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Summary
Turbulent fluctuations of temperature and velocity in the atmospheric boundary layer play a significant role on
acoustic propagation, especially when an acoustic shadow zone is present. Spatial scales of turbulence span many
orders of magnitude, and it has been recognized that some of them scatter acoustic energy more effectively. This
selection of relevant turbulent scales depends on propagation geometry and acoustic frequency. The goal of this
paper is to estimate the extent of the turbulence spectrum that contributes to acoustic scattering into a refractive
shadow zone. The study is based on elements of wave propagation in random media theory on the one hand, and
parabolic equation (PE) simulations on the other hand. To be representative of transportation and industrial noise
conditions, PE simulations are performed in third octave bands between 50 Hz and 1600 Hz; the maximum prop-
agation distance is 1 km. The turbulent fields are generated using a random Fourier modes technique. Theoretical
tools are used to analyze the numerical results. Concerning small structures, an expression for the maximum cut-
off turbulent wave number is obtained from the characteristics of the scattering cross-section. Concerning large
structures, an estimate of the minimum cut-off turbulent wave number involving the Fresnel radius is found; it
is based on the form of the variance of log-amplitude fluctuations in the Rytov approximation. This estimate is
valid when the scattering is unsaturated, i.e. when the propagation distance and acoustic frequency are relatively
small. The relations presented here may be used for modelling purposes and for experimental data analysis to
know if the measured turbulent spectra cover a wide enough range of spatial scales in a given configuration.

PACS no. 43.28.Fp, 43.20.Fn

1. Introduction

It is well-known that turbulent fluctuations of temperature
and velocity in the atmosphere have a strong influence
on acoustic propagation when an acoustic shadow zone
is present. This situation is not uncommon; it happens in
the presence of a negative temperature gradient (thermal
lapse conditions), typical of a sunny day, in the case of
upwind propagation, or when the receiver is behind a hill
or a noise barrier. The situation studied in this paper cor-
responds to a refractive shadow zone (flat ground), and is
sketched in Figure 1. In the context of transportation and
industrial noise predictions, source and receivers are rela-
tively close to the ground, and the propagation distance is
usually less than 1 km.

In the atmospheric boundary layer, spatial scales span
many orders of magnitude, from millimeters to kilome-
ters, and some of them scatter acoustic energy more ef-
fectively. An example is given by Stinson et al. [1], who
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performed parabolic equation simulations in an upward re-
fracting atmosphere at an acoustic frequency of 500 Hz,
and showed that turbulent length scales between 2 and
5 m are most effective for scattering. Also, some scattering
properties are described by the theory of wave propagation
in random media [2, 3, 4, 5], which shows that there is a
coupling between turbulent scales, geometry and acous-
tic frequency. This theory has been used extensively for
remote sensing of the atmosphere [6, 7, 8]. For example,
Stinson et al. explained their numerical results thanks to
simple Bragg’s scattering considerations. Gilbert et al. [9]
used a distorted-wave Born approximation analysis and
formulated the scattering problem in terms of a “sampling
function” that filters the turbulence spectrum. Wilson et
al. [10] also noticed that “the propagation geometry and
acoustic frequency combine to create a filter that selects a
specific part of the turbulence spectrum participating in the
scattering”. That is how they explained that different au-
thors could have obtained acoustic predictions in reason-
able agreement with measurements using different spectral
models (Gaussian, Kolmogorov, von Kármán, etc.).

Nevertheless, little is known on the actual extent of the
turbulence spectrum that is “acoustically filtered”. This pa-
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Figure 1. Geometry of the problem. The limiting ray is the ray
that grazes the ground in the geometric approximation.

per is aimed at giving estimates of the turbulent scales
involved in the scattering of sound. This is done in the
context of traffic and industrial noise propagation, thus the
emphasis is on sound pressure level (or amplitude) fluctu-
ations rather than phase fluctuations. Note that these esti-
mates are useful in numerical simulations, to take into ac-
count the relevant turbulent scales without modelling the
entire turbulence spectrum. They can also be useful in ex-
periments to know whether the sensors resolution and av-
eraging periods chosen to measure wind speed and tem-
perature fluctuations enable to cover a wide enough range
of turbulent scales (see for instance [11] on the influence
of sensors resolution, and [10, 12] on the influence of av-
eraging periods).

The coupling between turbulence scales, geometry and
acoustic frequency is first studied in section 2 using the-
oretical tools from the wave propagation in random me-
dia literature. It will be seen that temperature and ve-
locity fluctuations do not have the same scattering prop-
erties [13, 14]. It will also be shown that the scattering
regimes can be different depending on the propagation dis-
tance and acoustic frequency considered. Then the role of
small and large-scale turbulent fluctuations are studied us-
ing parabolic equation (PE) simulations in section 3. PE
simulations are performed in third octave bands between
50 Hz and 1600 Hz. This is a major difference with previ-
ous studies where pure tones were usually considered. Fi-
nally, estimates of the smallest and largest turbulent scales
involved in acoustic scattering are derived based on the
theoretical and numerical results.

2. Theoretical background

The basic assumptions and turbulence models used in this
paper are first presented in section 2.1. Then classical re-
sults from wave propagation in random media are pre-
sented, namely the scattering cross-section for single scat-
tering in section 2.2, and the variances of log-amplitude
and phase fluctuations in the Rytov approximation in
section 2.4. These expressions relate turbulent scales to
acoustic frequency and geometry, and will be used in sec-
tion 3 to estimate the smallest and largest turbulent struc-
tures involved in acoustic scattering. The simulations per-
formed in section 3 are also placed in Flatté’s Λ − Φ di-

agram [15] in section 2.3 to determine which scattering
regimes they correspond to and whether the Rytov approx-
imation is valid or not. All the expressions are written in a
three-dimensional domain.

2.1. Turbulence modelling

In this paper, scattering by temperature and velocity fluc-
tuations are studied. The Markov approximation is sup-
posed to be valid, which means that the longitudinal corre-
lation length of the sound field is large with respect to the
size of the inhomogeneities in the medium. This implies
that there is a main direction of propagation, say x, where
r = (x, y, z) (see [4, 5] for more details on the Markov ap-
proximation). Temperature and velocity fluctuations can
be written in terms of index of refraction fluctuations µ,
where n = c0/c = n + µ is the index of refraction, c the
sound speed and c0 a reference sound speed (µ� 1). The
variance of the index of refraction fluctuations µ2 is related
to the variance of temperature fluctuations T ′2 and velocity

fluctuations V ′2x by

µ2 ≈
T ′2

4T 2
0

+
V ′2x

c2
0

, (1)

with T0 the reference temperature related to c0. Let K =
(Kx,K⊥) be the turbulent wave number, with K⊥ =
(Ky, Kz) its component in the plane perpendicular to x.
The spectral density of index of refraction fluctuations
Φn(Kx,K⊥) is related to the spectral densities of temper-
ature fluctuations ΦT (Kx,K⊥) and velocity fluctuations
Φxx(Kx,K⊥) by

Φn(Kx,K⊥) =
ΦT (Kx,K⊥)

4T 2
0

+
Φxx(Kx,K⊥)

c2
0

. (2)

In the Markov approximation: Φn(Kx,K⊥) = Φn(0,K⊥).
Furthermore, the turbulence is supposed to be homoge-
neous and isotropic in the following, thus the spectral den-
sities only depend on K = |K⊥|, and

Φn(K) =
1

4T 2
0

G(K)
4πK2

+
1

c2
0

E(K)
4πK2

, (3)

where G(K) and E(K) are the three-dimensional spectra
of thermal turbulent energy and kinetic turbulent energy,
respectively.

These spectra can be modelled by a modified von Kár-
mán spectrum [3, 5]:

G(K) =A
T ′2

L
2/3
0

K2

(

K2 +
1

L2
0

)−11/6

e−K
2/K2

m , (4)

E(K) =
11
6
A
V ′2x

L
2/3
0

K4

(

K2 +
1

L2
0

)−17/6

e−K
2/K2

m , (5)

with A = 0.792, Km = 5.92/l0, and with L0 and l0 the
outer and inner scales of turbulence, respectively. These
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spectra can also be written in terms of the structure param-
eters C2

T and C2
v for temperature and velocity fluctuations,

respectively [3, 5]: C2
T = BT ′2L

−2/3
0 and C2

v = BV ′2x L
−2/3
0

with B = 1.91. In this study, the parameters of the turbu-
lence spectra are L0 = 5m, l0 = 0.05m, and µ2 = 10−5.
This value of µ2 corresponds to a temperature standard
deviation of 1.8 K and a velocity standard deviation of
1.1 m/s. The three-dimensional spectra of turbulent energy
written in terms of index of refraction fluctuations are plot-
ted in Figure 2. One can notice that temperature fluctu-
ations are stronger than velocity fluctuations in the en-
ergy subrange (K < 0.2 m−1 with the parameters chosen),
while velocity fluctuations are stronger in the inertial and
dissipation subranges (K > 0.2 m−1).

2.2. Scattering cross-section

The scattering cross-section characterizes the amount of
acoustic power scattered by a volume of inhomogeneities
(or scattering volume) per unit incident acoustic intensity
and per unit volume [5, 16]:

σ =
r2Īs
I0V

. (6)

Īs is the mean scattered acoustic intensity, I0 is the inci-
dent acoustic intensity, and the notations of Figure 3 are
used. For homogeneous and isotropic turbulence, the gen-
eral form of the scattering cross-section is [5, 16]:

σ(θ) =
k2

8
cos2 θ

sin2 θ/2

[

1

4T 2
0

G(2k sin θ/2)

+
cos2 θ/2

c2
0

E(2k sin θ/2)

]

, (7)

where k = 2π/λ is the acoustic wave number, and λ is
the acoustic wavelength. The derivation of equation (7)
is given in the Appendix. Bragg’s scattering is assumed,
which means that the acoustic wave is single scattered by
the volume of inhomogeneities, and the distances r0 and
r are supposed to be large with respect to the linear size
L of the scattering volume V . Thus equation (7) holds for
r0, r � L � λ; it does not depend on the waveform.
Equation (7) shows that scattering at the angle θ depends
mainly on turbulent structures with associated wave num-
bers K = 2k sin θ/2, which is known as Bragg’s relation.
This is an important result that can be used to relate tur-
bulent scales to acoustic frequencies, as will be done in
section 3.

Combining equations (4), (5) and (7), an analytical ex-
pression can be given for the scattering cross-section asso-
ciated with a modified von Kármán spectrum:

σ(θ) =
2−20/3AL

−2/3
0 k1/3 cos2 θ

(

sin2 θ/2 + (2kL0)−2
)11/6

D(k, θ) (8)

·

[

T ′2

T 2
0

+
11
6
V ′2x

c2
0

sin2 θ

sin2 θ/2 + (2kL0)−2

]

,
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Figure 2. Three-dimensional spectra of thermal turbulent energy
Gn = G/(4T 2

0 ) and kinetic turbulent energy En = E/c2
0 written

in terms of index of refraction fluctuations.

Figure 3. Geometry for Bragg’s scattering. V is the scattering
volume and θ is the scattering angle.

with D(k, θ) = exp(−4k2 sin2 (θ/2)/K2
m). Equation (8) is

equation (21) of [17], where Km is assumed to be large
so that D(k, θ) ≈ 1. D(k, θ) is related to the dissipa-
tion scales of turbulence, and can be approximately set to
1 when λ/(2 sin θ/2) � l0. This inequality is generally
valid in atmospheric acoustics. To normalize the scatter-
ing cross-section, let’s introduce the total scattering cross-
section σ0, defined as [5, 16]:

σ0 =
∮

σ(n) dΩ(n) =
∫ 2π

0
dφ
∫π

0
σ(θ) sin θ dθ, (9)

with dΩ(n) the solid angle in the direction of the unit vec-
tor n. σ0 is the total scattering power removed from the
incident wave per unit distance. It is also related to the ex-
tinction coefficient γ, defined as p = exp(−γx)p0, where p
is the mean field and p0 the incident field [4, 5]:

σ0 = 2γ = 4π2k2
∫∞

0
KΦn(K) dK. (10)

Ostashev [5] shows that equation (10) is valid for motion-
less and moving random media. For a modified von Kár-
mán spectrum, the total scattering cross-section is:

σ0 =
3
5
πAk2L0

(

T ′2

4T 2
0

+
V ′2x

c2
0

)

. (11)
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Figure 4. Normalized cross-section σ/σ0 at 200 Hz for tempera-
ture (solid line) and velocity (dashed line) fluctuations.
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To obtain this result, the integration in equation (10) is
calculated using confluent hypergeometric functions (see
for instance Appendix D of [3]).

The scattering cross-section can be split into two con-
tributions: σ = σT + σV , where σT is due to temperature
fluctuations and σV is due to velocity fluctuations. The nor-
malized scattering cross-section σ/σ0 for these two contri-
butions is plotted in Figure 4 at 200 Hz. It appears that the
behaviors of σV and σT differ mostly at small scattering
angles. For forward scattering (θ = 0), σV is zero while
σT reaches a maximum. At higher scattering angles, the
normalized scattering cross-section is higher for velocity
fluctuations than for temperature fluctuations. Expressions
for the scattering cross-section in a two-dimensional do-
main are derived in the Appendix. Using a modified von
Kármán spectrum to model turbulent fluctuations, an ex-
pression similar to equation (8) is obtained. It appears that
the dependence of the scattering cross-section on scatter-
ing angle is the same in two and three dimensions. This is

an important result since PE simulations used in section 3
are performed in a two-dimensional domain.

2.3. Scattering regimes in the Λ − Φ diagram

Scattering by atmospheric turbulence can follow different
characteristics, or regimes, depending on the geometry and
acoustic frequency considered. These scattering regimes
can be looked at in the Λ − Φ diagram, as introduced by
Flatté et al. [15, Chap. 6]. The Λ − Φ diagram can also be
used to assess the validity of the Rytov approximation used
in section 2.4. The strength parameter Φ and the diffraction
parameter Λ are defined as [15, 18]:

Φ2 = 2LTk2rµ2, (12)

Λ = r/(kL2
T ), (13)

where LT = L0/1.339 is the integral scale. Depending on
the value of these parameters, the scattering is referred to
as “unsaturated”, “saturated”, or “partially saturated” (see
Figure 5). The limits between the three scattering regions
are determined using an energy spectrum with a power law
K−5/3 [15, 18] (Kolmogorov spectrum or, equivalently,
von Kármán spectrum in the inertial range). In the unsatu-
rated region (small Φ), one micropath reaches the receiver
(single scattering) and the Rytov approximation of smooth
perturbations is valid. In the saturated and partially satu-
rated region (large Φ), multipath propagation occurs, and
the Rytov approximation breaks down. In the partially sat-
urated region, Λ is small and the micropaths are correlated,
while in the fully saturated region, Λ is large and the mi-
cropaths are uncorrelated.

The PE simulations studied in section 3 are performed
for frequencies between 50 Hz and 1600 Hz and a max-
imum range of 1000 m. The associated Λ − Φ pairs are
plotted in Figure 5. It appears that for large ranges and
high frequencies, the simulations correspond to saturated
scattering conditions, which means that the Rytov approx-
imation is not valid anymore. Let rsat(f ) be the limiting
range between the unsaturated region and one of the satu-
rated regions, and flim the acoustic frequency for which
Λ = Φ = 1 (intersection between the three scattering
zones):

flim = c0/

[

2πLT
(

2µ2
)1/3

]

, (14)

rsat(flim) = LT/
(

2µ2
)1/3

. (15)

With the turbulence spectrum defined in section 2.1, flim =
534Hz and rsat(flim) = 138m. When f ≤ flim, the
scattering goes directly from no saturation to full satura-
tion as the range increases (see Figure 5), and the limit-
ing range is found solving Φ = 1. When f ≥ flim, the
scattering passes through the partially saturated region as
the range increases and the limiting range is found solving
ΛΦ2.4 = 1. Thus:

rsat =











1/
(

2LTk2µ2
)

if f ≤ flim,
[

LT
0.8/

(

21.2k1.4µ2
1.2
)]1/2.2

if f ≥ flim,
(16)
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The third octave band spectrum of rsat is plotted in Fig-
ure 6. rsat decreases rapidly with acoustic frequency, be-
coming less than 1000 m above 200 Hz and less than 200 m
above 500 Hz. Since the Rytov approximation is valid for
r < rsat, this strongly limits the use of the Rytov approxi-
mation at the highest frequencies considered in this paper.

2.4. Variance of log-amplitude and phase fluctua-
tions in the Rytov approximation

In this section, the variances of log-amplitude and phase
fluctuations in the Rytov approximation of smooth pertur-
bations are presented. Let ψ (r) be the eikonal of the scat-
tered pressure p(r) = A(r) exp(S(ir)):

ψ (r) = χ(r) + iφ(r) (17)

= ln
(

A(r)
A0(r)

)

+ i
(

S(r) − S0(r)
)

,

where χ(r) and φ(r) are respectively the fluctuations of
the log-amplitude and the phase with respect to the inci-
dent wave (with the subscript zero). The variances of log-
amplitude and phase fluctuations can be deduced from the
correlation functions Bχ (r, ρ) for the log-amplitude and
Bφ(r, ρ) for the phase at lag ρ = 0. They have the gen-
eral form [2, 4, 5]:

χ2, φ2 = 2π2k2r

∫∞

0
fχ,φ(K2/K2

F )K Φn(K) dK, (18)

with K2
F = k/r (KF is inversely proportional to the ra-

dius of the first Fresnel zone), and Φn as given in equation
(3). Equation (18) shows the existence of a function fχ,φ
of K2/K2

F that filters the turbulence spectrum. This filter-
ing function depends on the waveform. For spherical wave
propagation:

fχ,φ(K2/K2
F ) =

∫ 1

0

[

1 ∓ cos
(

η(1 − η)K2/K2
F

)]

dη. (19)

The filtering functions fχ and fφ are evaluated numeri-
cally and plotted in Figure7. When K2/K2

F approaches
zero, fχ approaches zero while fφ approaches its maxi-
mum value of 2. This means that part of the large turbu-
lent structures will not contribute to the variance of log-
amplitude fluctuations χ2.

To characterize the dependence of this large structures
filtering on acoustic frequency and geometry, an approxi-
mate analytical expression for fχ,φ is derived. Introducing
the approximation

η(1 − η) ≈

{

η/2 if 0 ≤ η ≤ 1/2,
(1 − η)/2 if 1/2 ≤ η ≤ 1,

(20)

in equation (19), the filtering function becomes:

fχ,φ(K2/K2
F ) ≈ 1 ∓

sin(K2/4K2
F )

K2/4K2
F

. (21)
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Figure 6. Third octave band spectrum of the limiting range rsat
between the unsaturated region and one of the saturated regions
(see Figure 5).
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Table I. Values of K1, the first zero of fχ,φ − 1. The exact so-
lution is estimated numerically from equation (19), and the ap-
proximate solution is calculated with equation (22).

Acoustic frequency (Hz) 100 200 400

K1 (m−1) at exact 0.26 0.37 0.52
r = 250m approximate 0.30 0.43 0.61

K1 (m−1) at exact 0.18 0.26 -
r = 500m approximate 0.22 0.30 -

Let K1 be the first zero of fχ,φ − 1. From equation (21):

K1 ≈ 2
√
πKF = 2

√

2π/
√

λr. (22)

Values of K1 estimated numerically and calculated with
equation (22) are compared in Table I for different ranges
and acoustic frequencies. For a range of 500 m and a fre-
quency of 400 Hz, no estimates are given since the Rytov
approximation beaks down (see section 2.3). Table I shows
that equation (22) overestimates K1 by 17% for the ranges
and acoustic frequencies considered. As a result, as given
in equation (22),K1 is proportional toKF or inversely pro-
portional to

√
λr. This property will be used in section 3.3

to estimate the minimum cut-off turbulent wave number.
The variances of log-amplitude and phase fluctuations

are evaluated numerically and plotted in Figure 8 at the
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acoustic frequencies of 100 Hz, 200 Hz and 400 Hz. The
calculations are made only for the ranges r ≤ rsat, with rsat
given in equation (16). Figure 8 shows that phase fluctua-
tions are approximately the same for both temperature and
velocity fluctuations. On the other hand, log-amplitude
fluctuations are greater for velocity fluctuations than for
temperature fluctuations. The variances of log-amplitude
and phase fluctuations in a two-dimensional domain are
presented in the Appendix. The filtering functions that ap-
pear are the same as those given in equation (19), which
shows that the influence of large-scale turbulent fluctua-
tions is similar in two and three dimensions.

3. Estimates of relevant cut-off turbulent
wave numbers

3.1. Parabolic Equation simulations

Acoustic propagation in a turbulent atmosphere can be
modelled using parabolic equation methods. In the clas-
sical formulation, called Wide Angle Parabolic Equation
(WAPE), the moving atmosphere is modelled by a hypo-
thetical motionless medium with the effective sound speed
ceff = c+V ′x. More recently, other formulations have been
proposed that maintain the vector properties of the velocity
field [14, 19]. In this study, simulations are based on one of
these formulations, the Mean Wind Wide Angle Parabolic
Equation (MW-WAPE) [20]. They are performed in a two-
dimensional domain. In the MW-WAPE formulation, the
pressure field p(r) is the solution of

∂p

∂x
= ik0

(

1 + F +M
∂

∂x

)1/2

p, (23)

with k0 = 2πf/c0 and

F = (n2 − 1) +
1

k2
0

∂2

∂z2
+

2in2

k0

V ′z
c0

∂

∂z

+
V ′2x

c2
0

(

1 +
1

k2
0

∂2

∂z2

)

−
1

k2
0

V ′2z

c2
0

∂2

∂z2
, (24)

M =
2in2

k0

V ′x
c0
−

2

k2
0

V ′xV
′
z

c2
0

∂

∂z
, (25)

where n = c0/c = n + µ is the index of refraction.
These equations are derived keeping terms of O(M2),
O(µM) and O(µ2), with µ the index of refraction fluc-
tuation and M = |V′|/c0 the Mach number. Also, the
acoustic wavelength λ is supposed to be small with re-
spect to the characteristic scale of inhomogeneities in the
medium L [5, 14, 19]. In the simulations presented here-
after, the condition λ � L is not strictly met over the
whole range of turbulent scales considered. However, Dal-
lois and Blanc-Benon [21, 22] showed that this condi-
tion can be somewhat relaxed. They studied the scatter-
ing of acoustic waves by a vortex of characteristic size
L = λ/4, and obtained very good agreement between
the MW-WAPE solution and a direct numerical solution of
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Figure 8. Variance of log-amplitude fluctuations χ2 and phase
fluctuationsφ2 in the Rytov approximation for temperature (solid
lines) and velocity (dashed lines) fluctuations.

the linearised Euler’s equations. Therefore, it seems that a
good accuracy can be achieved in the PE simulations even
when the restriction λ� L is not strictly met.

In order to obtain sound pressure level predictions in
third octave bands between 50 Hz and 1600 Hz, several
frequencies per band are calculated. As frequency in-
creases, the width of the third octave band increases such
that more frequencies need to be calculated within the
band to keep a good accuracy; as a result 46 frequencies
are calculated to obtain a complete third octave band spec-
trum. For all PE simulations presented in this paper, the
source height is 2 m, and the ground impedance is calcu-
lated using the Delany and Bazley model [23] with an ef-
fective flow resitivity of 200 kNsm−4, typical of grassland.
Also, the sound speed profile is c(z) = c0 + a ln(1+ z/z0),
with c0 = 340m/s, a = −2.1 s−1 and z0 = 0.1m. This
sound speed profile is representative of a strong sound
speed gradient. With this profile, the receiver is in the
acoustic shadow zone in the first 500 m of propagation for
third octave bands above 160 Hz. Thus, a range of 500 m
is used in the simulations for these bands, while a range of
1 km is used for third octave bands below 125 Hz.

The turbulence fields are generated using a random
Fourier modes technique assuming frozen turbulent fluc-
tuations. This technique is described in [24] for tempera-
ture fluctuations and in [14, 19] for velocity fluctuations.
The turbulent temperature field enters the PE through the
index of refraction fluctuation µ = −T ′/2T0. The turbu-
lent velocity fields V ′x and V ′z are directly included in the
PE, as seen in equations (24) and (25); it must be em-
phasized that the effective sound speed approximation is
not used. The turbulent fluctuations are obtained by sum-
mation over the random Fourier modes, whose amplitude
and phase are chosen to follow the spectral models pre-
sented in section 2.1. The Fourier modes are logarithmi-
cally distributed between a minimum turbulent wave num-
ber Kmin and a maximum turbulent wave number Kmax.
The sound pressure is then calculated by averaging over
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several realizations of the turbulence fields. In the follow-
ing, most results are plotted in terms of relative sound pres-
sure level, defined as ∆L = Lp − Lp,free, where Lp is the
calculated sound pressure level and Lp,free is the sound
pressure level in a homogeneous atmosphere in free field
conditions. Varying Kmin and Kmax in the PE simulations,
one can test the influence of different turbulent scales on
acoustic scattering. Based on these numerical results and
on theoretical results presented in section 2, cut-off turbu-
lent wave numbersKCmin andKCmax can be estimated, cor-
responding respectively to the smallest and largest turbu-
lent structures involved in acoustic scattering. Before es-
timating the maximum cut-off turbulent wave number in
section 3.2 and the minimum cut-off turbulent wave num-
ber in section 3.3, we will briefly comment on the choice
of the number of Fourier modes and the number of real-
izations in the simulations.

Since Kmin and Kmax can vary between simulations, it
makes more sense to keep the density of modes (number
of modes per decade of turbulent wave number) constant
rather than the total number of modes. Simulations with
100 and 200 modes per decade of turbulent wave num-
ber are compared in Figure 9, where the relative sound
pressure level is plotted with respect to height at a range
of 300 m and on the 1000 Hz third octave band; 30 real-
izations of turbulence are used in these simulations. The
solution in the absence of turbulence is also plotted for
comparison. Close to the ground, the receiver is deep in
the shadow zone, and the result is not very sensitive to the
difference in mode density. However, for higher receivers
located in the penumbra region, differences of 2 to 3 dB
can occur. Similar results are obtained on other third oc-
tave bands, thus 100 modes per decade of turbulent wave
number might not be enough to obtain reliable predictions
for all receiver positions. In the following, 200 modes per
decade of turbulent wave number will be used in the PE
simulations.

When comparing PE simulations with different num-
bers of realizations of the turbulence fields, it appears that
the largest differences occur at high frequency and rela-
tively far from the ground. Thus, in Figure 10, the relative
sound pressure level calculated with 25 and 30 realizations
is plotted with respect to range at a height of 25 m and on
the 1600 Hz third octave band. Levels are very close for
temperature fluctuations, and there are differences of up to
2 dB for velocity fluctuations. As a result, 30 realizations
of the turbulence fields seem enough to calculate the mean
acoustic field.

3.2. Estimate of the maximum cut-off turbulent
wave number

The influence of small turbulent structures is studied com-
paring PE simulations with different maximum turbulent
wave numbers Kmax, Kmin being set to 0.15 m−1. (It will
be show in section 3.3 than turbulent structures with wave
numbers smaller than 0.15 m−1 are relatively unimportant
for acoustic scattering). The relative sound pressure level
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Figure 9. Relative sound pressure level ∆L at a range of 300 m
and on the 1000 Hz third octave band for temperature (left)
and velocity (right) fluctuations. ∆L is calculated using 100
or 200 modes per decade of turbulent wave number (Kmin =
0.15 m−1 and Kmax = 32 m−1).
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Figure 10. Relative sound pressure level ∆L at a height of 25 m
and on the 1600 Hz third octave band for temperature (top) and
velocity (bottom) fluctuations. ∆L is calculated by averaging
over 25 and 30 realizations of turbulence (Kmin = 0.10 m−1 and
Kmax = 32 m−1).

on the 400 Hz third octave band for a receiver height of
1 m is plotted in Figure 11. For the reference simulation
with Kmax = 100 m−1, turbulence effects can be observed
at ranges greater than 150 m approximately, correspond-
ing to the shadow zone. At these ranges the relative sound
pressure level remains relatively constant. When Kmax is
decreased below a given threshold, scattering by turbu-
lent structures becomes weaker and the sound pressure
level in the shadow zone does not reach the reference level
corresponding to Kmax = 100 m−1; this is the case for
Kmax ≤ 4 m−1 in this particular example. Figure 12 shows
the evolution of the relative sound pressure level with re-
spect to height at a range of 300 m for the same set of sim-
ulations. As height increases, simulations with lowerKmax
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Figure 11. Relative sound pressure level ∆L at a height of 1 m
and on the 400 Hz third octave band for temperature (top) and
velocity (bottom) fluctuations.

Table II. Estimates of the slope α in KCmax = αf in terms of the
sound speed c0 at a range of 500 m.

Temperature Velocity
fluctuations fluctuations

Receiver height 1 m 10 m 1 m 10 m

Slope α 6.0c0 3.5c0 5.7c0 3.5c0

are in better agreement with the reference solution. For in-
stance, the simulation with Kmax = 2 m−1 yields a level
10 dB lower than the reference level at a height of 1 m, but
within 1 dB from the reference level at a height of 20 m. As
a result, the maximum cut-off wave number KCmax should
be estimated at the greatest range and at the smallest height
considered. On the 400 Hz third octave band, 8 m−1 would
be a good estimate for KCmax.

To study the dependence of KCmax on acoustic fre-
quency, the third octave band spectrum of the relative
sound pressure level at a range of 500 m and a height of
1 m is plotted in Figure 13. When acoustic frequency in-
creases, Kmax must increase so that the sound pressure
level remains close to the reference level, which means
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Figure 12. Relative sound pressure level ∆L at a range of 300 m
and on the 400 Hz third octave band for temperature (top) and
velocity (bottom) fluctuations.

that the maximum cut-off wave number KCmax increases
with acoustic frequency. This behavior can be explained
by the form of the scattering cross-section with respect
to scattering angle θ or turbulent wave number K, plot-
ted in Figure 14 at 200 Hz and 1600 Hz. Bragg’s rela-
tion K = 2k sin θ/2 is used to relate scattering angle
and turbulent wave number. For a given scattering angle,
higher turbulent wave numbers are involved when acous-
tic frequency increases, which explains why KCmax in-
creases with acoustic frequency. Considering all possible
scattering angles, Bragg’s relation yields K ≤ 2k and
KCmax = 2k = 4πf/c0.

The linear dependence KCmax = αf is also found in
the PE simulations. Table II gives estimates of the slope
α at a range of 500 m and heights of 1 and 10 m. On
a given third octave band, KCmax is taken as the small-
est Kmax whose associated relative sound pressure level is
within 1 dB from the reference level. The results are plot-
ted in Figure 15 for a receiver height of 1 m. For instance,
on the 1000 Hz third octave band, Figure 13 shows that
the simulation with Kmax = 16 m−1 is the only simula-
tion whose level is within 1 dB from the reference level
for both temperature and velocity fluctuations. As a re-
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Figure 13. Third octave band spectrum of the relative sound pres-
sure level ∆L at a range of 500 m and a height of 1 m for temper-
ature (top) and velocity (bottom) fluctuations.

sult, KCmax is equal to 16 m−1 on the 1000 Hz third octave
band. The largest value ofKCmax is 32 m−1 on the 1600 Hz
third octave band, showing that turbulent structures with
wave numbers larger than 32 m−1 are not needed in the
problem considered. The slope α is estimated using a least
square method (see the best fit lines in Figure 15). Val-
ues of αc0 around 6 and 3.5 are found for receiver heights
of 1 m and 10 m, respectively. This decrease of α with
increasing receiver height is in good agreement with the
trend observed in Figure 12 on the 400 Hz third octave
band. At both heights, αc0 is below the theoretical value
of 4π given by Bragg’s relation considering all possible
scattering angles. This difference can be attributed to large
scattering angles that are redirecting acoustic energy away
from the receiver. For modelling purposes, the maximum
cut-off turbulent wave number can be estimated using

KCmax =
4π
c0
f, (26)

even though KCmax is likely to be smaller than this value.
In this section, results are given for temperature and veloc-
ity fluctuations separately. Although sound pressure levels
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Figure 15. Third octave band spectrum of the maximum cut-off
turbulent wave number KCmax estimated from PE simulations at
a receiver height of 1 m. The best fit lines are also plotted.

in the shadow zone are higher for velocity fluctuations than
for temperature fluctuations, estimates of KCmax appear to
be the same, which means that both types of small-scale
fluctuations have the same scattering properties.

3.3. Estimate of the minimum cut-off turbulent wave
number

The influence of large turbulent structures is studied com-
paring PE simulations with different minimum turbulent
wave numbers Kmin, Kmax being set to 32 m−1. Let’s in-
troduce the error Err(Kmin) = |Lp(Kmin) − Lp,ref | where
Lp,ref is the sound pressure level of the reference simu-
lation with Kmin = 0.05 m−1. The error Err(Kmin) is an
indicator of the influence of turbulent structures whose as-
sociated wave numbers are between 0.05 m−1 and Kmin.
Maps of the relative sound pressure level for the reference
simulation and of the error Err(0.9 m−1) on the 400 Hz
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Figure 16. Relative sound pressure level ∆L for the reference
simulation (Kmin = 0.05 m−1) (top) and error Err(0.9 m−1) (bot-
tom) on the 400 Hz third octave band for temperature fluctua-
tions.

third octave band are plotted in Figure 16. These maps
give a clear indication of the region where large-scale fluc-
tuations have the most influence. It appears that the error
is largest in the transition region between the illuminated
region and the shadow zone, called the penumbra region.
For instance, at a range of 300 m and a height of 25 m,
Err(0.9 m−1) is about 5 dB. Deep in the shadow zone
(close to the ground), the error is significantly lower. Al-
though maps in Figure 16 correspond to temperature fluc-
tuations, similar results are obtained with velocity fluctua-
tions.

To estimate the minimum cut-off wave number KCmin,
the maximum of the error over the computation domain,
noted max[Err(Kmin)], is used. The computation domain
is 500 m long and 50 m high for third octave bands above
160 Hz, as seen in Figure 16. For third octave bands below
125 Hz, the propagation distance is extended to 1 km so
that the shadow zone is completely included in the domain,
as explained in section 3.1. The spectrum of the maximum
error max[Err(Kmin)] is plotted in Figure 17. One can no-
tice that the simulation with Kmin = 0.1 m−1 yields small
maximum errors over the entire spectrum. One can won-
der next if a higher value of Kmin would be acceptable. Up
to 400 Hz approximately, the maximum errors are seen to
decrease when acoustic frequency increases, which means
that less and less large-scale fluctuations play a significant
role, or else that KCmin increases when acoustic frequency
increases. Above 400 Hz, the maximum errors do not fol-
low a clear trend.

In section 2.4, it was shown that turbulent wave numbers
much smaller than K1, or equivalently much smaller than
the Fresnel wave number KF =

√
2π/
√
λr, do not con-

tribute to the variance of log-amplitude fluctuations cal-
culated in the Rytov approximation. Thus it would make
sense to look for an estimate of the minimum cut-off tur-

10

Third octave band central frequency (Hz)

2

10

3

0

2

4

6

8

10

12

14

16

m

a

x

[

E

r

r

(

K

m

i

n

)

]

 

(

d

B

)

Temperature fluctuations

=0.1m

K

K

K

K

K

min

min

min

min

min

-1

=0.3m

-1

=0.45m

-1

=0.6m

-1

=0.9m

-1

10

2

10

3

0

2

4

6

8

10

12

14

16

m

a

x

[

E

r

r

(

K

m

i

n

)

]

 

(

d

B

)

Velocity fluctuations

Third octave band central frequency (Hz)

Figure 17. Third octave band spectrum of the maximum of
Err(Kmin) for temperature (top) and velocity (bottom) fluctua-
tions. Below 125 Hz, the maximum is calculated over a range
of 1000 m and a height of 50 m; above 160 Hz, the maximum is
calculated over a range of 500 m and a height of 50 m.

bulent wave number under the form KCmin = βKF , with β
to be determined. At high frequencies and for long ranges,
the scattering is saturated (see Figure 5) and this relation
might not be valid anymore. In Figure 18, the maximum
error is calculated over the domain where the Rytov ap-
proximation is valid, i.e. r ≤ rsat, with rsat given in equa-
tion (16); the domain height is still 50 m. Compared to
Figure 17, the maximum error now keeps on decreasing
when acoustic frequency increases above 400 Hz. Note,
however, that the computation domain is significantly re-
duced above 800 Hz, since rsat is about 100 m at these fre-
quencies. As a result, the deep shadow zone might not be
reached at high frequencies.

The minimum cut-off turbulent wave number KCmin is
taken as the largest Kmin whose associated maximum er-
ror is less than 2 dB. These estimates are plotted with dots
in Figure 19. For instance, for temperature fluctuations on
the 400 Hz third octave band, Figure 18 shows that max-
imum errors are less than 2 dB for the simulations with
Kmin ≤ 0.6 m−1. Thus the estimate of KCmin is 0.6 m−1

in this case, as seen in Figure 19. Seven PE simulations
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have been performed with minimum wave numbers 0.1,
0.2, 0.3, 0.45, 0.6, 0.9, and 1.2 m−1, which explains why
the estimated KCmin curve has a “staircase” look. The es-
timates of KCmin are globally seen to increase with acous-
tic frequency. At low frequency, KCmin remains constant
at 0.1 m−1, which can be attributed to the weak energy
associated with turbulent structures whose wave numbers
are lower than 0.1 m−1 (see the turbulent spectra plotted in
Figure 2).

The estimates of KCmin are compared to βKF , KF be-
ing calculated with the same range as in the PE simula-
tions, i.e. 1000 m below 125 Hz, 500 m between 160 Hz
and 250 Hz, and rsat above 315 Hz (rsat < 500m above
315 Hz). The coefficient β has to be small enough such
that βKF remains lower or equal to the estimated value of
KCmin over the entire spectrum. This is the case with β = 1
for both temperature and velocity fluctuations, as seen in
Figure 19, even though estimates ofKCmin are significantly
lower for velocity fluctuations than for temperature fluctu-
ations at high acoustic frequency. This difference might be
due do the stronger amplitude variations induced by veloc-
ity fluctuations with respect to those induced by tempera-
ture fluctuations (see for instance the log-amplitude vari-
ance χ2 for both types of fluctuations in Figure 8). This
would explain that the maximum error in Figure 18 is usu-
ally greater for velocity fluctuations than for temperature
fluctuations for a given Kmin. In practice, the minimum
cut-off turbulent wave number can be estimated using

KCmin = KF , (27)

as long as the Rytov approximation is valid. It is interest-
ing to see that the filtering function fχ for log-amplitude
fluctuations plotted in Figure 7 is very small for K < KF .
Since velocity fluctuations induce stronger acoustic ampli-
tude fluctuations than temperature fluctuations, it might be
necessary to take β < 1 for velocity fluctuations.

4. Summary

Coupling between turbulent scales, geometry and acous-
tic frequency has been studied in order to estimate the ex-
tent of the turbulence spectrum that contributes to acoustic
scattering into a refractive shadow zone. This is done in
the context of traffic and industrial noise propagation, with
the perspective of predicting the sound pressure level vari-
ability in the deep shadow zone in relation to the turbulent
fluctuations of the atmosphere [25]. PE simulations have
been performed in third octave bands between 50 Hz and
1600 Hz to study the influence of small and large-scale tur-
bulent fluctuations. They show that smaller turbulent struc-
tures are needed when the receiver is closer to the ground.
It also appears that the maximum cut-off turbulent wave
number increases linearly with acoustic frequency, which
is in agreement with Bragg’s relation. Equation (26) can
be used to estimate the maximum cut-off turbulent wave
number KCmax.
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Figure 18. Third octave band spectrum of the maximum of
Err(Kmin) for temperature (top) and velocity (bottom) fluctu-
ations. The maximum is calculated over the domain where the
Rytov approximation is valid, i.e. r ≤ rsat.
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Figure 19. Third octave band spectrum of the minimum cut-
off turbulent wave number KCmin estimated from PE simulations
with the condition r ≤ rsat on the range. The solid lines corre-
sponds to βKF with β = 1.

PE simulations show that large turbulent structures play
a significant role in the penumbra region. When the Ry-
tov approximation is valid, the minimum cut-off turbulent
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wave number KCmin is seen to increase with acoustic fre-
quency. It can be estimated using equation (27). When the
Rytov approximation is not valid anymore, multipathing
occurs and equation (27) breaks down. In this case, all
the large-scale fluctuations with significant energy in the
turbulence spectrum must be kept; this is the case with
Kmin = 0.1 m−1 for the turbulent spectra used in this study.
Further work is needed to study the influence of large-scale
fluctuations in the saturated scattering regime.

Two basic assumptions used in this work are not met in
a real atmosphere: the two-dimensional geometry on the
one hand, and the isotropy and homogeneity of turbulence
on the other hand. PE simulations are performed in a two-
dimensional domain to keep the computation time accept-
able. As shown in the Appendix, scattering properties in
two and three dimensions are very similar using a modi-
fied von Kármán spectrum. Thus it is reasonable to say that
the estimates of the smallest or largest turbulent scales in-
volved in acoustic scattering are the same in a two or three-
dimensional domain. The modified von Kármán spectrum
used to model temperature and velocity fluctuations corre-
spond to an idealistic atmosphere. In a real atmosphere,
it has been shown that the assumptions of isotropy and
homogeneity break down for the large turbulent scales of
the energy-containing subrange [10, 12, 17, 26]. This is
particularly important for phase fluctuations, but since this
would change the scattering properties of turbulence, this
might change the coupling between turbulent scales, ge-
ometry and acoustic frequency too.

The estimates given in this paper can be useful in nu-
merical simulations to model the relevant part of the tur-
bulence spectrum in a given configuration. They can also
be used to know if the range of turbulent scales associated
with some wind speed or temperature measurements is
large enough for acoustic propagation purposes. In the fu-
ture, experimental campaigns where consecutive acoustic
and environmental measurements were performed could
be analyzed in view of the results presented in this paper
[25].

Appendix

In section 2, three-dimensional expressions for the scat-
tering cross-section and the variance of log-amplitude and
phase fluctuations in the Rytov approximation have been
presented. These results are well-known in the literature,
while similar expressions in a two-dimensional space can
hardly be found. The derivation and formula for the sound
scattering cross-section in two dimensions are presented
in Appendix A2. The classical derivation in the three-
dimensional case is also given since the basic steps in
both derivations are the same. The expression for the vari-
ance of log-amplitude and phase fluctuations in the Ry-
tov approximation is given in Appendix A3. The deriva-
tion has been done by Chevret [27], and is not repeated
here. For both the scattering cross-section and the vari-
ances of log-amplitude and phase fluctuations, two and
three-dimensional expressions are compared, showing that
scattering properties are similar in both cases.

A1. Turbulence modelling
The spectral density has the same dependence in turbu-
lent wave number in two and three dimensions [27]. In
the Markov approximation, the two-dimensional spectra
of thermal turbulent energy G2D(K) and kinetic turbulent
energy E2D(K) are related to the spectral density Φ2D

n (K)
by

Φ2D
n (K) =

1

4T 2
0

G2D(K)
πK

+
1

c2
0

E2D(K)
πK

. (A1)

Thus, for the modified von Kármán spectrum:

G2D(K) =C
T ′2

L
5/3
0

K

(

K2 +
1

L2
0

)−11/6

e−K
2/K2

m , (A2)

E2D(K) =
11
6
C
V ′2x

L
5/3
0

K3

(

K2 +
1

L2
0

)−17/6

e−K
2/K2

m ,

(A3)

with C = 5/3, and with the notations of section 2.1.
A2. Scattering cross-section
The derivation starts from the inhomogeneous Helmholtz
equation for the scattered pressure ps:

∇2ps + k2ps = −γ(r)ps, (A4)

with

γ(r) = −k2 T
′

T0
+ ∇

(

T ′

T0

)

∇

−
2i
c0k

∂V ′i
∂xj

∂2

∂xi∂xj
+

2ik
c0

V′ · ∇. (A5)

This expression for γ(r) is derived from Ostashev’s work
(see equation (7.1) of [5]) keeping only temperature and
velocity fluctuations. If the pressure field is single scat-
tered by the temperature and velocity fields, ps on the
right-hand side of equation (A4) can be replaced by the
incident pressure p0. Using an integral formulation:

ps(r) =
∫

Ln
γ(r′)p0(r′)G(r, r′) dnr′, (A6)

where n is 3 in 3D and 2 in 2D, and G(r, r′) is the associ-
ated Green’s function. Notations of Figure 3 are used, and
L is the linear size of the scattering volume. The Green’s
function is:

G(r, r′) =

{

(4π|r − r′|)−1 exp(ik|r − r′|) in 3D,
i
4H

(2)
0 (k|r − r′|) in 2D,

(A7)

with H (2)
0 the Hankel function of second kind and of order

zero. Assuming p0(r) = A0 exp(ikm0 · r) for the incident
wave, the derivatives of the γ(r′)p0(r′) term are written:

∂ exp(ikm0 · r′)
∂x′j

= ikm0,j exp(ikm0 · r′), (A8)
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with m0 = −r0/r0. Thus γ(r) in equation (A6) becomes:

γ(r) = −k2 T
′

T0
+ ikm0 · ∇

(

T ′

T0

)

(A9)

+
2ik
c0

(m0 · ∇)(m0 · V′) −
2k2

c0
(m0 · V′).

In the far-field approximation (r � L), |r−r′| ≈ r−m ·r′,
where m = r/r, and

H
(2)
0

(

k|r − r′|
)

≈
√

2
√

πk|r − r′|
exp
(

ik|r − r′| − iπ/4
)

.

Equations (A6) and (A7) thus yield:

p3D
s (r) =

A0eikr

4πr

∫

V

γ(r′)eik(m0−m)·r′ d3r′, (A10)

in three dimensions, and

p2D
s (r) =

A0ie ikr−iπ/4

2
√

2πkr

∫

S

γ(r′)e ik(m0−m)·r′ d2r′, (A11)

in two dimensions, with S the scattering surface. Further-
more, Ostashev [5] shows that for r, r0 � L� λ:

∫

Ln
(m0 · ∇′)η(r′)e ik(m0−m)·r′dnr′ (A12)

≈ −
∫

Ln
η(r′)ik(1 −m0 ·m)e ik(m0−m)·r′ dnr′.

This approximation applies to the second and third terms
of equation (A9). As a result, γ(r) in equations (A10) and
(A11) now reads, using m0 ·m = cos θ (see Figure 3):

γ(r) = −k2 cos θ
[

T ′

T0
+

2
c0

(m0 · V′)
]

. (A13)

Let Γ(K) be the Fourier transform of γ(r), defined here as:

Γ3D(K) =
1

8π3

∫

V

γ(r)e−iK·rd3r, (A14)

Γ2D(K) =
1

4π2

∫

S

γ(r)e−iK·rd2r, (A15)

in three and two dimensions, respectively. Using equations
(A10) and (A11), the scattered pressure can be written as
a function of Γ:

p3D
s (r) = 2π2A0eikr

r
Γ3D(−q), (A16)

p2D
s (r) = i

√

2π2A0eikr−iπ/4

√
πkr

Γ2D(−q), (A17)

with q = k(m0 −m). The mean scattered intensity is pro-
portional to psps∗(r), where ∗ means “complex conjugate
of”. Thus ΓΓ∗(q) needs to be calculated next; it can be re-
lated to the spectral densities of temperature fluctuations
ΦT and of velocity fluctuations Φij using equation (A13).

In three dimensions:

Γ3DΓ3D∗(−q) =
k4 cos2 θ

(8π3)2

∫

V

d3r′
∫

V

(

T ′(r′)T ′(r′+∆r′)

T 2
0

+4m0,im0,j

V ′i (r′)V ′j (r′+∆r′)

c2
0



 e−iq·∆r′d3r′′, (A18)

with ∆r′ = r′′ − r′. This result is obtained supposing the
temperature and velocity fields are uncorrelated. The cor-
relation functions of temperature and velocity fluctuations
appear in equation (A18). They are the inverse Fourier
transforms of the corresponding spectral densities, thus:

Γ3DΓ3D∗(−q) =
V

8π3
k4 cos2 θ

·

[

Φ3D
T (q)

T 2
0

+ 4m0,im0,j

Φ3D
ij (q)

c2
0

]

. (A19)

Combining equations (6), (A16) and (A19):

σ3D(q) =
r2p3D

s p3D
s
∗
(r)

A2
0V

=
4π4Γ3DΓ3D∗(−q)

V
(A20)

= 2πk4 cos2 θ

[

Φ3D
T (q)

4T 2
0

+ m0,im0,j

Φ3D
ij (q)

c2
0

]

.

In equation (7) presented in section 2.2, the scattering
cross-section is expressed as a function of the turbulent
energy spectra. This is straightforward noting that |q| =
2k sin θ/2 for homogeneous and isotropic turbulence, and
using

Φ3D
T (K) =

G3D(K)
4πK2

, (A21)

Φ3D
ij (K) =

(

δij −
KiKj

K2

)

E3D(K)
4πK2

. (A22)

The two-dimensional scattering cross-section is defined
as:

σ2D =
rĪs
I0S

. (A23)

Following the same steps as in the three-dimensional case,
one obtains:

Γ2DΓ2D∗(−q) =
S

4π2
k4 cos2 θ

·

[

Φ2D
T (q)

T 2
0

+ 4m0,im0,j

Φ2D
ij (q)

c2
0

]

. (A24)

Combining equations (A16), (A23) and (A24):

σ2D(q) =
rp2D

s p2D
s
∗
(r)

A2
0S

=
2π3Γ2DΓ2D∗(−q)

kS
(A25)

= 2πk3 cos2 θ

[

Φ2D
T (q)

4T 2
0

+ m0,im0,j

Φ2D
ij (q)

c2
0

]

.

13
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Figure A1. Normalized cross-section σ/σ0 at 200 Hz for temper-
ature (top) and velocity (bottom) fluctuations in two and three
dimensions.

For homogeneous and isotropic turbulence, the scattering
cross-section can be expressed as a function of the turbu-
lent energy spectra using

Φ2D
T (K) =

G2D(K)
πK

, (A26)

Φ2D
ij (K) =

(

δij −
KiKj

K2

)

E2D(K)
πK

. (A27)

This yields:

σ2D(θ) = k2 cos2 θ

sin θ/2

[

1

4T 2
0

G2D(2ksinθ/2) (A28)

+
cos2 θ/2

c2
0

E2D(2ksinθ/2)

]

.

Equation (A28) is the two-dimensional equivalent to equa-
tion (7). Both expressions have similar forms. Using equa-
tions (A2) and (A3), an analytical expression can be de-
rived for the two-dimensional scattering cross-section as-
sociated with a modified von Kármán spectrum:

σ2D(θ) =
2−14/3CL

−5/3
0 k−2/3 cos2 θ

(

sin2 θ/2 + (2kL0)−2
)11/6

D(k, θ) (A29)

·

[

T ′2

T 2
0

+
11
6
V ′2x

c2
0

sin2 θ

sin2 θ/2 + (2kL0)−2

]

,

where D(k, θ) is the same as in equation (8). The scat-
tering cross-section is normalized by the total scattering
cross-section, which is:

σ2D
0 =

∫ 2π

0
σ2D(θ) dθ, (A30)

in a two-dimensional domain. Comparing equations (8)
and (A29), it appears that the scattering cross-section is
very similar in two and three dimensions. This similar-
ity can be observed in Figure A1, where both expressions

0 100 200 300 400 500

10

-3

10

-2

10

-1

<

c

2

>

Temperature fluctuations

3D

2D

0 100 200 300 400 500

10

-3

10

-2

10

-1

range (m)

<

c

2

>

Velocity fluctuations

3D

2D

Figure A2. Variance of log-amplitude fluctuations χ2 in the Ry-
tov approximation at 200 Hz for temperature (top) and velocity
(bottom) fluctuations in two and three dimensions.
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Figure A3. Variance of phase fluctuations φ2 in the Rytov ap-
proximation at 200 Hz for temperature (top) and velocity (bot-
tom) fluctuations in two and three dimensions.

of the normalized scattering cross-section are plotted at
200 Hz. The angular dependence is the same in two and
three dimensions, even though the scattering is more in-
tense in a three-dimensional domain.
A3. Variance of log-amplitude and phase fluctuations
in the Rytov approximation
The variances of log-amplitude and phase fluctuations in
two dimensions are written [27]:

χ2, φ2 = 2πk2r

∫∞

0
fχ,φ(K2/K2

F )Φ2D
n (K) dK, (A31)

with fχ,φ given in equation (19) for spherical wave propa-
gation, and Φ2D

n given by equations (A1), (A2) and (A3).
Thus the filtering functions fχ,φ are the same in two and
three dimensions, which means that the coupling between
turbulence scales, acoustic frequency and geometry is the
same in both cases. The variances of log-amplitude and
phase fluctuations in two and three dimensions are evalu-
ated numerically at 200 Hz and compared in Figures A2
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and A3. Whereas the variances of log-amplitude fluctu-
ations have similar values in two and three dimensions
for both temperature and velocity fluctuations, the vari-
ance of phase fluctuations tends to be greater in two di-
mensions than in three dimensions. This difference can be
attributed to stronger components at low wave numbers in
the two-dimensional energy spectrum with respect to the
three-dimensional energy spectrum.
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