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Abstract. Recursive Spectral Bisection is a heuristic technigue for finding a minimum cut
graph bisection. In it, the second eigenvector of the Laplacian of the graph is computed and from
it a bisection is obtained. The most common method is to use the median of the components of
the second eigenvector Lo induce a bisection. We prove here that this median cut method is optimal
in the sense that the partition vector induced by it is the closest partition vector, in any {, norm,
for s > 1, to the second eigenvector. Moreover, we prove that the same result also holds for any
m-partition, that is a partition into m and (n — m) vertices, when using the mth largest or smallest
components of the second eigenvector.
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1. Introduction. A key problem in parallel computing is how to partition a
computational problem into smaller pieces so that each piece can be mapped onto an
individual processor. The objective is to have the pieces to be load balanced and the
communication between the pieces as small as possible. If we use an undirected graph
as a computational model, then the simplest version of this problem corresponds to
finding a minimum cut bisection of the graph, which is a well known NP-complete
problem.

Among the many heuristics proposed for approximately solving this problem, one
of the most successful is the Recursive Spectral Bisection method first proposed by
Pothen, Simon and Liou {9]. In it, the NP-hard combinatorial minimization problem
of finding a partition vector with components equal to +1 or -1 is approximated
by minimizing a quadratic form mvolving the Laplacian of the graph over a larger
search space of real numbers, the solution of which reduces to finding the eigenvector
associated with the smallest nonzero eigenvalue (also known as the Fiedler vector) of
the Laplacian. The remaining step is then to map the Fiedler vector onto a “nearby”
partition vector. The most common method is to use the median of the components
of the Fiedler eigenvector to induce a bisection. We shall call this the median cut
method. It has been widely used in practice [11, 13], especially for unstructured finite
element meshes, and further improvements have since then been proposed [1, 4, 5.
However, a complete theoretical justification for using the median of the Fiedler vec-
tor still seems to be lacking in the literature. Barnard and Simon [1] did mention
that the median cut method “chooses a partition based on the partition vector closest
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to the second eigenvector” but no precise statement or proof was given. Henrick-
son and Leland [5] considered a multi-dimensional extension of the RSB method, in
which they define the partition as the solution to a minimum cost assignment prob-
lem and solve it by an algorithm due to Tokuyama and Nakano [12]. However, it
is not clear from the general algorithm in [12] that, for the bisection problem, the
solution is indeed the median cut partition. On the other hand, Rendl and Wolkowicz
[10] chose to formulate the bisection problem as a quadratic assignment problem in
which the partition corresponds to an # by 2 matrix. A feasible solution is obtained
by linearizing the objective function at the solution X -of a relaxed version of the
problem. Recently, Pothen {8] showed that, up io this linearizalion, a closest par-
tition matrix to X is obtained by using a technique similar to the median cut, and
extended the result to any m-partition, that is a partition into m and (n —m) vertices.

In this short note, we prove that the median cut method is in fact optimal in
the sense that the partition vector induced by it is the closest partition vector, in
any I, norm, for s > 1, to the Fiedler vector. Moreover, we extend the result to any
m-partition: we prove that the partition vector obtained with respect to the mth
smallest component of the Fiedler vector is also, in this more general case, the closest
one to the Fiedler vector in any I, norm, for s > 1.

2. Recursive Spectral Bisection. Suppose we are given an undirected, con-
nected graph G = (V, E), with n = |[V] even. Let L be the set of lattice vectors
with components equal to £1, i.e. L = {I € B*|l; € {£1}}. Let B be the set of load
balanced vectors, defined as B = {b € R"|} i, b; = 0}. We shall denote the set of
bisection (i.e. load balanced partition) vectors by P = LN B.

To follow the spectral strategy, we express the size of the cut set algebraically
by associating a variable z;, with each node of the graph, which may be +1 or —1
corresponding the two sides of the cut. The size of the cut set corresponding to a
partition vector & may then be expressed as

(1) Cleer=7 3 (o0 —2)’

(v,w)eE

where the sum is over all edges (v, w) connecting vertices v and w of the graph.
Now, we define the n x n Laplacian matrix = (g;;) of the graph & as

-1 if (vi,v) € E
gij = & deg(v;}) WHi=j
0 otherwise.

It is well-known that {via summation by parts)
2T Qe = Z (zy — 2y)?
(vw)cE

By relaxing the discreteness constraint of # € L, the minimum cut set problem
may be approximated as follows

. 1 . T 1 . T 1 n
== > = = 27 = =
iré]n!cl n’é].n:ﬂ Q.’E re I.ﬁ;]t'ig nI' Q:C Ty sz A2,
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where ) is the smallest nonzero eigenvalue of @ (which is positive semi-definite) and
2 is the corresponding eigenvector (the Fiedler vector), normalized as |[z2]|* = n. As
2z is in B (because it is orthogonal to zy = (1. .17, but not in L, we need to map it
to a nearby vector in P. The median cut RSB method chooses the median cut vector
p™ as the approximation by finding the median value of the components of z; and
mapping values above the median to 41 and values below to —1. The partitions are
then further partitioned by recursive application of the same procedure. Note that
if the graph is not connected, then the same procedure can be applied to each of its
connected components. It is well known that the multiplicity of zero as an eigenvalue
of Q is equal to the number of connected components of G [7]. In this case, the Fiedler
vector is the eigenvector which corresponds to the smallest positive eigenvalue.
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3. Optimality of Median Cut Partitioning. The median cut vector, p™,
which is obviously feasible by construction (i.e. p™ € P), has some additional
favourable properties, first proved by Fiedler [3]:

1. The median cut vector guarantees that at least one of the two partitions of a
connected graph is also connected.

2. Nevertheless, if £, has % positive components and } negative components,
both partitions are connected.

Although p™ has the above properties, in general it does not minimize the cut
|C|zcp. However, as x; minimizes the continuous version {Clzen, it would be rea-
sonable to expect that the vector in P which is closest to z in some norm would be
near the true optimum in P. We will show next that p™ is indeed the nearest (in any
I, norm) vector in P to the Fiedler vector zo. Note that if we relax the condition of
the partition being load-balanced, then the minimum distance partition can easily be
shown to be p, = sign(zy), i.e. p, solves minyey, ||z2 — plls, where ||.|[s denotes the {,
norm. A partition strategy based on p, can be found in [2].

THEOREM 3.1. Given any v € R®, n even, let p™ € P be any median cuf partilion
vector induced by v. Then p™ = argminpep |jv — plls.

Proof We shall prove the theorem by showing that, for all p € P, flu—plli —|lv—
p™||3 > 0. Without loss of generality, let v € R", with components in non-decreasing
order, i.e. v; < vy < --- < v,. Then, by definition, p™ = (-1, ---,—1,+1,---,+1)T.
Now, for a given p, let us define S_ as the set of indices ¢ lower than or equal to 3
and such that p; = +1. Accordingly, define S; as the set of indices j greater than §
and such that p; = ~1. As S.p; = 0 and |pi| = 1, it is clear that |S_| = [S4|. We
now define a set S consisting of |S_| pairs (i, j) with { € 5_ and j € Sy, where each
elemnent of S_ U S, appears only once in 5, and the pairing is arbitrary. Note that
pr =p7 ifk ¢ S_ US, and that for all (i,7) € S, v < v;. Then we have

> (v — pal” = e — #7°1°)
k
= 3 (o= pl* = ok = p0F) + D (o — pel* = low — pF'")

1l

o —pll = v — 2™ |13

k<% k>4

= S Qu-pl — =)+ D (v =il =y~ 27I")
iES_ jESY

= Z (iv,'-ll"—IU{+1!"+ij+}|’—|vj-—ll").
(i.j)es



To prove the theorem, we will show that, for all (i,7) € S, ty; = |v — 1|° = |ui +
11 + |v; + 1J* = |v; — 1|* is non-negative. In the following, C} denotes the binomial
coefficient. We divide the proof into two parts, depending on whether s is cven or
odd. If 5 is even, then we eliminate the absolute values to find

i (‘0,‘ - l)‘s - (TJ{ + I)’ + ('Uj + 1)" - (’UJ‘ - 1)"

3 L) 3 L
S0k = S Gl 4+ Y Gl E = Y (-Gl
1 k=1 k=1 k=1

k—

I
2 ) G- 20
k=1k odd

1

because v; < v; implies that vf"k < v37F for all odd values of s — k. For s odd, we
have to be careful before we remove the absolute values. Actually, six cases have to
be considered, depending on the positions of - 1 and 1 with respect to v; and v;.
Case . 1< v < v

It

(= 1)° = (o4 1)+ (5 + 1) = (35 = 1)

&
2 Y CiTF-yh 2o
k=1,k odd
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because s — k is even and jv;| < |v;].

Case2, —1< v, <1<y

b= (=1 = (k1) (1) = (= 1)

& 3
= =2 > G422 Y Gyt

k=1,k even k=1,k odd

a 3

— 5 k s, 3—k

= -2 _>__ Ci_pvi +2 S Cyv;
k=1k odd k=1k odd

=2 Y CiwF-+f)=0
k=1k odd

because v;'k >land ~vf > -1

Cased. vy < —land 1<y

tij ~(vi = 1)+ (v + 1" + (5 +1)° = (v; - 1)

L]
2 Z Ci(wi *+vi™%) >0
k=1.k odd

because s — k is even.

Cased. =1 <y <1y €1



= (o~ 1P = (o 1)+ (o 1) 4 (o - LY

3
=2 Y, Ci(v;™ = vj"%) >0

k=1k even
because v; < v; and s — k is odd.

Case 5. 1y < -1<v; <1

ty = —(ui=1)" 4 (o + 1) + (v +1) + (v - 1)

= 2 Z Civi~*F +2 i Civt*

k=1k odd k=1,k even

= 2 > Civit+oH>0

k=1,k even
because vf > 1 and ]v}?_k] <1

Case 6. vy < v; € =1

ti; = (=14 (41" = (v + 1) +{y - 1)
= 2 Y Ciej™F-v")20
k=1,k odd

because s — k is even and |vj| < |w}. O

4. The General m—partition Case. We now consider the general case of an
m-partition, namely a partition into m and (n—m) vertices. In this case, we consider
partition vectors p such that p; = —1 m times and p; = +1 (n — m) times. Or,
equivalently, p belongs to P™ = L N B™ where B™ = {b € R*|} /., by = n — 2m}.
In order to get a formulation which is similar to the median cut case, we define g™ of

R™ whose components are all equal to o = "_n2m and let p = p—¢™. Then

pEP™ &= je P
where P = LN B, and L = {{ € R*|l; = £1 — a}. Then the size of the cut set is

) | - 1 . oy
min|C]= - min z7Qz = = min #7Qz, as Qg™ = 0.
zEFP 4

zgpm fepm

-9

By relaxing the discreteness constraint, z € L now becomes [[Z||3 = 4—'"(";:-”31 and
the solution to the problem in # is the Fiedler vector z; normalized in the proper
way. Then the solution in terms of z is z3 + ¢™. Here, it is crucial to note that the
components of £z + ¢™ and z, are ordered identically. From there, we can define the
m-cul bisection method: we map the m smallest components of z; to —1 and the
(n — m) largest to +1 to define p™ and call it the m-cui vector. As in the median
cut case, we prove that p™ is the closest m-partition vector to 3 in any I, norm, for
s> 1.



THEOREM 4.1. Given anyv € R", let p™ € P™ be any m-partilion veclor induced
by v. Then p™ = argminpepm [jv — p|ls.

Proof. Again, without loss of generality, let v € R", with components in non-
decreasing order. Then p™ = (—1,-+-, -1, +1, . -,+1)T. Now, for a given p of P™,
let us define S.. as the set of indices i lower than or equal to m and such that p; = +1.
Accordingly, define S, as the set of indices j greater than m and such that p; = —1.

It is easy to check that |S_| = |S4]. Then we can define a set S as before and compute
o= plls = llo— 2™l = 3 (ow=pel* = o =2 1) + D (low = pal’ — v = PT'F)
k<m k>m
= Y (u-pl =lo=pP)+ > (o = psl* — v = p7'I")
i€s_ €S
= Dty
(i.5)es

From there, the remainder of the proof is elementary and identical to that of Theorem
31. 0

5. Conclusion. This result shows that the bisection method, and more generally
the m-partition, can be viewed as embedding an NP-hard minimization problem over
a discrete set into a larger search space in R", finding the solution there by continuous
(rather than discrete) algorithms and then using the nearest member of the discrete
feasible set as an approximate solution to the original discrete optimization problem.
The use of the Fiedler vector can be viewed as an efficient way of getting into the
neighborhood of the global minimum, avoiding being trapped by local minimums.
The median cut and m-cut methods are then seen as staying as close to the global
minimum as possible while remaining feasible for the discrete problem. Seen in this
light, it is also clear that a local search method (e.g. the Kernighan-Lin method [6])
following the partition (see e.g. [4, 5, 9]} could be much more effective than using it
to find the global minimum directly.
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