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Abstract: Finite-difference time-domain simulations of broadband sound
propagation in a stratified atmosphere are presented. A method recently pro-
posed to obtain an impedance time-domain boundary condition is imple-
mented in a linearized Euler equations solver, which enables to study long
range sound propagation over an impedance ground. Some features of the
pressure pulse evolution with time are analyzed in both upward-and
downward-refracting conditions, and the time-domain simulations are com-
pared to parabolic equation calculations in the frequency domain to show the
effectiveness of the proposed impedance boundary condition.
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1. Introduction

Time-domain numerical solutions of the linearized Euler equations are becoming increasingly
popular to study broadband noise propagation outdoors,1–3 since they can accurately take into
account the interactions of the acoustic waves with local wind and temperature fluctuations in
the atmospheric boundary layer. They are also well suited to study the sound field close to the
acoustic sources, which can be complex in the context of transportation noise.

When performing finite-difference time-domain (FDTD) simulations, one of the main
difficulties is to account for the reflection of acoustic waves over an impedance ground. Indeed,
impedance models classically used for outdoor grounds have been obtained in the frequency
domain, and most of them do not meet the necessary conditions for an impedance model to be
physically possible, which means that they cannot be directly translated into the time domain.4,5

Furthermore, when the translation into the time domain is possible, a convolution needs to be
solved in the time-domain boundary condition (TDBC), which is computationally expensive.
Different methods have been proposed to derive impedance TDBC.6–8 Recently, Cotté et al.9

presented a TDBC for the Miki impedance model,4 which is a physically possible extension of
the Delany–Bazley impedance model.10 This TDBC is based on an approximation of the imped-
ance in the frequency domain, which allows the use of the recursive convolution method,11 a
very efficient technique to calculate a discrete convolution. It can be noticed that another way to
account for the interaction of sound waves with an impedance ground is to add an explicit
porous layer to the computational domain, as done by Salomons et al.1 and by Van Renterghem
and Botteldooren.2 This method is useful to model certain types of grounds, such as extended-
reaction grounds but requires additional calculations to be performed in the porous medium.

In this paper, the method proposed to obtain the impedance TDBC is first summarized.
Then, after a brief description of the linearized Euler equations solver, two-dimensional simu-
lations of broadband noise propagation in a stratified atmosphere are presented. The pressure
pulses obtained in downward and upward-refracting conditions are compared to the homoge-
neous case. Finally, the spectra of the time-domain simulations are calculated and compared to
parabolic equation simulations in the frequency domain.
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2. Derivation of time-domain impedance boundary conditions

Let p�t� be the acoustic pressure and v�t� the component of particle velocity normal to the
interface between the ground and the air, with P��� and V��� their respective Fourier trans-
form, t the time, and � the angular frequency; the exp�−j�t� convention is assumed throughout
this paper. Classically, the characteristic impedance Z��� is defined in the frequency domain
using P���=Z���V���. The direct translation of this boundary condition in the time domain
involves a convolution operator that is computationally expensive to solve. Thus, following a
method proposed by Fung and Ju6 and Reymen et al.,7 the characteristic impedance Z��� is
approximated as a sum of first-order systems:

Z��� � �
k=1

S
Ak

�k − j�
, �1�

with �k the real poles in the approximation, Ak the corresponding coefficients, and S the number
of poles. Using these first-order systems, the impedance is guaranteed to be physically possible
if �k�0 and if the passivity condition is met (positive real part of the impedance). Furthermore,
the form of these functions allows the use of the recursive convolution method, introduced by
Luebbers and Hunsberger11 in the context of electromagnetic propagation through dispersive
media. Considering the discretized variables p�n�=p�n�t� and v�n�=v�n�t�, with �t the time
step, the following TDBC is obtained:9

p�n� = �
k=1

S

Ak�k
�n�, �2�

where the accumulators �k are given by the recursive formula:

�k
�n� = v�n�1 − e−�k�t

�k
+ �k

�n−1�e−�k�t. �3�

It can be seen that S accumulators �k are needed in the TDBC, with only two storage locations
per accumulator.

Cotté et al.9 compared different methods to identify the coefficients Ak and �k of Eq.
(1), and showed that it is desirable to constrain the values of the poles �k to obtain accurate
numerical results. They propose an optimization method in the frequency domain, which guar-
antees that the impedance model is physically possible and that the values of the poles are
sufficiently small. This method is applied to the Miki impedance model of a semi-infinite
ground layer:4

Z/�0c0 = 1 + 0.0699�f/�e�−0.632 + j0.107�f/�e�−0.632, �4�

with �0 the air density, c0 the sound speed in the air, f the frequency, and �e an effective flow
resistivity [the coefficients in Eq. (4) are in SI units]. The coefficient identification method is
performed on the frequency band [50 Hz, 1200 Hz], which includes the spectrum of the pulse
used in the simulations presented in Sec. 3. The coefficients Ak and �k corresponding to the
Miki impedance model with an effective flow resistivity of 100 kPa s m−2 are given in Table 1.
It can be seen in Fig. 1 that the real and imaginary parts of the impedance are very well approxi-
mated using only five real poles over the frequency band of interest. Note that this method has
also been applied to the Miki model of a rigidly backed layer in Ref. 9.

3. Time-domain simulations in a stratified atmosphere

3.1 Linearized Euler equation solver

The linearized Euler equations are solved using FDTD methods developed in the computational
aeroacoustics community.12–14 Optimized finite-difference schemes and selective filters over 11

points are used for spatial derivation and grid-to-grid oscillations removal, respectively. These
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numerical schemes are optimized in the wave number space by minimizing the dispersion and
dissipation errors, so that acoustic wavelengths down to five or six times the spatial mesh size
are accurately calculated.9,15 For the interior points, which are the points separated from the
boundary by at least five points, the centered fourth-order finite-difference scheme of Bogey
and Bailly12 and the centered sixth-order selective filter recently proposed by Bogey et al.14 are
chosen. For the boundary points, that are the five extreme points in each direction, the 11-point
non-centered finite-difference schemes and selective filters of Berland et al.13 are used. Apply-
ing a selective filter to a variable U on a uniform mesh of size �x provides

Uf�x0� = U�x0� − sf �
m=−P

Q

dmU�x0 + m�x� . �5�

In the following, a filtering coefficient sf of 0.2 is taken for all selective filters except at the
extreme points where a filtering coefficient of sf /20 is chosen. A smaller coefficient is indeed
taken for the completely off-centered filter because this filter is much more dissipative than the
other selective filters. The completely off-centered filter is needed when a large number of time
iterations is performed15 as it is the case in this paper.

The optimized six-stage Runge–Kutta algorithm of Bogey and Bailly12 is used for time
integration. The TDBC presented in Sec. 2 can easily be adapted to this algorithm, as shown in
Ref. 9. The simulations presented in this paper are performed with a CFL=c0�t /�x of 1, with

Table 1. Coefficients Ak and �k for the Miki impedance model of a semi-infinite ground layer of effective flow
resistivity 100 kPa s m−2. This set of coefficients was referred to as OF v1 in Ref. 9.

k Ak �k

1 1.414 390 450 609�106 5.233 002 301 836�101

2 1.001 354 674 975�106 4.946 064 975 401�102

3 −3.336 020 206 713�106 1.702 517 657 290�103

4 5.254 549 668 250�106 1.832 727 486 745�103

5 3.031 704 943 714�107 3.400 000 000 000�104

Fig. 1. Real and imaginary parts of the normalized impedance Z /�0c0. The solid line corresponds to the Miki model
of a semi-infinite ground layer with an effective flow resistivity of 100 kPa s m−2, and the dots correspond to the fit
obtained using the frequency-domain approximation. The frequency band �50 Hz, 1200 Hz� is represented by ver-

tical lines.
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�t the time step. An orthogonal non-staggered grid is used, and the TDBC given by Eqs. (2) and
(3) is only applied at the ground boundary �z=0�; more details on the numerical implementation
of the TDBC can be found in Ref. 9. At all other boundaries, the radiation boundary conditions
of Tam and Dong16 are considered. The initial pressure distribution used in the simulations has
the following Gaussian form: p�r , t=0�=A exp�−ln 2r2 /B2�, with B=5�x=0.25 m the Gauss-
ian half-width, r=�x2+ �z−zS�2 the source-receiver separation, and zS=2 m the source height.
This starter has a broadband spectrum with significant frequency content up to 800 Hz
approximately.9,15

3.2 Numerical results

In the rest of the paper, a two-dimensional propagation configuration is studied, with a size of
approximately 500 m in the x-direction and 100 m in the z-direction. The mesh size is 0.05 m,
and there are about 22�106 points in the computational domain. The calculation is run over
11 000 time iterations to enable the pulse to leave the computational domain. This calculation is
performed on a NEC SX-8 vector machine and takes about 8 h to run (more details can be
found in Ref. 15). A logarithmic sound speed profile is considered, which has the following
form: c�z�=c0+ac ln�1+z /z0�, with c0=340 m/s and z0=0.1 m. Three values of the coefficient
ac are considered, corresponding to downward-refraction �ac= +1 m/s�, upward-refraction
�ac=−1 m/s�, and homogeneous conditions �ac=0�.

Two movies of the pulse evolution with time are given in Mm. 1 for a receiver height of
2 m and Mm. 2 for a receiver height of 10 m. The pressure amplitude is corrected by �r to take
into account geometrical spreading in two dimensions. At each distance x, the pressure wave-
forms are centered at the time x /c0. The movies show that the pressure pulse arrives earlier in
the downward-refracting case �ac= +1 m/s� and later in the upward-refracting case �ac

=−1 m/s� compared to the homogeneous case �ac=0�. There is evidence of multiple arrivals in
the downward-refracting case, with relatively strong acoustic pressure amplitude. In the
upward-refracting case, the pulse amplitude is attenuated compared to the homogeneous case,
except at short range where an amplification of the acoustic pressure can be observed. This
amplification can be attributed to a modification of the ground effect due to the vertical sound
speed gradients close to the ground. This effect is particularly clear for a receiver height of 10 m
and distances between 50 and 100 m approximately in Mm. 2, and the modification of the
ground effect will appear on the spectra plotted in Fig. 3. Another feature of the pressure wave-
forms shown in the movies is the presence of a long trail at the end of the pulses. This long trail
component has been shown to be a surface wave in Ref. 17. It must be noted that in the atmo-
sphere, the insonification of the refractive shadow zone is mainly caused by sound scattering by
turbulence; however, this effect is not considered in this paper.

Mm. 1. Normalized pressure p�t��r /A with respect to time at a height of 2 m and distances be-
tween 10 and 500 m. The blue curve corresponds to the downward-refracting case �ac= +1 m/s�,
the black curve to the homogeneous case �ac=0�, and the red curve to the upward-refracting case
�ac=−1 m/s�. This a file of type “avi” �3.7 Mbytes�.

Mm. 2. The same as in Mm. 1, but for a height of 10 m. This a file of type “avi” �3.9 Mbytes�.

4. Comparison with parabolic equation simulations in the frequency domain

The time-domain simulations are now compared to parabolic equation (PE) calculations in the
frequency domain to show the effectiveness of the impedance TDBC described in Sec. 2. The
spectra of the sound pressure level relative to the free field, noted �L, are calculated using a fast
Fourier transform. The PE calculations are obtained using a wide-angle parabolic equation
(WAPE) code described in Refs. 18 and 15, with a frequency-domain impedance boundary con-
dition based on Eq. (4). The spectra of �L for the FDTD and PE calculations are compared in
Fig. 2 for a receiver height of 2 m, and in Fig. 3 for a receiver height of 10 m. Both solutions

agree very well between 50 and 800 Hz. Above 800 Hz, there is no significant energy in the
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initial pulse of the FDTD calculation. Propagation distances are thus greater than 1000 acoustic
wavelengths for the largest range and frequency considered in these simulations, which shows
that the proposed FDTD model is well suited to study long range sound propagation.

These spectra also explain the pressure pulse evolution with time shown in Mm. 1 and
Mm. 2. In downward-refracting conditions [see Figs. 2(a) and 3(a)], the sound pressure levels
are quite large and the interference pattern is complex, especially at a range of 500 m, which
can be linked to the multiple arrivals that are observed in the movies. In upward-refracting
conditions [see Figs. 2(b) and 3(b)], the frequency components above 200 Hz are strongly at-
tenuated at ranges greater or equal to 300 m. Thus, the pressure pulse contains only very low-
frequency components at these ranges. At a receiver height of 10 m and a range of 100 m,
however, the sound pressure level is quite large over the whole frequency band of interest, and
even larger than the sound pressure level in downward-refracting conditions. The interference
dip located at about 200 Hz in the downward-refracting case is shifted to higher frequencies in
the upward-refracting case, which explains the pulse amplification observed in the movie Mm.
2.

5. Conclusion

In this paper, long range sound propagation over an impedance ground is studied using FDTD
methods. In particular, a method recently proposed to obtain an impedance TDBC has been
applied to the Miki impedance model. This TDBC has been implemented in a linearized Euler

Fig. 2. �Color online� Spectra of the sound pressure level relative to the free field �L at a height of 2 m and
propagation distances of 100, 300, and 500 m �a� in downward-refracting conditions �ac= +1 m /s� and �b� in
upward-refracting conditions �ac=−1 m /s�. The solid lines correspond to the FDTD calculations, and the symbols
correspond to the PE calculations.
Fig. 3. �Color online� The same as in Fig. 2, but for a height of 10 m.
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equations solver and two-dimensional simulations in a stratified atmosphere have been pre-
sented. One type of ground has been tested in the simulations on the frequency range [50 Hz,
800 Hz]. The solver used in this work enables to study sound propagation over distances greater
than 1000 acoustic wavelengths, as the comparison with PE calculations in the frequency do-
main has shown. Interesting features of the pressure pulse evolution with time in both upward-
and downward-refracting conditions have been analyzed. In the future, the surface wave com-
ponent that appears in the time-domain solution will be studied in more detail.
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