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ABSTRACT

Static instability of flexible structures forced by a paral-
lel flow, a.k.a. divergence, has been the subject of a reltiv
small amount of studies, unlike flutter. In order to prepare f
ture studies of the collective behaviour of several slerstierc-
tures coupled by the fluid in axial flow, the canonical case of a
flat flexible plate clamped at both ends is investigated nimer
cally and experimentally. The onset of divergence is deterth
throughout a series of calculation of the fluid forces getexia
by a prescribed deformation of the plate. Using the Galerkin
method, these fluid forces are expanded in the basis of the nat
ral modes; they exactly balance the mechanical forces when t
fluid velocity reaches the instability threshold. The ihdity ve-
locity can be determined by an eigenvalue calculation gl
the fluid force expansion and the modal stiffnesses of the.pla
Comparisons are provided with 2D analytical calculationsda
with an experiment performed with a 0.30.03m mylar plate
at Reynolds numbers varying betwedfi and10°. A fair agree-
ment is observed between the 3D potential calculation ard th
experiments, whereas the 2D analytical solution underests
the instability velocity by a factor higher than 2.

NOMENCLATURE

C plate-to-wall distance along the y axis
D plate-to-wall distance along the z axis
E Young modulus of the plate

H plate’s width

hp plate’s thickness

Kn wavenumber associated to the n-th mode of the plate
L plate’s length

p fluid pressure

U inlet fluid velocity

v Poisson ratio

@ potential function associated to the fluid flow
p volumic mass of the fluid

INTRODUCTION

When a slender deformable structure is placed in an axial
flow, the straight equilibrium position becomes unstableeoa
critical flow velocity is reached. The instability can be bt
buckling or flutter type. In the first case, the structdeforma-
tion undergoes exponentially growing until non-linearitiessx
that the structureeachesa newstatic equilibrium position. In
the case of flutter instability, exponentially growing distions
occur until a steady regime is obtainethe type of instability,
buckling or flutter, is mainly influenced by the structuralind-
ary conditions [1, 2] and the present work focuses on bugklin
type instabilities of clamped-clamped structures, whicbus in
high speedravelling platesn the printing industry [3], aeronau-
tics [4] andflat-type fuel assemblies in research nuclear reac-
tors[5].

Buckling of slender cylinders has been investigated in [6];
3-dimensional effects a channel flow have been studied theo-
retically [7] and experimentally [8] in the context of flag tier,
but still have to be addressed in the context of buckling.
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FIGURE 1.

NOTATIONS

In this paper, the case afsingle structure clamped at both
ends is consideredith a focus on thenfluence of lateral con-
finement. First, the general equations of potential flow are d
rived in order to estimate the aerodynamic efforts exerte@ o
statically deformed plate. Then, a Galerkin method in theha
of natural clamped-clamped modes brings out the equilibriu
between the fluid and mechanical forces at the precise flow ve-
locity associated with the onset of divergence. Calcufetiare
performed in both 2D and 3D; comparisons with experimental
data are provided for several wall-to-plate dista@cealues.

THEORETICAL BACKGROUND
Structure equations

In this work, a plate of length., width H is placed in a
rectangular channel of dimensioHs+ 2C and D, as sketched
in Fig.(1). The lateral plate deflectiahis supposed to depend
only on the axial coordinate It is governed by the linearized
plate equation taking into account the effect of an exteforake
density ey [9, 10] :
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wherev andE are respectively Poisson’s ratio and Young'’s mod-
ulus of the plate, ant, is the plate’s thickness.

The natural modes are of widespread use in flutter analy-
sis[7,11], and they can be used in divergence cases as Wl [4
Expanding the structure linear equation on the basis ofrakatu
modes, in a static context, is a choice motivated by praataa
siderations: the differential operator in Eq. (1) is repldby a
multiplication by the 4" power of the wavenumber.

The plate deflection due to an external force density can

indeed be expressed as a combination of the mode shapes, i.e.

2

{(x,t) = Y n0anén. Equation?? then reads,

2
m Z KnOnén = fext (2)

whereqp,, referred to as the modal displacement, has the di-
mension of meters. Eq. (2) comes in handy if the force density
can also be expanded in the basis of the natural madetis-
cussed in a further section.

Fluid equations

In the reference state where the plate remains undeformed,
the flow potential is equal td x, which ensures that the velocity
is uniform and directed toward A prescribed bending of the
plate modifies the flow pattern, and the corresponding piaient
can be denotetdx+ ®. The potential functiord fulfills the
Laplace equation so that mass is conserved, and its boundary
conditions can be writtegrad ®.n = 0 at the inlet and the outlet
of the rig, and also along its surrounding walls. The bouydar
condition along the deformed plate requires some more dare:
stipulates that the total flow velocity + grad® is parallel to the
deformed plate. In the framework of small perturbationss th
condition is referred to as the linearized permeabilityditon
[13,14]:

oo

9¢
>, Y

ax 0

®3)

namely, the sum of thecomponent of the perturbation and of the
unperturbed flow multiplied by the component of the normal
vector to the plate vanishes.

Expanding the plate deformation is terms similar to the ones
of Eq. (2), the potentiab is expanded in:

®=U Z On®n (4)

each dimensionless potentig fulfilling the Laplace equation,

A¢n =0, (5)
with boundary conditions,
9¢n _ 9én
37 = ox on the plate, (6)
‘ZL:]” =0 onthe channel walls @)
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To further on, the pressure field generated by the fluid can deflection nor the divergence threshold, as a force appii¢iaa

be determined with the help of the steady Bernoulli equatiin
the first order, the perturbed pressure is:

o 0¢n

p=-pU— (8)

Egs. (4), (6) and (8) summarize the resolution of the fluid
equations under the effect of a prescribed deformation ef th
plate.

Fluid forces in the basis of plate modes

For a prescribed deflectiagyé), of the plate proportional to
the p mode shape, Eq. (8) shows that the pressure fiidmoth
sides ofthe plate generate a force distribution equal to:

fo= U255 (05 — 0y ). ©

where¢, andq)+ are the potentialen each side of the plate

It is now assumed that the derivatives of the potentjz;gffs
along the plate can be expanded in the basis of the naturasnod
A convenient way to determine the coefficients in such anexpa
sion consists in introducing cross-integrals of the modepsk
and of the function considered. As an illustration, an aalpyt
functiong(x,y) should be expanded in:

g(X,y) ~ Z [ ngdS

T Egdsfp(X,Y)

(10)

where the normalisation terrﬁfgds is required to ensure that
the above procedure leaves any basis funcfjpmvariant. The
integral ratios in the r.h.s. term of Eq. (10) define in a uriqu
manner the coefficients of any functigrexpanded in the basis
of the mode shape&,. Introducing the length. of the plate
for dimensional consistency, this procedure can be apfide
pressure forces:

fp = pUZL > Horén

"0
Wst/ <85 —#p)énds  (11)

whereHpn =

This equation highlights the fact that the fluid forces, doat
modal deformatiord, generate secondary deformations involv-

vicinity of a fixed point does not generate a large deflectiom.
illustration of this is provided in Appendix B: it holds reasably
well for values of the reduced wall-to-plane distances lothian
0.25. Consistency of this approach was tested by examihing t
convergence of the unstable mode and of the threshold wgloci
with the number of modes.

Fluid structure coupling in the basis of plate modes

Merging the previous sections, the onset of divergence can
now be investigated: it is defined as the exact balance ofite p
stiffness force by the fluid force. In mathematical termis #fitu-
ation occurs when a non-vanishing solution of the fluidttice
equations exists. Let for that purpose Eq. (11) be combioed t
the plate equation (2). The onset of instability is assediatith
a non-vanishing solution of:

(12)

Eh3
T3 v2) 2. Kntnén = pUZ% (% 3 Hpnén)

Rearranging the terms, and equating the coefficient, of
one gets:

3
1 E h

—5 5 (KnL)an = > Hpnlp
p

12(1-v?) pu2L3 (13)

Consideringyp as a the components of a state veatothis
equation can be rewritten in matrix form by introducing agtia
nal matrixK 4, the coefficients of which being the dimensionless
termsK,L elevated to the fourth power, and a matrxwith co-
efficients along the-th lines and the-th rows equal tdHpn:

h3
! E BV =K, HV

12(1—v?) puZ21L3 (14)

For any deformation, the two matric&s, andH give the
flexural rigidity force and the pressure force in competit@#sso-
ciated to the deformation in the basis of natural modes. ikigrit
the physical problem as in Eq. (14) introduces a specific fluid
velocity for which a non-straight deformation of the plaiésés
and such that the fluid and structure forces are exactly etpral
a specific value of the fluid velocity, the system is on the gariy
instability. Divergence therefore occurs when the velotitys

ing other modes. The accuracy of such an expansion may besuch thathere is a non-trivial solution to Eq. (14)e. when the
questioned close to the plate ends where every mode shape vanratio in the l.h.s. term of Eq. (14) coincides with an eigdngaf

ishes, yet this discrepancy should not have effects upomdtuk

the matrixK ; *H.
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FIGURE 2. PARTIAL CUT VIEW OF THE MESH ALONG IN THE
X-Z PLANE

L312(1—v? 1
Ugrit =U PF ( E ) = ol 1 (15)
b igenvalued<, "H)

Numerical computation of the 3-dimensionnal flow po-
tential

The fluid problem (5) with boundary conditions (6-7) is
solved numerically for a 3-dimensional geometry, as slatch
in Fig.(1). For the sake of comparispan analytical derivation
of the solution for a 2D problem is shown in appendix A. The
plate is included in a 3D 'fluid box’; the plate is built with a
small thickness, which allows to have a clear separatiomdot
the two faceof the plates. The inlet velocity profile imiform
in this x direction at the outlet, the conditio® = 0 is applied.
On the lateral walls of the box, adealslip condition is applied:
grad®.n = 0. The plate profile in the normal direction follows
an analytical mode shape [15] with an amplitugesuch that,
with the notations introduced befor% = &. The plate’s profile
is included in the Gmsh [16] generating script of the mesiwl{e
ing to a deformed plate as shown in Fig. 2. The plate’s width is
divided in 30 cells, and its length is divided in up to 200 sell
such that each cell is close to a perfect square: this résolut
allows to correctly discretize modes up to the fifth longited
order, and to generate volumic hexaedra cells, thanks tdehe
fault algorithm (named 'Delaunay’ in Gmsh).

The stationary potential fluid flow is then computed in the
fluid domain around the static deformed plate. As a first step,
the potential problem\®,, = 0 is solvedin the ‘fluid box’ with
finite elements method implemented in the open-source aodtw
Code Aster[17], choosingL = 1 andU = 1. Then, the total
velocity field is computed as the gradient of potential, amal t
pressure field is finally computed all over the fluid domairhwit

4

Non-dimensional pressure z

0279

FIGURE 3. DIMENSIONLESS PRESSURE ON THE UPPER SIDE
OF THE PLATE WITH A FIRST MODE SHAPE AND PROFILE OF
THE INLET VELOCITY

0,042 0105

Bernoulli’'s equation:

Pp= —%P(D‘Dp)z (16)

This sequence is repeated for each mode number, and foakever
values of confinement.

In the second step, the fluid force exerted on the plate as-
sociated to a deformed plate in thf" mode is computed as
fp= —pf; + pp, i.e. as the difference between the pressure on
each face of the plate. The fluid forces are expanded in thesmod
basis in order to compute the coefficients in the matriCend
H, such that:

— 1 fp
Hpn= Wz(js/;fnds (7)

As described earlier, the eigenvalues of the matix'H
are finally computed, which therefore give the critical non-
dimensional velocity for each mode.

EXPERIMENTS

A flexible plate is cut in a Mylar sheet (thicknebg =
250um, Young modulusE = 5.2 GPa, Poisson coefficiemt=
0.38, lengthL = 0.28 m, widthH = 0.03 m). In order to perform
clamped-clamped boundary conditions, a streamlined j¥exte
tached to both ends of the plate with crossing screws; thenass
bly is inserted and centered in a rectangular box made o$tran
parent Plexiglas (inner dimensions0@ m x 10 m). A fan with
a honeycomb grid is connected to the box, which allows a uni-
form steady flow from 0 up to 50 m/s, measured with a Pitot tube
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FIGURE 4. EXPERIMENTAL SET-UP: THE PLATE (IN WHITE)
INSIDE THE PLEXIGLAS CELL CONNECTED TO THE AIR FAN;
ON THE LEFT, A PITOT TUBE CONNECTED TO A PRESSURE
SENSOR; IN THE FOREGROUND, THE LASER DISPLACEMENT
SENSOR
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FIGURE 5. TWO MEASUREMENTS OF MEAN DISPLACE-
MENT AT 0.75L (D/L = 0.2). RED LINE: ESTIMATED DIVER-
GENCE THRESHOLD.
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FIGURE 6. DIMENSIONLESS DIVERGENCE VELOCITY AS A
FUNCTION OF THE WALL-TO-PLATE DISTANCE%. PLAIN
LINE: ANALYTICAL 2D SOLUTION, DASHED LINE: GUO’S SO-

LUTION AS GIVEN IN [2], DIAMONDS: NUMERICAL 3D SOLU-
TION, RED DOTS: EXPERIMENTAL.

experimentally.

Fig.6 shows the evolution of critical divergence velociby f
several values of the confinement param@er‘l’he 2D analyt-
ical model is in good agreement with Guo’s solution as given
in [2]; the critical velocities for divergence of the highaodes,
not shown here, can be also computed with this 2D model; but
these velocities can not be visualized experimentallyabse
the less stable mode (first mode here) would have to be pre-
vented from diverging, in order to see the next mode’s diver-
gence threshold. The 3D analytical model seems to desceibe b
ter the experimental set-up, eventhough the experimeritiabd
velocities are consistently higher. This can be surprisangce
the strict clamped-clamped conditions are never obtairpdré
mentally; a more realistic description of the boundary d¢towls
would be a pinned-pinned plate, with a high stiffness spramgl
this configuration would lead to experimental values smétien
the numerical 3D values. But in this set-up, the plate ishslyg
stretched to ensure that it is as flat as it can be. This tengien
fortunately not measured, can postpone the onset of dineege

at the center of the box. A laser sensor is used to measure theA more realistic approach would be to measure the natural fre

deflection of the plate locally, giving access to the plaséiape

guencies of the platia situ at zero flow velocity, and modify the

and amplitude of deformation. Due to small fluctuations, the parameters in the 3D numerical model (the current geomstry i
considered amplitude is the average over 10s of measursment based on the analytical definition of the clamped-clampéarab
at sampling rate 1kHz. At the same time, the spectrum density modes as in [15]).

of the signal and the signal itself are checked to ensuretlieat
variation does not exceed 5% of the average value.

In Fig.5 the mean displacement of a point at Q.75 the
flow direction is plotted against the square of measured inle
velocity. The divergence threshold is determined by theeslo
change; in this case, the critical velocity is approxiamnted
m/s, which gives a non-dimensional valug;, ~ 18. The ex-
perimental value of the lateral confinem@tcan be modified
by joining small boards on to the walls; for three configuras

% =0.2, 0.1 and 0.05) the critical velocity has been deterthine

5

CONCLUSION

In this work, a numerical 3D-model predicting the onset of
divergence instability of a clamped-clamped plate in aralaxi
channel flow has been derived. Results of the model have been
compared with experiments and a good aggrement was found.
Comparison to analytical and numerical critical veloatigb-
tained when a 2D potential flow is solved enlights the imparéa
of a 3D model for the flow around the structure to correctly pre
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dict the critical velocity.

Future works on this include the complete parametric study
of the influence of the channel and plate geometries on thie cri
cal velocity and unstable deformations. The collectiveavadr
of a large number of plates will next be addressed.
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Appendix A: resolution of 2D fluid equations by com-
plex analysis

For the sake of illustration, the ideal case of a flexibleglat
submitted to a potential flow in two dimensions can be analyt-
ically studied. LetL be the plate length in the flow direction,
denoted byx, and let the deformation occur in ttzedirection.
Assuming that all variables do not depend on yrepordinate,
the fluid flow can be described with the help of complex func-
tions. Let first the half space between the plate and the upper
wall be considered, lgtl be the distance to the upper wall (in
m). Classical textbooks [18, 19] describe in details how €om
plex functions can be used to determine solutions of thedapl
equation in two dimensions. More preciselyFifis a function
of the complex variabl& = x+ iz, the real part oF automati-
cally fulfills the Laplace equation, whereas the isovaluiethe
imaginary part of are streamlines of the potential flow.

Following the same line of reasoning as in the main sections,
it is assumed that the plate deformation generates only # sma
perturbation of the fluid flow. The complex potential can renc
be written as the sum of the unperturbed potedizland of a
perturbation®. Due to mass conservation, the lower streamline
coincides with the plate boundary; this condition can bdiexp
itly written for small deformations as the constancy of thag-
inary part ofUZ + ® alongZ = x+i{(x). At the first order of
the perturbation, it becomes:

U (X) +Im(®(Z = x)) = constant (18)

a relation equivalent to Eq. (3), yet easier to handle bexaos

space derivative is present. For practical purposes, thstaot

in Eg. (18) can be chosen equal to zero without loss of geiberal
Having in mind that the mode shapes of the plate are combi-

nations of trigonometric and hyperbolic functions, it mekense

to look for a similar expansion @b extended to the complex do-

main. In a manner similar to Eq. (4), the potential is writéen
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the summation of weighted dimensionless tegms

®=U Y gndn(KnZ —iKnD) (19)

so that the continuity condition along the plate (18) redttoe

&n(X) = —Im (¢n(Knx —iKnD)) (20)

the term—iD being added to the complex coordindtéor ensur-
ing that the overall variable inside the functigp is real along
the upper wall. Provided thaft, is also real, the upper wall is
a streamline and the upper boundary condition is automiigtica
fulfilled.

As shown by Eq. (8), the pressure field generated by the fluid
can be determined with the help of the steady Bernoulli éqnat
At the first order, the perturbed pressure obeys:

g — U Re(@) = —uU Re(dq))

X dz (21)

Expanding the potential according to Eq. (19), the dimamisis
pressure becomes:

p

EE (22)

= Z KnhanRe ¢n (KnZ

n

—iKqD))

whereg), is the derivative ofp, along the variabl&,Z. Egs. (19),
(20) and (22) summarize the resolution of the fluid equations
based on the complex potentigis for a prescribed mode shape
&n, an adequate combination of trigonometric and hyperbolic
complex functions builds up the potentig|, which can be used
to detemine the pressure. This procedure also holds fordlie h
space below the plate, by replacidgy —D.

The dimensionless matrid can be written:

KoL [Re(¢' — ¢,")Ends
J&zds

pn = (23)

As an illustration, a clamped-clamped plate of lengtéx-
hibits mode shapes defined by [15]
&n = cogknx/L) — coshknx/L) — an(sin(knx/L) — sinh(kax/L))
(24)
kn being a dimensionless wavenumber fulfilling kesostk, = 1
and o, being equal to(cosk, — costk,)/(sink, — sinhk,). The
potentialg, is expanded in terms:

¢n = AncogZp) + Bncosh(Z,) 4 Casin(Z,) + Dpsinh(Z,)  (25)

5 1.0

FIGURE 7. COMPARISON OF THE FIRST PLATE MODES
(UPPER CURVE) AND OF THE PRESSURE THEY GENERATE
(LOWER CURVES) FOR TWO REDUCED WALL-TO-PLANE DIS-
TANCE % . PLAIN LINE: ANALYTIC SOLUTION, DASHED LINE:
MODAL EXPANSION WITH FIVE TERMS.

whereZ, stands forkn(Z —iD) and where the coefficient,,

B, C, andD,, are given in [15]. The pressure can be analytically
expressed with the same set of coefficients, and the reselts a
illustrated in Fig. 7.
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