUCED WALL-TO-PLANE DIS-
TANCE H

L . PLAIN LINE: ANALYTIC SOLUTION, DASHED LINE:
MODAL EXPANSION WITH FIVE TERMS.

whereZ̃n stands forKn(Z− iD) and where the coefficientsAn,
Bn, Cn andDn are given in [15]. The pressure can be analytically
expressed with the same set of coefficients, and the results are
illustrated in Fig. 7.
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