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Introduction

These course notes are intended for the students of the course MF208 “Aeroa-
coustics and acoustic propagation in moving media” of ENSTA Paris.

Chapter 1 presents the equations for the propagation of acoustic waves in
homogeneous moving media. The linearized Euler equations are derived from
the equations of fluid mechanics. Several wave equations are then obtained in
the time domain, and the corresponding Helmholtz equations are presented
in the frequency domain.

Chapter 2 is devoted to the acoustic radiation of stationary and moving
elementary sources in a homogeneous medium at rest. The notion of Green’s
function, that will be useful in Chapter 5, is introduced, and the acoustic
radiation of a monopole in subsonic rectilinear motion is detailed.

Chapter 3 explains the effects of absorption and refraction in fluid media.
The acoustic absorption mechanisms are presented first, considering both
atmospheric and oceanic media. Then, some examples of acoustic refraction
by sound speed gradients and and wind speed gradients are shown.

Chapter 4 describes the geometrical acoustics approximation, that can be
used to model acoustic wave propagation at high frequencies. Ray-tracing
equations are presented, and the calculation of wave amplitude along the
rays is explained.

Chapter 5 describes several acoustic analogies that can be used to cal-
culate aeroacoustic sources. Lighthill analogy can be applied in the absence
of obstacles, while Curle’s analogy accounts for the presence of static obsta-
cles, and Ffowcs Williams and Hawkings analogy is dedicated to the acoustic
radiation of moving bodies.
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Chapter 1

Equations for acoustical waves
in an inhomogeneous moving
medium

This chapter is based mostly on the books of Pierce (1989) and Ostashev
(1997).

1.1 Equations of fluid mechanics

We start here from the equations of fluid mechanics written for the pressure
p(x, t), the velocity v(x, t) the density ρ(x, t) and the entropy s(x, t) that
are functions of space x and time t. We consider that there is only one
component in the medium. For media with different components (such as
water and salt in the ocean, or water vapor and air in the atmosphere), more
general formulations exist (Ostashev, 1997).

First, the conservation of mass or equation of continuity is written:

∂ρ

∂t
+∇.(ρv) =

Dρ

Dt
+ ρ∇.v = 0, (1.1)

where
D

Dt
=

∂

∂t
+ v.∇

is called the material or total derivative.
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Second, the Navier-Stokes equation or law of momentum conservation is
given by:

ρ

[
∂v

∂t
+ (v.∇)v

]
= −∇p+∇.τ + ρgez, (1.2)

where τ is the viscous stress tensor and ρgez corresponds to the gravita-
tional force. The viscous stress tensor is important to model aeroacoustic
source generation, but will be neglected here in the context of acoustic propa-
gation. The Navier-Stokes equation is called Euler equation for an inviscid
fluid.

The last equations come from the conservation of the total energy and
from thermodynamic laws. The total energy per unit mass is the sum of the
internal energy e, associated to molecular motion, and of the kinetic energy
v2/2. The conservation of energy can be formulated in terms of the specific
entropy s (entropy per unit mass). In loose terms, entropy measures the
degree of disorder of a system. This yields, in the absence of external source
of heat (Rienstra and Hirschberg, 2021, Equation (1.9)):

ρ
Ds

Dt
= ρ

(
∂s

∂t
+ v.∇s

)
= − 1

T
∇.q +

1

T
τ.∇v, (1.3)

where T is the temperature and q is the heat flux. The entropy of a fluid
flow can never decrease (second law of thermodynamics). It can increase
due to irreversible processes such as viscous dissipation or heat transfer
from outside. When we neglect heat conduction (adiabatic flow) and viscous
dissipation (inviscid fluid), the flow is called isentropic. As a result, energy
changes are only due to reversible processes and entropy is conserved along
streamlines (Pierce, 1989; Rienstra and Hirschberg, 2021):

Ds

Dt
= 0⇔ ∂s

∂t
+ v.∇s = 0. (1.4)

Finally, an equation of state is necessary to have a a number of equations
equal to the number of unknowns. In the more general form, the entropy s
is a function of two independent thermodynamic variables:

s = s(ρ, p) or p = p(ρ, s). (1.5)

For an ideal gas, the equation of state can be written:

dp =
∂p

∂ρ

∣∣∣∣
s

dρ+
∂p

∂s

∣∣∣∣
ρ

ds = c2dρ+
p

cv
ds, (1.6)
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with cv the specific heat at constant volume and

c2 = γrT =
γp

ρ
, (1.7)

where c is the sound speed for an ideal gas, T is the temperature, γ = cp/cv
is the ratio of specific heat and r is a gas constant. Using Equations (1.4)
and (1.6), we finally obtain:

Dp

Dt
=
∂p

∂ρ

∣∣∣∣
s

Dρ

Dt
+
∂p

∂s

∣∣∣∣
ρ �

�
�Ds

Dt
= c2Dρ

Dt
= −c2ρ∇.v, (1.8)

where the equation of continuity (1.1) has been used. Note that some fluids
such as water cannot be considered as an ideal gas. Water sound speed
depends on temperature, pressure, and salinity in a complex way (Pierce,
1989, Section 1-9). In the general case, the sound speed x is defined as:

c2 =
∂p

∂ρ

∣∣∣∣
s

. (1.9)

1.2 Linearized Euler equations

We now linearize the equations of fluid mechanics about a base flow (or
mean flow) that is independent of time, described by the variables v0(x),
p0(x), ρ0(x) and s0(x). Let us introduce the variables associated to acoustic
waves in a fluid medium:

� acoustic pressure [Pa]: p′(x, t) = p(x, t)− p0(x);

� particle velocity [m/s]: v′(x, t) = v(x, t)− v0(x);

� density associated to acoustic fluctuations [kg/m3]: ρ′(x, t) = ρ(x, t)−
ρ0(x);

� entropy associated to acoustic fluctuations [J/K]: s′(x, t) = s(x, t) −
s0(x).

Generally, the acoustic fluctuations are small perturbations with respect
to the mean quantities. The approximation of linear acoustics is considered
valid if (Pierce, 1989)

|p′| � ρ0c
2, |v′| � c, |ρ′| � ρ0. (1.10)
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These conditions will be explained in more details in Section 1.3. We also
suppose the base flow incompressible: ∇.v0 = 0. This is generally a good
approximation because the Mach number M = v0/c � 1 in most situations
in the atmosphere and the ocean. Finally, we introduce the mean sound
speed c0(x) associated with the base flow:

c2
0 = γrT0 =

γp0

ρ0

= c2 − c2
f , (1.11)

with c2
f � c2

0 the fluctuations of the squared sound speed. For air, γ = 1.4
and r = 287 J/kg/K so c0 ≈ 340 m/s at 15oC.

Let us now introduce the acoustic variables in the continuity equation:

∂(ρ0 + ρ′)

∂t
+ (v0 + v′).∇(ρ0 + ρ′) + (ρ0 + ρ′)∇.(v0 + v′) = 0. (1.12)

It is possible to group terms of order 0 (base flow quantities only), of order 1
(one small quantity only), etc. This yields:

order 0
�
�
�∂ρ0

∂t
+ (v0.∇)ρ0 + ρ0���∇.v0 = 0,

order 1
∂ρ′

∂t
+ (v0.∇)ρ′ + (v′.∇)ρ0 + ρ0∇.v′ + ρ′���∇.v0 = 0,

order 2 (v′.∇)ρ′ + ρ′∇.v′ = 0.

A similar procedure can be applied to the momentum equation (1.2):

order 0 ρ0
�
�
�∂v0

∂t
+ ρ0(v0.∇)v0 = −∇p0 + ρ0gez,

order 1 ρ0

(
∂v′

∂t
+ (v0.∇)v′ + (v′.∇)v0

)
+ ρ′(v0.∇)v0 = −∇p′ + ρ′gez,

order 2 ρ′
∂v′

∂t
+ ρ0(v′.∇)v′ + ρ′

[
(v0.∇)v′ + (v′.∇)v0

]
= 0,

order 3 ρ′(v′.∇)v′ = 0,

and to the equation of state for an ideal gas (1.8):

order 0
�
�
�∂p0

∂t
+ (v0.∇)p0 + c2

0ρ0���∇.v0 = 0,

order 1
∂p′

∂t
+ (v0.∇)p′ + (v′.∇)p0 + ρ0c

2
0∇.v′ +

(
c2

0ρ
′ + ρ0c

2
f

)
�

��∇.v0 = 0,

order 2 (v′.∇)p′ +
(
c2

0ρ
′ + ρ0c

2
f

)
∇.v′ + ρ′c2

f���∇.v0 = 0,

order 3 ρ′c2
f∇.v′ = 0.
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The following set of equations for the base flow (order 0) is obtained:

(v0.∇)ρ0 = 0, (1.13)

(v0.∇)v0 = −∇p0

ρ0

+ gez, (1.14)

(v0.∇)p0 = 0. (1.15)

The set of equations at order 1 are called the linearized Euler equations for
an ideal gas:

∂ρ′

∂t
+ (v0.∇)ρ′ + (v′.∇)ρ0 + ρ0∇.v′ = 0, (1.16)

ρ0

(
∂v′

∂t
+ (v0.∇)v′ + (v′.∇)v0

)
+∇p′ − ρ′

ρ0

∇p0 = 0, (1.17)

∂p′

∂t
+ (v0.∇)p′ + (v′.∇)p0 + ρ0c

2
0∇.v′ = 0. (1.18)

Note that in order to obtain Equation (1.17), we have used that:

ρ′(v0.∇)v0 − ρ′gez = −ρ
′∇p0

ρ0

,

which makes use of the momentum equation (1.14) at order 0.
In many situations, it is possible to neglect the terms proportional to∇p0.

For instance, for a harmonic plane wave of the form p′(x, t) = Ae−iω(t−x/c0)

in a medium at rest (v0 = 0), we will see in Section 2.1.1 that v′(x, t) =
p′(x, t)/(ρ0c0) and ρ′(x, t) = p′(x, t)/c2

0. Thus the orders of magnitude of the
different terms in Equation (1.17) are:

ρ0
∂v′

∂t︸ ︷︷ ︸
∼ω A

c0

+ ∇p′︸︷︷︸
∼ ω

c0
A

− ρ′

ρ0

∇p0︸ ︷︷ ︸
∼ A

c20
g

= 0, (1.19)

where we have used that ∇p0 = ρ0gez from Equation (1.14) in a medium at
rest. Thus it appears that the term proportional to ∇p0 can be neglected
at sufficiently high frequencies such that ω � g/c0. This corresponds to
f � 10−3 Hz in air and f � 5 × 10−3 Hz in water. Ostashev et al. (2005)
note that the terms proportional to ∇p0 are important for internal gravity
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waves, but can be neglected for acoustic waves. It will thus be neglected in
the rest of the course.

The linearized Euler equations become the following set of equations:

∂ρ′

∂t
+ (v0.∇)ρ′ + (v′.∇)ρ0 + ρ0∇.v′ = 0, (1.20)

∂v′

∂t
+ (v0.∇)v′ + (v′.∇)v0 +

∇p′

ρ0

= 0, (1.21)

∂p′

∂t
+ (v0.∇)p′ + ρ0c

2
0∇.v′ = 0. (1.22)

Note that Equations (1.21) and (1.22) do not depend on ρ′. These equations
are the basis of many numerical solvers of the linearized Euler equations. It
is also common to rewrite these equations under the following conservative
form:

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
+ H = S, (1.23)

where U = (p′, ρ0v
′
x, ρ0v

′
y, ρ0v

′
z)
T and S = (ρ0c

2Q,Fx, Fy, Fz)
T corresponds to

the source terms, with Q the volume velocity and F the exterior forces. The
Eulerian fluxes E, F, G and H are written:

E =


v0xp

′ + ρ0c
2
0v
′
x

v0xρ0v
′
x + p′

v0xρ0v
′
y

v0xρ0v
′
z

 , F =


v0yp

′ + ρ0c
2
0v
′
y

v0yρ0v
′
x

v0yρ0v
′
y + p′

v0yρ0v
′
z

 ,

G =


v0zp

′ + ρ0c
2
0v
′
z

v0zρ0v
′
x

v0zρ0v
′
y

v0zρ0v
′
z + p′

 , H =


0

ρ0(v′.∇)v0x

ρ0(v′.∇)v0y

ρ0(v′.∇)v0z

 .

(1.24)

From Equations (1.23) and (1.24), the following coupled equations can be
retrieved:

∂p′

∂t
+ (v0.∇)p′ + p′(∇.v0) + ρ0c

2
0∇.v′ + (v0.∇)(ρ0c

2
0) = 0, (1.25)

∂v′

∂t
+ (v0.∇)v′ + (∇.v0)v′ +

v′

ρ0

(v0.∇)ρ0 +
∇p′

ρ0

+ (v′.∇)v0 = 0. (1.26)

Equation (1.25) is equivalent to Equation (1.22) because the base flow is
incompressible (∇.v0 = 0) and the last term can be written:

(v0.∇)(ρ0c
2
0) = γ(v0.∇)p0 = 0, (1.27)
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using Equations (1.11) and (1.15). Similarly, Equation (1.26) is equivalent
to Equation (1.21) because the base flow is incompressible and (v0.∇)ρ0 = 0
from Equation (1.13).

1.3 Validity of the linear acoustics approxi-

mation

From the equations of continuity and momentum conservation, it is clear
that the terms of order 1 will be small compared to the terms of order 0
if |ρ′| � ρ0 and |p′| � p0. From the equation of state for a perfect gas,
p0 = ρ0c

2
0/γ thus we obtain the condition |p′| � ρ0c

2
0. The condition for the

particle velocity is less straightforward to obtain. Let us consider a plane
wave propagating in the fluid. We will see in Section 2.1.1 that in this case:

v′ =
p′

ρ0c0

⇒ |v′| = |p′|
ρ0c0

� c0. (1.28)

Note that it is not necessary than |v′| � v0, such that linear acoustics is also
valid in a medium at rest (v0 = 0).

The linear acoustics approximation is valid in many applications. For
instance, the amplitude of acoustic pressure corresponding to the threshold
of pain is around 90 Pa (about 130 dB re. 20 muPa), which is still two orders
of magnitude smaller than the atmospheric pressure that is close to 105 Pa.
This corresponds to an amplitude of particle velocity of 0.2 m/s, which is
much smaller than the sound speed in air.

1.4 Wave equations in the time and frequency

domains

1.4.1 Propagation in a homogeneous medium at rest

The simplest case that can be considered corresponds to a homogeneous
medium at rest: v0 = 0, where ρ0, p0 and c0 are constant. The linearized

11



Euler equations become simply:

∂ρ′

∂t
+ ρ0∇.v′ = 0, (1.29)

ρ0
∂v′

∂t
+∇p′ = 0, (1.30)

∂p′

∂t
+ ρ0c

2
0∇.v′ = 0. (1.31)

It is possible to obtain a wave equation for the acoustic pressure p′, by sub-
stracting the time derivative of Equation (1.31) and the divergence of Equa-
tion (1.30) multiplied by c2

0:

∂2p′

∂t2
− c2

0∇2p′ = 0 . (1.32)

The operator ∇2 = ∆ is called Laplacian and is written in Cartesian coordi-
nates:

∇2p′ = ∆p′ =
∂2p′

∂x2
+
∂2p′

∂y2
+
∂2p′

∂z2
. (1.33)

Note also that a simple expression can be obtained between acoustic density
and pressure from Equations (1.29) and (1.31):

∂p′

∂t
= c2

0

∂ρ′

∂t
⇒ p′ = c2

0ρ
′ . (1.34)

For a harmonic wave at angular frequency ω = 2πf , the pressure can be
written p′(x, t) = A(x) cos (ωt+ φ(x)), where A is the amplitude and φ is the
phase that are both functions of space. It is useful to introduce the following
complex notation:

p′(x, t) = Re
[
pc(x)e−iωt

]
, (1.35)

where Re denotes the real part and the pc(x) = A(x)e−iφ(x) is the complex
pressure amplitude. Introducing pc(x)e−iωt into the wave equation:

∆pc + k2
0pc = 0 , (1.36)

where k0 = ω/c0 = 2π/λ0 is the acoustic wave number, and λ0 is the wave-
length. Equation (1.36) is called the Helmholtz equation. Many compu-
tational methods assume a harmonic sound field as any sound signal can be
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decomposed into harmonic components using the Fourier transform (spectral
decomposition), and it is easier to solve in the frequency domain as there is
no time derivative to evaluate.

Remark: it is also possible to use the ejωt convention instead of the e−iωt

convention. In this case, we would have:

p′(x, t) = Re
[
pc(x)ejωt

]
, (1.37)

with pc(x) = A(x)ejφ(x). The Helmholtz equation remains the same with
both notations!

Finally, it is possible to introduce an acoustic velocity potential Φ′ asso-
ciated with the particle velocity v′. Taking the curl of Equation (1.30):

∂

∂t
(∇× v′) = 0, (1.38)

since ∇ × ∇p = 0. This means that the rotational of particle velocity is
independent of time. If the acoustic field is irrotational (∇ × v′ = 0), then
the particle velocity derives from a potential Φ′: v′ = ∇Φ′. The relationship
between p′ and Φ′ is obtained from Equation (1.30):

p′(r, t) = −ρ0
∂Φ′

∂t
. (1.39)

Replacing this expression into Equation (1.32), we see that Φ′ satisfies the
same wave equation as p′:

∂2Φ′

∂t2
− c2

0∇2Φ′ = 0 . (1.40)

It is convenient to solve for the acoustic potential because acoustic pres-
sure and particle velocity can be deduced by taking the temporal or spatial
derivative of Φ′.

1.4.2 Propagation in an inhomogeneous medium at rest

We now consider that all the mean quantities depend on space in a medium
at rest: v0 = 0, with ρ0(x), p0(x) and c0(x). The linearized Euler equations
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reduce to:

∂ρ′

∂t
+ (v′.∇)ρ0 + ρ0∇.v′ = 0, (1.41)

∂v′

∂t
+
∇p′

ρ0

= 0, (1.42)

∂p′

∂t
+ ρ0c

2
0∇.v′ = 0. (1.43)

As done previously, let us calculate ∂
∂t

(1.43)− ρ0c
2
0∇.(1.42):

∂2p′

∂t2
+ ρ0c

2
0

∂(∇.v′)
∂t

− ρ0c
2
0∇.

(
∂v′

∂t

)
− ρ0c

2
0∇.

(
∇p′

ρ0

)
= 0. (1.44)

Since the operators ∇ and ∂
∂t

commute, the terms involving the particle
velocity v′ cancel out and we obtain the following wave equation:

1

c2
0

∂2p′

∂t2
− ρ0∇.

(
1

ρ0

∇p′
)

= 0 . (1.45)

Introducing pc(x)e−iωt into the wave equation, we obtain:

−ω
2

c2
0

pc − ρ0∇.
(

1

ρ0

∇pc
)

= 0⇔ k2
0pc + ρ0∇.

(
1

ρ0

∇pc
)

= 0. (1.46)

Since c2
0 = γp0/ρ0 for an ideal gas from Equation (1.11), we have:

ρ0∇.
(

1

ρ0

∇pc
)

=
γp0

c2
0

∇.
(
c2

0

γp0

∇pc
)

=
1

c2
0

∇.
(
c2

0∇pc
)
− 1

c2
0p0

∇p0.
(
c2

0∇pc
)
.

(1.47)
Since we neglect the pressure gradient term, we obtain:

ρ0∇.
(

1

ρ0

∇pc
)

=
k2

0

ω2
∇.
(
ω2

k2
0

∇pc
)

= k2
0∇.

(
1

k2
0

∇pc
)
, (1.48)

which yields the following Helmholtz equation in a inhomogeneous medium
at rest:

k2
0pc + k2

0∇.
(

1

k2
0

∇pc
)

= 0 . (1.49)

This equation is the starting point of several frequency-domain numerical
models such as the parabolic equation.
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1.4.3 Propagation in a uniform moving medium

Except in a few simple cases, it is very difficult or even impossible to derive a
wave equation in a moving medium. One of these simple cases correspond to
a uniform moving medium where v0 = v0xex and v0x, ρ0 and c0 are constant.
In this case, the linearized Euler equations become:(

∂

∂t
+ v0x

∂

∂x

)
ρ′ + ρ0∇.v′ = 0 or

Dρ′

Dt
+ ρ0∇.v′ = 0, (1.50)

ρ0

(
∂

∂t
+ v0x

∂

∂x

)
v′ +∇p′ = 0 or ρ0

Dv′

Dt
+∇p′ = 0, (1.51)(

∂

∂t
+ v0x

∂

∂x

)
p′ + ρ0c

2
0∇.v′ = 0 or

Dp′

Dt
+ ρ0c

2
0∇.v′ = 0, (1.52)

where the total derivative can be written:

D

Dt
=

∂

∂t
+ v0x

∂

∂x
.

The convected wave equation is obtained by calculating D
Dt

(1.52)−c2
0∇.(1.51):

D2p′

Dt2
− c2

0∇2p′ = 0 . (1.53)

Equation (1.53) is exact in a homogeneous moving medium. Ostashev
(1997, Section 2.3) shows that it is also a good approximation in an inhomo-
geneous moving medium if the acoustic wavelength λ is small compared to
the length scale l of variation in the ambient quantities v0, ρ0 and c0, i.e. at
sufficiently high frequencies. He also derives more accurate wave equations
for acoustic propagation in an inhomogeneous moving medium; see Ostashev
(1997, Section 2.3) and Ostashev et al. (1997). Note that these equations are
the basis of various vector parabolic equations that have been used to calcula-
tion the acoustic propagation in an inhomogeneous moving medium (Dallois
et al., 2001; Blanc-Benon et al., 2001).

1.5 Acoustic energy, intensity and source power

1.5.1 Energy conservation law

Let us derive an acoustic energy conservation law in the simple case of a
homogeneous medium at rest. The linearized equations (1.30) and (1.31) are
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reminded here:

ρ0
∂v′

∂t
+∇p′ = 0, (1.54)

∂p′

∂t
+ ρ0c

2
0∇.v′ = 0. (1.55)

To obtain an energy conservation law, we sum the first equation multiplied
by v′ and the second equation mulitplied by p′/(ρ0c

2
0):

ρ0v
′.
∂v′

∂t
+

1

ρ0c2
0

p′
∂p′

∂t
+ v′.∇p′ + p′∇.v′ = 0. (1.56)

This equation can be rewritten:

∂w

∂t
+∇.I = 0, (1.57)

where

w =
1

2
ρ0v
′2 +

1

2

p′2

ρ0c2
0

(1.58)

is the energy density per unit volume, and I = p′v′ is the acoustic inten-
sity vector. By integrating over an arbitrary volume V and applying Gauss
theorem, we obtain the following law of energy conservation:

d

dt

∫
V

wdV +

∫
S

I.ndS = 0, (1.59)

where n is the unit normal vector pointing out of the surface S enclosing
V . This means that in the absence of sources, the variation of energy in the
volume V is compensated by the flux of acoustic energy across its surface.

1.5.2 Time-averaged acoustic intensity and power

Let us introduce the time-averaged acoustic intensity as:

< I >=
1

T

∫ t0+T

t0

I(t)dt =
1

T

∫ t0+T

t0

p(t)v(t)dt. (1.60)

Starting from Equation (1.59), Pierce (1989, page 40) shows that the time-
averaged of the first term is zero, thus:∫

S

< I > .ndS = 0 in the absence of sources. (1.61)
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If a source is placed inside the volume V , this integral is not zero anymore,
and we define the time-averaged acoustic power as:

< Wa >=

∫
S

< I > .ndS =

∫
S

< pv > .ndS, (1.62)

where n is the normal to the surface S.
For harmonic waves, let p(x, t) = Re{pc(x)e−iωt} and v(x, t) = Re{vc(x)e−iωt}.

The time-averaged acoustic intensity for sinusoidal waves becomes:

< I >=
1

2
Re{pcv∗c}. (1.63)

Demonstration:
Let pc = |pc|e−iφp and vc = |vc|e−iφv . We thus obtain p(t) = |pc| cos(ωt+

φp) and vc(t) = |vc| cos(ωt+ φv). As a result

< I >=
1

T

∫ t0+T

t0

p(t)v(t)dt =
|pc||vc|
T

∫ t0+T

t0

cos(ωt+ φp) cos(ωt+ φv)dt,

(1.64)
with T = 1/f = 2π/ω. Using:

cos(ωt+ φp) cos(ωt+ φv) =
1

2
[cos(2ωt+ φp + φv) + cos(φp − φv)] , (1.65)

we obtain:

< I >=
|pc||vc|

2
cos(φp − φv), (1.66)

since the integral of the first term is zero. Since

1

2
Re{pcv∗c} =

|pc||vc|
2

Re{e−i(φp−φv)} =
|pc||vc|

2
cos(φp − φv),

Equation (1.63) is retrieved.

1.5.3 Sound pressure level and sound power level

The sound pressure level (SPL) is defined as:

Lp = 10 log10

(
p2
rms

p2
ref

)
= 20 log10

(
prms
pref

)
, (1.67)
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where pref is a reference pressure and prms is the time-averaged or rms pres-
sure:

p2
rms =< p2 >=

1

T

∫ t0+T

t0

p2(t)dt. (1.68)

For a harmonic wave, prms = max |p|/
√

2. Similarly, the sound power level
(SWL) is defined as:

LW = 10 log10

(
< Wa >

Wref

)
, (1.69)

with Wref a reference power. The reference pressure pref is typically 2 ×
10−5 Pa in air (threshold of hearing at 1 kHz) and 10−6 Pa in water.
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Chapter 2

Acoustic radiation from
stationary and moving sources

In this chapter, we consider the acoustic propagation in a homogeneous
medium at rest (v0 = 0), with constant density ρ0 and sound speed c0.
We drop the primes in the acoustic variables, so that the acoustic pressure is
simply p(x, t), the particle velocity v(x, t), and the velocity potential Ψ(x, t).

2.1 Elementary solutions to the wave equa-

tion

2.1.1 Plane waves

Plane waves correspond to specific solutions to the wave equation where
the wavefronts are planar, as seen in Figure 2.1. Considering the velocity
potential Φ, the general solution to Equation (1.40) is given by:

Φ(x, t) = F+

(
t− x

c0

)
+ F−

(
t+

x

c0

)
, (2.1)

where the function F+ describes the wave propagation in the positive x di-
rection, and F− describes the wave propagation in the negative x direction.
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The associated pressure field is:

p(x, t) = −ρ0
∂Φ

∂t
= −ρ0F

′
+

(
t− x

c0

)
− ρ0F

′
−

(
t+

x

c0

)
= G+

(
t− x

c0

)
+G−

(
t+

x

c0

)
.

(2.2)

The associated particle velocity field is v = ∇Φ = vxex, with:

vx(x, t) =
∂Φ

∂x
= − 1

c0

F ′+

(
t− x

c0

)
+

1

c0

F ′−

(
t+

x

c0

)
=

1

ρ0c0

[
G+

(
t− x

c0

)
−G−

(
t+

x

c0

)]
.

(2.3)

Let us consider a special case of interest, that is a harmonic plane wave
traveling along the positive x axis, with p(x, t) = Re{pc(x)e−iωt} and v(x, t) =
Re{vc(x)e−iωt}:

pc(x) = P0e
ik0x, (2.4)

vc(x) =
pc(x)

ρ0c0

ex, (2.5)

< I > =
|pc|2

2ρ0c0

ex =
ρ0c0|vc|2

2
ex. (2.6)

With this type of waves the amplitude remains constant with distance.
As a result, the ratio of pressure to velocity is constant for a plane wave and
equal to Zc,fluid = ρ0c0. The quantity Zc,fluid is called the characteristic
acoustic impedance of the fluid.

2.1.2 Spherical waves

We now consider waves with spherical symmetry, which means that the vari-
ables do not depend on the spherical coordinates θ and φ: p = p(r, t) and
v = v(r, t)er. The wavefronts are spheres, and the acoustic intensity vector
is along along the r direction: I = Irer. This solution corresponds to the
case of a point source with spherical symmetry.

Rewriting the homogeneous wave equation (1.40) for the velocity poten-
tial in spherical coordinates:

1

c2
0

∂2Φ

∂t2
− 1

r

∂2(rΦ)

∂r2
= 0⇔ 1

c2
0

∂2(rΦ)

∂t2
− ∂2(rΦ)

∂r2
= 0.
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x

Figure 2.1: Plane wave traveling along the x-direction.

This means that rΦ can be written as a sum of a function of t − r/c and a
function of t+ r/c, as done in Section 2.1.1 for plane waves. If we keep only
the outward-going wave:

Φ(r, t) =
1

r
F

(
t− r

c0

)
, (2.7)

and thus:

p(r, t) = −ρ0
∂Φ

∂t
= −ρ0

r
F ′
(
t− r

c0

)
, (2.8)

v(r, t) =
∂Φ

∂r
=
p(r, t)

ρ0c0

− 1

r2
F

(
t− r

c0

)
. (2.9)

It appears that the pressure amplitude decreases as 1/r. Also, the particle
velocity is composed of two terms. Since the second term decreases as 1/r2,

it becomes negligible if r is sufficiently large (far-field) and v(r, t) ≈ p(r,t)
ρ0c0

,
which corresponds to the relationship for plane waves.

It is possible to calculate the acoustic power of this wave by integrating
over a sphere of radius r. From Equation (1.62), considering that the acoustic
intensity is constant on the sphere and that n = er:

< Wa >=

∫
S

< I > .erdS = 4πr2 < Ir > . (2.10)

If we consider a harmonic spherical wave of the form p(x, t) = Re{pc(r)e−iωt},
with

pc(r) =
A

r
eik0r, (2.11)
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the following time-averaged acoustic intensity is obtained from Equation (1.63):

< I(r) >=
|pc|2

2ρ0c0

=
< p2 >

ρ0c0

. (2.12)

From Equations (2.10) and (2.12), the acoustic power is thus:

< Wa >= 4πr2< p2 >

ρ0c0

=
2π|A|2

ρ0c0

. (2.13)

It appears clearly that the acoustic power is independent of the distance r
since A is a constant; the acoustic power < Wa > is a characteristics of the
source(s) inside the sphere S.

From the previous expression, it is possible to derive a simple relationship
between the sound pressure level and the sound power level:

Lp = LW − 10 log10(4πr2) , (2.14)

where Wref = p2
ref/(ρ0c0). In air, we consider typically pref = 20 × 10−6 Pa

and ρ0c0 ≈ 415 kg/m2/s, thus Wref ≈ 10−12 W. The term 10 log10(4πr2) is
called geometrical spreading. This means that there is an attenuation
of 10 log10(4) ≈ 6 dB of the sound pressure level Lp when the distance r is
doubled (6 dB attenuation per doubling distance).

2.1.3 Green’s function

The Green’s function is the solution of the wave equation with a unit point
impulsive source term:(

1

c2
0

∂2

∂t2
−∆

)
G(x, t|y, τ) = δ(x− y)δ(t− τ), (2.15)

with τ the source time, t the receiver time, y the source position, and x
the receiver position. The Green’s function should be zero for t < τ due
to causality considerations. Let G̃(ω, x|y) be the Fourier transform of the
Green’s function:

G̃(ω, x|y) =

∫ +∞

−∞
G(x, t|y, τ)eiωtdt, (2.16)

G(x, t|y, τ) =
1

2π

∫ +∞

−∞
G̃(ω, x|y)e−iωtdω. (2.17)
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To derive the inhomogeneous Helmholtz equation for G̃(ω, x|y), we need to
use the following property of the Dirac delta function:

1

2π

∫ +∞

−∞
e−iωtdω = δ(t). (2.18)

Using Equations (2.17) and (2.18), Equation (2.15) becomes:

1

2π

∫ +∞

−∞

(
1

c2
0

∂2

∂t2
−∆

)(
G̃(ω, x|y)e−iωt

)
dω = δ(x− y)

1

2π

∫ +∞

−∞
e−iω(t−τ)dω

⇒ 1

2π

∫ +∞

−∞

(
− ω
c2

0

G̃(ω, x|y)−∆G̃(ω, x|y)

)
e−iωtdω =

1

2π

∫ +∞

−∞
δ(x− y)eiωτe−iωtdω.

For each frequency ω, the integrand can be equated so that:

∆G̃(ω, x|y) + k2
0G̃(ω, x|y) = −δ(x− y)eiωτ = −δ(x− y), (2.19)

with k0 = ω/c0, if the origin in time of the impulse is chosen at τ = 0.
In free field, spherical waves are propagating from the point source and

the Green’s function noted G̃0(ω, x|y) should follow the form given by Equa-
tion (2.11):

G̃0(ω, x|y) =
A

r
eik0r, (2.20)

where r = |x− y| is the source-receiver distance and using the e−iωt conven-
tion. By integration over a small sphere of radius ε (Rienstra and Hirschberg,
2021, Section 6.3), the constant A can be determined and the free field
Green’s function in the frequency domain is written:

G̃0(ω, x|y) =
eik0r

4πr
eiωτ =

eik0|x−y|

4π|x− y|
eiωτ , (2.21)

with eiωτ a phase term equal to 1 if the origin of the impulse is chosen at
τ = 0. The expression in the time domain is obtained by taking the inverse
Fourier transform using Equation (2.17):

G0(x, t|y, τ) =
1

2π

∫ +∞

−∞

eik0r

4πr
eiωτe−iωtdω

=
1

4πr

(
1

2π

∫ +∞

−∞
exp

[
−iω

(
t− τ − r

c0

)]
dω

)
=

1

4πr
δ

(
t− τ − r

c0

)
,

(2.22)
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using Equation (2.18).
The Green’s function in free field meets the reciprocity property, which

means that the Green’s function remains the same if source and receiver
positions are interchanged in a medium at rest:

time domain: G0(x, t|y, τ) =
1

4πr
δ

(
t− τ − r

c0

)
= G0(y,−τ |x,−t)

frequency domain: G̃0(ω, x|y) =
eik0r

4πr
= G̃0(ω, y|x).

The Green’s function can be used to find integral solutions to inhomoge-
neous wave equation of the following type:

1

c2
0

∂2p

∂t2
−∆p = S(x, t), (2.23)

with S(x, t) a volume source distribution. Using the free-field Green’s func-
tion, the solution can be written (Rienstra and Hirschberg, 2021; Glegg and
Devenport, 2017):

p(x, t) =

∫ +∞

−∞

∫
V

S(y, τ)G0(x, t|y, τ)dV (y)dτ =

∫
V

S(y, t− r/c0)

4πr
dV (y).

(2.24)
This result can be seen as a particular case of Curle’s integral solution derived
in Section 5.2.

Note finally that in some references the ejωt convention is used, so that
the frequency-domain Green’s function in free field is given by (with τ = 0):

G̃0(ω, y|x) =
e−jk0|x−y|

4π|x− y|
=
e−jk0r

4πr
. (2.25)

2.2 Acoustic radiation of stationary elemen-

tary sources

2.2.1 Inhomogenous wave equation with source terms

One way to introduce acoustic sources is to include source terms on the right
hand-side of the linearized equations of Chapter 1. This is done here in a
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homogeneous medium at rest. In presence of a source of mass, the linearized
continuity equation becomes:

1

c2

∂p

∂t
+ ρ0∇.v = ṁV , (2.26)

with ṁV the injected mass per unit volume and per unit time (in kg/m3/s).
An example of such a source is a air bubble oscillating in a liquid or a
loudspeaker inserted in a baffle. Similarly, in presence of external forces in
the fluid, the linearized Euler equation is written:

ρ0
∂v

∂t
+∇p = f

V
, (2.27)

with f
V

the exterior forces imposed to the fluid per unit volume. This
corresponds to oscillating sources, or to a loudspeaker without baffle.

To obtain the wave equation, we substract the time derivative of Equa-
tion (2.26) and the divergence of Equation (2.27) as done in Section 1.4, and
we obtain:

1

c2

∂2p

∂t2
−∆p = m̈V −∇.fV . (2.28)

We obtain two additional source terms on the right-hand side, that will be
analyzed in the following sections.

2.2.2 Acoustic field radiated by a monopole

The monopole is an elementary source obtained by considering a point mass
source, which means that the injected mass per unit volume is written:

ṁV (x, t) = ρ0q(t)δ(x− y) = ρ0q(t)δ(x1 − y1)δ(x2 − y2)δ(x3 − y3), (2.29)

where q(t) is the volume velocity (in m3/s) of the source, and y = (y1, y2, y3)
is the position of the point source. As a result, in the absence of exterior
forces (f

V
= 0), the inhomogeneous wave equation (2.28) becomes:

1

c2

∂2p

∂t2
−∆p = m̈V = ρ0q̇(t)δ(x− y). (2.30)

The solution to this solution is given by Equation (2.24) with a volume source
distribution S(x, t) = ρ0q̇(t)δ(x − y). Using a variable of integration z that

25



is different from the source position y we obtain:

p(x, t) =

∫
V

S

(
z, t− |x− z|

c0

)
dV (z)

4π|x− z|

=

∫
V

ρ0q̇

(
t− |x− z|

c0

)
δ(z − y)

dV (z)

4π|x− z|
.

Using the sifting property of the Dirac delta function:

p(x, t) =
ρ0

4π|x− y|
q̇

(
t−
|x− y|
c0

)
=

ρ0

4πr
q̇

(
t− r

c0

)
(2.31)

since r = |x− y|.
For a harmonic motion at angular frequency ω = 2πf , q(t) = q0e

−iωt and
the complex acoustic pressure pc(r) is given by:

pc(r) =
−iωρ0q0

4πr
eik0r = −iωρ0q0G̃0(ω, x|y). (2.32)

This corresponds to the solution obtained in the MF207 course (Cotté and
Doaré, 2022-2023) for a pulsating sphere of surface velocity Va whose ra-
dius a is much smaller than the acoustic wavelength (k0a � 1). See Fig-
ure 2.2(a). The time-averaged acoustic intensity and power associated with
the monopole are:

< I(r) > =
ρ0c

32π2

k2
0|q0|2

r2
, (2.33)

< Wm > =
ρ0c

8π
k2

0|q0|2. (2.34)

From Equation (2.31), it is apparent that the acoustic pressure radiated by
a monopole is proportional to the time derivative of the volume velocity
q(t) = 4πa2Va(t), with q̇(t) in m3/s2. Thus a surface acceleration must be
present to obtain a nonzero acoustic pressure. As k0q0 = 4πk0a

2Va with
k0a� 1, the acoustic power of the monopole is a small quantity.

2.2.3 Acoustic field radiated by a dipole

The dipole is another elementary source obtained by considering a point
force, which means that the exterior forces imposed to the fluid per unit
volume is written:

f
V

(x, t) = f(x, t)δ(x− y) = F (x, t)δ(x1 − y1)δ(x2 − y2)δ(x3 − y3). (2.35)
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Figure 2.2: Schematics for (a) a pulsating sphere of radius a, (b) an oscillating
thin disk of radius a

where f is the vector force and y = (y1, y2, y3) is the position of the point
force. As a result, in the absence of injected mass (ṁV = 0), the inhomoge-
neous wave equation (2.28) becomes:

1

c2

∂2p

∂t2
−∆p = −∇.f

V
= −f.∇δ(x− y). (2.36)

Let us suppose, without loss of generality, that the force is acting in the x
direction, as shown in Figure 2.2(b). Then:

f.∇δ(x− y) = fx
∂δ(x− y)

∂x
. (2.37)

Since

δ′(x1) = lim
d→0

δ(x1 + d)− δ(x1)

d
, (2.38)

the inhomogeneous wave equation can be rewritten:

1

c2

∂2p

∂t2
−∆p = fx(t)

δ(x− x1)− δ(x− x2)

d
, (2.39)

with a small distance d = x2 − x1. The point force can thus be seen as the
superposition of two monopoles of opposite signs.

For a harmonic oscillation fx(t) = Fxe
−iωt, we obtain the following inho-

mogeneous Helmholtz equation:

∆pc + k2
0pc = −Fx

d

[
δ(x− x1)− δ(x− x2)

]
. (2.40)
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Figure 2.3: (a) Acoustic dipole seen as the combination of two monopoles of
volume velocities ±Q, and (b) associated directivity.

For each of the two monopoles, the solution is given by Equation (2.32) with
Fx/d = −iωρ0q0, thus:

pc(x) = −iωρ0q0

[
G̃0(ω, x|x1)− G̃0(ω, x|x2)

]
=
−iωρ0q0

4π

[
eik0|x−x1|

|x− x1|
− eik0|x−x2|

|x− x2|

]
.

Using the notations of Figure 2.3, with x = rer, we perform a Taylor series
expansion for d� r and k0d� 1:

G̃0

(
rer| ±

d

2
ex

)
= G̃0(rer|0) +∇G̃0.

(
±d

2
ex

)
+ ... (2.41)

The pressure field radiated by a dipole oriented along x is thus given by:

pc(r, θ) = −iωρ0q0d cos θ
∂G̃0

∂r
= iωρ0q0d

(
−ik0 +

1

r

)
cos θ

eik0r

4πr
, (2.42)

with cos θ = ex.er.
This expression can be extended to a dipole of direction n:

pc(x) = −F .∇[G̃0(ω, x|y)] = −F .er
(
−ik0 +

1

r

)
eik0r

4πr
, (2.43)

where F = −iωρ0q0dn. The angle θ is defined from the axis of the dipole
along the unit vector n: cos θ = n.er = n.(x− y)/r. Noting that k0 = ω/c0,
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it is possible to obtain the expression in the time domain using an inverse
Fourier transform:

p(x, t) =
1

4πr
er.

(
1

c0

∂

∂t
+

1

r

)
f

(
t− r

c0

)
=

(xi − yi)
4πr2

(
1

c0

∂

∂t
+

1

r

)
fi

(
t− r

c0

)
.

(2.44)
In the far-field (|y| � |x|), xi−yi ≈ xi and the second term in the parenthesis
can be neglected thus:

p(x, t) ≈ 1

4πc0r
er.f

′
(
t− r

c0

)
=

1)

4πrc0

xi
r
f ′i

(
t− r

c0

)
. (2.45)

One important feature of the dipole that is apparent in Equations (2.43)
and (2.44) is that the acoustic pressure radiation depends on the angle θ. It is
maximal in the axis of the dipole (θn = nπ) and minimal in the perpendicular
direction (θn = (2n+ 1)π/2). The associated directivity factor is given by:

D(θ) =
|pc(r, θ)|

maxθ |pc(r, θ)|
= | cos θ|, (2.46)

and is plotted in Figure 2.3(b). The time-averaged acoustic intensity and
power associated with the dipole are (Cotté and Doaré, 2022-2023):

< I(r) > =
|pc(r, θ)|2

2ρ0c0

=
ρ0c0k

4
0d

2|q0|2

32π2r2
cos2 θ, (2.47)

< Wd > =
ρ0c0k

4
0d

2|q0|2

24π
. (2.48)

The ratio < Wd > / < Wm >= (k0d)2/3� 1, which shows that the dipole is
a much less efficient acoustic source compared to the monopole.

2.3 Acoustic radiation of moving elementary

sources

This section is mostly based on Morse and Ingard (1968, Section 11.2) and
Rienstra and Hirschberg (2021, Section 9.2).
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2.3.1 Monopole in uniform translation

For a monopole of volume velocity q(t) moving along the axis x1 at velocity
V , as shown in Figure 2.4, the sound field is governed by the following wave
equation:

1

c2
0

∂2p

∂t2
−∆p = ρ0

∂

∂t
[q(t)δ(x1 − V t)δ(x2 − y2)δ(x3 − y3)] . (2.49)

Introducing the velocity potential Φ, related to pressure by Equation (1.39):

p(x, t) = −ρ0
∂Φ(x, t)

∂t
, (2.50)

the wave equation can be rewritten:

1

c2
0

∂2Φ

∂t2
−∆Φ = −q(t)δ(x1 − V t)δ(x2 − y2)δ(x3 − y3). (2.51)

In the following, we set y2 = y3 = 0, as can be seen in Figure 2.4.

O(x1,x2,x3)

θ x1
y1=Vτe y1=Vt

r(τe)

Figure 2.4: Source in uniform rectilinear motion.

This equation can be solved using different methods. Morse and Ingard
(1968) use a coordinate transformation called Lorentz transformation to re-
trieve the problem of the noise radiation by a stationary source. We choose
here to use the method of the Green’s function, as it will be used later in
Chapter 5 to find integral solutions of various acoustic analogies. Using
Equation (2.24) along with the free-field Green’s function given by:

G0(x, t|y, τ) =
1

4πr(τ)
δ

(
t− τ − r(τ)

c0

)
, (2.52)
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with r(τ) = |x−y(τ)| =
√

(x1 − V t)2 + x2
2 + x2

3, the integral solution for the
velocity potential Φ is given by:

Φ(x, t) = − 1

4π

∫ +∞

−∞

q(τ)

r(τ)
δ

(
t− τ − r(τ)

c0

)
dτ. (2.53)

We can now find the solution using the following property of the delta
function (Rienstra and Hirschberg, 2021, Equation (C.28)):∫ +∞

−∞
δ[g(τ)]h(τ)dτ =

∑
i

h(τi)

| ∂g
∂τ

(τi)|
, (2.54)

where τi are the solutions of g(τi) = 0. As g(τ) = t−τ−r(τ)/c0, the emission
times τi are given by:

τi = t− r(τi)

c0

= t− 1

c0

√
(x1 − V τi)2 + x2

2 + x2
3. (2.55)

Squaring this equation, we find the following quadratic equation for τi:

(1−M2)τ 2
i + 2

(
x1M

c0

− t
)
τi +

(
t2 − x2

1 + x2
2 + x2

3

c2
0

)
, (2.56)

with M = V/c0 the Mach number, and the emission times are:

τi =
(c0t−Mx1)±

√
(x1 − V t)2 + (1−M2)(x2

2 + x2
3)

c0(1−M2)
. (2.57)

There are two possible solutions for this equation, but for subsonic motion
(M < 1), only the negative sign is possible in order to meet the causality
condition τ < t. The emission time τe is thus given for subsonic motion
(M < 1) by:

τe =
(c0t−Mx1)−

√
(x1 − V t)2 + (1−M2)(x2

2 + x2
3)

c0(1−M2)
. (2.58)

Furthermore:

∂g

∂τ
= −1− 1

c0

∂r

∂τ
= −1− 1

c0

∂y1

∂τ

∂r

∂y1

= −1 +
V

c0

r1

r
= −1 +Mr, (2.59)
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with r1 = (x1 − y1), and noting that y1 = V τ . The quantity Mr is the Mach
number of the source in the direction of the observer. Note also that:

M.r

r
= M

r1

r
= Mr = M cos θ. (2.60)

As a result, the application of Equation (2.54) for a monopole in subsonic
motion yields:

Φ(x, t) = − 1

4π

q(τe)

r(τe)[1−Mr(τe)]
= − 1

4π

q(τe)

r(τe)[1−M cos θ(τe)]
, (2.61)

with τe the emission time given by Equation 2.58.
We thus deduce for the acoustic pressure:

p(x, t) = −ρ0
∂Φ(x, t)

∂t
=

ρ0

4πr(τe)[1−M cos θ(τe)]

∂q

∂t
(τe)

+
ρ0q(τe)

4π

∂

∂t

(
1

r(τe)[1−M cos θ(τe)]

)
.

(2.62)

Since

∂r

∂τ
=
∂y1

∂τ

∂r

∂y1

= −V r1

r
= −c0Mr, (2.63)

∂τ

∂t
=

(
∂t

∂τ

)−1

=

(
1 +

1

c0

∂r

∂τ

)−1

= (1−Mr)
−1 , (2.64)

with Mr = M cos θ, the derivative in the first term is calculated as:

∂q

∂t
(τe) =

∂τ

∂t

∂q

∂τ
(τe) =

q′(τe)

1−Mr

. (2.65)

The derivative in the second term is evaluated using:

∂

∂t

(
1

r(τe)[1−Mr(τe)]

)
= − 1

(r(τe)[1−Mr(τe)])
2

∂

∂t
(r(τe)[1−Mr(τe)]) .

This derivative can be calculated as follows:

∂r

∂t
=
∂τ

∂t

∂r

∂τ
= − c0Mr

1−Mr

(2.66)

∂

∂t
(rMr) =

∂τ

∂t

(
rM r1

r

)
∂τ

=
M

1−Mr

∂(x1 − V τ)

∂τ
= − VM

1−Mr

, (2.67)

32



where we have used Equation (2.60). Finally, the acoustic pressure due a
monopole moving at a uniform velocity V = c0M is given by:

p(x, t) =
ρ0q
′(τe)

4πr(τe)[1−M cos θ(τe)]2
+

ρ0q(τe)c0M (cos θ(τe)−M)

4πr(τe)2[1−M cos θ(τe)]3
. (2.68)

The first term is proportional to 1/r and dominates the far-field, while the
second term is only important in the near-field. The amplitude of these
two terms are increased by a power of the Doppler factor (1 − Mr)

−1 =
(1−M cos θ(τe))

−1, due to the relative motion between source and receivers.
This effect is called convective amplification.

Another consequence of the relative motion between source and receivers
is the frequency shift that appears for harmonic sources. Let us consider
q(t) = q0 exp(−iω0t) in the far-field approximation of Equation (2.68):

p(x, t) ≈ −iρ0q0ω0 exp [−iω0(t− r(τe)/c0)]

4πr(τe)[1−M cos θ(τe)]2
. (2.69)

The phase

φ = ω0

(
t− r(τe)

c0

)
(2.70)

is not proportional to observe time t as the source-observe distance r is time-
dependent. If we generalize the concept of frequency and define it as the
time derivative of the phase, then:

ω =
∂φ

∂t
= ω0

(
1− 1

c0

∂r(τe)

∂t

)
= ω0

(
1 +

M cos θ(τe)

1−M cos θ(τe)

)
=

ω0

1−M cos θ(τe)
,

(2.71)
using Equation (2.66). This is the Doppler formula, that shows that the
frequency decreases from ω0/(1−M) to ω0/(1 +M) when the sources moves
past the observer (θ varies from 0 to π). Figure 2.5 shows the frequency shift
due to the Doppler effect and the pressure amplitude ratio that is quantified
by the factor: ∣∣∣∣ p(x, t)p0(x, t)

∣∣∣∣ =
r0

r(τe)[1−M cos θ(τe)]2
, (2.72)

with p0 the acoustic pressure for a stationary source at a distance r0 =√
x2

2 + x2
3 from the observer. The Doppler shift is better understood when

looking at a map of the real part of the acoustic pressure at a given observer
time t as shown in Figure 2.6 for Mach numbers of 0.25 and 0.5. It appears
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that as the source velocity is increased, the wavefronts become closer and
closer in front of the source (frequency increase at the receiver), and farther
away behind the source (frequency decrease at the receiver).
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Figure 2.5: (a) Doppler factor ω/ω0 and (b) pressure amplitude ratio |p/p0|
for an observer at r0 = 10 m moving at Mach numbers 0.25 or 0.5.

Figure 2.6: Map of the real part of the acoustic pressure at a given observer
time t at (a) M = 0.25 or (b) M = 0.5.
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2.3.2 Acoustic radiation of moving dipoles

The previous derivation for a moving monopole can be generalized to any
moving point source:

1

c2
0

∂2p

∂t2
−∆p = S(x, t) = g(x, t)δ(x− y(t)), (2.73)

with y(t) the motion of the source. For instance, for a moving dipole the
source term is given by:

g(x, t) =
∂fi
∂xi

, (2.74)

and the far-field acoustic pressure is (Gloerfelt, 2016):

p(x, t) ≈ − 1

4πr(τe)c0

xi
x

f ′i
[1−Mr(τe)]2

. (2.75)
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Chapter 3

Absorption and refraction
effects in inhomogeneous
moving media

We use slightly different notations in this chapter. The mean sound speed
associated with the base flow is written c(x), and k(x) = ω/c(x) is the
associated acoustic wave number.

3.1 Acoustic absorption

3.1.1 Attenuation due to acoustic absorption

Acoustic absorption can be modeled using a complex wave number k∗ =
k + iα, with α the absorption coefficient in Np/m. As a result, a harmonic
spherical wave is now written:

pc(r) = S
eikr

r
e−αr. (3.1)

As a result, the relationship (2.14) between the sound pressure level and the
sound power level in free field becomes (Salomons, 2001):

Lp = LW − 10 log10(4πr2)− ar , (3.2)

with a = 20/ ln(10)α ≈ 8.686α the absorption coefficient in dB/m.
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3.1.2 Mechanisms of acoustic absorption in the atmo-
sphere and in the ocean

A sound wave loses energy due to various irreversible processes that remove
energy from an acoustic wave and convert it to heat:

� viscous losses and heat conduction losses (so-called classical absorp-
tion);

� relaxation losses of constituents.

The relaxation losses exist for polyatomic gases, and are associated with the
change of rotational or translational energy of the molecules into internal
energy (Evans et al., 1972).

Pierce (1989, Section 10-8) obtains the following dispersion equation for
a plane traveling wave including classical absorption and various relaxation
processes ν:

k∗ =
ω

c0

+ i αcl +
1

π

ω

c

∑
ν

(ανλ)max
iωτν

1− iωτν
, (3.3)

where αcl is the classical absorption coefficient that is proportional to ω2,
(ανλ)max corresponds to the maximum absorption per wavelength associated
with the ν-type relaxation process, τν is the relaxation time for the vibra-
tional energy of type ν, and:

c0 =
c

1 + 1
π

∑
ν(ανλ)max

. (3.4)

Since limx→0
k
ω

= 1
c0

, c0 corresponds to the phase velocity in the limit of zero
frequency, while c corresponds to the phase velocity in the high-frequency
limit where ωτν � 1 for all relaxation processes ν.

The absorption coefficient α is the imaginary part of k∗, and is thus
written from Equation (3.3):

α(f) = αcl(f) +
∑
ν

αν(f) = Avtf
2 +

∑
ν

2

c
(ανλ)max

fνf
2

f 2
ν + f 2

, (3.5)

with fν = 1/(2πτν) the relaxation frequency of constituent ν. Pierce (1989,
Section 10-8) shows that the absorption per wavelength of the relaxation
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process ν can be written:

ανλ

(ανλ)max

=
2

fν/f + f/fν
. (3.6)

As shown in Figure 3.1(a), the absorption is maximum at the relaxation
frequency fν , and goes to zero for f � fν and f � fν .
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Figure 3.1: (a) Absorption per wavelength, and (b) phase velocity with
respect to the normalized frequency f/fν for a single relxation process ν.
Adapted from Pierce (1989, Fig. 10-12)

Equation (3.3) also shows that the phase velocity vph = ω/kR, with kR the
real part of k∗, depends on frequency because of relaxation processes, which
means that the medium is dispersive. The phase velocity can be written:

vph =
ω

kR
= c−

∑
ν

∆cν
1 + (f/fν)2

, (3.7)

with ∆cν = (ανλ)maxc/π. This phase velocity is plotted in Figure 3.1(b) for a
single relaxation process ν. In practice, ∆cν is small and the approximation
kR = ω/c is generally used.

In the atmosphere, the acoustic absorption of air depends on pressure,
temperature and humidity. The relaxation processes to take into account
are due to nitrogen (N2) and oxygen molecules (O2), where fN2 � fO2 .
The expressions for the absorption coefficient can be found for instance
in Pierce (1989, Chapter 10), Bass et al. (1995, 1996) and Salomons (2001,
Appendix B). See Figure 3.2(a).
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(a) (b)

Figure 3.2: Absorption coefficient (a) for air in dB/100m/atm at 20oC and
for various relative humidities in % (taken from Bass et al. (1995)), and (b)
for seawater in dB/km for a salinity of 35�and a pH of 8 (from Francois
and Garrison (1982b)).

In the ocean, the acoustic absorption of seawater depends on on pressure
(or depth), temperature, salinity and acidity (pH). The relaxation processes
to take into account are due to boric acid (B(OH)3) and magnesium sulphate
(MgSO4), where fB(OH)3 � fMgSO4 . The expressions for the absorption
coefficient can be found for instance in Francois and Garrison (1982a,b) and
in Ainslie and McColm (1998). See Figure 3.2(b).

3.2 Refraction effects

3.2.1 Refraction due to vertical sound speed gradients

Refraction happens when sound waves propagate through fluid layers of vary-
ing sound speeds. Let us consider the simple case of Figure 3.3, where a sound
ray propagates through two fluid layers of sound speed c1 and c2. For the
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moment, a sound ray is defined as a narrow beam of high frequency sound.
A more precise definition will be given in Chapter 4 devoted to geometrical
acoustics.

Figure 3.3: Refraction of sound between 2 layers with different sound speeds
c1 and c2 > c1. Taken from Salomons (2001).

According to Fermat’s principle, the wave takes the path where the travel
time is minimum. The travel time between source and receiver is given here
by:

τ =
r1

c1

+
r2

c2

=

√
x2 + z2

1

c1

+

√
(xr − x)2 + (zr − z1)2

c2

. (3.8)

Let us find the coordinate x of point P that minimizes τ :

∂τ

∂x
=
x/r1

c1

− (xr − x)/r2

c2

= 0⇒ cos γ1

c1

=
cos γ2

c2

(3.9)

This expression is known as the Snell-Descartes law. It can be generalized
to multiple layers of fluid, or to a stratified medium with sound speed c(z):

cos γ(z)

c(z)
= constant along a sound ray . (3.10)

This generalized Snell-Descartes law states that the sound ray bends to-
wards the region of lower sound speed.
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(a) (b)

Figure 3.4: Sound rays from a source at 2 meter height using a logarithmic
sound speed profile c(z) = c0 + b ln (1 + z/z0) (a) in an upward-refracting
atmosphere (b = −1 m/s), and (b) in a downward-refracting atmosphere
(b = 1 m/s). Taken from Salomons (2001).

This variation of sound speed with altitude (in the atmosphere) or depth
(in the ocean) z is commonly found. This comes from the fact that temper-
ature typically varies with z, thus for an ideal fluid:

c(z) =
√
γrT (z) = c0

√
T (z)

T0

. (3.11)

Two ray-tracing examples Salomons (2001) are plotted in Figure 3.4 to illus-
trate refraction effects in a layered atmosphere. A logarithmic sound speed
profile is considered:

c(z) = c0 + b ln

(
1 +

z

z0

)
, (3.12)

with c0 = 340 m/s, z0 = 0.1 m, and b = ±1 m/s.
When b = −1 m/s, the sound speed decreases with height so the sound

rays bend upwards according to Snell-Descartes law. This is called an upward-
refracting atmosphere. This is a typical daytime situation, also referred
to as normal lapse. The sun heats the ground, so the air close to the ground
is warmer than the air at higher altitudes. As a result, a shadow zone forms
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Figure 3.5: Sound rays illustrating the effect of refraction by wind speed
vertical gradients. Taken from Lamancusa (2009, Section 10).

close to the ground where no sound can penetrate in the geometric approx-
imation, as explained in Section 4.3. In reality, sound goes into the shadow
zone due to diffraction effects.

When b = +1 m/s, the sound speed increases with height so the sound
rays bend downwards according to Snell-Descartes law. This is called an
downward-refracting atmosphere. This is a typical nighttime situation,
also referred to as normal inversion. As a result, there can be multiple rays
between source and receiver with multiple reflections on the ground, which
is a favorable situation for acoustic propagation over longer distance.

3.2.2 Refraction due to wind speed gradients

Because of friction, the wind speed in the atmospheric boundary layer de-
creases to zero at the ground. Strong wind speed gradients are thus encoun-
tered close to the ground, and typically decrease with height.

An equivalence can be made between the effect of vertical gradients of
wind speed and temperature on sound waves. Indeed, as shown in Figure 3.5,
downward refraction occurs in the downwind direction or for tempera-
ture inversion, while upward refraction occurs in the upwind direction
or for temperature lapse.

It is possible to take into account wind speed gradients in an approximate
way using the effective sound speed approximation. The effective sound
spped is defines as:

ceff (z) = c(z) + U(z) cosφ, (3.13)

where φ is the angle between wind direction and propagation direction. This
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approximation is generally valid for source and receivers close to the ground,
as will be seen in Chapter 4.
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Chapter 4

Geometrical acoustics

We use the same notations as in Chapter 3, with c(x) the mean sound speed
associated with the base flow and k(x) = ω/c(x) the associated acoustic
wave number. This chapter is mostly based on the work of Pierce (1989,
Chapter 8), on the course notes of Bailly (2020) and on the PhD thesis of
Gainville (2008).

4.1 Equations of geometrical acoustics

In the geometrical acoustics approximation, we are looking for a high-frequency
solution, in the limit λ � `, where ` the characteristic scale of variation of
the ambient quantities in space. The solution is sought as a local plane wave:

p′(x, t) = P̂ (x)eiΘ(x,t). (4.1)

For a harmonic plane wave, the amplitude P̂ (x) is a constant and the phase
Θ(x, t) = k.x−ωt, where k and ω are constants. We generalize this concept,
and define the local wavenumber vector k and the local angular frequency ω
as:

k(x, t) = ∇Θ, (4.2)

ω(x, t) = −∂Θ

∂t
. (4.3)

The amplitude P̂ and the wavenumber k are supposed to vary slowly with
position x over a scale λ = 2π/k, which corresponds to λ� `. We will thus
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introduce a small parameter ε ∼ λ/`, and develop the pressure amplitude in
an asymptotic series in power of ε:

P̂ (x) = P̂0(x) + εP̂1(x) + ε2P̂2(x) + ... (4.4)

We apply this approximation first to the wave equation in a homogeneous
medium at rest, and then to the linearized Euler equations in an inhomoge-
neous moving medium.

4.1.1 In a homogeneous medium at rest

Let us start from the wave equation in a homogeneous medium at rest of
constant sound speed c0:

1

c2
0

∂2p′

∂t2
−∇2p′ = 0. (4.5)

Introducing p′(x, t) = P̂ (x)eiΘ(x,t), the time derivative of the acoustic pressure
becomes:

∂p′

∂t
= i

∂Θ

∂t
P̂ eiΘ = −iωP̂ eiΘ ⇒ ∂2p′

∂t2
= −ω2P̂ eiΘ.

Noting that ∇
(
eiΘ(x,t)

)
= i(∇Θ)eiΘ = ikeiΘ, the Laplacian term is written:

∇2p′ =
(
∇2P̂ + 2ik.∇P̂ + i(∇.k)P̂ − k2P̂

)
eiΘ. (4.6)

As a result, the Helmholtz equation is rewritten:

∇2P̂︸︷︷︸
∝1/`2

+
(

2ik.∇P̂ + i(∇.k)P̂
)

︸ ︷︷ ︸
∝1/λ`

−P̂
(
k2 − ω2

c2
0

)
︸ ︷︷ ︸

∝1/λ2

= 0. (4.7)

As the amplitude P̂ and the wavenumber k are supposed to vary slowly with
position x, the terms ∇P̂ and ∇.k are proportional to 1/`. We can now
introduce the asymptotic expression for the pressure amplitude in terms of
the small parameter ε ∼ λ/`. Grouping terms by power of ε:

ε0 : P̂0

(
k2 − ω2

c2
0

)
= 0 (4.8)

ε1 : i
(

2k.∇P̂0 + (∇.k)P̂0

)
− P̂1

���
����(

k2 − ω2

c2
0

)
= 0 (4.9)

ε2 : ... (4.10)
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The first equation corresponds to the Eikonal equation or dispersion relation:

k2 =
ω2

c2
0

. (4.11)

The solution to this equation corresponds to the rays connecting the wave-
front surfaces (straight lines for a homogeneous medium), as will be seen
in Section 4.2. The second equation corresponds to the transport equation
where we suppose P̂ ≈ P̂0 at first order:

2k.∇P̂ + (∇.k)P̂ or ∇.(P̂ 2k) = 0. (4.12)

The transport equation gives the variation of amplitude along ray paths
as will be seen in Section 4.3.

To find the domain of validity of the geometrical acoustics approximation,
we notice that we basically neglected the first term in Equation (4.7) in order
to obtain the Eikonal and transport equations. As a result, the geometrical
acoustics is valid when: ∣∣∣∣∣∇2P̂

P̂

∣∣∣∣∣�
(
ω

c0

)2

. (4.13)

Thus the higher the frequency the better the approximation.

4.1.2 In a moving medium

Let us start for the set of linearized Euler equations (1.20)-(1.22) given in
Section 1.2. We will focus on Equations (1.21) and (1.22) that do not depend
on ρ′. The expression for the particle velocity is similar to the expression (4.1)
for the acoustic pressure:

v′(x, t) = V̂ (x)eiΘ(x,t). (4.14)

Introducing these expressions in the momentum equation (1.21), we obtain:

ρ0

(
−iω + ik.v0

)
V̂ + ikP̂ = −ρ0(v0.∇)V̂ − ρ0(V̂ .∇)v0 −∇P̂ (4.15)

Terms on the left hand-side of the equation are proportional to ω ∼ 1/λ,
so they are dominant with respect to the terms on the right hand-side that
are proportional to 1/`, as V̂ , P̂ and v0 are supposed to vary slowly with x.
Similarly, we obtain from Equation (1.22):(

−iω + ik.v0

)
P̂ + ρ0c

2ik.V̂ = −(v0.∇)P̂ − ρ0c
2∇.V̂ . (4.16)
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The system of equations can be recast in the following form:

ρ0idV̂ + ikP̂ = A (4.17)

idP̂ + ρ0c
2ik.V̂ = B, (4.18)

with d = k.v0−ω, where the terms A and B are small compared to the terms
on the left hand-side.

This system of equations can be solved using the general eikonal method.
In a 2D space, with V̂ = (V̂x, V̂y), A = (Ax, Ay) and k = (kx, ky), the system
of equations can be rewritten in matrix form:

H

V̂xV̂y
P̂

 = Λ⇔

 ρ0id 0 ikx
0 ρ0id iky

ρ0c
2ikx ρ0c

2iky id

V̂xV̂y
P̂

 =

AxAy
B

 , (4.19)

with d = kxv0x + kyv0y − ω. Introducing the asymptotic series (4.4) of

P̂ in power of ε, and noting that Λ/H = O(ε), we obtain the condition
H(V̂0x, V̂0y, P̂0)T = 0 at order 0. The condition det(H) = 0 for having non-
trivial solutions yields the dispersion relation D(k, ω, x) = 0:

det(H) = ρ0id
(
−ρ0d

2 + ρ0c
2k2
y

)
+ ikx

(
ρ2

0c
2k2
xd
)

= ρ2
0id
(
c2k2

x + c2k2
y − d2

)
,

(4.20)
thus the dispersion relation is given by:

D(k, ω, x) =
(
k.v0 − ω

) [
c2k2 −

(
k.v0 − ω

)2
]

= 0. (4.21)

From the dispersion relation it appears that two types of waves can exist.
The first solution corresponds to k.v0−ω = 0. The associated group velocity
is:

vg =
∂ω

∂k

∣∣∣∣
x

= v0. (4.22)

For this type of wave d = 0 thus we obtain at order 0 P̂0 = 0 and k.V̂ 0 = 0.
Thus the particle velocity fluctuations are perpendicular to the propagation
direction n = k/k, which corresponds to transverse waves. This is called
the vortical mode.

The second solution corresponds to c2k2 −
(
k.v0 − ω

)2
= 0 hence ω =

k.v0 ± ck. The associated group velocity is:

vg =
∂ω

∂k

∣∣∣∣
x

= v0 ± c
k

k
= v0 ± cn. (4.23)
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For this type of wave d = ∓ck thus we obtain at order 0 using the two first
lines of the matrix system 4.19:

∓ iρ0ckV̂0x + ikxP̂0 = 0 ⇒ V̂0x = ± P̂0

ρ0c

kx
k

(4.24)

∓ iρ0ckV̂0y + ikyP̂0 = 0 ⇒ V̂0y = ± P̂0

ρ0c

ky
k
. (4.25)

As a result V̂ 0 = ± P̂0

ρ0c
n. This means that the particle velocity fluctuations

are aligned with the propagation direction n = k/k, which corresponds to
longitudinal waves. This is called the acoustic mode.

If the flow hadn’t been considered as isentropic, a third type of solution
called entropy mode would have been found, that corresponds to the con-
vection of temperature fluctuations (Ostashev et al., 2005; Boutillon, 2017).
These three modes are generally decoupled only in the high frequency ap-
proximation (geometrical acoustics) or when the mean flow is homogeneous.
In this case, any unsteady perturbation can be decomposed into these three
types of modes or waves.

In order to calculate the amplitude of the acoustic mode, it is necessary
to solve the equations at order 1:

H

V̂1x

V̂1y

P̂1

 = Λ0, (4.26)

under the condition det(H) = 0 associated with the dispersion relation
ω = k.v0 ± ck. This yields a generalization of the transport equation (4.12)
obtained in a homogeneous medium at rest (Bailly, 2020).

4.2 Wavefronts and ray equations

A wavefront is a moving surface along which a waveform feature is received
(constant phase). We saw in Section 2.1 that it is a plane for plane waves,
or a sphere for spherical waves as long as the propagation medium is ho-
mogeneous. However, in inhomogeneous moving media, the wavefronts are
distorted and generally have a complex shape, as illustrated in Figure 4.1(a).
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(a) (b)

Figure 4.1: (a) Wavefront defined by the function τ(x) and the normal x,
and (b) wavefront in a moving medium as a function of c(x)n and v0, with
n = ∇τ/|∇τ | = k/k. Taken from Pierce (1989, Chapter 8).

Pierce (1989) defines the function τ(x) (in second) constant along a wave-
front, and defines tge normal to the wavefront as n = ∇τ/|∇τ | = k/k. It
can be shown that k = ω∇τ .

The dispersion relation ω = k.v0 + ck = k.vg obtained in Section 4.1 can
be solved by the method of characteristics, commonly called rays. The rays
are the curves x(t) tangent to the group velocity at each point, thus they are
defined as:

dx

dt
= vg = v0 + c

k

k
= v0 + cn, (4.27)

following Equation (4.23). In a medium at rest (v0 = 0), the rays are per-
pendicular to wavefronts, but this is not true anymore in a moving medium,
as shown in Figure 4.1(b).

The orientation of the vector n = k
k

is determined through the evolution
of k(x, t) along the ray:

∂k

∂t
=
∂(∇Θ)

∂t
= −∇ω = −∇(k.vg) = −(∇vg).k − (∇k).vg. (4.28)

This can also be written using Einstein notations:

∂k

∂t
= − ∂ω

∂xi
= − ∂

∂xi
(vgjkj) = −vgj

∂kj
∂xi
− kj

∂vgj
∂xi

. (4.29)
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As k = ∇Θ:

∇× k = 0⇔ ∂kj
∂xi
− ∂ki
∂xj

= 0. (4.30)

As a result:

∂k

∂t
= −vgj

∂ki
∂xj
− kj

∂vgj
∂xi

= −(vg.∇)k − (∇vg).k, (4.31)

and the equation for the evolution of k becomes:

dk

dt
=
∂k

∂t
+ (vg.∇)k = −(∇vg).k = −k∇c− (∇v0).k. (4.32)

Finally, the ray-tracing equations can be written using Einstein notations:

dxi
dt

= cni + v0i, (4.33)

dki
dt

= −k ∂c
∂xi
− kj

∂v0j

∂xi
, (4.34)

with ni = ki/k.

4.3 Wave amplitude along rays and caustics

Let us consider a ray tube, that corresponds to the envelope of all the rays
passing through a tiny area A(x0), as shown in Figure 4.2(a). Applying
Gauss’s theorem to the transport equation (4.12) in a homogeneous medium
at rest: ∫

Vray tube

∇.(P̂ 2k)dV =

∫
Aray tube

P̂ 2(k.n)dA

= P̂ 2(x)A(x)(k.n)x − P̂ 2(x0)A(x0)(k.n)x0 = 0.

(4.35)

In a homogeneous medium at rest the rays are straight lines hence (k.n)x =
(k.n)x0 , which yields the following amplitude variation along rays :

P̂ (x) = P̂ (x0)

√
A(x0)

A(x)
or P̂ 2(x)A(x) = constant. (4.36)

The amplitude is inversely proportional to the square root of ray tube area.
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(a) (b)

Figure 4.2: (a) Schematics of a ray tube, and (b) example of a caustic. Taken
from Pierce (1989, Chapter 8).

In an inhomogeneous medium, the rays are now curved because of sound
speed and/or velocity gradients. The previous result has been generalized by
Pierce (1989, Section 8-6) that shows the conservation of energy along
rays. The amplitude variation along rays in an inhomogeneous medium at
rest is written:

P̂ 2A

ρ0c
= constant (4.37)

This result can be extended to an inhomogeneous moving medium (Pierce,
1989, Section 8.6).

When two rays intersect, the ray tube areas go to zero (A(x) = 0), thus
the pressure amplitude goes to infinity from the previous expressions. The
envelope formed by a family of intersecting rays is called a caustics. An
example is shown in Figure 4.2(b). When this happens, there is a need to
think in terms of waveforms instead of rays. This is the goal of the geometrical
theory of diffraction which is an extension of geometrical acoustics. Salomons
(2001, Appendix L) presents a ray model that employs the theory of Ludwig
and Kravtsov for the effects of caustics.

4.4 Solutions to the ray-tracing equations

It is possible to calculate analytically the solutions to the ray-tracing equa-
tions in some simple cases. For instance in a medium at rest, v0 = 0 and the
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θkz
k

kx
(a) (b)

Figure 4.3: (a) Ray direction, and (b) ray path considering a linear sound
speed profile. Taken from Pierce (1989, Chapter 8).

ray-tracing equations are simply:

dx

dt
= cn or

dxi
dt

= cni, (4.38)

dk

dt
= −k∇c or

dki
dt

= −k ∂c
∂xi

, (4.39)

with ni = ki/k. These equations can be integrated in time for a given
initial direction at t = 0. We can assume without loss of generality: k0 =
k0xex + k0zez, as shown in Figure 4.3(a).

In a layered atmosphere at rest, such that c = c(z), the equations can be
further simplified. We see that dkx

dt
= dky

dt
= 0 which means that kx = kx0 and

ky = ky0 = 0. As a result ny = 0 and the rays remain in the original plane
of propagation. From the dispersion relation (Eikonal equation):

k2 = k2
x + k2

z =
ω2

c2
⇒ kx =

ω cos θ

c
and kz =

ω sin θ

c
. (4.40)
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As a result the Snell-Descartes law is retrieved:

kx =
ω cos θ

c
= constant⇒ cos θ(z)

c(z)
= constant. (4.41)

If a simple linear sound speed profile of the form c(z) = c0 +az is chosen,
then ∇c = aez. In this specific case, it is possible to show that the ray
trajectories are arcs of circle of radius R = ω/(akx0) = c(z0)/(a cos θ0),
with θ0 = θ(t = 0), centered at height c0/a (Pierce, 1989, Section 8-3).
Figure 4.3(b) illustrates the shape of the ray paths for a linear sound speed
profile. The greater the sound speed gradient a is, the smaller the radius of
curvature R will be.

Pierce (1989, Section 8-3) extends the analysis to a moving medium, and
shows that the rays bend with a radius of curvature:

R = c/

(
dc

dz
cos θ +

dv0x

dz

)
. (4.42)

For rays propagating in nearly horizontal directions, cos θ ≈ 1 and R ≈
c/
(
dceff
dz

)
, where ceff is the effective sound speed defined as:

ceff (z) = c(z) + v0x(z). (4.43)

If θ is greater than approximately 30o, the influence of a wind speed gradient
is greater than the influence of a sound speed gradient of same amplitude,
and the effective sound speed approximation becomes less accurate.
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Chapter 5

Introduction to aeroacoustics

This chapter of introduction to aeroacoustics is based mostly on the books
of Glegg and Devenport (2017), of Rienstra and Hirschberg (2021), and on
the course notes of Gloerfelt (2016). The general notations of Chapter 1 are
used.

5.1 Lighthill’s analogy

The idea of Lighthill is to rewrite the general equations of fluid mechanics
given in Chapter 1 as an inhomogeneous wave equation. All the non-linear
terms will be included as source terms on the right-hand side of the equation.
While this equation is formally exact, it is only useful when considering an
observer outside the source region, in a homogeneous medium at rest. We
thus introduce the constant sound speed c∞ and density ρ∞ in the observer
region.

To derive Lighthill’s equation, let us start from the equation of continuity
(1.1) written:

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0, (5.1)

using Einstein notation, and the from momentum equation (1.2) rewritten
in a slightly different form:

∂(ρvi)

∂t
+
∂(ρvivj + pij)

∂xj
= 0, (5.2)

where the gravitational force has been neglected. The tensor pij = (p −
p∞)δij − τij includes both the pressure forces and the viscous stresses. The

54



term ρvivj is commonly called Reynolds stress tensor while pij is called the
compressive stress tensor.

By taking the time derivative of the continuity equation and substracting
the divergence of the momentum equation, we obtain:

∂2ρ

∂t2
=
∂2(ρvivj + pij)

∂xi∂xj
. (5.3)

To obtain a wave equation on the density perturbation ρ′ = ρ − ρ∞, we

subtract ∂2(ρ′c2∞)

∂x2i
on each side:

∂2ρ′

∂t2
− c2

∞
∂2ρ′

∂x2
i

=
∂2Tij
∂xi∂xj

with Tij = ρvivj + pij − (ρ− ρ∞)c2
∞δij ,

(5.4)
because ∂ρ

∂t
= ∂ρ′

∂t
. This is known as Lighthill’s wave equation (Lighthill,

1952). The Lighthill’s tensor Tij can also be rewritten:

Tij = ρvivj+[(p−p∞)−(ρ−ρ∞)c2
∞]δij−τij = ρvivj+[p′−ρ′c2

∞]δij−τij, (5.5)

with p′ = (p− p∞).
In the acoustic region far from the source, the approximation of linear

acoustics holds thus p′ = ρ′c2
∞, and the Lighthill’s tensor Tij = 0 because

the medium is stationary (vi = 0) and uniform (p ≈ p∞ and ρ ≈ ρ∞), and
because viscous effects can be ignored (linear acoustics approximation).

Some important remarks and limitations can be made:

� Lighhill’s equation is exact but it cannot be solved since there is only
one equation for 5 unknowns (vi, p and ρ). The interpretation that can
be made is that the left hand side is the classical wave equation and
the right hand side is a source term that is supposed to be known.

� Nearly incompressible flow: at relatively low Mach numbers and for
homentropic flows (p′ ≈ ρ′c2

∞), Lighthill’s tensor is often approximated
as Tij ≈ ρ∞vivj, neglecting viscous effects. This approximation is not
valid in cases where acoustic waves have an influence on the mean flow
(acoustic retroaction).

� The choice of the speed of sound c∞ is not arbitrary, it must be chosen
as the speed of sound in the stationary medium.
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� As the medium is homogeneous and at rest around the observer, con-
vection, refraction and diffraction/scattering effects are not accounted
for by Lighthill’s analogy.

5.2 Curle’s theorem

5.2.1 Derivation of the general formulation

To find a solution to Lighthill’s wave equation, it is possible to use the method
of Green’s functions. The Green’s function is the solution of the wave equa-
tion with a unit point impulsive source term, given in Equation (2.15), and
can be rewriten:(

1

c2
∞

∂2

∂τ 2
− ∂2

∂y2
i

)
G(x, t|y, τ) = δ(x− y)δ(t− τ), (5.6)

with τ the source time, t the receiver time, y the source position, and x the
receiver position. Let us rewrite Lighthill Equation (5.4) in terms of y and
τ :

1

c2
∞

∂2(ρ′c2
∞)

∂τ 2
− ∂2(ρ′c2

∞)

∂y2
i

=
∂2Tij
∂yi∂yj

. (5.7)

To obtain the solution, let us multiply Equation (5.7) by G, and subtract it
from Equation (5.6) times ρ′c2

∞:

1

c2
∞

(
ρ′c2
∞
∂2G

∂τ 2
−G∂

2(ρ′c2
∞)

∂τ 2

)
−
(
ρ′c2
∞
∂2G

∂y2
i

−G∂
2(ρ′c2

∞)

∂y2
i

)
= δ(x− y)δ(t− τ)ρ′c2

∞ −G
∂2Tij
∂yi∂yj

.

(5.8)

Now let us integrate this equation over source time τ and the volume V (y)
which includes the receiver position x:∫
V

∫ T

−T

[
1

c2
∞

(
ρ′c2
∞
∂2G

∂τ 2
−G∂

2(ρ′c2
∞)

∂τ 2

)
−
(
ρ′c2
∞
∂2G

∂y2
i

−G∂
2(ρ′c2

∞)

∂y2
i

)]
dτdV (y)

= ρ′(x, t)c2
∞ −

∫
V

∫ T

−T
G
∂2Tij
∂yi∂yj

dτdV (y),

(5.9)
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The above equation holds if x is inside V and if −T < t < T (property of
the dirac functions).

The first term in the integrand can be rewritten:

ρ′c2
∞
∂2G

∂τ 2
−G∂

2(ρ′c2
∞)

∂τ 2
=

∂

∂τ

(
(ρ′c2

∞)
∂G

∂τ
−G∂(ρ′c2

∞)

∂τ

)
. (5.10)

A a result, the integral of this first term can be calculated as follows:∫
V

∫ T

−T

(
ρ′c2
∞
∂2G

∂τ 2
−G∂

2(ρ′c2
∞)

∂τ 2

)
dτdV (y) =

∫
V

[
ρ′c2
∞
∂G

∂τ
−G∂(ρ′c2

∞)

∂τ

]τ=T

τ=−T
dV (y).

(5.11)
The initial conditions can be chosen so that ρ′ and ∂ρ′

∂τ
are equal to zero at

τ = −T . The causality condition also imposes that the Green’s function and
its time derivative are zero at τ = T > t. As a result, this first term is equal
to zero.

Similarly, the second term in the integrand can be rewritten:(
ρ′c2
∞
∂2G

∂y2
i

−G∂
2(ρ′c2

∞)

∂y2
i

)
=

∂

∂yi

(
ρ′c2
∞
∂G

∂yi
−G∂(ρ′c2

∞)

∂yi

)
. (5.12)

This corresponds to the divergence of a vector. As a result, we can use the
divergence theorem to turn the volume integral into a surface integral:∫
V

(
ρ′c2
∞
∂2G

∂y2
i

−G∂
2(ρ′c2

∞)

∂y2
i

)
dV (y) =

∫
Stot

(
ρ′c2
∞
∂G

∂yi
−G∂(ρ′c2

∞)

∂yi

)
nidS(y),

(5.13)
where the unit vector ni has been chosen normal to the surface and pointing
into the volume, as shown in Figure 5.1, and Stot = S ∪ S∞ is the surface
surrounding V . In free field applications the integral on the surface S∞ is
equal to zero due to the Sommerfeld radiation condition, that states that
there are no incoming waves coming from infinity Pierce (1989); Rienstra
and Hirschberg (2021).

The integral equation (5.9) can thus be written:

ρ′(x, t)c2
∞ =

∫ T

−T

∫
S

(
ρ′c2
∞
∂G

∂yi
−G∂(ρ′c2

∞)

∂yi

)
nidS(y)dτ

+

∫
V

∫ T

−T
G
∂2Tij
∂yi∂yj

dτdV (y).

(5.14)
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Figure 5.1: Schematics for Curle’s method.

As explained by Glegg and Devenport (2017), it is difficult to calculate the
second derivative of the Lighthill’s tensor in practice, so it is useful to ap-
ply partial integral twice to pass the derivatives on the Green’s function.
After some manipulations, they obtain Glegg and Devenport (2017, Equa-
tion (4.3.6)):

ρ′(x, t)c2
∞ =

∫ T

−T

∫
S

(
(pij + ρvivj)

∂G

∂yi
+G

∂(ρvj)

∂τ

)
njdS(y)dτ

+

∫
V

∫ T

−T

∂2G

∂yi∂yj
TijdτdV (y).

(5.15)

This result due to Curle (1955) is very general, as any Green’s function can
be used. The only restriction is that the surface S bounding the fluid (or
Stot for confined flows) is stationary, and that the medium is homogeneous
and at rest outside the source region, as in the Lighthill’s equation.

In the absence of aerodynamic sources, Tij = 0 and ρvivj = 0. Further-
more, p′(x, t) = ρ′(x, t)c2

∞ and pij = p′δij so that we retrieve the Kirchhoff-
Helmholtz integral equation (Pierce, 1989; Glegg and Devenport, 2017):

p′(x, t) =

∫ T

−T

∫
S

(
p′
∂G

∂yi
+ ρ0G

∂vi
∂τ

)
nidS(y)dτ. (5.16)
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5.2.2 Interpretation of Curle’s theorem using the free-
field Green’s function

To understand the physical meaning of each term of Equation (5.15), it is in-
teresting to consider the free field Green’s function given by Equation (2.22):

G0(x, t|y, τ) =
1

4π|x− y|
δ

(
t− τ − r

c∞

)
, (5.17)

with r = |x− y| the source-receiver distance. The free field Green’s function
and it has the following properties:

∂G0

∂yi
= −∂G0

∂xi
and

∂2G0

∂yiyj
=
∂2G0

∂xixj
.

As a result, Equation (5.15) can be rewritten with the spatial derivatives
outside the integrals:

ρ′(x, t)c2
∞ =

∫ T

−T

∫
S

G0
∂(ρvj)

∂τ
njdS(y)dτ − ∂

∂xi

∫ T

−T

∫
S

((pij + ρvivj)G0)njdS(y)dτ

+
∂2

∂xi∂xj

∫
V

∫ T

−T
G0TijdτdV (y),

(5.18)

or equivalently:

ρ′(x, t)c2
∞ =

∫
S

[
∂(ρvj)

∂τ

]
τ=τ∗

njdS(y)

4π|x− y|
− ∂

∂xi

∫
S

[(pij + ρvivj)]τ=τ∗

njdS(y)

4π|x− y|

+
∂2

∂xi∂xj

∫
V

[Tij]τ=τ∗

dV (y)

4π|x− y|
,

(5.19)

where the source terms are evaluated at the retarded times τ = τ ∗ = t−|x−
y|/c∞.

The first term in Equation (5.19) depends on the normal velocity un =
vini on the surface S:

(ρ′(x, t)c2
∞)monopole =

∫
S

[
∂(ρun)

∂τ

]
τ=τ∗

dS(y)

4π|x− y|
. (5.20)
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As for the pulsating sphere, it is related to the flux of mass across the surface.
This term is zero if the surface is rigid or impenetrable. If the surface is
acoustically compact, i.e. if it is sufficiently small that retarded time effects
can be ignored, this term becomes in the acoustic far-field (|x| � |y|):

(ρ′(x, t)c2
∞)monopole ≈

1

4π|x|

[∫
S

∂(ρun)

∂τ
dS(y)

]
τ=τ∗

=
1

4π|x|
Q̇(t− |x|/c).

(5.21)
This term is thus ominidirectional in the far-field, and is similar to the ex-
pression, for a monopole expression.

The second term in Equation (5.19) is related to the surface loading:

(ρ′(x, t)c2
∞)dipole = − ∂

∂xi

∫
S

[(pij + ρvivj)]τ=τ∗

njdS(y)

4π|x− y|
. (5.22)

The space derivative can be evaluated as follows:

∂

∂xi

(
f(τ ∗)

|x− y|

)
=

1

|x− y|
∂f(τ ∗)

∂xi
− (xi − yi)
|x− y|3

f(τ ∗), (5.23)

where ∂f(τ∗)
∂xi

is obtained using the chain rule:

∂f(τ ∗)

∂xi
=
∂τ ∗

∂xi

[
∂f(τ)

∂τ

]
τ=τ∗

= − (xi − yi)
|x− y|c∞

[
∂f(τ)

∂τ

]
τ=τ∗

, (5.24)

as τ ∗ = t− |x− y|/c∞. Thus:

(ρ′(x, t)c2
∞)dipole =

∫
S

[
∂(pij + ρvivj)

∂τ
+

(pij + ρvivj)c∞
|x− y|

]
τ=τ∗

(xi − yi)njdS(y)

4π|x− y|2c∞
.

(5.25)
If the surface is rigid or impenetrable, ρvivjnj = 0 and the only significant
term is the compressive stress tensor pij. In the far-field, the second term in
the brackets becomes negligible, thus for a rigid stationary surface:

(ρ′(x, t)c2
∞)dipole =

∫
S

[
∂pij
∂τ

]
τ=τ∗

(xi − yi)njdS(y)

4π|x− y|2c∞
, (5.26)

If the surface is acoustically compact so that the effects of retarded time can
be neglected:

(ρ′(x, t)c2
∞)dipole ≈

xi
4π|x|2c∞

[
dFi
dτ

]
τ=τ∗

with Fi(τ) =

∫
S

pijnjdS(y),

(5.27)
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where Fi is the force applied by the surface to the fluid. This resembles a
dipole oriented in the direction of the force.

Finally, the last term in Equation (5.19) is the volume integral which is
referred to as a quadrupole term. It is possible to change the space derivatives
to derivatives over source times. In the acoustic far-field only the dominant
term is kept yielding:

(ρ′(x, t)c2
∞)quadrupole ≈

xixj
4πc2

∞r
3

∫
V

[
∂2Tij
∂τ 2

]
τ=τ∗

dV (y). (5.28)

If the turbulence volume is acoustically compact (smaller than the acoustic
wavelength), the effects of retarded time can be ignored thus:

(ρ′(x, t)c2
∞)quadrupole ≈

xixj
4πc2

∞|x|3

[∫
V

∂2Tij
∂τ 2

dV (y)

]
τ=τ∗

. (5.29)

The acoustic directivity is the same as for elementary quadrupole sources.
Calling the different terms of Equation (5.19) monopole, dipole and quadrupole

terms can be misleading, as this classification is only valid for compact
sources, which means that the characteristic scale L of the sources is small
compared to the acoustic wavelength: L � λ ⇔ kL � 1, with k =
2π/λ (Rienstra and Hirschberg, 2021). One example of this is the reflection
theorem of Powell (1960). Powell (1960) studies the effect of a plane bound-
ary in the vicinity of a noise generating region, as shown in Figure 5.2(a).
The original system contains a volume V0 with the noise-generating region
(Tij = 0 outside V0), and is delimited by the surfaces S0, S1 and S2. The
virtual image system is introduced to account for reflections at the bound-
aries S0 and S1, as shown in Figure 5.2(b), where primes are used for the
quantities referring to the image. Let us consider an observer x located in
the real volume enclosed by the surfaces S0, S1 and S2. Assuming the plane
surface BB is rigid and the fluid is inviscid (pij = p′δij), Equation (5.19)
yields:

4πp′(x, t) = − ∂

∂xi

∫
S0∪S1

[p′]τ=τ∗

nidS(y)

|x− y|
+

∂2

∂xi∂xj

∫
V0

[Tij]τ=τ∗

dV (y)

|x− y|
.

(5.30)
Let us now consider the image volume enclosed by the surfaces S ′0, S ′1 and
S ′2. Since the observer x is not included in this image volume, we find:

0 = − ∂

∂xi

∫
S′0∪S′1

[p′]τ=τ∗

n′idS(y)

|x− y|
+

∂2

∂xi∂xj

∫
V ′0

[Tij]τ=τ∗

dV (y)

|x− y|
, (5.31)
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(a) (b)

Figure 5.2: Schematics taken from Powell (1960) for (a) the general configu-
ration of a noise-generating region enclosed in the volume V0 in the vicinity of
a boundary BB, and (b) the special case of a plane boundary, with an image
system on the other side of the boundary BB (Powell reflection theorem).

with n′i = −ni. The surface pressure contributions cancel out when the sum
of Equations (5.30) and (5.31) is taken, and we obtain simply:

4πp′(x, t) =
∂2

∂xi∂xj

∫
V0∪V ′0

[Tij]τ=τ∗

dV (y)

|x− y|
, (5.32)

From Equations (5.30) and (5.32) we deduce:

− ∂

∂xi

∫
S0∪S1

[p′]τ=τ∗

nidS(y)

|x− y|
=

∂2

∂xi∂xj

∫
V ′0

[Tij]τ=τ∗

dV (y)

|x− y|
, (5.33)

which is the statement of Powell’s reflection theorem (Powell, 1960):
The pressure dipole distribution on a plane, infinite and rigid surface ac-
counts for the reflection in that surface of the volume distribution of acoustic
quadrupole generators of a contiguous inviscid fluid flow, and for nothing
more, when these distributions are determined in accordance with Lighthill’s
concept of aerodynamic noise generation and its natural extension.

5.2.3 Scaling laws

Let us deduce from Equations (5.29) and (5.27) the scaling law for the noise
radiated by a compact turbulence volume in free field (quadrupole term) and
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by a compact surface loading (dipole term).
For a turbulent flow in the absence of obstacles such as a jet (high

Reynolds number, weakly inhomogeneous), the Lighthill tensor can be ap-
proximated as Tij = ρ0vivj, with ρ0 the mean jet density that can be different
from ρ∞ (for a hot jet for instance). Let us note ` a characteristic turbulence
length scale in the flow and U its characteristic velocity, then Equation (5.29):

Tij ∼ ρ0U
2 ⇒ ∂2Tij

∂τ 2
∼ ρ0U

4/`2 ⇒ (p)′quadrupole ∼
ρ0U

4V

c2
∞|x|`2

,

with V the turbulence volume, and where the direction of maximum radiation
has been chosen (xixj/|x|2 ≈ 1). As the far-field acoustic intensity is < I >=
|p′2|/(2ρ∞c∞), it scales as:

< I >quadrupole∼
ρ2

0U
8V 2

ρ∞c5
∞|x|2`4

=
ρ2

0U
3M5V 2

ρ∞|x|2`4
, (5.34)

with M = U/c∞. The noise from turbulence scales with the eighth power of
flow speed, which is called the u8 law (Lighthill, 1952). For a circular free jet
of diameter D, one can choose ` = D and V = D3 such that (Rienstra and
Hirschberg, 2021):

< I >quadrupole∼
ρ2

0U
8D2

ρ∞c5
∞|x|2

=
ρ2

0U
3M5D2

ρ∞|x|2
. (5.35)

For a cold jet ρ0 ≈ ρ∞ and this expression is simplified.
For the surface loading term, the net force Fi scales as ρ∞U

2S, with S
the surface of the body. As a result, Equation (5.27) for a compact surface
yields:

(p)′dipole ∼
ρ∞U

3S

c∞|x|`
⇒< I >dipole∼

ρ∞U
6S2

c3
∞|x|2`2

=
ρ∞U

3M3S2

|x|2`2
.

The far-field noise scales with the sixth power of flow speed.
The ratio of the scaling laws for the quadrupole and dipole terms yields:

< I >quadrupole

< I >dipole

∼ U2V 2

c2
∞`

2S2
=
M2V 2

`2S2
,

considering ρ0 = ρ∞. This shows that if the ratio V/(`S) is of order of
magnitude one, the quadrupole source strength scales as M2 times dipole
source strength. The volume source terms can thus be neglected for M � 1.
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Figure 5.3: Schematics for Ffowcs Williams and Hawkings method.

5.3 Ffowcs Williams et Hawkings analogy

5.3.1 Ffowcs Williams et Hawkings equation

Lighhill analogy has been extended to a moving surface by Williams and
Hawkings (1969). Let us define a surface Σ defined by f(x, t) = 0, that can
be partially included in the source region V0, as can be seen in Figure 5.3.
The region in the fluid outside Σ corresponds to f > 0, and the region inside
Σ corresponds to f < 0. The normal to Σ is n = ∇f/|∇f | and points out of
the region towards f > 0. The surface velocity is noted vΣ, such that:

∂f

∂t
+ vΣ.∇f = 0⇔ ∂f(x, t)

∂t
+ vΣ

i

∂f(x, t)

∂xi
=
∂f(y, τ)

∂τ
+ vΣ

i

∂f(y, τ)

∂yi
= 0.

(5.36)
In order to obtain the Ffowcs Williams et Hawkings equation, we will

replace a problem on the unknowns v, p and ρ with a discontinuity on the
boundary Σ by a problem on the unknowns vH(f), pH(f) and ρH(f) valid
everywhere, where H(f) is the Heaviside step function defined by:

H(f) =

{
1 when f > 0,

0 when f < 0.
(5.37)

It can be seen that the derivative of this function is very large when x = 0,
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such that: ∫ b

a

∂H(x)

∂x
dx = 1 if a < 0 < b. (5.38)

The derivative of the Heaviside function has the same property as the Dirac
delta function thus:

∂H(x)

∂x
= δ(x) and

{
∇H(f) = ∂H

∂f
∇f = δ(f)|∇f |n

∂H(f)
∂t

= δ(f)∂f
∂t

= −δ(f)vΣ.∇f.
(5.39)

To derive the continuity equation on the new variables ρH(f) and vH(f),
let us develop the following expression:

∂[ρ′H(f)]

∂t
+
∂[ρviH(f)])

∂xi
= H(f)

[
∂ρ′

∂t
+
∂(ρvi)

∂xi

]
+

(
ρ′
∂H(f)

∂t
+ ρvi∇H

)
.

(5.40)
The first term on the right hand side is zero because it corresponds to the
continuity equation (1.1) where the flow is defined (f > 0), and because
H(f) = 0 when f < 0. As a result, using Equation (5.39):

∂[ρ′H(f)]

∂t
+
∂[ρviH(f)])

∂xi
=
(
ρvi − ρ′vΣ

i

)
δ(f)

∂f

∂xi
. (5.41)

Similarly, the momentum equation can be rewritten:

∂[ρviH(f)]

∂t
+
∂[(ρvivj + pij)H(f)]

∂xj
=
(
ρvi(vj − vΣ

j ) + pij
)
δ(f)

∂f

∂xj
. (5.42)

Subtracting the time derivative of Equation (5.41) to the divergence of Equa-

tion (5.42), and subtracting ∂2[ρ′c2∞H(f)]

∂x2i
on each side, as in Section 5.1 yields:

∂2[ρ′H(f)]

∂t2
− c2

∞
∂2[ρ′H(f)]

∂x2
i

=
∂2[TijH(f)]

∂xi∂xj
+
∂[Fiδ(f)]

∂xi
+
∂[Qδ(f)]

∂t
, (5.43)

where

Tij = ρvivj + [(p− p∞)− (ρ− ρ∞)c2
∞]δij − τij, (5.44)

Fi = −[ρvi(vj − vΣ
j ) + pij]

∂f

∂xj
, (5.45)

Q =
(
ρvi − ρ′vΣ

i

) ∂f
∂xi

= [ρ(vi − vΣ
i ) + ρ∞v

Σ
i ]
∂f

∂xi
. (5.46)

This is the Ffowcs Williams et Hawkings equation. In the absence of Σ, we
recover Lighthill’s equation.
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5.3.2 Ffowcs Williams and Hawkings integral solution

It is possible to consider the method of Green’s functions, as in Section 5.2,
to obtain an integral solution under the form:

ρ′(x, t)c2
∞H(f) =

∫ T

−T

∫
V

G
∂2[TijH(f)]

∂yi∂yj
dτdV (y)

+

∫ T

−T

∫
V

G
∂[Fiδ(f)]

∂yi
dV (y)dτ +

∫ T

−T

∫
V

G
∂[Qδ(f)]

∂τ
dV (y)dτ.

(5.47)

We can now use the following property of the delta function, which can be
seen as a generalization of Equation (2.54) (Rienstra and Hirschberg, 2021,
Eq. (C.39)): ∫

V

δ(h(x))g(x)dV (x) =

∫
Σ

g(x)

|∇h|
dS(x), (5.48)

where the summation is performed on the surface Σ corresponding to h(x) =
0. This yields:

ρ′(x, t)c2
∞H(f) =

∫ T

−T

∫
V0(f>0)

G
∂2Tij
∂yi∂yj

dτdV (y)

+

∫ T

−T

∫
Σ(f=0)

G

|∇f |
∂Fi
∂yi

dS(y)dτ +

∫ T

−T

∫
Σ(f=0)

G

|∇f |
∂Q

∂τ
dS(y)dτ.

(5.49)

As explained by Glegg and Devenport (2017, Section 5.1), it is convenient to
pass the derivatives to the Green’s functions:

ρ′(x, t)c2
∞H(f) =

∫ T

−T

∫
V0(f>0)

∂2G

∂yi∂yj
TijdτdV (y)

−
∫ T

−T

∫
Σ(f=0)

Fi
|∇f |

∂G

∂yi
dS(y)dτ −

∫ T

−T

∫
Σ(f=0)

Q

|∇f |
∂G

∂τ
dS(y)dτ.

(5.50)

Let us now consider the free field Green’s function G0(x, t|y, τ) = δ(g)
4πr

,
with g = t− τ − r/c∞ and r = |x− y|. Since

∂2G0

∂yiyj
=
∂2G0

∂xixj
,

∂G0

∂yi
= −∂G0

∂xi
and

∂G0

∂τ
= −∂G0

∂t
,
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the derivatives can be placed outside the integrals:

ρ′(x, t)c2
∞H(f) =

∂2

∂xi∂xj

∫ T

−T

∫
V0(f>0)

δ(g)

4πr
TijdτdV (y)

+
∂

∂xi

∫ T

−T

∫
Σ(f=0)

Fi
|∇f |

δ(g)

4πr
dS(y)dτ +

∂

∂t

∫ T

−T

∫
Σ(f=0)

Q

|∇f |
δ(g)

4πr
dS(y)dτ.

(5.51)

We can now perform the time integration using the property of the dirac
function given in Equation (2.54), and rewritten here as:

∫ +∞

−∞
δ[g(τ)]h(τ)dτ =

[
h(τ)

| ∂g
∂τ

(τi)|

]
g(τ)=0

=

[
h(τ)

|1−Mr|

]
τ=τ∗

, (5.52)

with τ ∗ = t− r(τ ∗)/c∞ as in Equation (5.19), and using Equation (2.59) to
calculate ∂g/∂τ . Note that the motion of the source is now arbitrary, so that
the Mach number Mr of the source in the direction of the observer is now
defined in a more general way as:

Mr = − 1

c∞

∂r

∂τ
= − v

Σ
i

c∞

ri
r

=
M.r

r
, (5.53)

with ri = (xi − yi). As a result, Equation (5.51) takes the following form:

ρ′(x, t)c2
∞H(f) =

∂2

∂xi∂xj

∫
V0(f>0)

[
Tij

4πr|1−Mr|

]
τ=τ∗

dV (y)

− ∂

∂xi

∫
Σ(f=0)

[
(ρvi(vj − vΣ

j ) + pij)nj

4πr|1−Mr|

]
τ=τ∗

dS(y)

+
∂

∂t

∫
Σ(f=0)

[
(ρ(vj − vΣ

j ) + ρ∞v
Σ
j )nj

4πr|1−Mr|

]
τ=τ∗

dS(y),

(5.54)

using the expressions for Fi and Q given in Equations (5.45) and (5.46), and
using ∂f

∂xi
= ∇f = |∇f |ni.

If the surface is stationary (vΣ
j = 0 and Mr = 0), the Curle integral

solution (5.19) is retrieved. If the surface is impermeable and non vibrating
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(vj = vΣ
j ), the Ffowcs Williams and Hawkings integral solution reduces to:

ρ′(x, t)c2
∞H(f) =

∂2

∂xi∂xj

∫
V0(f>0)

[
Tij

4πr|1−Mr|

]
τ=τ∗

dV (y)

− ∂

∂xi

∫
Σ(f=0)

[
pijnj

4πr|1−Mr|

]
τ=τ∗

dΣ(y)

+
∂

∂t

∫
Σ(f=0)

[
ρ∞v

Σ
j

4πr|1−Mr|

]
τ=τ∗

dΣ(y),

(5.55)

Many rotor noise analysis are performed based on Equation (5.55); see for
instance Glegg and Devenport (2017, Chapter 16). The second term in Equa-
tion (5.55) is commonly referred to as the loading noise. At low speeds this
is usually the dominant source of sound.

5.4 Loading noise from rotating blades

At low Mach number, the loading noise that corresponds to the second term
in Equation (5.55) is generally the dominant source of sound (Glegg and
Devenport, 2017, Chapter 16). If the blades are sufficiently thin so that the
acoustic wavelength at the frequencies of interest are much larger than the
blade thickness, the integral of the complete surface of the rotor blade Σ can
be replaced by an integration over the blade planform Sblade, which is the
projection of the rotor geometry into the rotor plane. Thus:

(p′(x, t))loading = − ∂

∂xi

∫
Sblade

[
fi(y, τ)

4πr|1−Mr|

]
τ=τ∗

dS(y), (5.56)

where fidS = ([pijnj]upper − [pijnj]lower) dΣ is the force per unit area applied
to the fluid due to the pressure difference between the upper and lower sur-
faces.

To obtain a precise calculation of the loading noise, it is interesting to
shift the spatial derivatives to sources times, as suggested by Farassat (1981).
To this aim, let us start from the form of the loading noise found in Equa-
tion (5.50):

(p′(x, t))loading = −
∫ T

−T

∫
Σ(f=0)

Fi
|∇f |

∂G0

∂yi
dS(y)dτ, (5.57)
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where the free field Green’s function G0 has been used. The derivative of the
Green’s function is given by:

∂G0

∂yi
= −∂G0

∂xi
= − ∂

∂xi

(
δ(g)

4πr

)
= − ∂r

∂xi

(
1

4πr

∂δ(g)

∂r
− δ(g)

4πr2

)
, (5.58)

where ∂r
∂xi

= −(xi − yi)/r, and

∂δ(g)

∂r
=
∂g

∂r

∂δ(g)

∂g
= − 1

c∞

∂δ(g)

∂g
= − 1

c∞

∂δ(g)

∂t
, (5.59)

since
∂δ(g)

∂t
=
∂g

∂t

∂δ(g)

∂g
=
∂δ(g)

∂g
. (5.60)

Finally:

∂G0

∂yi
=

(xi − yi)
r

(
1

4πrc∞

∂δ(g)

∂t
+
δ(g)

4πr2

)
≈ xi

4π|x|2c∞
∂δ(g)

∂t
(5.61)

in the far-field. Equation (5.57) thus becomes in the far-field:

(p′(x, t))loading ≈ −
xi

4π|x|2c∞
∂

∂t

∫ T

−T

∫
Σ(f=0)

Fi
|∇f |

δ(g)dτ

≈ − xi
4π|x|2c∞

∂

∂t

∫
Σ(f=0)

[
Fi

|∇f ||1−Mr|

]
τ=τ∗

dS(y)

≈ xi
4π|x|2c∞

∂

∂t

∫
Sblade

[
fi(y, τ)

|1−Mr|

]
τ=τ∗

dS(y).

(5.62)

We can shift the time derivatives inside the integral and use the property

∂

∂t
=
∂τ

∂t

∂

∂τ
=

(
∂t

∂τ

)−1
∂

∂τ
=

1

1 + c∞
∂r
∂τ

∂

∂τ
=

1

1−Mr

∂

∂τ
. (5.63)

As a result Equation (5.62) becomes:

(p′(x, t))loading ≈
xi

4π|x|2c∞

∫
Sblade

[
1

1−Mr

∂

∂τ

(
fi(y, τ)

|1−Mr|

]
τ=τ∗

)
dS(y)

≈ xi
4π|x|2c∞

∫
Sblade

[
1

(1−Mr)2

(
∂fi
∂τ

+
fi

(1−Mr)

∂Mr

∂τ

)]
τ=τ∗

dS(y)

(5.64)
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If the source is acoustically compact, we can ignore the differences in retarded
time from different points on the surface and we obtain:

(p′(x, t))loading ≈
xi

4π|x|2c∞

[
1

(1−Mr)2

(
∂Fi
∂τ

+
Fi

(1−Mr)

∂Mr

∂τ

)]
τ=τ∗

(5.65)
with Fi =

∫
Sblade

fidS(y). This corresponds to the solution obtained by Low-

son (1965). The first term is similar to the dipole term given in Equation 5.27,
and is equal to the zero if the force is a constant (steady loading). The sec-
ond term is an acceleration term, that can be nonzero even if the force is
constant.

Dimensional analysis:
For a compact dipole of characteristic length `, the the force Fi scales as

ρ∞U
2`2, the Mach number scales as U/c∞, and the time derivatives scales as

U/`, thus:

(p)′loading ∼
ρ∞
c∞

`

x

(
U3

(1−Mr)2
+

U4

(1−Mr)3c∞

)
.

The first term scales as U3 and can be interpreted as a convected dipole,
with the same Doppler factor as in Equation (2.75). The second term scales
as U4 and can be interpreted as a convected quadrupole (acceleration term),
with the same Doppler factor as in Equation (??).
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