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Introduction

These course notes are intended for the students of the course “Acoustic
propagation in inhomogeneous moving media” of the M2 program Acoustical
Engineering of the University Paris-Saclay. These notes cover approximately
half of the course, and do not provide a description of the numerical models
of acoustic propagation that are studied in the second part of the course.
They are divided into 4 chapters

Chapter 1 presents the equations for the propagation of acoustic waves in
homogeneous moving media. The linearized Euler equations are derived from
the equations of fluid mechanics. Several wave equations are then obtained in
the time domain, and the corresponding Helmholtz equations are presented
in the frequency domain.

Chapter 2 is devoted to acoustic propagation in a homogeneous medium
at rest. After a brief presentation of some simple solutions to the wave equa-
tion in free field, a large part of this chapter focuses on the acoustic propaga-
tion above a flat ground surface, where both plane-wave and spherical-wave
reflection by a finite impedance ground are considered.

Chapter 3 explains the effects of absorption and refraction in fluid media.
The acoustic absorption mechanisms are presented first, considering both
atmospheric and oceanic media. Then, some examples of acoustic refraction
by sound speed gradients and and wind speed gradients are shown.

Chapter 4 describes the geometrical acoustics approximation, that can be
used to model acoustic wave propagation at high frequencies. Ray-tracing
equations are presented, and the calculation of wave amplitude along the
rays is mentioned.
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Chapter 1

Equations for acoustical waves
in an inhomogeneous moving
medium

This chapter is based mostly on the books of Pierce (1989) and Ostashev
(1997).

1.1 Equations of fluid mechanics

We start here from the equations of fluid mechanics written for the pressure
pt(x, t), the velocity vt(x, t) the density ρt(x, t) and the entropy St(x, t) that
are functions of space x and time t. The subscript t means that these are
the total values in the fluid medium. We consider that there is only one
component in the medium. For media with different components (such as
water and salt in the ocean, or water vapor and air in the atmosphere), more
general formulations exist (Ostashev, 1997).

First, the conservation of mass or equation of continuity is written:

∂ρt
∂t

+∇.(ρtvt) =
Dρt
Dt

+ ρt∇.vt = 0, (1.1)

where
D

Dt
=

∂

∂t
+ vt.∇

is called the material or total derivative.
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Second, the Navier-Stokes equation or law of momentum conservation is
given by:

ρt

[
∂vt

∂t
+ (vt.∇)vt

]
= −∇pt +∇.τ + ρtgez, (1.2)

where τ is the viscous stress tensor and ρgez corresponds to the gravita-
tional force. The viscous stress tensor is important to model aeroacoustic
source generation, but will be neglected here in the context of acoustic propa-
gation. The Navier-Stokes equation is called Euler equation for an inviscid
fluid.

The last equations come from the conservation of the total energy and
from thermodynamic laws. The total energy per unit mass is the sum of the
internal energy et, associated to molecular motion, and of the kinetic energy
v2t /2. The conservation of energy can be formulated in terms of the specific
entropy st (entropy per unit mass). In loose terms, entropy measures the
degree of disorder of a system. This yields (see e.g. Panton et al. (2007,
Section 1.3.5) or Boutillon (2017, Section 2.5)):

ρt
Dst
Dt

= ρt

(
∂st
∂t

+ vt.∇st
)

= − 1

T
∇.q +

qe
T

+
Φ

T
, (1.3)

where q is the heat flux, qe is the heat transfer from outside, and Φ corre-
sponds to viscous dissipation. The entropy of a fluid flow can never decrease
(second law of thermodynamics). It can increase due to irreversible pro-
cesses such as viscous dissipation or heat transfer from outside. For an
inviscid fluid, we neglect not only viscous dissipation but also heat trans-
fer (adiabatic flow). As a result, energy changes are only due to reversible
processes and entropy is conserved along streamlines (Pierce, 1989):

Dst
Dt

= 0⇔ ∂st
∂t

+ vt.∇st = 0. (1.4)

Finally, an equation of state is necessary to have a a number of equations
equal to the number of unknowns. In the more general form, the entropy st
is a function of two independent thermodynamic variables:

st = st(ρt, pt) or pt = pt(ρt, st). (1.5)

For an ideal gas, the equation of state can be written:

dpt =
∂pt
∂ρt

∣∣∣∣
st

dρt +
∂pt
∂st

∣∣∣∣
ρt

dst = c2dρt +
pt
cv
dst, (1.6)
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with cv the specific heat at constant volume and

c2 = γrT =
γpt
ρt
, (1.7)

where c is the sound speed for an ideal gas, T is the temperature, γ = cp/cv
is the ratio of specific heat and r is a gas constant. Using Equations (1.4)
and (1.6), we finally obtain:

Dpt
Dt

=
∂pt
∂ρt

∣∣∣∣
st

Dρt
Dt

+
∂pt
∂st

∣∣∣∣
ρt �

�
�Dst

Dt
= c2

Dρt
Dt

= −c2ρt∇.vt, (1.8)

where the equation of continuity (1.1) has been used. Note that some fluids
such as water cannot be considered as an ideal gas. Water sound speed
depends on temperature, pressure, and salinity in a complex way (Pierce,
1989, Section 1-9).

As shown in various references (Ostashev et al., 2005; Boutillon, 2017),
any unsteady perturbation can be decomposed into three types of modes or
waves:

� the vortical mode corresponds to transverse waves (particle velocity
fluctuations perpendicular to the direction of propagation);

� the entropy mode corresponds to the convection of temperature fluctu-
ations;

� the acoustic mode corresponds to locally longitudinal waves.

These 3 modes are generally decoupled only in the high frequency approxi-
mation (geometrical acoustics) or when the mean flow is homogeneous.

It is common to decompose the mean velocity into an irrotational part
and a solenoidal part:

v0 = ∇Φ0 +∇×Ψ0, (1.9)

where Φ0 is a scalar velocity potential and Ψ0 is a vector velocity potential.
The acoustic waves are related to the irrotational velocity fluctuations de-
scribed by ∇Φ0, called also potential flow by Rienstra and Hirschberg (2014).

7



1.2 Linearized Euler equations

We now linearize the equations of fluid mechanics about a base flow (or
mean flow) that is independent of time, described by the variables v0(x),
p0(x), ρ0(x) and s0(x). Let us introduce the variables associated to acoustic
waves in a fluid medium:

� acoustic pressure [Pa]: p(x, t) = pt(x, t)− p0(x);

� particle velocity [m/s]: v(x, t) = vt(x, t)− v0(x);

� density associated to acoustic fluctuations [kg/m3]: ρ(x, t) = ρt(x, t)−
ρ0(x);

� entropy associated to acoustic fluctuations [J/K]: s(x, t) = st(x, t) −
s0(x).

Generally, the acoustic fluctuations are small perturbations with respect
to the mean quantities. The approximation of linear acoustics is considered
valid if (Pierce, 1989)

|p| � ρ0c
2, |v| � c, |ρ| � ρ0. (1.10)

These conditions will be explained in more details in Section 1.3. We also
suppose the base flow incompressible: ∇.v0 = 0. This is generally a good
approximation because the Mach number M = v0/c � 1 in most situations
in the atmosphere and the ocean. Finally, we introduce the mean sound
speed c0(x) associated with the base flow:

c20 = γrT0 =
γp0
ρ0

= c2 − c2f , (1.11)

with c2f � c20 the fluctuations of the squared sound speed. For air, γ = 1.4
and r = 287 J/kg/K so c0 ≈ 340 m/s at 15oC.

Let us now introduce the acoustic variables in the continuity equation:

∂(ρ0 + ρ)

∂t
+ (v0 + v).∇(ρ0 + ρ) + (ρ0 + ρ)∇.(v0 + v) = 0. (1.12)
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It is possible to group terms of order 0 (base flow quantities only), of order 1
(one small quantity only), etc. This yields:

order 0
�
�
�∂ρ0

∂t
+ (v0.∇)ρ0 + ρ0���∇.v0 = 0,

order 1
∂ρ

∂t
+ (v0.∇)ρ+ (v.∇)ρ0 + ρ0∇.v + ρ���∇.v0 = 0,

order 2 (v.∇)ρ+ ρ∇.v = 0.

A similar procedure can be applied to the momentum equation (1.2):

order 0 ρ0
�
�
�∂v0

∂t
+ ρ0(v0.∇)v0 = −∇p0 + ρ0gez,

order 1 ρ0

(
∂v

∂t
+ (v0.∇)v + (v.∇)v0

)
+ ρ(v0.∇)v0 = −∇p+ ρgez,

order 2 ρ
∂v

∂t
+ ρ0(v.∇)v + ρ

[
(v0.∇)v + (v.∇)v0

]
= 0,

order 3 ρ(v.∇)v = 0,

and to the equation of state for an ideal gas (1.8):

order 0
�
�
�∂p0

∂t
+ (v0.∇)p0 + c20ρ0���∇.v0 = 0,

order 1
∂p

∂t
+ (v0.∇)p+ (v.∇)p0 + ρ0c

2
0∇.v +

(
c20ρ+ ρ0c

2
f

)
���∇.v0 = 0,

order 2 (v.∇)p+
(
c20ρ+ ρ0c

2
f

)
∇.v + ρc2f���∇.v0 = 0,

order 3 ρc2f∇.v = 0.

The following set of equations for the base flow (order 0) is obtained:

(v0.∇)ρ0 = 0, (1.13)

(v0.∇)v0 = −∇p0
ρ0

+ gez, (1.14)

(v0.∇)p0 = 0. (1.15)

The set of equations at order 1 are called the linearized Euler equations for
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an ideal gas:

∂ρ

∂t
+ (v0.∇)ρ+ (v.∇)ρ0 + ρ0∇.v = 0, (1.16)

ρ0

(
∂v

∂t
+ (v0.∇)v + (v.∇)v0

)
+∇p− ρ

ρ0
∇p0 = 0, (1.17)

∂p

∂t
+ (v0.∇)p+ (v.∇)p0 + ρ0c

2
0∇.v = 0. (1.18)

Note that in order to obtain Equation (1.17), we have used that:

ρ(v0.∇)v0 − ρgez = −ρ∇p0
ρ0

,

which makes use of the momentum equation (1.14) at order 0.
In many situations, it is possible to neglect the terms proportional to∇p0.

For instance, for a harmonic plane wave of the form p(x, t) = Ae−iω(t−x/c0)

in a medium at rest (v0 = 0), we will see in Section 2.2.1 that v(x, t) =
p(x, t)/(ρ0c0) and ρ(x, t) = p(x, t)/c20. Thus the orders of magnitude of the
different terms in Equation (1.17) are:

ρ0
∂v

∂t︸ ︷︷ ︸
∼ω A

c0

+ ∇p︸︷︷︸
∼ ω

c0
A

− ρ

ρ0
∇p0︸ ︷︷ ︸
∼ A

c20
g

= 0, (1.19)

where we have used that ∇p0 = ρ0gez from Equation (1.14) in a medium at
rest. Thus it appears that the term proportional to ∇p0 can be neglected
at sufficiently high frequencies such that ω � g/c0. This corresponds to
f � 10−3 Hz in air and f � 5 × 10−3 Hz in water. Ostashev et al. (2005)
note that the terms proportional to ∇p0 are important for internal gravity
waves, but can be neglected for acoustic waves. It will thus be neglected in
the rest of the course.

The linearized Euler equations become the following set of equations:

∂ρ

∂t
+ (v0.∇)ρ+ (v.∇)ρ0 + ρ0∇.v = 0, (1.20)

∂v

∂t
+ (v0.∇)v + (v.∇)v0 +

∇p
ρ0

= 0, (1.21)

∂p

∂t
+ (v0.∇)p+ ρ0c

2
0∇.v = 0. (1.22)
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Note that Equations (1.21) and (1.22) do not depend on ρ. These equations
are the basis of many numerical solvers of the linearized Euler equations. It
is also common to rewrite these equations under the following conservative
form:

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
+ H = S, (1.23)

where U = (p, ρ0vx, ρ0vy, ρ0vz)
T and S = (ρ0c

2Q,Fx, Fy, Fz)
T corresponds to

the source terms, with Q the volume velocity and F the exterior forces. The
Eulerian fluxes E, F, G and H are written:

E =


v0xp+ ρ0c

2
0vx

v0xρ0vx + p
v0xρ0vy
v0xρ0vz

 , F =


v0yp+ ρ0c

2
0vy

v0yρ0vx
v0yρ0vy + p
v0yρ0vz

 ,

G =


v0zp+ ρ0c

2
0vz

v0zρ0vx
v0zρ0vy

v0zρ0vz + p

 , H =


0

ρ0(v.∇)v0x
ρ0(v.∇)v0y
ρ0(v.∇)v0z

 .

(1.24)

From Equations (1.23) and (1.24), the following coupled equations can be
retrieved:

∂p

∂t
+ (v0.∇)p+ p(∇.v0) + ρ0c

2
0∇.v + (v0.∇)(ρ0c

2
0) = 0, (1.25)

∂v

∂t
+ (v0.∇)v + (∇.v0)v +

v

ρ0
(v0.∇)ρ0 +

∇p
ρ0

+ (v.∇)v0 = 0. (1.26)

Equation (1.25) is equivalent to Equation (1.22) because the base flow is
incompressible (∇.v0 = 0) and the last term can be written:

(v0.∇)(ρ0c
2
0) = γ(v0.∇)p0 = 0, (1.27)

using Equations (1.11) and (1.15). Similarly, Equation (1.26) is equivalent
to Equation (1.21) because the base flow is incompressible and (v0.∇)ρ0 = 0
from Equation (1.13).

1.3 Validity of the linear acoustics approxi-

mation

From the equations of continuity and momentum conservation, it is clear that
the terms of order 1 will be small compared to the terms of order 0 if |ρ| � ρ0
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and |p| � p0. From the equation of state for a perfect gas, p0 = ρ0c
2
0/γ thus

we obtain the condition |p| � ρ0c
2
0. The condition for the particle velocity is

less straightforward to obtain. Let us consider a plane wave propagating in
the fluid. We will see in Section 2.2.1 that in this case:

v =
p

ρ0c0
⇒ |v| = |p|

ρ0c0
� c0. (1.28)

Note that it is not necessary than |v| � v0, such that linear acoustics is also
valid in a medium at rest (v0 = 0).

The linear acoustics approximation is valid in many applications. For
instance, the amplitude of acoustic pressure corresponding to the threshold
of pain is around 90 Pa (about 130 dB re. 20 muPa), which is still two orders
of magnitude smaller compared to the atmospheric pressure that is close to
105 Pa. This corresponds to an amplitude of particle velocity of 0.2 m/s,
which is much smaller than the sound speed in air.

1.4 Wave equations in the time and frequency

domains

1.4.1 Propagation in a homogeneous medium at rest

The simplest case that can be considered corresponds to a homogeneous
medium at rest: v0 = 0, where ρ0, p0 and c0 are constant. The linearized
Euler equations become simply:

∂ρ

∂t
+ ρ0∇.v = 0, (1.29)

ρ0
∂v

∂t
+∇p = 0, (1.30)

∂p

∂t
+ ρ0c

2
0∇.v = 0. (1.31)

It is possible to obtain a wave equation for the acoustic pressure p, by sub-
stracting the time derivative of Equation (1.31) and the divergence of Equa-
tion (1.30) multiplied by c20:

∂2p

∂t2
− c20∇2p = 0 . (1.32)
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The operator ∇2 = ∆ is called Laplacian and is written in cartesian coordi-
nates:

∇2p = ∆p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
. (1.33)

Note also that a simple expression can be obtained between acoustic density
and pressure from Equations (1.29) and (1.31):

∂p

∂t
= c20

∂ρ

∂t
⇒ p = c20ρ . (1.34)

For a harmonic wave at angular frequency ω = 2πf , the pressure can be
written p(x, t) = A(x) cos (ωt+ φ(x)), where A is the amplitude and φ is the
phase that are both functions of space. It is useful to introduce the following
complex notation:

p(x, t) = Re
[
pc(x)e−iωt

]
, (1.35)

where Re denotes the real part and the pc(x) = A(x)e−iφ(x) is the complex
pressure amplitude. Introducing pc(x)e−iωt into the wave equation:

∆pc + k20pc = 0 , (1.36)

where k0 = ω/c0 = 2π/λ0 is the acoustic wave number, and λ0 is the wave-
length. Equation (1.36) is called the Helmholtz equation. Many compu-
tational methods assume a harmonic sound field as any sound signal can be
decomposed into harmonic components using the Fourier transform (spectral
decomposition), and it is easier to solve in the frequency domain as there is
no time derivative to evaluate.

Remark: it is also possible to use the ejωt convention instead of the e−iωt

convention. In this case, we would have:

p(x, t) = Re
[
pc(x)ejωt

]
, (1.37)

with pc(x) = A(x)ejφ(x). The Helmholtz equation remains the same with
both notations!

Finally, it is possible to introduce an acoustic velocity potential Φ asso-
ciated with the particle velocity v. Taking the curl of Equation (1.30):

∂

∂t
∇× v = 0, (1.38)
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since ∇ × ∇p = 0. This means that the rotational of particle velocity is
independent of time. If the acoustic field is irrotational (∇ × v = 0), then
the particle velocity derives from a potential Φ: v = ∇Φ. The relationship
between p and Φ is obtained from Equation (1.30):

p(r, t) = −ρ0
∂Φ

∂t
. (1.39)

Replacing this expression into the wave equation (1.32), we see that Φ satisfies
the same equation as p:

∂2Φ

∂t2
− c20∇2Φ = 0 . (1.40)

It is convenient to solve for the acoustic potential because acoustic pres-
sure and particle velocity can be deduced by taking the temporal or spatial
derivative of Φ.

1.4.2 Propagation in an inhomogeneous medium at rest

We now consider that all the mean quantities depend on space in a medium
at rest: v0 = 0, with ρ0(x), p0(x) and c0(x). The linearized Euler equations
reduce to:

∂ρ

∂t
+ (v.∇)ρ0 + ρ0∇.v = 0, (1.41)

∂v

∂t
+
∇p
ρ0

= 0, (1.42)

∂p

∂t
+ ρ0c

2
0∇.v = 0. (1.43)

As done previously, let us calculate ∂
∂t

(1.43)− ρ0c20∇.(1.42):

∂2p

∂t2
+ ρ0c

2
0

∂(∇.v)

∂t
− ρ0c20∇.

(
∂v

∂t

)
− ρ0c20∇.

(
∇p
ρ0

)
= 0. (1.44)

Since the operators ∇ and ∂
∂t

commute, the terms involving the particle
velocity v cancel and we obtain the following wave equation:

1

c20

∂2p

∂t2
− ρ0∇.

(
1

ρ0
∇p
)

= 0 . (1.45)
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Introducing pc(x)e−iωt into the wave equation, we obtain:

−ω
2

c20
pc − ρ0∇.

(
1

ρ0
∇pc

)
= 0⇔ k20pc + ρ0∇.

(
1

ρ0
∇pc

)
= 0. (1.46)

Since c20 = γp0/ρ0 for an ideal gas from Equation (1.11), we have:

ρ0∇.
(

1

ρ0
∇pc

)
= �γp0

c20
∇.
(
c20

�γp0
∇pc

)
=

1

c20
∇.
(
c20∇pc

)
− 1

c20p0
∇p0.

(
c20∇pc

)
.

(1.47)
Since we neglect the pressure gradient term, we obtain:

ρ0∇.
(

1

ρ0
∇pc

)
=
k20
ω2
∇.
(
ω2

k20
∇pc

)
= k20∇.

(
1

k20
∇pc

)
, (1.48)

which yields the following Helmholtz equation in a inhomogeneous medium
at rest:

k20pc + k20∇.
(

1

k20
∇pc

)
= 0 . (1.49)

This equation is the starting point of several frequency-domain numerical
models such as the parabolic equation.

1.4.3 Propagation in a uniform moving medium

Except in a few simple cases, it is very difficult or even impossible to derive a
wave equation in a moving medium. One of these simple cases correspond to
a uniform moving medium where v0 = v0xex and v0x, ρ0 and c0 are constant.
In this case, the linearized Euler equations become:(

∂

∂t
+ v0x

∂

∂x

)
ρ+ ρ0∇.v = 0 or

Dρ

Dt
+ ρ0∇.v = 0, (1.50)

ρ0

(
∂

∂t
+ v0x

∂

∂x

)
v +∇p = 0 or ρ0

Dv

Dt
+∇p = 0, (1.51)(

∂

∂t
+ v0x

∂

∂x

)
p+ ρ0c

2
0∇.v = 0 or

Dp

Dt
+ ρ0c

2
0∇.v = 0, (1.52)

where the total derivative can be written:

D

Dt
=

∂

∂t
+ v0x

∂

∂x
.
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The convected wave equation is obtained by calculating D
Dt

(1.52)−c20∇.(1.51):

D2p

Dt2
− c20∇2p = 0 . (1.53)

Equation (1.53) is exact in a homogeneous moving medium. Ostashev
(1997, Section 2.3) shows that it is also a good approximation in an inhomo-
geneous moving medium if the acoustic wavelength λ is small compared to
the length scale l of variation in the ambient quantities v0, ρ0 and c0, i.e. at
sufficiently high frequencies. He also derives more accurate wave equations
for acoustic propagation in an inhomogeneous moving medium; see Ostashev
(1997, Section 2.3) and Ostashev (1997). Note that these equations are the
basis of various vector parabolic equations that have been used to calcula-
tion the acoustic propagation in an inhomogeneous moving medium (Dallois
et al., 2001; Blanc-Benon et al., 2001).
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Chapter 2

Acoustic propagation in a
homogeneous medium at rest

In this chapter, we consider the acoustic propagation in a homogeneous
medium at rest (v0 = 0), with constant density ρ0 and sound speed c0.

2.1 Definitions

2.1.1 Acoustic intensity and power

The time-averaged acoustic power of a source is defined as:

< Wa >=

∫
S

< I > .ndS =

∫
S

< pv > .ndS, (2.1)

where n is the normal to the surface S and < I > is the time-averaged
acoustic intensity given by:

< I >=
1

T

∫ t0+T

t0

I(t)dt =
1

T

∫ t0+T

t0

p(t)v(t)dt. (2.2)

For harmonic waves, let p(x, t) = Re{pc(x)e−iωt} and v(x, t) = Re{vc(x)e−iωt}.
The time-averaged acoustic intensity for sinusoidal waves becomes (Pierce,
1989, Section 1.8):

< I >=
1

2
Re{pcv∗c}. (2.3)
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2.1.2 Sound pressure level and sound power level

The sound pressure level (SPL) is defined as:

Lp = 10 log10

(
p2rms
p2ref

)
= 20 log10

(
prms
pref

)
, (2.4)

where pref is a reference pressure and prms is the time-averaged or rms pres-
sure:

p2rms =< p2 >=
1

T

∫ t0+T

t0

p2(t)dt. (2.5)

For a harmonic wave, prms = max |p|/
√

2. Similarly, the sound power level
(SWL) is defined as:

LW = 10 log10

(
< Wa >

Wref

)
, (2.6)

with Wref a reference power. The reference pressure pref is typically 2 ×
10−5 Pa in air (threshold of hearing at 1 kHz) and 10−6 Pa in water.

2.2 Simple solutions of the wave equation in

free field

2.2.1 Plane waves

Plane waves correspond to specific solutions to the wave equation where
the wavefronts are planar, as seen in Figure 2.1. Considering the velocity
potential Φ, the general solution to Equation (1.40) is given by:

Φ(x, t) = F+

(
t− x

c0

)
+ F−

(
t+

x

c0

)
, (2.7)

where the function F+ describes the wave propagation in the positive x di-
rection, and F− describes the wave propagation in the negative x direction.
The associated pressure field is:

p(x, t) = −ρ0
∂Φ

∂t
= −ρ0F ′+

(
t− x

c0

)
− ρ0F ′−

(
t+

x

c0

)
= G+

(
t− x

c0

)
+G−

(
t+

x

c0

)
.

(2.8)
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x

Figure 2.1: Plane wave traveling along the x-direction.

The associated particle velocity field is v = ∇Φ = vxex, with:

vx(x, t) =
∂Φ

∂x
= − 1

c0
F ′+

(
t− x

c0

)
+

1

c0
F ′−

(
t+

x

c0

)
=

1

ρ0c0

[
G+

(
t− x

c0

)
−G−

(
t+

x

c0

)]
.

(2.9)

Let us consider a special case of interest, that is a harmonic plane wave
traveling along the positive x axis, with p(x, t) = Re{pc(x)e−iωt} and v(x, t) =
Re{vc(x)e−iωt}:

pc(x) = P0e
ik0x, (2.10)

vc(x, t) =
pc(x, t)

ρ0c0
ex, (2.11)

< I > =
|pc|2

2ρ0c0
ex =

ρ0c0|vc|2

2
ex. (2.12)

With this type of waves the amplitude remains constant with distance.
As a result, the ratio of pressure to velocity is constant for a plane wave and
equal to Zc,fluid = ρ0c0. The quantity Zc,fluid is called the characteristic
acoustic impedance of the fluid (Pierce, 1989, Section 3-3).

2.2.2 Spherical waves

We now consider waves with spherical symmetry, which means that the vari-
ables do not depend on the spherical coordinates θ and φ: p = p(r, t) and
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v = v(r, t)er. The wavefronts are spheres, and the acoustic intensity vector
is along along the r direction: I = Irer. This solution corresponds to the
case of a point source with spherical symmetry.

Rewriting the homogeneous wave equation (1.40) for the velocity poten-
tial in spherical coordinates:

1

c20

∂2Φ

∂t2
− 1

r

∂2(rΦ)

∂r2
= 0⇔ 1

c20

∂2(rΦ)

∂t2
− ∂2(rΦ)

∂r2
= 0.

This means that rΦ can be written as a sum of a function of t − r/c and a
function of t+ r/c, as done in Section 2.2.1 for plane waves. If we keep only
the outward-going wave:

Φ(r, t) =
1

r
F

(
t− r

c0

)
, (2.13)

and thus:

p(r, t) = −ρ0
∂Φ

∂t
= −ρ0

r
F ′
(
t− r

c0

)
, (2.14)

v(r, t) =
∂Φ

∂r
=
p(r, t)

ρ0c0
− 1

r2
F

(
t− r

c0

)
. (2.15)

It appears that the pressure amplitude decreases as 1/r. Also, the particle
velocity is composed of two terms. Since the second term decreases as 1/r2,

it becomes negligible if r is sufficiently large (far-field) and v(r, t) ≈ p(r,t)
ρ0c0

,
which corresponds to the relationship for plane waves.

It is possible to calculate the acoustic power of this wave by integrating
over a sphere of radius r. From Equation (2.1), considering that the acoustic
intensity is constant on the sphere and that n = er:

< Wa >=

∫
S

< I > .erdS = 4πr2 < Ir > . (2.16)

If we consider a harmonic spherical wave of the form p(x, t) = Re{pc(r)e−iωt},
with

pc(r) =
A

r
eik0r, (2.17)

the following time-averaged acoustic intensity is obtained from Equation (2.3):

< I(r) >=
|pc|2

2ρ0c0
=
< p2 >

ρ0c0
. (2.18)

20



From Equations (2.16) and (2.18), the acoustic power is thus:

< Wa >= 4πr2
< p2 >

ρ0c0
=

2π|A|2

ρ0c0
. (2.19)

It appears clearly that the acoustic power is independent of the distance r
since A is a constant; the acoustic power < Wa > is a characteristics of the
source(s) inside the sphere S.

From the previous expression, it is possible to derive a simple relationship
between the sound pressure level and the sound power level:

Lp = LW − 10 log10(4πr
2) , (2.20)

where Wref = p2ref/(ρ0c0). In air, we consider typically pref = 20 × 10−6 Pa
and ρ0c0 ≈ 415 kg/m2/s, thus Wref ≈ 10−12 W. The term 10 log10(4πr

2) is
called geometrical spreading. This means that there is an attenuation
of 10 log10(4) ≈ 6 dB of the sound pressure level Lp when the distance r is
doubled (6 dB attenuation per doubling distance).

2.2.3 Cylindrical waves

Cylindrical waves are obtained by solving the wave equation in cylindrical
coordinates. This solution corresponds to the case of a line source. It can
be shown that in the far-field, the pressure is proportional to 1/

√
r, which

corresponds to a 3 dB attenuation per doubling distance.

2.2.4 Green’s function in free field

The Green’s function is the solution of the following Helmholtz equation with
a point source term:

∆G(x, xS) + k20G(x, xS) = −4πδ(x− xS), (2.21)

with xS the source position, x the receiver position, and r = |x − xS| the
source-receiver distance. Here are some properties of the Green’s functions:

� reciprocity relation: G(x, xS) = G(xS, x);

� superposition principle: for N point sources of amplitudes Sn:

pc(x) =
N∑
n=1

SnG(x, xSn). (2.22)
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The reciprocity relation means that the Green’s function remains the same
if source and receiver positions are interchanged in a medium at rest. This
symmetry of acoustic fields does not apply to moving media. As mentioned by
Ostashev (1997, Section 1.3.6), reciprocal acoustic transmission can be used
to separate experimentally the effect of flow and sound speed variations. This
is the basis of remote sensing techniques based on travel time measurements
in various directions, also called acoustic tomography (Ostashev et al., 2009;
Brown et al., 2016).

Using the e−iωt convention, the 3D Green’s function in free field is given
by (Pierce, 1989; Salomons, 2001):

G(x, xS) =
eik0|x−xS |

|x− xS|
=
eik0r

r
. (2.23)

2.3 Acoustic propagation above a flat ground

surface

2.3.1 Acoustic impedance of a ground surface

The specific acoustic impedance of a ground surface, also called surface
impedance, at the angular frequency ω = 2πf is defined as the ratio of
complex pressure and to normal particle velocity at the ground surface:

Zs(ω) =
pc(ω)

vc,n(ω)

∣∣∣∣
ground surface

, (2.24)

with vc,n = vc.n, where n is the unit vector normal to the ground surface
(into the surface and out of the fluid) (Pierce, 1989, Section 3-3). This is a
complex quantity defined in the frequency domain, with unit kg/(m2s). It is
also common to define a normalized (specific) acoustic impedance:

Z(ω) =
Zs(ω)

Zc,fluid
=
Zs(ω)

ρ0c0
. (2.25)

This quantity is dimensionless since Zs is normalized by the characteristic
impedance of the fluid as introduced in Section 2.2.1. Sometimes, it is con-
venient to use the normalized (specific) acoustic admittance β = 1/Z.
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Figure 2.2: Schematics for the normal reflection of a plane wave by a flat
ground surface.

2.3.2 Plane wave reflection by a ground surface

Plane wave reflection under normal incidence

First, let us consider the normal reflection of a plane wave by a flat ground
surface located at y = 0, as illustrated in Figure 2.2. Since there is an
impedance mismatch at y = 0, the incident wave (with subscript i) in the
fluid breaks down into a reflected wave in the fluid (with subscript r) and a
transmitted wave in the ground (with subscript t). For a harmonic plane wave
at angular frequency ω (e−iωt convention), using the results of Section 2.2.1,
the complex acoustic pressure and particle velocity fields in the fluid (y < 0)
can be written:

pc(y) = pc,i + pc,r = A
[
eik0y +Rpe

−ik0y
]
, (2.26)

vc(y) = vc,i + vc,r =
A

ρ0c0

[
eik0y −Rpe

−ik0y
]
, (2.27)

with A the complex pressure amplitude.
There is a continuity of pressure and normal velocity at y = 0, thus the

ratio pc/vc just above and below the ground surface is the same, and is equal
to the specific acoustic impedance Zs:

pc(0
+)

vc(0+)
=
pc(0

−)

vc(0−)
= Zs = ρ0c0Z, (2.28)

using Equations (2.24) and (2.25). Note that we consider the continuity of
normal velocity since the fluid is supposed inviscid, as explained in Chap-
ter 1. Using Equations (2.26)-(2.28), it is now possible to express the plane
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wave reflection coefficient Rp under normal incidence with respect to the
normalized impedance Z of the ground:

Rp =
Z − 1

Z + 1
=

1− β
1 + β

. (2.29)

In the case of a perfectly rigid ground, the velocity of the ground is zero
so the particle velocity at y = 0 is also zero:

vc,n = 0⇔ ∂pc
∂n

= 0, (2.30)

using the linearized Euler equation (1.30). This means that the normalized
impedance Z is infinite or the normalized admittance β is zero, thus Rp = 1.
The wave is completely reflected and remains in phase with the incident
wave. As a first approximation, this case would correspond to a road surface
or to a concrete wall. In the case of a pressure release surface, the acoustic
pressure is zero at the surface, thus Z = 0 and Rp = −1. The wave is
completely reflected and is out of phase compared to the incident wave. As
a first approximation, this case would correspond to a water-air interface,
since the characteristic acoustic impedance ρ0c0 in air is much smaller than
its value in water. In general Z is a complex quantity which means that there
is a phase difference between pressure and velocity.

Plane wave reflection under oblique incidence

Let us now consider an incident plane wave in the direction n = (sin θi, cos θi, 0),
as illustrated in Figure 2.3. The acoustic wave number k0 = ω/c0 in the fluid
is written:

k20 = k20x + k20y = k′20x + k′20y, (2.31)

where (k0x, k0y) are the components of the incident wave and (k′0x, k
′
0y) the

components of the reflected wave:

k0x = k0 sin θi, k0y = k0 cos θi,

k′0x = k0 sin θr, k′0y = k0 cos θr.

The complex pressure and normal velocity fields in the fluid (y < 0) thus
become:

pc(x, y) = A
[
ei(k0xx+k0yy) +Rpe

i(k′0xx−k′0yy)
]
, (2.32)

vc,y(x, y) =
A

ρ0c0

[
cos θie

i(k0xx+k0yy) −Rp cos θre
i(k′0xx−k′0yy)

]
. (2.33)
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Figure 2.3: Schematics for the plane wave reflection by a flat ground surface
under oblique incidence.

The continuity of pressure and normal velocity at y = 0 yields:

pc(x, 0
+)

vc,y(x, 0+)
=

pc(x, 0
−)

vc,y(x, 0−)
= ρ0c0Z, (2.34)

thus:

eik0xx +Rpe
ik′0xx

cos θieik0xx −Rp cos θreik
′
0xx

= Z ⇔ eik0xx (Z cos θi − 1) = eik
′
0xxRp (1 + Z cos θr) .

(2.35)

This expression must be satisfied for all x thus k′x = kx and θr = θi = θ.
Finally, the plane wave reflection coefficient under oblique incidence is given
by:

Rp =
Z cos θ − 1

Z cos θ + 1
=

cos θ − β
cos θ + β

. (2.36)

This expression shows that:

� when θ approaches π/2 (grazing incidence), Rp ≈ −1;

� for a rigid ground (β = 0), Rp = 1 for all values of θ;

� for a pressure release surface (Z = 0), Rp = −1 for all values of θ.

It is also interesting to look at the acoustic energy associated with plane-
wave reflection. From Equations (2.3) and (2.24), the time-averaged acoustic
intensity is given by:

< I(y = 0) >=
1

2
Re{pc(y = 0)vc,n(y = 0)∗} =

|vc,n(y = 0)|2

2
Re{Zs}. (2.37)
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This quantity can be seen as the time-averaged acoustic power flowing into
the surface per unit area. Thus for a passive surface, that is a surface that can
only absorb energy, we have the condition Re{Zs} ≥ 0 (passivity condition).
From Equations (2.32) and (2.33), we also obtain:

< I(y = 0) >=
|A|2 cos θ

2ρ0c0
(1− |Rp|2), (2.38)

because the real part of (1+Rp)(1−R∗p) is equal to 1−|Rp|2. We thus obtain
the intensity reflection and transmission coefficients as:

RI =
< Ir >

< Ii >
= |Rp|2, (2.39)

TI =
< It >

< Ii >
= 1− |Rp|2, (2.40)

where < Ii >, < Ir > and < It > are respectively the time-averaged inten-
sity of the incident, reflected and transmitted wave. The fraction of energy
transmitted into the ground is absorbed by the ground, so TI corresponds
also to the absorption coefficient α. This fraction of energy corresponds to
the incident acoustic energy minus the acoustic energy that is reflected by
the ground. Note that the coefficients RI and TI = α are functions of the
angle of incidence θ and of the angular frequency ω.

Local reaction approximation

Let us now consider the transmitted wave into the ground. The ground is
seen as an equivalent fluid of density ρg and sound speed cg, where ρg and cg
can be complex numbers. We will see in Section 2.4 that this is generally a
reasonable assumption for porous media.

The complex pressure and velocity fields in the ground (y > 0) are writ-
ten:

pc(x, y) = ATpe
i(kgxx+kgyy), (2.41)

vc,y(x, y) =
ATp
ρgcg

cos θte
i(kgxx+kgyy), (2.42)

where kg =
√
k2gx + k2gy = ω/cg is the (complex) wave number associated to

the transmitted wave in the ground, with kgx = kg sin θt and kgy = kg cos θt,
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and Tp is the plane-wave transmission coefficient. Using Equations (2.24)
and (2.25), the normalized surface impedance can be written:

Z =
Zs
ρ0c0

=
1

ρ0c0

pc(x, 0)

vc,y(x, 0)
=

1

cos θt

ρgcg
ρ0c0

. (2.43)

The continuity of pressure and normal velocity at y = 0 yields:

(1 +Rp)e
ik0xx = Tpe

ikgxx, (2.44)

cos θ

ρ0c0
(1−Rp)e

ik0xx =
cos θt
ρgcg

Tpe
ikgxx. (2.45)

These expressions should hold for arbitrary x values, thus kgx = k0x. This
corresponds to the Snell-Descartes law of refraction:

sin θ

c0
=

sin θt
cg

. (2.46)

From Equations (2.44) and (2.45), we obtain that Tp = 1 +Rp with:

Rp =
ρgcg cos θ − ρ0c0 cos θt
ρgcg cos θ + ρ0c0 cos θt

. (2.47)

Using Equations (2.43) and (2.47) one retrieves Equation (2.36) obtained
previously. Also, it appears that kgx is real since kgx = k0x = k0 sin θ. This
means that kgy =

√
k2g − k2gx is a complex number if kg = ω/cg is complex. As

a result, the pressure field of Equation (2.41) in the ground can be rewritten:

pc(x, y) = ATpe
i(kgxx+Re[kgy ]y)e−Im[kgy ]y, (2.48)

with Im[kgy] > 0 to have a physical behavior when y →∞. The transmitted
wave is thus evanescent.

For most grounds of interest, the sound speed in the ground is much
smaller than the sound speed in the fluid, such that |cg| � c0 or |kg| � k0.
From the Snell-Descartes law (2.46) this yields θt ≈ 0. This means from
Equation (2.43) that the normalized impedance does not depend on the angle
of incidence θ:

Z =
ρgcg
ρ0c0

=
Zc,ground
Zc,fluid

, (2.49)

where Zc,ground = ρgcg is the characteristic impedance of the ground. Such
grounds are called locally reacting grounds. In general, however, the
dependence of Z on θ does exist, and there is an extended reaction, which
means that the reflected wave at a given point on the ground surface depends
on the pressure distribution in a region around this point.
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Figure 2.4: Schematics for the spherical wave reflection by a flat ground
surface. R1 is the distance from the source to the receiver, and R2 is the
distance from the image source to the receiver.

2.3.3 Spherical wave reflection by a ground surface

Description of the problem

We consider a point source of unit amplitude that radiates harmonic waves
with spherical symmetry at angular frequency ω above a ground surface, as
schematically shown in Figure 2.4. The derivation presented in this section is
based on the work of Di and Gilbert (1993), also detailed by Salomons (2001,
Appendix D). We will only consider the case of a locally reacting ground; the
case of an extended reacting ground is also considered in these references.

The source coordinates are (0, 0, zS). The fluid has a characteristic impedance
ρ1c1, and the ground has a normalized impedance Z = (ρ2c2)/(ρ1c1). The
complex pressure field pc (using the e−iωt convention) can be written:

pc(x, y, z) =

{
p1(x, y, z) for z ≥ 0,

p2(x, y, z) for z ≤ 0,

where p1 and p2 are solutions of the Helmholtz equations:

(∆ + k21)p1 = −4πδ(x)δ(y)δ(z − zS) for z ≥ 0, (2.50)

(∆ + k22)p2 = 0 for z ≤ 0, (2.51)

with k1 = ω/c1 and k2 = ω/c2 the wave numbers in the fluid and in the
ground respectively.
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Equations of the problem in the wave number domain

A solution will be sought in the wave number domain, using a two-dimensional
spatial Fourier transform. Let us define the Fourier transform pairs (pm, Pm),
with m = 1, 2, as:

Pm(kx, ky, z) =

∫ +∞

−∞

∫ +∞

−∞
e−(ikxx+ikyy)pm(x, y, z)dxdy, (2.52)

pm(x, y, z) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e(ikxx+ikyy)Pm(kx, ky, z)dxdy. (2.53)

We first apply the operator
∫ +∞
−∞

∫ +∞
−∞ e−(ikxx+ikyy)dxdy on both sides of Equa-

tion (2.50):∫ +∞

−∞

∫ +∞

−∞
e−(ikxx+ikyy)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k21

)
p1dxdy

= −4π

∫ +∞

−∞

∫ +∞

−∞
e(−ikxx−ikyy)δ(x)δ(y)δ(z − zS)dxdy = −4πδ(z − zS),

where the following property of the Dirac δ function has been used:∫ −∞
−∞

f(x)δ(x− x0)dx = f(x0). (2.54)

It is possible to calculate easily the double derivatives of p1, for instance the
one with respect to x is:

∂2p1
∂x2

=
∂2

∂x2

[
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e(ikxx+ikyy)Pm(kx, ky, z)dxdy

]
=
−k2x
(2π)2

∫ +∞

−∞

∫ +∞

−∞
e(ikxx+ikyy)Pm(kx, ky, z)dxdy = −k2xp1.

Finally we obtain the following system to solve for the complex pressure
amplitudes p1 and p2:[

∂2

∂z2
+ (k21 − k2x − k2y)

]
P1 = −4πδ(z − zS) for z ≥ 0, (2.55)[

∂2

∂z2
+ (k22 − k2x − k2y)

]
P2 = 0 for z ≤ 0. (2.56)
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These complex pressure amplitudes p1 and p2 must satisfy the boundary
conditions:

P1(kx, ky, 0) = P2(kx, ky, 0), (2.57)

1

ρ1

(
∂P1

∂z

)
z=0

=
1

ρ2

(
∂P2

∂z

)
z=0

, (2.58)

P1(kx, ky, zS + ε) = P1(kx, ky, zS − ε), (2.59)(
∂P1

∂z

)
z=zS+ε

−
(
∂P1

∂z

)
z=zS−ε

= −4π, (2.60)

with 0 < ε� 1. The first and third equations correspond to the continuity of
pressure at the ground surface and at the source height zS. The second equa-
tion corresponds to the continuity of normal velocity at the ground surface.
From Euler’s equation:

iωρmVm,z = −∂Pm
∂z
⇒ Vm,z = − 1

iωρm

∂Pm
∂z

.

The last equation is obtained by integrating Equation (2.55) between zS − ε
and zS + ε: ∫ zS+ε

zS−ε

∂2P1

∂z2
dz + (k21 − k2x − k2y)

∫ zS+ε

zS−ε
P1dz = −4π.

When ε→ 0, the second term vanishes because of the continuity of pressure
thus: [

∂P1

∂z

]zS+ε
zS−ε

=

(
∂P1

∂z

)
z=zS+ε

−
(
∂P1

∂z

)
z=zS−ε

= −4π.

This means the fluid velocity is discontinuous at the source height (mass
injection).

Solution of the problem in the wave number domain

We write the solution of Equations (2.55) and (2.55) under the form:

P1 = C1e
ik1zz for z ≥ zS, (2.61)

P1 = C2e
ik1zz + C3e

−ik1zz for 0 ≤ z ≤ zS, (2.62)

P2 = C4e
−ik2zz for z ≤ 0, (2.63)
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where C1, C2, C3 and C4 are constants to determine and k2mz = k2m−k2x−k2y,
m = 1, 2. The boundary conditions give us four relationships between the
constants:

C2 + C3 = C4, (2.64)

ik1z
ρ1

(C2 − C3) =
−ik2z
ρ2

C4, (2.65)

C1e
ik1zzS = C2e

ik1zzS + C3e
−ik1zzS , (2.66)

ik1z
(
C1e

ik1zzS − C2e
ik1zzS + C3e

−ik1zzS
)

= −4π. (2.67)

From Equations (2.64) and (2.65):

ik1z
ρ1

(C2 − C3) =
−ik2z
ρ2

(C2 + C3)⇒ C2 =
ρ2k1z − ρ1k2z
ρ2k1z + ρ1k2z

C3 = R(k1z)C3.

From Equations (2.66) and (2.67):

(C1−C2)e
ik1zzS = C3e

−ik1zzS = − 4π

ik1z
−C3e

−ik1zzS ⇒ C3 =
2πi

k1z
eik1zzS = Aeik1zzS ,

with A = 2πi/k1z. The other constants are easily obtained:

C2 = R(k1z)C3 = AR(k1z)e
ik1zzS , (2.68)

C1 = C2 + C3e
−2ik1zzS = AR(k1z)e

ik1zzS + Ae−ik1zzS , (2.69)

which leads us to the following solution above the ground (z ≥ 0):

P1 = Pd + Pr = Aeik1z |z−zS | + AR(k1z)e
ik1z(z+zS), (2.70)

where Pd and Pr are respectively the direct and reflected waves, and R(k1z)
is the reflection coefficient. For a locally reacting ground, θt ≈ 0 so k2z =
k2 cos θt ≈ k2 and:

R(k1z) ≈
ρ2k1z − ρ1k2
ρ2k1z + ρ1k2

=
k1z − ρ1c1k1

ρ2c2

k1z + ρ1c1k1
ρ2c2

=
k1z − k1/Z
k1z + k1/Z

, (2.71)

because k2 = ω/c2 = k1c2/c1 and Z = (ρ2c2)/(ρ1c1).
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Laplace transform solution

If we apply the inverse Fourier transform of the direct wave Pd corresponds
the Green’s function in free field:

pd =
eik1
√
r2+(z−zS)2√

r2 + (z − zS)2
=
eik1R1

R1

= G(x, xS), (2.72)

where r2 = x2+y2, and R1 =
√
r2 + (z − zS)2 is the source-receiver distance.

It is however not possible to directly apply the Fourier transform to Pr. We
will thus use a Laplace transform instead to find a more useful solution.

The Laplace transform F (s) of a function f(q), defined for real numbers
q ≥ 0, is defined as:

F (s) =

∫ +∞

0

f(q)e−sqdq, (2.73)

where s = σ + iω is a complex number frequency parameter. When s = iω
the Laplace transform reduces to the Fourier transform.

The reflection coefficient can be written as the following Laplace trans-
form, replacing variable s by k1z:

R(k1z) =

∫ ∞
0

s(q)e−qk1zdq,

where s(q) is the following image source distribution:

s(q) = δ(q)− 2
k1
Z

exp

(
−qk1
Z

)
.

Indeed we have:

R(k1z) =

∫ ∞
0

[
δ(q)− 2

k1
Z

exp

(
−qk1
Z

)]
e−qk1zdq

= 1− 2
k1
Z

∫ ∞
0

exp

[
−q
(
k1
Z

+ k1z

)]
dq

= 1− 2
k1
Z

[
−e
−q(k1/Z+k1z)

k1/Z + k1z

]∞
0

= 1− 2k1/Z

k1/Z + k1z
=
k1z − k1/Z
k1z + k1/Z

,

which is the result of Equation (2.71).
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From Equations (2.70) and (2.3.3), the contribution of the reflected path
in the Fourier domain is given by:

Pr =

∫ ∞
0

As(q)eik1z [z+(zS+iq)]dq. (2.74)

Since the inverse Fourier transform of Pd = Aeik1z |z−zS |, corresponding to
the direct path contribution pd, is given by Equation (2.72), it is possible to
calculate the inverse Fourier transform of Pr, noting that the argument of
the exponential is similar with −zS being replaced by zS + iq:

pr =

∫ ∞
0

s(q)
eik1
√
r2+(z+zS+iq)2√

r2 + (z + zS + iq)2
dq

=

∫ ∞
0

[
δ(q)− 2

k1
Z

exp

(
−qk1
Z

)]
eik1
√
r2+(z+zS+iq)2√

r2 + (z + zS + iq)2
dq

=
eik1
√
r2+(z+zS)2√

r2 + (z + zS)2
− 2

k1
Z

∫ ∞
0

exp

(
−qk1
Z

)
eik1
√
r2+(z+zS+iq)2√

r2 + (z + zS + iq)2
dq.

Thus the total pressure field in the fluid is:

p1 =
eik1R1

R1

+
eik1R2

R2

[
1− 2

k1
Z

R2

eik1R2

∫ ∞
0

exp

(
−qk1
Z

)
eik1
√
r2+(z+zS+iq)2√

r2 + (z + zS + iq)2
dq

]
,

(2.75)
where R2 =

√
x2 + y2 + (z + zS)2 is the image source-receiver distance. This

expression can be rewritten under the following classical form:

p1 =
exp(ik1R1)

R1

+Q
exp(ik1R2)

R2

, (2.76)

where Q is the spherical-wave reflection coefficient given by:

Q = 1− 2
k1
Z

R2

eik1R2

∫ ∞
0

exp

(
−qk1
Z

)
eik1
√
r2+(z+zS+iq)2√

r2 + (z + zS + iq)2
dq. (2.77)

Note that this expression is for a point source of unit amplitude.
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Approximate solution in the limit of grazing incidence

In the limit of grazing incidence, i.e R2 � z + zS, the following approximate
expression for the spherical wave reflection coefficient can be obtained:

Q = Rp + (1−Rp)F (d) with F (d) = 1 + id
√
πe−d

2

erfc(−id), (2.78)

where d =
√
ik1R2/2(1/Z+ cos θ) is the numerical distance, Rp = (Z cos θ−

1)/(Z cos θ + 1) is the plane wave reflection coefficient, and erfc is the com-
plimentary error function defined as:

erfc(z) =
2√
π

∫ ∞
z

exp(−t2)dt. (2.79)

The expression (2.78), also known as the Weyl-Van der Pol formula in elec-
tromagnetic propagation theory, is the most widely used analytical solution
for the propagation of a point source above a flat ground in a homogeneous
medium (Attenborough et al., 2007).

To obtain this expression, the square root expression in Equation (2.77)
is written:√

r2 + (z + zS + iq)2 =
√
r2 + (z + zS)2 + 2iq(z + zS)− q2

= R2

√
1 +

2iq(z + zS)

R2
2

− q2

R2
2

.

For R2 � z + zS, we can use the following approximation in the numerator
of the integral:√
r2 + (z + zS + iq)2 ≈ R2

(
1 +

iq(z + zS)

R2
2

− q2

2R2
2

)
= R2 + iq cos θ − q2

2R2

,

using cos θ = (z + zS)/R2. This approximation is correct because the inte-
gral is dominated by small values of q, so we can assume q � R2. In the
denominator of the integral we use simply

√
r2 + (z + zS + iq)2 ≈ R2, and

thus:

Q ≈ 1− 2
k1
Z

∫ ∞
0

exp

[
−qk1

(
1

Z
+ cos θ

)
− ik1

q2

2R2

]
dq. (2.80)

Let us develop Equation (2.78) to show it corresponds to Equation (2.80):

Q = Rp+(1−Rp)F (d) =
Z cos θ − 1

Z cos θ + 1
+

2

Z cos θ + 1

(
1 + 2ide−d

2

∫ ∞
−id

exp(−t2)dt
)
.
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Considering the following change of variable in the integral:

t = q

√
ik1
2R2

− id,

then:

Q = 1 +
4ide−d

2
√

ik1
2R2

Z cos θ + 1

∫ ∞
0

exp

−(q√ ik1
2R2

− id

)2
 dq.

Since (
q

√
ik1
2R2

− id

)2

=
ik1
2R2

q2 − 2idq

√
ik1
2R2

− d2,

the expression becomes:

Q = 1 +
4id
√

ik1
2R2

Z cos θ + 1

∫ ∞
0

exp

[
−ik1
2R2

q2 + 2idq

√
ik1
2R2

]
dq.

Since

2id

√
ik1
2R2

= −k1
(

1

Z
+ cos θ

)
,

we finally obtain the same expression as in Equation (2.80).
Remark: if we use

√
r2 + (z + zS + iq)2 = R2 in both the numerator and

the denominator, we would obtain:

p1 =
eik1R1

R1

+
eik1R2

R2

(
1− 2

k1
Z

∫ ∞
0

e−
qk1
Z dq

)
=
eik1R1

R1

+
eik1R2

R2

(
1− 2

k1
Z

[
−Z
k1
e−

qk1
Z

]∞
0

)
=
eik1R1

R1

− eik1R2

R2

.

This crude approximation corresponds to Q = −1, which is also the value of
the plane wave reflection coefficient obtained when θ → π/2.

Sound pressure level relative to the free field

The sound pressure level relative to free field is defined as:

∆L = Lp − Lp,FF = 10 log10

(
p2rms

p2rms,FF

)
= 10 log10

(
|pc|2

|pc,FF |2

)
, (2.81)
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where the subscript FF means “free-field”. Since Lp,FF = LW−10 log10(4πR
2
1)

from Equation (2.20), the relationship between sound pressure level and
sound power level in the presence of ground becomes:

Lp = LW − 10 log10(4πR
2
1) + ∆L . (2.82)

For a point source of amplitude S, pc,FF = Seik1R1/R1, and from Equa-
tion (2.76):

pc = S
exp(ik1R1)

R1

+QS
exp(ik1R2)

R2

. (2.83)

As a result:

∆L = 10 log10

∣∣∣∣1 +Q
R1

R2

eik1(R2−R1)

∣∣∣∣2 . (2.84)

Thus there will be constructive interferences between direct and reflected
waves for k1(R2 − R1) = 0[2π], and destructive interferences for k1(R2 −
R1) = π[2π]. These interferences can be visualized as maxima and minima
in the spectra of ∆L plotted in Figure 2.5 for both rigid and impedance
grounds. In this example, source and receiver are close to the ground such
that R2 ≈ R1. For a rigid ground Q = 1 so ∆L varies between −∞ and
10 log10(4) ≈ 6 dB. For an impedance ground, |Q| < 1 because there is some
energy absorbed by the ground during the reflection. At high frequencies,
Q→ Rp because the wavefronts become planar. At low frequencies, however,
it is clear from Figure 2.5 that the spherical-wave reflection coefficient Q
cannot be approximated by the plane-wave reflection coefficient Rp. The
part of the spherical wave that is not accounted for by plane wave theory is
called the ground wave in the literature (Embleton, 1996).

2.4 Ground impedance modeling and mea-

surements

2.4.1 Acoustic propagation in porous media

Many natural grounds can be modeled as porous media, characterized by
several parameters such as the open porosity Ω, the flow resistivity σ and the
tortuosity T (Salomons, 2001; Attenborough et al., 2007). In the rigid frame
approximation of Biot theory, the porous medium is seen as an equivalent
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Figure 2.5: Spectrum of the sound pressure level relative to the free field for
a rigid ground, for an impedance ground and for an impedance ground where
the spherical-wave reflection coefficient is approximated by the plane-wave
reflection coefficient (Q = Rp). The source and receiver are distant of 100 m,
and their height is 2 m.

fluid medium of effective bulk modulus Keff and effective density ρeff ; these
two quantities are complex numbers. As a result, the pressure in the porous
medium can be described by the following Helmholtz equation:

1

ω2ρeff
∆pc +

1

Keff

pc = 0. (2.85)

The effective sound speed of the porous medium is:

ceff =

√
Keff

ρeff
=
ω

kc
, (2.86)

where kc is the acoustic wave number in the porous medium, and the char-
acteristic impedance is:

Zc =
√
ρeffKeff . (2.87)

As a comparison, the bulk modulus in an ideal fluid medium is γp0 and the
density is ρ0, thus one retrieves the expression for the sound speed and the
characteristic impedance in a fluid obtained previously:

c0 =

√
γp0
ρ0

=
ω

k0
and Z0 =

√
ρ0γp0 = ρ0c0.
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2.4.2 Ground impedance models

Among the simplest impedance models for the characteristic impedance Zc
and the acoustic wavenumber kc, Dragna et al. (2015) propose expressions
for two families of models. The first family is called the square-root type
impedance model, and has the form:

Zc = ρ0c0

√
T

Ω
α

√
(ω1 − iω)(ω2 − iω)

−iω(ω3 − iω)
, (2.88)

kc =
ω

c0

√
Tβ

√
(ω1 − iω)(ω3 − iω)

−iω(ω2 − iω)
, (2.89)

where α, β, ω1, ω2 and ω3 are the positive coefficients of the model. Several
phenomenological models (Zwikker and Kosten, Attenborough) belong to
this family (Salomons, 2001).

The second family is called the polynomial model, and has the form:

Zc = 1 + a

(
σe
ρ0ω

)b
+ ic

(
σe
ρ0ω

)d
, (2.90)

kc =
√
ωc0

(
1 + p

(
σe
ρ0ω

)q
+ ir

(
σe
ρ0ω

)s)
, (2.91)

with σe the effective flow resistivity of the ground, and a, b, c, d, q and s are
constant coefficients. Several empirical models (Delany and Bazley, Miki)
belong to this family.

If one assumes the ground is composed of a semi-infinite layer of porous
medium, there is no reflected wave in the ground. As a result, the sur-
face impedance is equal to the characteristic impedance and the normalized
impedance is written:

Z∞ =
Zs
ρ0c0

=
Zc
ρ0c0

. (2.92)

For a layer of porous medium of thickness de over a perfectly hard ground
(rigidly backed layer), the normalized impedance is given by (Salomons, 2001;
Attenborough et al., 2007):

Zlayer =
Zs
ρ0c0

=
Zc

ρ0c0 tanh(−ikcde)
=

−iZc
ρ0c0 tan(kcde)

. (2.93)
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A model closely-related to the square-root type models is the variable
porosity model, which is an approximation for a porous medium in which
the porosity decreases exponentially with depth at a rate αe:

Zc =

√
4σ

−iωγρ0
+

c0αe
−iω4γ

, (2.94)

where αe is the effective rate of change of porosity. Dragna et al. (2015) show
that this model is physically admissible and yield the best agreement with
experimental data for sound propagation over grass and lawn grounds.
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Chapter 3

Absorption and refraction
effects in inhomogeneous
moving media

We use slightly different notations in this chapter. The mean sound speed
associated with the base flow is written c(x), and k(x) = ω/c(x) is the
associated acoustic wave number.

3.1 Acoustic absorption

3.1.1 Attenuation due to acoustic absorption

Acoustic absorption can be modeled using a complex wave number k∗ =
k + iα, with α the absorption coefficient in Np/m. As a result, a harmonic
spherical wave is now written:

pc(r) = S
eikr

r
e−αr. (3.1)

As a result, the relationship (2.20) between the sound pressure level and the
sound power level in free field becomes (Salomons, 2001):

Lp = LW − 10 log10(4πr
2)− ar , (3.2)

with a = 20/ ln(10)α ≈ 8.686α the absorption coefficient in dB/m.
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3.1.2 Mechanisms of acoustic absorption in the atmo-
sphere and in the ocean

A sound wave loses energy due to various irreversible processes that remove
energy from an acoustic wave and convert it to heat:

� viscous losses and heat conduction losses (so-called classical absorp-
tion);

� relaxation losses of constituents.

The relaxation losses exist for polyatomic gases, and are associated with the
change of rotational or translational energy of the molecules into internal
energy (Evans et al., 1972).

Pierce (1989, Section 10-8) obtains the following dispersion equation for
a plane traveling wave including classical absorption and various relaxation
processes ν:

k∗ =
ω

c0
+ i αcl +

1

π

ω

c

∑
ν

(ανλ)max
iωτν

1− iωτν
(3.3)

where αcl is the classical absorption coefficient that is proportional to ω2,
(ανλ)max corresponds to the maximum absorption per wavelength associated
with the ν-type relaxation process, τν is the relaxation time for the vibra-
tional energy of type ν, and:

c0 =
c

1 + 1
π

∑
ν(ανλ)max

. (3.4)

Since limx→0
k
ω

= 1
c0

, c0 corresponds to the phase velocity in the limit of zero
frequency, while c corresponds to the phase velocity in the high-frequency
limit where ωτν � 1 for all relaxation processes ν.

The absorption coefficient α is the imaginary part of k∗, and is thus
written from Equation (3.3):

α(f) = αcl(f) +
∑
ν

αν(f) = Avtf
2 +

∑
ν

2

c
(ανλ)max

fνf
2

f 2
ν + f 2

, (3.5)

with fν = 1/(2πτν) the relaxation frequency of constituent ν. Pierce (1989,
Section 10-8) shows that the absorption per wavelength of the relaxation
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process ν can be written:

ανλ

(ανλ)max

=
2

fν/f + f/fν
. (3.6)

As shown in Figure 3.1(a), the absorption is maximum at the relaxation
frequency fν , and goes to zero for f � fν and f � fν .
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Figure 3.1: (a) Absorption per wavelength, and (b) phase velocity with re-
spect to the normalized frequency f/fν for a single relxation process ν. Taken
adapted from Pierce (1989, Fig. 10-12)

Equation (3.3) also shows that the phase velocity vph = ω/kR, with kR the
real part of k∗, depends on frequency because of relaxation processes, which
means that the medium is dispersive. The phase velocity can be written:

vph =
ω

kR
= c−

∑
ν

∆cν
1 + (f/fν)2

, (3.7)

with ∆cν = (ανλ)maxc/π. This phase velocity is plotted in Figure 3.1(b) for a
single relaxation process ν. In practice, ∆cν is small and the approximation
kR = ω/c is generally used.

In the atmosphere, the acoustic absorption of air depends on pressure,
temperature and humidity. The relaxation processes to take into account
are due to nitrogen (N2) and oxygen molecules (O2), where fN2 � fO2 .
The expressions for the absorption coefficient can be found for instance
in Pierce (1989, Chapter 10), Bass et al. (1995, 1996) and Salomons (2001,
Appendix B). See Figure 3.2(a).
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(a) (b)

Figure 3.2: Absorption coefficient (a) for air in dB/100m/atm at 20oC and
for various relative humidities in % (taken from Bass et al. (1995)), and (b)
for seawater in dB/km for a salinity of 35�and a pH of 8 (from Francois
and Garrison (1982b)).
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In the ocean, the acoustic absorption of seawater depends on on pressure
(or depth), temperature, salinity and acidity (pH). The relaxation processes
to take into account are due to boric acid (B(OH)3) and magnesium sulphate
(MgSO4), where fB(OH)3 � fMgSO4 . The expressions for the absorption
coefficient can be found for instance in Francois and Garrison (1982a,b) and
in Ainslie and McColm (1998). See Figure 3.2(b).

3.2 Refraction effects

3.2.1 Refraction due to vertical sound speed gradients

Refraction happens when sound waves propagate through fluid layers of vary-
ing sound speeds. Let us consider the simple case of Figure 3.3, where a sound
ray propagates through two fluid layers of sound speed c1 and c2. For the
moment, a sound ray is defined as a narrow beam of high frequency sound.
A more precise definition will be given in Chapter 4 devoted to geometrical
acoustics.

Figure 3.3: Refraction of sound between 2 layers with different sound speeds
c1 and c2 > c1. Taken from Salomons (2001).

According to Fermat’s principle, the wave takes the path where the travel
time is minimum. The travel time between source and receiver is given here
by:

τ =
r1
c1

+
r2
c2

=

√
x2 + z21
c1

+

√
(xr − x)2 + (zr − z1)2

c2
. (3.8)
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Let us find the coordinate x of point P that minimizes τ :

∂τ

∂x
=
x/r1
c1
− (xr − x)/r2

c2
= 0⇒ cos γ1

c1
=

cos γ2
c2

(3.9)

This expression is known as the Snell-Descartes law. It can be generalized
to multiple layers of fluid, or to a stratified medium with sound speed c(z):

cos γ(z)

c(z)
= constant along a sound ray . (3.10)

This generalized Snell-Descartes law states that the sound ray bends to-
wards the region of lower sound speed.

This variation of sound speed with altitude (in the atmosphere) or depth
(in the ocean) z is commonly found. This comes from the fact that temper-
ature typically varies with z, thus for an ideal fluid:

c(z) =
√
γrT (z) = c0

√
T (z)

T0
. (3.11)

Two ray-tracing examples Salomons (2001) are plotted in Figure 3.4 to illus-
trate refraction effects in a layered atmosphere. A logarithmic sound speed
profile is considered:

c(z) = c0 + b ln

(
1 +

z

z0

)
, (3.12)

with c0 = 340 m/s, z0 = 0.1 m, and b = ±1 m/s.
When b = −1 m/s, the sound speed decreases with height so the sound

rays bend upwards according to Snell-Descartes law. This is called an upward-
refracting atmosphere. This is a typical daytime situation, also referred
to as normal lapse. The sun heats the ground, so the air close to the ground
is warmer than the air at higher altitudes. As a result, a shadow zone forms
close to the ground where no sound can penetrate in the geometric approx-
imation, as explained in Section 4.3. In reality, sound goes into the shadow
zone due to diffraction effects.

When b = +1 m/s, the sound speed increases with height so the sound
rays bend downwards according to Snell-Descartes law. This is called an
downward-refracting atmosphere. This is a typical nighttime situation,
also referred to as normal inversion. As a result, there can be multiple rays
between source and receiver with multiple reflections on the ground, which
is a favorable situation for acoustic propagation over longer distance.
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(a) (b)

Figure 3.4: Sound rays from a source at 2 meter height using a logarithmic
sound speed profile c(z) = c0 + b ln (1 + z/z0) (a) in an upward-refracting
atmosphere (b = −1 m/s), and (b) in a downward-refracting atmosphere
(b = 1 m/s). Taken from Salomons (2001).

3.2.2 Refraction due to wind speed gradients

Because of friction, the wind speed in the atmospheric boundary layer de-
creases to zero at the ground. Strong wind speed gradients are thus encoun-
tered close to the ground, and typically decrease with height.

An equivalence can be made between the effect of vertical gradients of
wind speed and temperature on sound waves. Indeed, as shown in Figure 3.5,
downward refraction occurs in the downwind direction or for tempera-
ture inversion, while upward refraction occurs in the upwind direction
or for temperature lapse.

It is possible to take into account wind speed gradients in an approximate
way using the effective sound speed approximation. The effective sound
spped is defines as:

ceff (z) = c(z) + U(z) cosφ, (3.13)

where φ is the angle between wind direction and propagation direction. This
approximation is generally valid for source and receivers close to the ground,
as will be seen in Chapter 4.
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Figure 3.5: Sound rays illustrating the effect of refraction by wind speed
vertical gradients. Taken from Lamancusa (2009, Section 10).
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Chapter 4

Geometrical acoustics

We use the same notations as in Chapter 3, with c(x) the mean sound speed
associated with the base flow and k(x) = ω/c(x) the associated acoustic
wave number. This chapter is mostly based on the work of Pierce (1989,
Chapter 8).

4.1 Wavefronts and ray equations

4.1.1 In a medium at rest

A wavefront is a moving surface along which a waveform feature is received
(constant phase). We saw in Chapter 2 that it is a plane for plane waves, or
a sphere for spherical waves as long as the propagation medium is homoge-
neous. However, in inhomogeneous media, the wavefronts are distorted and
generally have a complex shape, as illustrated in Figure 4.1(a).

Let us define the function τ(x) (in second) constant along a wavefront,
and let n be the normal to the wavefront. For a medium at rest (v0 = 0),
the wavefront (ray) velocity is:

vray =
dx

dt
= c(x)n(x, t). (4.1)

Following Pierce (1989, Chapter 8), we will now show that the relationship
∇τ.dx

dt
= 1 holds along a ray trajectory. To this end, let us use the Taylor

series expansion for the function τ between x and x+ δx:

τ(x+ δx) = τ(x) + δx.∇τ(x) + ... (4.2)
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The position of the wavefront at t + δt is approximately x(t) + dx
dt
δt for a

small time δt. As a result:

t+ δt ≈ τ

(
x+

dx

dt
δt

)
≈ τ(x) + δt

dx

dt
.∇τ(x), (4.3)

using Equation (4.2). Since t = τ(x), the following relationship is obtained:

∇τ.dx
dt

= 1⇔ c(x)∇τ.n = 1. (4.4)

As a result, ∇τ(x) = n/c(x) since ∇τ is directed towards the normal to
the wavefront given by the unit vector n. This yields the following Eikonal
equation:

s2(x) = |∇τ(x)|2 =
1

c2(x)
. (4.5)

The vector s(x) = ∇τ(x) = n/c is called the wave-slowness vector.
The evolution of s(x, t) with time is given by :

ds

dt
=

�
�
�∂s

∂t
+ (∇s).dx

dt
= −1

c
∇c.n (4.6)

As s is parallel to n:
ds

dt
= −1

c
(∇c) (4.7)

The ray-tracing equations in a medium at rest are thus:

dx

dt
= c2s or

dxi
dt

= c2si, (4.8)

ds

dt
= −1

c
∇c or

dsi
dt

= −1

c

∂c

∂xi
. (4.9)

These equations can be numerically integrated in time to determine x and s.

4.1.2 In a moving medium

In a moving medium, the ray velocity vray is generally not aligned with the
normal to the wavefront n anymore. The equation for the ray trajectory at
a point x(t) is:

vray =
dx(t)

dt
= v0(x, t) + c(x)n(x, t). (4.10)
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(a) (b)

Figure 4.1: (a) Wavefront defined by the function τ(x) and the normal x,
and (b) wavefront in a moving medium as a function of c(x)n and v0. Taken
from Pierce (1989, Chapter 8).

Using Equations (4.2) and (??), the wave-slowness vector s = ∇τ (normal
to the wavefront) must now follow the relationship:

∇τ.dx(t)

dt
= 1⇔ s.(cn+ v0) = 1 or cs.n = 1− v0.s.

Since s = (s.n)n, we obtain:

n =
s

(s.n)
=
cs

Ω
, (4.11)

with Ω = 1− v0.s. The Eikonal equation in a moving medium is thus:

s2 = |∇τ(x)|2 =
Ω(x)2

c2(x)
. (4.12)

After some vector manipulations, Pierce (1989, Chapter 8) obtains the
ray-tracing equations in a moving medium:

dx

dt
=
c2s

Ω
+ v0 or

dxi
dt

=
c2si
Ω

+ v0i, (4.13)

ds

dt
= −Ω

c
∇c− s× (∇× v0)− (s.∇)v0 or

dsi
dt

= −Ω

c

∂c

∂xi
−

3∑
j=1

sj
∂v0j
∂xi

.

(4.14)
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These equations can be numerically integrated in time to determine x and s.

4.2 Equations of geometrical acoustics

We will now formally derive the equations of geometrical acoustics, not only
for the ray trajectories but also for the associated wave amplitudes. This
derivation is done for a homogeneous medium at rest.

Let us start from the Helmholtz equation (e−iωt convention):

∇2pc(x) + k20pc(x) = 0. (4.15)

We introduce the following notation: pc(x) = P̂ (x, ω)eiωτ(x), where the
amplitude is P̂ (x, ω) and the phase is written ωτ(x). Since ∇

(
eiωτ(x)

)
=

iω∇τeiωτ(x), the Laplacian term is written:

∇2pc =
(
∇2P̂ + 2iω∇τ.∇P̂ + iω∇2τ P̂ − ω2(∇τ)2P̂

)
eiωτ(x). (4.16)

As a result, the Helmholtz equation is rewritten:

∇2P̂ + iω
(

2∇τ.∇P̂ +∇2τ P̂
)
− ω2P̂

[
(∇τ)2 − 1

c20

]
= 0. (4.17)

We are looking for an asymptotic expression in the high frequency limit:

P̂ (x, ω) = P̂0(x) +
1

ω
P̂1(x) +

1

ω2
P̂2(x) + ... (4.18)

Substituting this expression into Equation (4.17) and equating each power
of ω:

ω0 : P̂0

[
(∇τ)2 − 1

c20

]
= 0 (4.19)

ω1 : i
(

2∇τ.∇P̂0 +∇2τ P̂0

)
− P̂1

�
���

����[
(∇τ)2 − 1

c20

]
= 0 (4.20)

ω2 : ... (4.21)

The first equation corresponds to the Eikonal equation:

|∇τ |2 =
1

c20
. (4.22)
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The solution to this equation corresponds to the rays connecting the wave-
front surfaces (straight lines for a homogeneous medium). The second equa-
tion corresponds to the transport equation where we suppose P̂ ≈ P̂0 at first
order:

2∇τ.∇P̂ +∇2τ P̂ or ∇.(P̂ 2∇τ) = 0. (4.23)

The transport equation gives the variation of amplitude along ray paths.
To find the domain of validity of the geometrical acoustics approximation,

we notice that we basically neglected the first term in Equation (4.17) in order
to obtain the Eikonal and transport equations. As a result, the geometrical
acoustics is valid when: ∣∣∣∣∣∇2P̂

P̂

∣∣∣∣∣� (ω
c

)2
. (4.24)

Thus the higher the frequency the better the approximation.
Ostashev (1997) extends this analysis to inhomogeneous moving media.

He shows that geometrical acoustics is valid if `k � 1 or ` � λ, where `
the characteristic scale of variation of the ambient quantities in space. This
means in particular that the concept of refraction makes sense only in the
geometrical acoustics approximation; Snell-Descartes law does not depend on
acoustic frequency and is applicable if λ� `. For λ� ` or λ ∼ `, scattering
and/or diffraction effects will occur.

4.3 Wave amplitude along rays and caustics

Let us consider a ray tube, that corresponds to the envelope of all the rays
passing through a tiny area A(x0), as shown in Figure 4.2(a). Applying
Gauss’s theorem to the transport equation (4.23):∫

Vray tube

∇.(P̂ 2∇τ)dV =

∫
Aray tube

P̂ 2∇τ.ndA

= P̂ 2(x)A(x)(∇τ.n)x − P̂ 2(x0)A(x0)(∇τ.n)x0 = 0.

(4.25)

This yields the following amplitude variation along rays in a homogeneous
medium at rest:

P̂ (x) = P̂ (x0)

√
A(x0)

A(x)
or P̂ 2(x)A(x) = constant (4.26)
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(a) (b)

Figure 4.2: (a) Schematics of a ray tube, and (b) example of a caustic. Taken
from Pierce (1989, Chapter 8).

The amplitude is inversely proportional to the square root of ray tube area.

In an inhomogeneous medium, the rays are now curved because of sound
speed and/or velocity gradients. The previous result has been generalized by
Pierce (1989, Section 8-6) that shows the conservation of energy along
rays. The amplitude variation along rays in an inhomogeneous medium at
rest is written:

P̂ 2A

ρ0c
= constant (4.27)

The amplitude variation along rays in an inhomogeneous moving medium
corresponds to the Blokhintzev invariant (Pierce, 1989, Equation (8-6.13)):

P̂ 2|vray|A
(1− v0.∇τ)ρ0c2

= constant, (4.28)

with |vray| = |v0 + cn|.
When two rays intersect, the ray tube areas go to zero (A(x) = 0), thus

the pressure amplitude goes to infinity from the previous expressions. The
envelope formed by a family of intersecting rays is called a caustics. An
example is shown in Figure 4.2(b). When this happens, there is a need to
think in terms of waveforms instead of rays. This is the goal of the geometrical
theory of diffraction which is an extension of geometrical acoustics. Salomons
(2001, Appendix L) presents a ray model that employs the theory of Ludwig
and Kravtsov for the effects of caustics.
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sx

θsz
s

(a) (b)

Figure 4.3: (a) Ray direction, and (b) ray path considering a linear sound
speed profile. Taken from Pierce (1989, Chapter 8).

4.4 Solutions to the ray-tracing equations

It is possible to calculate analytically the solutions to the ray-tracing equa-
tions in some simple cases. For instance in a medium at rest, v0 = 0 and
Ω = 1, so and the ray-tracing equations are simply:

dx

dt
= c2s or

dxi
dt

= c2si, (4.29)

ds

dt
= −1

c
∇c or

dsi
dt

= −1

c

∂c

∂xi
. (4.30)

These equations can be integrated in time for a given initial direction: s =
sxex + szez, as shown in Figure 4.3(a). From the Eikonal equation:

|s|2 = s2x + s2z =
1

c2
⇒ sx =

cos θ

c
and sz =

sin θ

c
. (4.31)

In a layered atmosphere at rest, such that c = c(z), the equations can be
further simplified. We see that dsx

dt
= 0 which means sx = sx0. As a result
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Snell-Descartes law is retrieved:

sx0 =
cos θ(z)

c(z)
= constant. (4.32)

If a simple linear sound speed profile of the form c(z) = c0 +az is chosen,
then ∇c = aez. In this specific case, it is possible to show that the ray
trajectories are arcs of circle of radius R = 1/(asx0) = c/(a cos θ0), where
sx0 = sx(t = 0) and θ0 = θ(t = 0), centered at height c0/a (Pierce, 1989,
Section 8-3). Figure 4.3(b) illustrates the shape of the ray paths for a linear
sound speed profile. The greater the sound speed gradient a is, the smaller
the radius of curvature R will be.

Pierce (1989, Section 8-3) extends the analysis to a moving medium, and
shows that the rays bend with a radius of curvature:

R = c/

(
dc

dz
cos θ +

dvx
dz

)
. (4.33)

For rays propagating in nearly horizontal directions, cos θ ≈ 1 and R ≈
c/
(
dceff
dz

)
, where ceff is the effective sound speed defined as:

ceff (z) = c(z) + vx(z). (4.34)

If θ is greater than approximately 30o, the influence of a wind speed gradient
is greater than the influence of a sound speed gradient of same amplitude,
and the effective sound speed approximation becomes less accurate.
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