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Chapter 1

Wave equation and acoustic
plane waves

In this chapter, the linearized acoustic equations are derived from the equa-
tions of fluid mechanics. The wave equation is obtained in the time and in
the frequency domain, and plane wave solutions are described. Finally, the
acoustic intensity and power are introduced, and the sound pressure level
is defined. This chapter is based mostly on the books of Pierce [1] and
Chaigne [2].

1.1 Equations of fluid mechanics

We start here from the equations of fluid mechanics written for the pressure
pt(x, t), the velocity vt(x, t) the density ρt(x, t) and the entropy St(x, t) that
are functions of space x and time t. The subscript t means that these are
the total values in the fluid medium.

First, the conservation of mass or equation of continuity is written:

∂ρt
∂t

+∇.(ρtvt) =
Dρt
Dt

+ ρt∇.vt = 0, (1.1)

where
D

Dt
=

∂

∂t
+ vt.∇

is called the material or total derivative.
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Second, law of momentum conservation is given by:

ρt

[
∂vt

∂t
+ (vt.∇)vt

]
= −∇pt +∇.τ + ρtgez, (1.2)

where ρtgez corresponds to the gravitational force, that will be neglected in
the following, and τ is the viscous stress tensor. The viscous stress tensor is
important to model aeroacoustic source generation 1, but will be neglected
here in the context of acoustic propagation. The equation of momentum
conservation is called Euler equation for an inviscid fluid.

The last equation is given by the equation of state of the fluid, that can
be written as a general law linking pressure to density:

pt = f(ρt). (1.3)

1.2 Linear acoustics approximation and wave

equation

We now linearize the equations of fluid mechanics in a homogeneous medium
at rest, such that the mean velocity v0 = 0, and the mean density ρ0 and
pressure p0 are independent of space and time. Let us introduce the variables
associated to acoustic waves in a fluid medium:

• acoustic pressure [Pa]: p(x, t) = pt(x, t)− p0 ;

• particle velocity [m/s]: v(x, t) = vt(x, t) ;

• density associated to acoustic fluctuations [kg/m3]: ρ(x, t) = ρt(x, t)−
ρ0.

Keeping only terms of order 1, the continuity equation becomes:

∂ρ

∂t
+ ρ0∇.v = 0. (1.4)

Similarly, the linearized Euler equation is given by:

ρ0
∂v

∂t
= −∇p. (1.5)

1This will be studied in MF208 Aeroacoustics and propagation in inhomogeneous mov-
ing medium
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Finally, a first-order Taylor’s expansion of the equation of state yields:

pt = p0 +

(
∂pt
∂ρt

)
ρt=ρ0

(ρ− ρ0)⇔ p = c2ρ with c2 =

(
∂pt
∂ρt

)
ρt=ρ0

. (1.6)

Equations (1.4), (1.5) and (1.6) can be combined to obtain a single equation
on the acoustic pressure p. We first replace ρ by p/c2 in Equation (1.4) using
(1.6):

1

c2
∂p

∂t
+ ρ0∇.v = 0. (1.7)

Then, we substract the time derivative of Equation (1.7) and the divergence
of Equation (1.5) in order to eliminate the particle velocity:

1

c2
∂2p

∂t2
−∇2p = 0 . (1.8)

The operator ∇2 = ∆ is called Laplacian and is written in cartesian coordi-
nates:

∇2p = ∆p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
. (1.9)

The equations derived in this section have been obtained in the linear
acoustics approximation, that are valid for:

|p| � p0, |v| � c, |ρ| � ρ0. (1.10)

The linear acoustics approximation is valid in many applications. For in-
stance, the amplitude of acoustic pressure corresponding to the threshold of
pain is around 90 Pa (about 130 dB re. 20µPa), which is still two orders of
magnitude smaller than the atmospheric pressure that is close to 105 Pa.

1.3 Sound speed

As can be seen in the wave equation (1.8), and as will be seen in Section 1.5,
c is a velocity that is commonly called sound speed, that is defined as:

c2 =

(
∂pt
∂ρt

)
ρt=ρ0

. (1.11)
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Let us assume that we consider a perfect gas, for which the pressure ρt can
be related to the density ρt and the absolute temperature T (in Kelvins):

p = ρrT, (1.12)

where r is the specific gas constant: r ≈ 287 J/kg/K for air. As acoustic
processes are nearly isentropic (adiabatic and reversible), the Laplace’s law
can be used that is written for a perfect gas:

pt/ρ
γ
t = constant ⇒ dpt

pt
= γ

dρt
ρt
, (1.13)

with γ the ratio of specific heats: γ = 1.4 for air. Thus:

c =

√
γp0
ρ0

=
√
γrT0, (1.14)

with T0 the mean temperature. The sound speed is seen to increase with air
temperature. It is approximately 340 m/s at 20◦C (293 K).

The behavior of a liquid such as water is more complex and cannot be
modeled as a perfect gas. The sound speed in fresh water is about 1481 m/s
at 20◦C and close to 1500 m/s in seawater.

1.4 Waves in the frequency domain

For a harmonic wave at angular frequency ω = 2πf , the pressure can be
written p(x, t) = A(x) cos (ωt+ φ(x)), where A is the amplitude and φ is the
phase that are both functions of space. It is useful to introduce the following
complex notation:

p(x, t) = Re
[
P (x)e−iωt

]
, (1.15)

where Re denotes the real part and the P (x) = A(x)e−iφ(x) is the complex
pressure amplitude. Introducing P (x)e−iωt into the wave equation:

∆P + k2P = 0 , (1.16)

where k = ω/c = 2π/λ is the acoustic wave number, and λ is the wavelength.
Equation (1.16) is called the Helmholtz equation. Many computational
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Figure 1.1: Plane wave traveling along the x-direction.

methods assume a harmonic sound field as any sound signal can be decom-
posed into harmonic components using the Fourier transform (spectral de-
composition), and it is easier to solve in the frequency domain as there is no
time derivative to evaluate.

Remark: it is also possible to use the ejωt convention instead of the e−iωt

convention. In this case, we would have:

p(x, t) = Re
[
P (x)ejωt

]
, (1.17)

with P (x) = A(x)ejφ(x). The Helmholtz equation remains the same with
both notations!

1.5 Plane waves

Plane waves correspond to specific solutions to the wave equation where the
wavefronts are planar, as seen in Figure 1.1. As a result, the wave equation
is simply:

1

c2
∂2p

∂t2
− ∂2p

∂x2
= 0, (1.18)

and the general solution, also called d’Alembert solution, is given by:

p(x, t) = F+

(
t− x

c

)
+ F−

(
t+

x

c

)
, (1.19)

where the function F+ describes the wave propagation in the positive x direc-
tion, and F− describes the wave propagation in the negative x direction. The
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associated particle velocity field can be obtained from the linearized Euler
equation (1.5):

ρ0
∂v

∂t
= −∇p = −∂p

∂x
ex =

1

c

[
F+

(
t− x

c

)
− F−

(
t+

x

c

)]
ex. (1.20)

As a result, v = vxex with:

vx(x, t) =
1

ρ0c

[
F+

(
t− x

c

)
− F−

(
t+

x

c

)]
ex. (1.21)

Let us consider a special case of interest, that is a harmonic plane wave
traveling along the positive x axis, with p(x, t) = Re{P (x)e−iωt} and v(x, t) =
Re{V (x)e−iωt}:

P (x) = P0e
ikx, (1.22)

V (x, t) =
P (x, t)

ρ0c
ex. (1.23)

With this type of waves the amplitude remains constant with distance.
As a result, the ratio of pressure to velocity is constant for a plane wave and
equal to Zc,fluid = ρ0c. The quantity Zc,fluid is called the characteristic
acoustic impedance of the fluid.

1.6 Acoustic intensity and power

The time-averaged acoustic power of a source is defined as:

〈Wa〉 =

∫
S

〈I〉.ndS =

∫
S

〈pv〉.ndS, (1.24)

where n is the normal to the surface S and I〉 is the time-averaged acoustic
intensity given by:

〈I〉 =
1

T

∫ t0+T

t0

I(t)dt =
1

T

∫ t0+T

t0

p(t)v(t)dt. (1.25)

For harmonic waves, let p(x, t) = Re{P (x)e−iωt} and v(x, t) = Re{V (x)e−iωt}.
The time-averaged acoustic intensity for sinusoidal waves becomes:

〈I〉 =
1

2
Re{PV ∗}. (1.26)
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1.7 Sound pressure level and sound power

level

The sound pressure level (SPL) is defined as:

Lp = 10 log10

(
p2rms
p2ref

)
= 20 log10

(
prms
pref

)
, (1.27)

where pref is a reference pressure and prms is the time-averaged or rms pres-
sure:

p2rms = 〈p2〉 =
1

T

∫ t0+T

t0

p2(t)dt. (1.28)

For a harmonic wave, prms = max |p|/
√

2. Similarly, the sound power level
(SWL) is defined as:

LW = 10 log10

(
〈Wa〉
Wref

)
, (1.29)

with Wref a reference power. The reference pressure pref is typically 2 ×
10−5 Pa in air (threshold of hearing at 1 kHz) and 10−6 Pa in water.
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Chapter 2

Acoustic elementary sources

2.1 Velocity potential

To solve acoustic problems, it is sometimes convenient to introduce an acous-
tic velocity potential Φ associated with the particle velocity v. Taking the
curl of Equation (1.5):

∂

∂t
∇× v = 0, (2.1)

since ∇ × ∇p = 0. This means that the rotational of particle velocity is
independent of time. If the acoustic field is irrotational (∇ × v = 0), then
the particle velocity derives from a potential Φ: v = ∇Φ. The relationship
between p and Φ is obtained from Equation (1.5):

p(r, t) = −ρ0
∂Φ

∂t
. (2.2)

Replacing this expression into the wave equation (1.8), we see that Φ satisfies
the same equation as p:

∂2Φ

∂t2
− c2∇2Φ = 0 . (2.3)

It is convenient to solve for the velocity potential because acoustic pres-
sure and particle velocity can be deduced by taking the temporal or spatial
derivative of Φ, as will be seen in Section 2.2.
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2.2 Spherical waves

We now consider waves with spherical symmetry, which means that the vari-
ables do not depend on the spherical coordinates θ and φ: p = p(r, t) and
v = v(r, t)er. The wavefronts are spheres, and the acoustic intensity vector
is along along the r direction: I = Irer. This solution corresponds to the
case of a point source with spherical symmetry.

Rewriting the homogeneous wave equation (2.3) for the velocity potential
in spherical coordinates:

1

c2
∂2Φ

∂t2
− 1

r

∂2(rΦ)

∂r2
= 0⇔ 1

c2
∂2(rΦ)

∂t2
− ∂2(rΦ)

∂r2
= 0.

This means that rΦ can be written as a sum of a function of t − r/c and a
function of t + r/c, as done in Section 1.5 for plane waves. If we keep only
the outward-going wave:

Φ(r, t) =
1

r
F
(
t− r

c

)
, (2.4)

and thus:

p(r, t) = −ρ0
∂Φ

∂t
= −ρ0

r
F ′
(
t− r

c

)
, (2.5)

v(r, t) =
∂Φ

∂r
=
p(r, t)

ρ0c
− 1

r2
F
(
t− r

c

)
. (2.6)

It appears that the pressure amplitude decreases as 1/r. Also, the particle
velocity is composed of two terms. Since the second term decreases as 1/r2,

it becomes negligible if r is sufficiently large (far-field) and v(r, t) ≈ p(r,t)
ρ0c

,
which corresponds to the relationship for plane waves.

It is possible to calculate the acoustic power of this wave by integrating
over a sphere of radius r. From Equation (1.24), considering that the acoustic
intensity is constant on the sphere and that n = er:

〈Wa〉 =

∫
S

〈I〉.erdS = 4πr2〈I(r)〉. (2.7)

If we consider a harmonic spherical wave of the form p(x, t) = Re{P (r)ejωt},
with

P (r) =
A

r
e−jkr, (2.8)
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the following time-averaged acoustic intensity is obtained from Equation (1.26):

〈I(r)〉 =
|P |2

2ρ0c
=
〈p2〉
ρ0c

. (2.9)

From Equations (2.7) and (2.9), the acoustic power is thus:

〈Wa〉 = 4πr2
〈p2〉
ρ0c

=
2π|A|2

ρ0c
. (2.10)

It appears clearly that the acoustic power is independent of the distance r
since A is a constant; the acoustic power < Wa > is a characteristics of the
source(s) inside the sphere S.

From the previous expression, it is possible to derive a simple relationship
between the sound pressure level and the sound power level:

Lp = LW − 10 log10(4πr
2) , (2.11)

where Wref = p2ref/(ρ0c). In air, we consider typically pref = 20 × 10−6 Pa
and ρ0c ≈ 415 kg/m2/s, thus Wref ≈ 10−12 W. The term 10 log10(4πr

2) is
called geometrical spreading. This means that there is an attenuation
of 10 log10(4) ≈ 6 dB of the sound pressure level Lp when the distance r is
doubled (6 dB attenuation per doubling distance).

2.3 Acoustic field radiated by a pulsating sphere

and a monopole

In order to introduce, let us consider a pulsating sphere of radius a whose
velocity is va, as schematically shown in Figure 2.1. In the harmonic regime,
va = Vae

jωt. Since the sphere velocity is independent on θ and φ, the acoustic
pressure is given by Equation (2.8), and the particle velocity can be obtained
from Euler’s equation:

V (r) =
A

ρ0cr

(
1 +

1

jkr

)
e−jkr. (2.12)

The normal particle velocity at r = a must be equal to the sphere velocity:
V (a) = Va. As a result:

A = jkρ0cVa
a2

1 + jka
ejka, (2.13)
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Figure 2.1: Schematics for a pulsating sphere of radius a.

and the acoustic pressure field can be written:

P (r) =
a

r

ρ0c

4πa2
Q

jka

1 + jka
e−jk(r−a), (2.14)

where Q = 4πa2Va is the volume velocity of the pulsating sphere. Using
Equations (2.9) and (2.7), the expression for the time-averaged acoustic in-
tensity and power are given by:

〈I(r)〉 =
1

2
Re{P (r)V (r)∗} =

ρ0c

2
V 2
a

a2

r2
(ka)2

1 + (ka)2
, (2.15)

〈Wa〉 = 4πr2〈I(r)〉 = ρ0c
Q2

8πa2
(ka)2

1 + (ka)2
. (2.16)

When the radius of the pulsating sphere is much smaller than the acoustic
wavelength (ka � 1) and the receiver is sufficiently far from the sphere
(r � a), the acoustic pressure becomes:

P (r) =
jωρ0Q

4πr
e−jkr. (2.17)

This expression corresponds to an omnidirectional point source called monopole.
The time-averaged acoustic intensity and power become for the monopole:

〈I(r)〉 =
ρ0c

32π2

k2Q2

r2
, (2.18)

〈Wa〉 =
ρ0c

8π
k2Q2. (2.19)
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2.4 Acoustic field radiated by a dipole

Another important elementary source called dipole is obtained by combining
two monopoles whose volumes velocities are out of phase (±Q), as shown in
Figure 2.2(a). In the far-field (r � d), the distances r1 and r2 can be written:
r1 ≈ r − d cos θ/2 and r2 ≈ r + d cos θ/2. As a result:

P (r, θ) =
jωρ0Q

4π

(
e−jkr1

r1
− e−jkr2

r2

)
≈ −ωρ0Qe

−jkr

2πr
sin

(
kd

2
cos θ

)
. (2.20)

When the separation d between the monopoles is small compared to the
acoustic wavelength (kd� 1), this expression can be simplified:

P (r, θ) ≈ −ωρ0kdQe
−jkr

4πr
cos θ. (2.21)

One important feature of the dipole that is apparent in Equation (2.21) is
that the acoustic pressure radiation depends on the angle θ. It is maximal in
the axis of the dipole (θn = nπ) and minimal in the perpendicular direction
(θn = (2n+ 1)π/2). The associated directivity factor is given by:

D(θ) =
|P (r, θ)|

maxθ |P (r, θ)|
= | cos θ|, (2.22)

and is plotted in Figure 2.2(b).
In the far-field, it can be shown that the particle velocity is along r, with

V (r, θ) ≈ P (r, θ)/(ρ0c). As a result, we obtain:

〈Ir〉 =
1

2
Re[PV ∗r ] =

|P (r, θ)|2

2ρ0c
=
ρ0ck

4d2|Q|2

32π2r2
cos2 θ. (2.23)

The acoustic power radiated by the dipole is given by:

〈Wa〉 =

∫
S

〈I(r, θ)〉r2 sin θdθdφ = 2πr2
∫ π

0

〈Ir〉 sin θdθ. (2.24)

Since ∫ π

0

cos2 θ sin θdθ =

[
−1

3
cos3 θ

]π
0

=
2

3
,

we obtain finally:

〈Wa〉 =
ρ0ck

4d2|Q|2

24π
. (2.25)
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Figure 2.2: (a) Acoustic dipole seen as the combination of two monopoles of
volume velocities ±Q, and (b) associated directivity for kd� 1.

2.5 Inhomogenous wave equation with source

terms

Another way to introduce acoustic sources is to include source terms on the
right hand-side of the linearized equations of Section 1.2. In presence of a
source of mass, the linearized continuity equation becomes:

1

c2
∂p

∂t
+ ρ0∇.v = ṁV , (2.26)

with ṁV the injected mass per unit volume and per unit time (in kg/m3/s).
An example of such a source is a air bubble oscillating in a liquid or a
loudspeaker inserted in a baffle. Similarly, in presence of external forces in
the fluid, the linearized Euler equation is written:

ρ0
∂v

∂t
+∇p = f

V
, (2.27)

with f
V

the exterior forces imposed to the fluid per unit volume. This
corresponds to oscillating sources, or to a loudspeaker without baffle.

To obtain the wave equation, we substract the time derivative of Equa-
tion (2.26) and the divergence of Equation (2.27) as done in Section 1.2, and
we obtain:

1

c2
∂2p

∂t2
−∆p = m̈V −∇.fV . (2.28)
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We obtain two additional source terms on the right-hand side. The first
term corresponds to an acceleration term, and is thus similar to the pulsating
sphere or the monopole. The second term depends on the orientation of the
exterior force, and is thus similar to the dipole.

2.6 Green’s function

2.6.1 Definition

The Green’s function is the solution of the wave equation with a unit point
impulsive source term:(

1

c2
∂2

∂t2
−∆

)
g(x, t|xS, τ) = δ(x− xS)δ(t− τ), (2.29)

with τ the source time, t the receiver time, xS the source position, and x
the receiver position. The Green’s function should be zero for t < τ due
to causality considerations. Let G(ω, x|xS) be the Fourier transform of the
Green’s function:

G(ω, x|xS) =

∫ +∞

−∞
g(x, t|xS, τ)e−jωtdt. (2.30)

Equation (2.29) becomes:(
−ω

2

c2
−∆

)
G(ω, x|xS) = δ(x− xS)

∫ +∞

−∞
δ(t− τ)e−jωtdt = δ(x− xS)e−jωτ ,

(2.31)
using the sifting property of the delta function:∫ +∞

−∞
f(x)δ(x− x0)dx = f(x0). (2.32)

The phase term e−jωτ is equal to 1 if the origin of the impulse is chosen at
τ = 0. As a result, the frequency-domain Green’s function simply written
G(x|xS) in the following is solution of the Helmholtz equation with a point
source term:

∆G(x|xS) + k2G(x|xS) = −δ(x− xS), (2.33)

where k = ω/c.
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2.6.2 Green’s function in free field

In order to derive the expression for the Green’s function in free field, let us
start from the inhomogeneous wave equation (2.28) with a point source term
ṁV = ρ0q(t)δ(x) and fV = 0. For a harmonic volume velocity q(t) = Qejωt,
the acoustic pressure is written p(x, t) = P (x)ejωt and is solution of the
following Helmholtz equation:

∆P + k2P = −jωρ0Qδ(r). (2.34)

The solution has spherical symmetry such that P (r) = A
r
e−jkr. Let us now

integrate this equation over a sphere of radius ε and volume Vε:

A

∫
Vε

∆

(
e−jkr

r

)
dV + Ak2

∫
Vε

e−jkr

r
dV = −jωρ0Q

∫
Vε

δ(x)dV = −jωρ0Q.

(2.35)
The idea is then to let ε tend to zero. The first integral can be evaluated
using the divergence theorem:

A

∫
Vε

∆

(
e−jkr

r

)
dV = A

∫
S

∇
(
e−jkr

r

)
.ndS = A

∫
S

(
−jk − 1

r

)
e−jkr

r
dS

= −4πε2A

[
jk

ε
+

1

ε2

]
e−jkε

−−→
ε→0
−4πA.

An upper bound can be found for the second integral:

Ak2
∫
Vε

e−jkr

r
dV = Ak2

∫
V

e−jkr

r
4πr2dr ≤ 4π

∫ ε

0

rdr = 2πε2 −−→
ε→0

0. (2.36)

As a result, A = jωρ0Q
4π

and we finally obtain:

P (r) =
jωρ0Q

4πr
e−jkr, (2.37)

which corresponds to the monopole solution given by Equation (2.17). Com-
paring Equations (2.33) and (2.34), it appears that P (r) = jωρ0G(r). Gen-
eralizing this result to a point source at xS instead of 0, the free-field Green’s
function is obtained:

G(x|xS) =
e−jk|x−xS |

4π|x− xS|
=
e−jkr

4πr
, (2.38)
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with r = |x− xS| the source-receiver distance.
Let us now take the inverse Fourier transform of this expression:∫ +∞

−∞
G(ω, x|xS)ejωtdω =

∫ +∞

−∞

e−jkr

4πr
ejωtdω =

1

4πr
δ
(
t− r

c

)
.

To obtain the time-domain Green’s function, a time shift τ must be added:

g(x, t|xS, τ) =
1

4πr
δ
(
t− τ − r

c

)
. (2.39)

This simply means that the receiver time t is equal to the sum of the source
time τ and the propagation time r/c.

2.6.3 Properties

The Green’s function in free field meets the reciprocity property, which means
that the Green’s function remains the same if source and receiver positions
are interchanged in a medium at rest:

time domain: G(x, t|xS, τ) =
1

4πr
δ
(
t− τ − r

c

)
= G(xS,−τ |x,−t)

frequency domain: G(x|xS) =
e−jkr

4πr
= G(xS|x).

The superposition principle also applies. For N point sources of amplitudes
Sn:

pc(x) =
N∑
n=1

SnG(x|xSn). (2.40)

Similarly, for a continuous distribution of monopole over a source volume VS:

pc(x) =

∫
VS

S(xS)G(x|xS)dVs, (2.41)

with S(xS) the monopole-amplitude distribution per unit volume.
Remark: using the e−iωt convention, the Green’s function in free field is

given by:

G(x|xS) =
eik|x−xS |

4π|x− xS|
=
eikr

4πr
. (2.42)
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Chapter 3

Guided waves

An acoustical waveguide is a particular slender, hollow and rigid structure
(typically a pipe) allowing the confinement and propagation of acoustic waves
in a well-defined direction inside the structure.

Waveguides can be found in many applications such as wind instruments
where pipes are tuned to a chosen resonant frequency, exhaust pipes that are
designed to trap high level engine noise, pipes in industrial buildings that
transmit unwanted noises over great distances, or even the streets of large
cities that also transmit sound from one end to the other.

Another important category of waveguides, very useful to our societies,
concerns electromagnetic waves. But, although their modeling and analysis is
very similar to the case of acoustic waves, they are obviously not the subject
of this course.

In this chapter we will first revisit the equations of acoustic propagation
in this particular geometry that is the waveguide. Then we will introduce
modeling concepts such as the impedance of the waveguide, the transmission
matrix, the notion of impedance. These concepts will allow us to study the
main properties and uses of acoustic waveguides.

3.1 Acoustic wave propagation in a duct

3.1.1 Propagation in a rectangular duct

Let us consider the system sketched on figure 3.1. It consists of a duct of
rectangular section (dimensions H × L) in which we aim at analyzing the
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Figure 3.1: Sketch view of a duct of rectangular section filled by a compress-
ible fluid.

acoustic waves propagation.
The following hypotheses are made:

• The duct is infinite in z−direction.

• The walls are perfectly rigid.

• There are no visco-thermal losses in the fluid (as considered up to now
in the course).

As demonstrated in Chapter 1, the pressure in the fluid obeys the linear
wave equation for acoustics (1.8), which writes in cartesian coordinates:

∂2p

∂t2
− c2

[
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

]
= 0. (3.1)

The fluid is inviscid and the walls are perfectly rigid. The velocity hence
satisfy the following boundary conditions on these walls:

v . n = 0. (3.2)
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It can be rewritten in terms of the pressure by making use of the linearized
Euler equation (1.5),

∇ p . n = 0. (3.3)

Let us look for a solution of these equations in the form:

p(x, y, z, t) = P (z, t)f(x)g(y). (3.4)

Introducing Equation (3.4) into (3.1) and dividing the resulting expression
by Pfg, we obtain:

1

c2
P̈

P
− P ′′

P
− f ′′

f
− g′′

g
= 0. (3.5)

Putting the term depending on x on the right,

−f
′′

f
= − 1

c2
P̈

P
+
P ′′

P
+
g′′

g

= constant

= k2x

The solution for f takes hence the form of an harmonic functions, f(x) =
A cos(kxx) +B sin(kxx), and making use of the boundary conditions on rigid
walls at x = 0 and x = L, we show that there is an infinite and discrete set
of solutions:

f(x) = A cos kxx with kx =
mπ

H
, m ∈ N. (3.6)

The same can be done for the term that depends on y only:

−g
′′

g
= − 1

c2
P̈

P
+
P ′′

P
− k2x

= constant

= k2y.

And considering the boundary conditions,

g(y) = B cos kyy with ky =
nπ

L
, n ∈ N. (3.7)

Finally, we show that the pressure consists in a sum of solutions,

p(x, y, z, t) =
∞∑
m

∞∑
n

Pmn(z, t)fm(x)gn(y). (3.8)
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Each component Pmn(z, t) is governed by a one-dimensional propagation
equation (one for each pair m,n):

∂2Pmn
∂t2

− c2∂
2Pmn
∂z2

+ c2bmnPmn = 0, (3.9)

with

bmn =

(
m2π2

H2
+
n2π2

L2

)
. (3.10)

Let us now look for solutions of these wave equations in the form of a
propagative wave,

Pmn = ej(kz−ωt). (3.11)

Introducing this in (3.9), we obtain the dispersion relation for each family of
waves (m,n):

k2 =
ω2

c2
− bmn. (3.12)

Depending on the sign on the right-hand side, we have then two possibilities:

• If ω2 < c2bmn, k is real and the waves are neutral (propagating) waves.
The waves propagate along the duct without any loss.

• If ω2 < c2bmn, k is purely imaginary and the waves are evanescent.
There is no energy transport by these waves in this case.

We have hence identified the so-called cutoff frequency of each mode
(m,n),

fmn =
c

2

√
m2

H2
+
n2

L2
. (3.13)

For (m,n) = (0, 0), the cutoff frequency f00 = 0, indicating that there are
propagating waves at any frequencies. Moreover for this particular propaga-
tion mode, f(x)g(y) = 1 and the pressure is homogeneous in each section.
Consequently, these waves are plane waves. For any other values of m and
n, there is a frequency below which no energy propagates.

Finally, we introduce the cutoff frequency of the duct,

fc = min
m 6=0,n6=0

fmn. (3.14)

For any frequency smaller than fc only plane waves are propagating in the
duct. This is the general regime in which waveguides are used.
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Figure 3.2: First pressure modes in the cross-section of the duct. Levels
are arbitrary with blue being the minimum, negative value, red being the
maximum positive value. Pressure is homogeneous in the case (m,n) = (0, 0),
indicating a plane wave propagation.
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The general solution for the pressure in the duct can be written as the
sum of all these propagation modes,

p(x, y, z, t) =
∞∑
m

∞∑
n

cos
(mπx
H

)
cos
(nπy
L

) (
Amne−jkz +Bmnejkz

)
ejωt.

(3.15)
The cross-section pressure distribution cos(kxmx) cos(kyny) of the 16 first
modes is plotted on Figure 3.2. All the pressure modes, except (0, 0) give
rise to evanescent waves below their corresponding cutoff frequency.

3.1.2 The duct of circular cross-section

Considering a duct of circular cross-section of radius a lead to similar calcu-
lations as those done above in the rectangular case. We show only the main
results here.

The linear acoustics Equation (1.8) is now written in cylindrical coor-
dinates, and looking for solution in the form p(r, θ, z, t) = P (z, t)f(r)g(θ)
that satisfy the zero normal velocity condition on r = a, we finally obtain a
series of Bessel’s equations leading to the following general solution for the
pressure:

P (r, θ, z, t) =
∞∑
m

∞∑
n

cos(mθ)Jm

(
χmn

r

a

) (
Amne−jkz +Bmne−jkz

)
ejωt

(3.16)
The 16 first cross-sectional pressure modes are plotted on Figure 3.3. For

this geometry, the cutoff frequency is given by f10 and reads,

f10 ∼
1.84c

2πa
. (3.17)

Hence, the smaller is the radius a, the higher is the cutoff frequency.

3.2 Plane wave propagation analysis in ducts

In this section we restrict the analysis to frequencies below the cutoff fre-
quency of the duct, so that only plane waves actually propagate in the system.
In this context, we present some classical tools and methods to characterize
the properties of acoustical waveguides.
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Figure 3.3: First pressure modes in the cross-section of the duct. Levels
are arbitrary with blue being the minimum, negative value, red being the
maximum positive value. Pressure is homogeneous in the case (m,n) = (0, 0),
indicating a plane wave propagation. The minimum cutoff frequency f10 is
indicated on the figure for reference.

26



Figure 3.4: Schematic view of a portion of a duct between z1 and z2 with
two waves propagating at a given frequency.

3.2.1 Characteristic impedance of the waveguide

Consider a plane wave propagating in the positive x−direction. Pressure and
velocity read,

p(z, t) = Aej(ωt−kz) = P (z)ej(ωt),

v(z, t) =
p(z, t)

ρ0c
ez = V (z)ej(ωt)ez. (3.18)

In Chapter 1, the characteristic acoustic impedance of the fluid has been
introduced as the ratio between the pressure and the velocity for a plane
wave,

Zc,fluid =
P

V
= ρ0c0, (3.19)

which is the same for the guided plane wave in the duct.
Let us now introduce the acoustic flow-rate for a duct of cross section S:

U(z) = V (z)S. (3.20)

We define the characteristic impedance of the waveguide as the ratio between
the pressure and the flow rate:

Zc =
P

U
=
ρ0c0
S

. (3.21)

3.2.2 Transfer matrix modelling

The characteristic impedances given in equations (3.19) and (3.21) refer to
one particular wave propagating in one direction and do not depend on space.
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Let us now consider a part of the waveguide between z1 and z2. For a given
frequency, the duct carries a wave propagating in the positive z−direction,
the other propagating in the negative z−direction, with respective ampli-
tudes A and B. The system is sketched on figure 3.4. The pressure and flow
rate read,

P (z) = Ae−jkz +Bejkz,

U(z) = Sρ0c
(
Ae−jkz −Bejkz

)
. (3.22)

The pressure and velocity at z1 can be expressed as function as the pressure
and velocity at z2. This writes in matrix form:[

P (z1)
U(z1)

]
=

[
cos k(z2 − z1) jZc sin k(z2 − z1)

jZ−1c sin k(z2 − z1) cos k(z2 − z1)

] [
P (z2)
U(z2)

]
. (3.23)

The matrix in equation (3.23) is referred to as the transfer matrix.
Transfer matrix modelling is particularly useful for predicting the acoustic

transmission, or resonance frequencies of complex piping systems consisting
of chained elements. Each element can be modelled by a transfer matrix, so
that the whole system model can be deduced from a product of the transfer
matrices of all its individual elements.

3.2.3 Impedance propagation modelling

Let us introduce a local impedance Z(z), defined as the ratio between pres-
sure and acoustic flow rate,

Z(z) =
P (z)

U(z)
. (3.24)

It is then possible to show from equation (3.23) that

Z(z1) =
P (z1)

U(z1)
= Zc

j tan k(z2 − z1) + Z(z2)
Zc

1 + jZ(z2)
Zc

tan k(z2 − z1)
. (3.25)

Impedance propagation modelling can be even more convenient than
transfer matrix modelling, as we are now dealing with scalar functions, in-
stead of matrices.
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Figure 3.5: Two pipes of length L representative of the acoustic properties
of a flute (left) and a clarinet (right).

Application to the eigenfrequency calculation of a finite pipe

As a first example, consider a pipe of length L, whose extremities can be
open or closed. If the pipe is open at both extremities, this models a flute,
as the mouthpiece and the end are open. The mouthpiece of a clarinet has
a reed and when played by the musician, this end is closed. These systems
are sketched on figure 3.5. As an approximation, we can consider that at an
open end, the pressure is always equal to the atmospheric pressure, hence
the pressure fluctuation vanishes. As a consequence, the impedance is zero.
Conversely, at a closed end the velocity (or flow rate) vanishes, and the
impedance is infinite. For both systems, the impedance Z(L) = 0. Using
equation (3.25), we calculate the impedance at z = 0:

Z(0) = j tan kL. (3.26)

Hence, for a flute, we have:

Flute: Z(0) = 0 ⇒ k =
nπ

L
, f =

nc

2L
, (3.27)

and for a clarinet:

Clarinet: Z(0) =∞ ⇒ k =
(2n+ 1)π

L
, f =

(2n+ 1)c

4L
. (3.28)

The fundamental frequency is halved compared to the open-open case, and
one would hear a change in the timber of the produced sound.

Cross section change

Using the impedance formalism, it is possible to model a change of cross-
section, sketched on figure 3.6. As the flow rate is maintained and the is
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Figure 3.6: Change of cross-section.

Figure 3.7: Derivation.

no pressure jump at this change of cross-section, the impedance is preserved
at the passage of this discontinuity. When propagating the impedance in
each duct to solve the problem, one has to remind that the characteristic
impedances Zc1 and Zc2 are different, because of the change of cross-section.

Derivation

Another classical acoustical waveguide element is the derivation, of which
an example is sketched on figure 3.7. At such a discontinuity, the volume
velocity conservation and the uniqueness of the pressure can be invoked, to
show that the impedance in one duct at the discontinuity is equal to the sum
of the impedances in all other ducts. Note that this law necessitates to make
a convention choice for the sign of the flow rate, hence the impedance as well.
This kind of discontinuity allows us to characterize the influence of holes in
wind instruments, or to model sound propagation in complex duct networks
in the industry.
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Radiation impedance of an open end

To use the impedance formalism in the presence of an open end, we considered
zero pressure fluctuations (sec. 3.2.3), hence zero impedance. Although this
gives a rough acceptable approximation of the resonant frequencies, the way
the plane wave in the tube progressively adapts to a spherical wave in the
outside 3D world induces a more complicated impedance behaviour. To take
into account this phenomenon, a radiation impedance is introduced:

Zr = Rr + jXr. (3.29)

The real part of Z characterizes here the acoustic power transmitted outside
the duct, while the imaginary part characterizes the phase shift induced by
the wave reflection that is not occurring exactly at the duct termination.

The low frequency limit of the radiation impedance was demonstrated by
[3]:

Zr = Zc

(
(ka)2

4
+ jk∆L

)
, (3.30)

with ∆L ∼ 0.613a for a non baffled pipe termination.

Horns

It was said without demonstration that the real part of the radiation impedance
quantifies the amount of power radiated to the outside and its low frequency
limit scales as the squared radius of the pipe. Thus it can improve the ra-
diation efficiency to increase the radius. That is the aim of horns of figure
3.8

A simple and efficient way to model the acoustic propagation in horns
is to perform a discretization of the duct considering chained ducts with
progressive cross-section changes.

3.3 Lumped acoustic elements

If the characteristic size of an acoustic element in a waveguide network is
small compared to the considered wavelength, an even simpler approximate
model can be considered. In the case of the duct part of figure 3.4 is short
compared to the wavelength, a Taylor expansion at first order can be made
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Figure 3.8: Left: A large horn loudspeaker (Source: Wikimedia Commons).
Middle: Dog looking at and listening to a phonograph by Francis Barraud,
1998 (Source: Wikimedia Commons). Right: Schematic view of a discretized
horn.

for kL� 1: [
P (z1)
U(z1)

]
=

[
1 jρ0ωL

S

j jωLS
ρ0c2

1

] [
P (z2)
U(z2)

]
(3.31)

This approximation can be convenient to analyse the acoustic behaviour of
small elements. As an example, consider the system schematized in figure
3.9. It consists of two pipes. The system is open at z = z1 and closed at
z = z3.

Using successive transfer matrices approaches from z3, where the flow-rate
is zero, to the opening at z1, we can express the ratio between the pressure
at the opening, P (z1) and that inside the volume, P (z2) = P (z3):

P (z2)

P (z1)
=

1

1− ω2

ω2
c

, (3.32)

with,

ωc = c

√
S1

L1V2
, (3.33)

where V2 is the volume of the large duct portion. We hence show that a
resonance occurs inside this volume if the inlet pressure contains fluctuations
at the frequency ωc. This system is referred to as an Helmholtz resonator. It
must be noted that in the limit of lumped elements, the resonance frequency
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Figure 3.9: Left: Schematic view of an Helmholtz resonator modelled as a
lumped element. Right: Photograph of an Helmholtz resonator. Source:
Wikimedia commons.

do not depend on the shape of the large duct portion, but only on its volume.
A photograph of an Helmholtz resonator is shown on the right of figure 3.9.
When put near the ear, we can clearly ear a distinct note (here a G, called
Sol in french). This note come from the resonance at a specific frequency,
which the ambient noise is sufficient to create.
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Chapter 4

Room acoustics

4.1 Modal theory of room acoustics

4.1.1 Modes in a rectangular room

We are looking for the solution of the wave equation in a rectangular room of
dimensions Lx×Ly×Lz with rigid walls, as shown in Figure 4.1. Looking for
the solutions under the form p(x, y, z, t) = P (x, y, z)ejωt, with P (x, y, z) =
Px(x)Py(y)Pz(z), we obtain the following Helmholtz equation:

∆P + k2P = 0⇔ P ′′xPyPz + PxP
′′
y Pz + PxPyP

′′
z + k2PxPyPz = 0, (4.1)

with k = ω/c = 2π/λ. This equation can be rewritten:

P ′′x
Px

+
P ′′y
Py

+
P ′′z
Pz

+ k2 = 0. (4.2)

In this equation, only the term P ′′x /Px depends on x hence

P ′′x
Px

= −Cx ⇔ P ′′x + CxPx = 0, (4.3)

thus

Px(x) =

{
Ax cosh(

√
−Cxx) +Bx sinh(−

√
−Cxx) if Cx < 0

Ax cos(
√
Cxx) +Bx sin(

√
Cxx) if Cx > 0.

(4.4)

The same result can be obtained along y and z.
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Figure 4.1: Rectangular room of dimensions Lx × Ly × Lz.

Le us now use the boundary conditions on the wall. The walls are rigid
which means that the particle velocity must be zero on the walls. If we project
the linearized Euler’s equation on the normal n to the wall we obtain:

ρ0Vn = −∂P
∂n

= 0. (4.5)

Applying these boundary conditions on the walls located at x = 0 and x = L:

P ′x(0) = 0 and P ′x(L) = 0. (4.6)

The condition P ′x(0) = 0 imposes Bx = 0. If Cx < 0, the condition P ′x(L)
yields Ax sinh(

√
−CxL) = 0 that is only possible for Ax = 0. To obtain a

non-trivial solution, we must impose Cx = k2x > 0. In this case, the condition
P ′x(L) yields sin(kxL) = 0 which imposes kx = km = mπ/Lx, m ≥ 0. As a
result:

Px(x) = Ax cos(kmx) with km =
mπ

Lx
,m ≥ 0. (4.7)

The same type of solution is obtained along y and z hence the modal shapes
have the following form:

Ψmnp(x, y, z) = A cos

(
mπ

Lx
x

)
cos

(
nπ

Ly
y

)
cos

(
pπ

Lz
z

)
. (4.8)

The acoustic wavenumber is obtained from Equation (4.2) :

k2 = k2x + k2y + k2z ⇔ k2mnp =

(
mπ

Lx

)2

+

(
nπ

Ly

)2

+

(
pπ

Lz

)2

, (4.9)
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and the eigenfrequency associated with mode (m,n,p) is :

fmnp =
ckmnp

2π
=
c

2

√(
m

Lx

)2

+

(
n

Ly

)2

+

(
p

Lz

)2

. (4.10)

As the functions Ψmnp form an orthogonal modal basis, the frequency-domain
acoustic pressure can be written as a linear combination of the modal shapes:

P (x, y, z, f) =
∞∑
m=0

∞∑
n=0

∞∑
p=0

Qmnp(f)Ψmnp(x, y, z), (4.11)

with Qmnp(f) the modal coordinates.
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Figure 4.2: Modal shapes for the axial mode (1,0,0) (top plots) and the
tangential model (2,1,0) (bottom plots).

Different types of modes can be obtained depending on the value of the
triplet (m,n, p):
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• Axial modes: modes for which only one of the three indices is nonzero,
such as (m, 0, 0). The lines of constant pressure are thus parallel to the
walls, with maximum values on the walls, as can be seen in Figure 4.2(a)
for the mode (1, 0, 0);

• Tangential modes: modes for which only one of the three indices is
zero, such as (m,n, 0). The acoustic pressure is now maximum in the
corners, as can be seen in Figure 4.2(b) for the mode (2, 1, 0);

• Oblique modes: modes for which all three indices are nonzero.

4.1.2 Modal density

The number of modes of frequency below a given value fmax is difficult to
evaluate exactly. However, at high frequency, the number of oblique modes
is much greater than the number of axial and tangential modes, and a useful
approximation can be obtained. Indeed, in the (kx, ky, kz) wavenumber do-
main, each mode corresponds to an elementary volume π

Lx
π
Ly

π
Lz

. The volume

corresponding to k < kmax = 2πfmax/c is 1/8th of a sphere of radius kmax, as
only positive values of kx, ky and kz are acceptable. As a result, the number
of modes such that k < kmax or f < fmax is given by:

N(f) ≈ Vsphere/8

Vmode

=
1
8
4
3
πk3max
π3

LxLyLz

=
LxLyLz

6π2

(
2πfmax

c

)3

=
4π

3
V

(
f

c

)3

,

(4.12)
with V = LxLyLz the volume of the room.

The room modal density is given by the derivative of N(f) with respect
to f :

D(f) =
dN

df
=

1

(∆f)mode

≈ 4πV f 2

c3
, (4.13)

where (∆f)mode is the mean spacing between two consecutive modes in Hertz.
The modal density D(f) is expressed in modes/Hz.
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4.2 Sabine statistical theory of room acous-

tics

4.2.1 Assumptions

The statistical theory or reverberation theory presented here has been devel-
oped by Wallace C. Sabine in the beginning of the 20th century. It relies on
the following assumptions:

1. the energy density is uniform (independent on space x):

w(x, t) =
1

2
ρ0v

2 +
1

2

p2

ρ0c2
≈ w(t); (4.14)

2. we assume that a diffuse acoustic field is present, which means that it
is a superposition of many elementary plane waves whose directions are
uniformly distributed over a solid angle of 4π;

3. the energy per unit surface absorbed by a wall is proportional to the
incident energy per unit surface.

These assumptions are valid at high frequencies, when we can neglect the
modal behavior of the room.

In the following, we will derive an equation on the energy density averaged
over a period T greater than the acoustic period 1/f :

w(t) =
1

T

∫ t0+T

t0

w(τ)dτ.

Following assumption 2 given above, the energy density w is written as:

w =
∑
i

wi =
∑
i

p2i
ρ0c2

, (4.15)

because vi = pi/ρ0c for a plane wave thus wi = p2i /ρ0c
2 following Equa-

tion (4.14). The time-averaged energy density is thus:

w =
1

ρ0c2

∑
i

p2i . (4.16)
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If the plane waves are uncorrelated then:

p2 =

(∑
i

pi

)2

=
∑
i

p2i +
∑
i 6=j

pipj ≈
∑
i

p2i , (4.17)

thus we obtain finally the following relationship between the time-averaged
energy density and the mean-squared pressure:

w ≈ p2

ρ0c2
. (4.18)

4.2.2 Equation of energy conservation in rooms

Let us consider a room where the energy is brought by a sound source of
power Ws. The energy is dissipated due to the wall absorption, thus the
equation of energy conservation can be written:

d

dt

∫
V

wdV = Ws −Wa, (4.19)

with Wa the acoustic power absorbed by the wall. As w is independent on
x, and Wa is proportional to the incident power Wi:

V
dw

dt
= Ws − αWi, (4.20)

where α is the absorption coefficient that is between 0 and 1.
In order to calculate Wi, let us consider an an elementary wall surface

∆S, as shown in Figure 4.3. For a plane wave of acoustic intensity Ii and
direction ni, the acoustic power over the elementary surface ∆S is given by:

dWi = dI ini.ns∆S = dI i cos β∆S, (4.21)

with ns the normal to the wall. For a plane wave, dI i = cdwi. As we
assume a diffuse field, the energy is distributed equally over all directions
(4π steradians), thus dwi = wdΩ/(4π). As can be seen in Figure 4.3, dΩ =
2π sin βdβ, with 0 ≤ β ≤ π/2, thus the incident acoustic power is given by:

Wi =
cw∆S

4π

∫ π/2

0

2π sin β cos βdβ =
cw∆S

4
. (4.22)
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Figure 4.3: Elementary surface ∆S and solid angle dΩ.

Injecting this expression in Equation (4.20), and considering that each wall
surface Si may have a different absorption coefficient αi, we obtain the equa-
tion of evolution of the time-averaged energy density:

V
dw

dt
+
cw

4

∑
i

αiSi = Ws. (4.23)

4.2.3 Reverberation time

In the permanent regime, Equation (4.23) yields simply:

w =
4Ws

cAs
, (4.24)

where As is the equivalent area of open windows given by:

As =
∑
i

αiSi = αS, (4.25)

with α the mean absorption coefficient in the room. For an open window,
the sound is indeed completely absorbed (or transmitted outside the room)
by the surface element Si (αi = 1) such that (As)i = Si. If the source is
stopped at t = 0 from the permanent regime, the energy density follows a
decreasing exponential law:

w =
4Ws

cAs
exp

(
− t
τ

)
, (4.26)
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(a) (b)

Figure 4.4: (a) Energy density increase or decrease following Sabine statisti-
cal theory, (b) illustration of the reverberation time TR60.

with τ = 4V
cAs

. See Figure 4.4(a).
The reverberation time is defined as the time required for the energy

density, or equivalently the mean-squared pressure as p2 ≈ ρ0c
2w, to decrease

by a factor of 60 dB: w(t = TR60) = 10−6w(t = 0). See Figure 4.4(b). This
yields Sabine’s equation:

TR60 =
24V ln(10)

c
∑

i αiSi
=

24V ln(10)

cαS
≈ 0, 16

V (m3)

As(m
2)
,

considering c ≈ 343 m/s at 20◦C. When α → 0, TR60 → ∞ (no absorption
in the room). When α → 1, TR60 → 0, 16V/S, whereas we could expect a
value of 0 (total absorption in the room). In this case Sabine’s theory is not
valid, as the assumption of diffuse field requires a relatively small absorption
coefficient.

4.2.4 Validity of statistical theory: Schroeder frequency

To determine the validity of the statistical theory, where the modal behavior
of the room is neglected, we need to determine the frequency range over
which there is a large modal overlap, which means that many modes will
contribute at a given frequency. We assume here that the mode damping is
well approximated by Sabine theory, which yields a -3 dB bandwith (∆ω)res =
1/τ , that is:

(∆f)res =
(∆ω)res

2π
=

cAs
8πV

.
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We consider that a high modal overlap is reached when at least three modes
are found within the bandwidth (∆f)res:

3(∆f)mode ≤ (∆f)res, (4.27)

where (∆f)mode is the mean spacing between two consecutive modes given
by Equation (4.13):

(∆f)mode =
1

D(f)
≈ c3

4πV f 2
. (4.28)

The condition (4.27) corresponds to assumption 1 of the statistical theory
that states that the energy density must be uniform. We deduce from the
above question that this assumption is met for:

f ≥ fSchroeder = c

√
6∑
i αiSi

≈ 2000

√
TR60

V
, (4.29)

where fSchroeder is the Schroeder frequency. Generally speaking, Sabine sta-
tistical theory is valid only at high frequencies for small to medium rooms,
and over the whole frequency range for large reverberant rooms. For in-
stance, for a concert hall or reverberation time 2 s and volume 10000 m3,
fSchroeder ≈ 28 Hz so the assumption of uniformity of energy density is valid
for all frequencies above 28 Hz.
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