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In this paper we consider the problem of partitioning large sparse graphs, such as finite
element meshes. The heuristic which is proposed allows to partition into connected and
quasi-balanced subgraphs in a reasonable amount of time, while attempting to minimize the
number of edge cuts. Here the goal is to build partitions for graphs containing large numbers
of nodes and edges, in practice at least 10°, Basically, the algorithm relies on the iterative
construction of connected subgraphs. This construction is achieved by successively exploring
clusters of nodes called fronts. Indeed, a judicious use of fronts ensures the connectivity of
the subsets at low cost: it is shown that locally, i.e. for a given subgraph, the complexity of
such operations grows at most linearly with the number of edges. Moreover, a few examples
are given to illustrate the quality and speed of the heuristic.
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1. Introduction

Graph partitioning methods are commonly used for a wide variety of problems:
problem segmentation, circuit design, parallel computations, domain decomposition
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methods and many others [11,14,19]. Basically, the global problem is decomposed
into smaller subproblems which interact as little as possible with one another.

There are different formulations and many variants of the graph partitioning
problem, depending on whether one looks at it from the vertex point of view or
from the edge point of view. According to the edge point of view, on which we
focus in this paper, the problem can be expressed mathematically in the following
way, for a 2-edge partition or bisection. Let G = (V, E) be a graph where V' is the
set of nodes and E is the set of edges. The 2-edge partition of G is a partition of V
into two disjoint sets ¥; and ¥V, such that:

® V == Vl U Vz,

e max(| V|, VL) < a|V],

e |Ey| is as small as possible, where £, = EN V), x V, is the set of edge cuts or
intersubset edges.

Here, we use the classical notation |.| for the cardinality of a set. The value of the
constant a (1/2 < « < 1) characterizes the looseness in the balancing of the parti-
tion. It is well known that the previous problem is NP-complete for any value of the
parameter . Thus, many heuristics have been designed to approximate as closely
as possible this bisection problem. Among them, node interchanging methods
[15,24], branch and bound methods [7,29], maximum flows [6], maximum match-
ing [25] or eigenvalue computations [20,27].

In the general case, the p-edge partition of G, for p > 2, is a partition of V into p
disjoint subsets V1, V5, ..., V, such that:

] V — U11'7=1 Vi’
o |Vi|=|V,
e |Ey| is as small as possible, where Ey = EN Uiz Vi x V.

This more general problem is also NP-complete, and many heuristics have
likewise been constructed to approximate it. First, there is an important class of
such methods which rely on one of the bisection heuristics of the previous
paragraph. Initially, the graph is partitioned into two parts and then each
subgraph is divided into two, and the process goes on recursively. Among them,
eigenvalue computations [2,21] or multilevel techniques [23]. Many other
heuristics have been designed to deal directly with the general p-edge partition
problem, such as linear programming transportation [3], greedy algorithms [13],
node interchanging methods [4] or geometrical approaches [1,26].

Note that some of these methods can be utilized jointly. Particularly, node
interchanging methods require some initial partition. On the other hand, these
methods are often used as a postprocessing step, i.e. after a first approximation
to the solution of the p-edge partition problem has been determined, because
they generally increase the quality of the partition.

In the following, we give a theoretical framework to the greedy method
introduced in three earlier technical reports [8—10]. In addition, a new
load-balancing postprocessing step is presented. Both methods are based on
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particular clusters of nodes which we call fronts. The next section recalls some
graph definitions and notations together with the p-edge partitioning and
load-balancing problems. Section 3 is devoted to fronts and connectivity in
graphs. In sections 4 and 5, the partitioning heuristic and the postprocessing
steps are described thoroughly. In the next section, some experiments are
listed on a number of graph examples. Finally, we summarize the main results
in section 7.

2. Notations and problems

First, let us recall a few definitions about graphs and set the notations that will be
used throughout this paper. For more details, we refer the reader to [5]. Let
G = (V,E) be an undirected graph where V' is the set of nodes and E the set of
edges. Only simple graphs will be considered hereafter, i.e. without multiple
edges or loops. Let N =|V| and M = |E| be the number of nodes and edges
respectively.

G is said to be connected if, for any pair of nodes (v, w), either (v, w) is an edge or
there exist k nodes (x;) such that the edges of the path (v, x1), (X1, X)), - -, (k- 1, X2),
(xg, w) belong to E. Otherwise, G is said to be multiconnected.

For a node v, let I'(v) denote the set of its neighbors, that is the set of nodes w
such that (v, w) belongs to E, and let I'(v) = I'(v) U {v}. More generally, for a
nonempty subset W of V, L[(W)=U,nL(w) and, by extension,
D'(w) =L@ ~Y(W)) for 1>2 (L' (W)=TL(W)). For practical reasons, we
define I°(W) = W. The degree of a node v, denoted by d(v), is IT'(v)]. For a
node v and a subset W, let dy(v) be the number of neighbors of v belonging to
W. Finally, let d be the average degree of a node in G. By definition, d = 2M/N.

For any pair of nodes (v, w), the distance §;(v,w) corresponds to the length
(i.e. number of edges) of the shortest path linking v to w in G (65(v,v) = 0); by
extension, if there is no path linking two nodes v and w in the graph, then
66(v,w) = +oo [5]. For a nonempty subset W and a node v, let 6q(W,v) =
min, e y 8g(w, v). Finally, max, , é;(v, w) is called the diameter of the graph.

In the following, as we partition graphs that come from physical meshes, usually
two- or three-dimensional, we talk about the boundary of the graph. Let n, be the
number of boundary nodes.

For the partitioning problem considered here, we shall denote by p the number
of subsets V; and n; = | V}]. Let 71 be the average of (n;), thatis, 7 = |[N/p|'. More-
over, for 1<i<p, let EE=ENV;xV; and G,=(V,E) and let E,=
ENUiy Vi x V. Note that Ey, E,,---E, is a disjoint partition of E. If we let
m; = |Ej|, then the p-edge partitioning problem we solve hereafter is:

Find p disjoint subsets V', V5, -+, ¥, of ¥ such that

d V:Uip=1 Vi,

"|.J stands for the lower integer part of a number.
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o RN,
e the subgraphs G, are connected,
e my is minimized.

Because of the added connectivity constraint, it often happens that the subsets
that are obtained, although connected, are not balanced. Thus a postprocessing
heuristic, based on reassigning nodes or sets of nodes is used afterwards. Two
load balancing steps, called LB1 and LB2, aim at decreasing the value of the
standard deviation of (n,), i.e. o0 = \/ (1/p)>°7_,(n; — A)?. LBI relies on successive
single node reassignments, enforcing the connectivity constraint on the subgraphs
and trying to minimize the number of edge cuts m,. LB2, on the other hand, allows
for successive multiple nodes reassignments (by fronts), enforcing only the connec-
tivity constraint.

3. Fronts in graphs

There are two obvious ways of exploring a graph G, from a given vertex v:

e examine all its neighbors and then pass to one of them, or
e cxamine one of its neighbors w and then pass to w.

The first approach is called breadth-first search and the second depth-first search
(see, for instance, [17,18]). In this paper, we consider only algorithms based on
breadth-first-like search. The idea is to explore the graph by fronts. From a non-
empty subset W of V' (particularly singletons), examine all nodes at distance 1,
then all nodes at distance 2, etc. Fronts at distance k, k > 0, of W are defined by

F(W,k)={veV,6:(W,v)=k}.

Proposition 1
For a nonempty subset W of ¥ and k> 1, D¥(W) =T* (W) U F(W,k) and
LI (W) N F(W,k) = 0.

Proof
The proof proceeds by induction.
For k = 1, by definition,
_E(W) = Uye WE(W) = Uye WF(W) uw
={veV,3we W,(v,w) EE}UW
={ve V\W,Iwe W,(v,w) € E} UW
={veV, (W, v)=1}UW
= F(W, 1) uL*(W). 1)
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In addition, L°(W) =W and F(W,1)={ve VAW, 65(W,v) = 1}: they are
disjoint.

Now, let us assume that the result is true for / < k — 1 and prove it also holds for
k. First, by assumption, we have

DY W) =T 2 W) UF(W,k — 1) = - = UL F(W, D)
={veV,6(W,v) <k-1}. (2)

Thus T*" (W) N F(W, k) = §. If we use (1) and replace W by [*~1(W), then we
have

DE(w)) = L' (W), ) UL~ (W), or
LY(w) = F ' (w), Hu* ' (w).
To complete the proof, one has to check that F(T*~' (W), 1) = F(W, k):
FEY (W), 1) = {ve \D*"Y(W),3z e D1 (W), 86 (2, v) = 1}
= {U € V) 6G(W7v) > k - 15327 6G(W)Z) S k - 175G(Z:U) = 1} by (2)
={veV,6(W,v) =k}
O
By definition, once a node has been reached and processed, it is marked. Then, by
rewriting Proposition 1 in the following way, F(W, k) = T¥(W)\I* (W), one gets
a natural way of traveling simply through the graph by successively exploring
fronts, where each new front is the set of neighbors which have not been marked
yet: this process is called an expansion by fronts in G from W. As for breadth-
first search (and depth-first search), the complexity of exploring the graph by
fronts is O(M), as each edge is considered exactly twice during the process.
We shall use this method by fronts in the next section to build a partitioning
heuristic. Now, as our goal is to obtain connected subsets of the set of nodes, let

us prove a few simple results regarding connectivity: more precisely how to
check that a graph or a subgraph is connected with the help of fronts.

Proposition 2
A graph G = (V, E) is connected if and only if either

1. there exists a connected subset W, of ¥ such that the expansion by fronts from
W, spans V, or
2. for all subsets W of ¥, the expansion by fronts from W spans V.

Proof
(i) If G is connected, then all distances are finite and 2 is true.
(i) If2is satisfied, then 1 is clearly verified.
(iif) If 1 holds, then let us check that G is connected. Let (v;, v,) be a pair of nodes.
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As the expansion by fronts from W, spans V, there exist two nodes (wy, w,)
belonging to W, and two paths in G linking v; to w; and v, to w,. By
assumption, as W, is connected, there exists a path linking w; to w,. Thus
there is a path in G linking v; to v,: G is connected. 0

Now, let G = (V, E) be a connected graph and W a subset of V. We give in the
next proposition several ways of checking whether the subgraph with W removed is
still connected. Let I'(W) = F(W,1) and

e V.=V\W,E =EN(V_xV.),G_=(V_,E_),
o Gp=(T(W),E_NT(W)xI'(W))and
e s a vertex of T'(W).

In the next proposition, we give a few conditions to check whether G_ is
connected or not.

Proposition 3
G_ is connected if either

1. the expansion by fronts from s in G_ spans V_, or
2. the expansion by fronts from s in G_ spans I'(W), or
3. the expansion by fronts from s in Gp spans I'(W).

Moreover, the connectivity of G_ implies conditions 1 and 2 but does not imply
condition 3.

Proof
(i) Clearly, the fact that G_ is connected implies condition 1. Also, condition 1
implies condition 2.

(i) Letus prove that condition 2 yields the connectivity of G_. Let (v, w) belong to
V_x V_. G is connected by assumption and therefore there exists a path
(x,,--,x;) of nodes of ¥ such that (v,x,),...,(x,w) are in E. If no x;
belongs to W, then the path is in G_. Now, if there is at least one x; in W,
let i, (resp. i;) denote the first (resp. last) index such that x; € W. If we let
xo=v and Xz, =w, then x,_; and x; ., belong to I'(/W) and by
assumption (condition 2), there exists a path y;,---,y, in G_ linking x; _; to
X;, 1. Then the path xp, -, X1, Yoy 5 Vo X1 Xk is in G_ and links v
to w: G_ is connected.

(iii) Gp is embedded in G_, thus condition 3 implies condition 2.

(iv) Finally, to see that condition 2 does not yield condition 3, one can consider the
example of the removal of a single node from an annulus (i.e. a node is exactly
one endpoint of two edges) of size at least four. O

The complexities (C;); - 23 of checking the connectivity of G_ by properties 1 to
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3 of proposition 3 are C; =C, =0(M_) and C; = O(My), and in any case
G, <G L

4. Greedy partitioning heuristics

Briefly there are two schools for computing a solution of the p-edge partitioning
problem for large graphs: from the matrix point of view, i.e. using either the
adjacency matrix or the Laplacian matrix [16] associated to the graph, or directly
from the graph itself. The first point of view is based on spectral properties of
one of these two matrices. Among the different works, let us mention those of
Barnes [3], Rendl and Wolkowicz [28], Simon [30] and Hendrickson and Leland
[23]. The other way is to work directly on the graph by applying greedy
methods: the heuristic presented below is based on such a greedy algorithm. Let
us mention that the first greedy algorithm for partitioning finite element meshes
was proposed by Farhat [13].

Greedy algorithms are a natural and naive way to look at some problems. In
some cases, they seem to give reasonable results, especially here for approximating
the solution of the p-edge partitioning problem. In this case, a greedy algorithm can
be described as an algorithm that computes one after the other each subset V; by
simply accumulating nodes when traveling through the graph. Evidently, we
choose to travel in the graph by fronts. Then the only problematical questions
are: how to start and how to stop?

A starting node v is chosen and marked. The accretion process is done by suc-
cessively building fronts from v, and so on as long as the expected total number of
nodes is not reached.

The way of selecting a starting node v, will clearly affect the shape of the final
partition. It will also influence the communications, i.e. the number of existing
edges between different subsets of the partition.

In the same way, the manner that one selects the prescribed number of nodes among
all the candidate nodes of the last front contributes to the quality of the final partition.

Thus, for each subset, one can summarize the greedy procedure by the following
three steps:

1. select a “good” starting node v,,
2. accumulate enough descendants of v,,
3. stop according to some tie-break strategy in case of multiple choices.

At present, there are no theoretical results on the “goodness” of one starting
node. Neither are there results on how good a tie-break strategy is. For those
two points only intuitive guesses help to design p-edge partitioning heuristics. How-
ever, if we suppose that the tie-break strategy only involves sorting, then an obvious
justification of using greedy heuristics is that they are inexpensive, as we can see in
the following proposition.
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Proposition 4
The overall complexity of a greedy algorithm applied to the p-edge partitioning
problem is O(M) + {max(p,log,(N/p))}O(N).

Proof

By using the above procedure, one can easily see that the complexities of steps 1, 2
and 3 are respectively O(pN), O(M) and O(prilog, (7)), where 7 is the number of
nodes per subset. O

Remark 1

The optimal choice for the tie-break strategy is: select the required number of nodes
among the candidates of the last front in such a way that the number of edge cuts is
minimized, i.e. the number of edges between the current subset and the rest of the
graph. It is clear that this optimal choice is NP-complete. Thus there is a need for an
approximate choice based on sorting to reduce the complexity.

4.1. The GP heuristic

First, let us recall that, as we consider meshes, we can use the notion of the
boundary of the graph.

As greedy algorithms do, our algorithm builds iteratively the different subsets of
the partition by accumulating nodes in each subset and marking them once they
have been selected. For the first iteration, the starting node is chosen among the
boundary nodes with minimum degree. On the other hand, at each iteration one
can define the current boundary as the set of nodes that belong to the boundary
of the graph and that have not been marked yet. We can extend the notion of current
boundary even when there are no more unmarked boundary nodes, by defining a new
one and updating #,, the number of boundary nodes. In that case the new current
boundary is the set of unmarked nodes that are the neighbors of marked nodes.
From there each new starting node is chosen among nodes which stand on the
current boundary and are neighbors of the previously built subset. Moreover, this
node is preferably chosen among the candidates with minimum current degree,
i.e. the number of unmarked neighbors. Note that the current degree starts from
the degree of the node and decreases to zero as the partitioning algorithm proceeds.

At some point, the current boundary can become empty. A way to redefine the
current boundary at low cost is to introduce the notion of virtual boundary.
Actually, this virtual boundary is defined, after each iteration, as the set of
unmarked nodes that are neighbors of marked nodes, excluding current boundary
nodes. Then, the new current boundary is defined as the virtual boundary, and the
new virtual boundary is built anew.

The greedy partitioning algorithm “GP” is described next. For the moment, we
consider the case of a connected graph G and prove results concerning its properties
and its complexity. In subsection 4.4, we describe how to use GP on multiconnected

graphs.
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Leti=1.

Stepl. Ifi<p
(a) Compute

(b) Select an unmarked node v, such that:
1. v, belongs to the current boundary,
ii. if the current boundary is not new, v, is a neighbor of a node
belonging to V;_, (if possible?),
iii. v, has a minimal current degree.
Mark v, and initialise V; with v,.
() K=0.
If there are unmarked neighbors of nodes of ¥, then
i. let K be their number.
ii. If |[V;|+ K < n; then
mark those nodes and add them to V,
update the current degree of their neighbors,
return to 1(c).
(@) If |V}] + K > n, then
mark (n; — |V;|) minimal current degree nodes and add them to V,
update the current degree of their neighbors,
update the current and virtual boundaries,
doi=1i+1 and return to 1.
(¢) If there are no more unmarked neighbors of nodes of ¥; then
unmark the nodes in ¥; and assign them to neighboring subsets,
return to 1.

Step 2. Mark all the remaining nodes and add them into V,. If V, is multi-
connected then keep the largest component and unmark the nodes of the
other components and assign these nodes to neighboring subsets.

Remark 2

This heuristic can be used for any graph in a simpler version, that is, without the
notion of boundary, be it current or virtual. Nevertheless, numerous numerical
experiments show that, when compared to the original heuristic for physical
meshes, this simpler version of the heuristic is slightly slower, and gives worse
results in terms of edge cuts.

It may not be possible to find a node neighboring the previously built subset if the boundary is
multiconnected.
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4.2. Tie-break strategy

Let us go into the details of our tie-break strategy when building a given subset
V.- Note that because of its intrinsic complexity, the optimal choice is impossible to
determine. Suppose that the kth front F(v;, k) contains too many nodes (v;);_1.... ,,
and that we want only ¢ of them. The optimal choice corresponds to selecting ¢
nodes such that the number of edges between them and nodes that do not
belong to the current subset (i.e. d(v;) — dy, ( ) for one node) is minimized.
Then the objective is to find g nodes (v,(;)) m1n1m121ng

fopr(va(j)) = Z{d(vo(.j)) - deO (Uo(j))}'

Jj=1

=

If we let d'(v) be the current degree of a node v after the /th front is obtained,
then d*(v) = d(v) — > i<ip Ay (v). Thus the objective can be reformulated as

Fopi (Vs Z{dk 2)+ D dy ()} (3)

i<iy

Here, we make two modifications to get a simpler objective function. First, we can
neglect the contribution coming from other subsets, as this contribution appears
anyway in the total number of edge cuts. Indeed, a node v which has not been
assigned yet necessarily belongs to V;, for i > i,. Then the edges corresponding
to {D i<, dy,(v)} will be cut. In other words, it is possible to suppress the second
term from (3). By doing this, the complexity of the tie-break strategy has not
been modified. Therefore, in the second place, we have to approximate the remaining
term: the terms d* (v, (;)) are actually determined only after all the nodes have been
chosen. On the other hand, the quantities d*~'(v Uy(j)) are already at hand. Then
there are two obvious ways of approximating (3). The first one is to replace it by

= > (o), @)

which amounts to sorting the nodes of the last front by increasing current degree
(before they are taken into account) and to keeping the first g. Thus this process
can be rewritten as:

Sort the nodes by increasing actualized degree: (Vy(;))i=1,. -
Keep (U, (jy)j=1,4- (TBI)

The second way is to choose one node after the other: a node with the lowest current
degree is selected, then the current degree of the remaining nodes is updated, a second
node is chosen and the process goes on. Thus it can be summarized as:

Sort the nodes by increasing actualized degree: (vy(;));=1..., and keep v,
For/=2tog (TB2)
Update the current degree of (v,(j))j=,..p» SOTt and keep vy
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It is clear that, in terms of edge cuts, TB1 produces more cuts than TB2 and that, in
terms of computational cost, TB2 is more expensive than TB1. As stated in the algo-
rithm describing GP, we have kept the tie-break strategy TBI.

By construction, the heuristic proposed in this paper relies mainly on the itera-
tive construction of the subsets via the fronts, and less on the tie-break strategy.
That is the reason why it should be applied mainly to sparse graphs, because
then it is possible to get many fronts before having to break the tie when enough
nodes have been aggregated. On the contrary, for a graph with high average
degree (or equivalently a small diameter), it may happen that the tie-break strategy
has to be used right from the start, i.e. without building even a single front but
instead having to select some of the nodes of the first front. In this case, using
the more expensive tie-break strategy TB2 is advised.

4.3. Finiteness, effectiveness and complexity

Let us show that, when GP is applied to the p-edge partitioning problem for a
connected graph G, it indeed builds p connected subsets.

Theorem 1
The algorithm GP terminates and always builds p connected subsets.

Proof

First of all, let us prove that the algorithm terminates. Note that for this, we simply
have to verify that the value of i is incremented in a finite number of operations
(loop 1). Step 1(a) is straightforward. For step 1(b), one has to verify that a node
v, can always be selected. For this, it suffices to check that the current boundary
can not be empty: this stems from its definition. If i = 1, then it is the original
boundary. On the other hand, for i > 1, it is clear that there is at least one
unmarked node neighboring a marked one: it belongs to the current boundary
which is therefore not empty. Finally, one goes through steps 1(c), 1(d) and 1(e)
in a finite number of operations (using front techniques and sorting).

In order to prove that it builds exactly p connected subsets, let us proceed by
contradiction. Suppose that p connected subsets are constructed, p # p, when the
algorithm terminates. Due to the structure of GP (iterate while i < p and finally
build V), it is clear that p < p. This implies that there exists i, 1 <i < p, such
thatn; = 0.

If i = p, then let us prove that we also have n,_; = 0 (here, we want to make use
of the body of loop 1 and therefore need to prove that i < p — 1).

Asn,=0and V =J_, V},

p—1

N=> n. (5)

j=1

Now, using step 1(a) of the algorithm for i = p — 1 givesn,_, = [(N — Zj’;f n;)/2],
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2n, | < (N - n,->. (6)

This with (5) yields n,_; = 0. Thus there exists i, 1 <i < p — 1, such that n; = 0.
Without changing notations, suppose that i is the smallest index such that
n;=0,1ie. n >0, for 1 <j<i—1. Note that V; can always be built because G
is connected; so i > 1.

Then, when n;, = 0 is computed (i < p), it comes after either step 1(d) fori — 1 or
step 1(e) for i. Next we shall prove that a contradiction can be reached for these two
cases.

In the first case, both the definition of n;_; and the inequality n;,_; > 1 (by
assumption on index i) imply

or equivalently

~. -1
HMI
_ 3%

Therefore,

[N‘inf][P—<i—2)1= N=> " m|lp= (=2 =mi[p—(i—2)]

Dp - (-1,  or
}_: (=1 (7)

Steps 1(a) and (7) yield #; > 1, a contradiction.

In the second case, we denote by #/" the quantities obtained before step 1(e),
i.e. before reassigning the nodes of V,, and ni"" the current ones. Let us note that
necessarily n/"* > 2, because otherwise step 1(e) cannot be reached (if n/™ < 1,
the last step was 1(d)). Thus

Ap—- (=D <™ p-(E-1I<N=) nf™

=1

.

conn

Finally, denote by ;""" the number of reassigned nodes. Then

i—1 i~1
n?onn < n{)rev and § nj{)rev _+_ n?onn — § njc_urr.
i=T =
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Therefore
i—1 ( i—1 -
N — an?urrjl [p _ (l — 1)] = |N — njprev _ n?ann [p _ (l _ 1)]
j=1 L =1 |
r i—1 7
> |N— njf’rev n{;rev re (i— 1)]
L Jj=1 |
i i—1
> N~ njgzrev [p l]
L Jj=1
>2[p—(i-1)][p—1i], implying
i—1
N — n;z:rr > [p — (l — 1)] (8)
i=1
Steps 1(a) and (8) yield #{*” > 1, again a contradiction. 0

Let us prove now that GP is inexpensive.

Theorem 2
The complexity of GP is O(M).

Proof
In order to obtain this result, let us consider the complexity of the algorithm step by
step for the construction of a given subset V,, i < p.

The complexity of step 1(a) is O(1).

For step 1(b), we shall consider two cases, depending on whether the current
boundary is new or not.

If the jth current boundary is new, then v, is chosen in O(r}) operations, using
1(b)i. and 1(b)iii. Note that a node belongs to at most one current boundary, so
Sin < N. Moreover, if the current boundary is multiconnected, then the choice
is made in O(n}") operations for the /th connected component, with Snl =nl,

If the current boundary is not new, then let us divide the operations count into
two subcases, according to whether it comes after step 1(d) for i — 1 or step 1(e) for
i. In the first subcase, it is a simple matter to check that v, can be chosen in
O(3 vev,_, d.(v)) operations, by using 1(b)ii and then 1(b)i and 1(b)iii.

If the second subcase happens, then necessarily it comes after a first subcase for
which we suppose that a sorted list of candidates has been built. This can be done in
O vev, , d.(v)) operations, if one recalls that the nodes are sorted by current
degree. Indeed, the current degree of a node varies between 0 and d,,,,, therefore
sorting n of them is done in O(n) operations by piling them up in (d,g + 1)
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‘heaps. Thus, to find v, it suffices to update this sorted list, which can be done in
O(3, <y d,(v)) operations.’

By dividing the case in this way, note that a given node appears at most twice in
the summation (once while examining its unmarked neighbors, and once while
building the sorted list).

For step 1(c), it is clear that it is done in O(m;) operations (construction by
fronts).

In step 1(d), updating the current and virtual boundaries is done respectively in
O(n;) and O(m;) operations and the tie-break strategy requires O(n;) operations, if
one again takes the sorting in heaps into account.

Finally, if the occasion should arise (step 1(e)), nodes are reassigned in O(m;™")
operations by successively reassigning each of them (in reverse order) to the subset
which holds the highest number of its neighbors.

Clearly, the complexity of step 2 is O(m,).

To recapitulate, the complexities of the p steps 1(a), 1(b), 1(c), 1(d), 1(e) and of
step 2 are respectively bounded by:

o(p), o(zj:ng+o<22dc(v)>>,

0<Zmi>, 0<Z”+Zm>
0<Zmi>, O(m,).

The conclusion follows if one uses O(3 ;> ,er, d.(v)) < OG_;m;) <O(M). O

4.4. Case of a multiconnected graph

In the case of a multiconnected graph G, an O(M) algorithm (breadth-first
search, fronts, etc.) is used to find its maximal connected components (G;);_; ... ;.
Then GP is applied on each component with the proper number of subsets (pro-
portional to the number of nodes of the component). Thus for a multiconnected
graph the algorithm is of the following form.

Step 1. Compute the maximal connected components (G;);-1.., of G.
Step 2. Compute (p;);—.., such that p; is proportional to N; and }°7_; p; = p
Step 3. For i =1 to ¢, partition G; with GP.

? If this list is empty, a new starting node v,, which belongs to the jth current boundary, is selected. The
cost of selecting (possibly several times) v, is O(n7). Indeed, initially, a list of the nodes of this current
boundary is built. Then, whenever necessary, v, can be defined as the first node in the list which still
belongs to the current boundary.
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Clearly, theorem 1 can be extended to the multiconnected case, as it holds for
each of the connected components G;. Theorem 2 can also be applied in this
case, because the complexity of finding the maximal connected components is
O(M).

5. Postprocessing steps

As previously mentioned, the added connectivity often produces unbalanced
subsets, in terms of (n;). Thus there is a need for postprocessing, the goal
of which is to balance the subsets, i.e. decrease the value of o=
V(1/p) Y2 (n;— )2 In this respect, it differs from more classical post-
treatments which come after well balanced subsets have been obtained: in that
case, the emphasis is on reducing the number of edge cuts m,. Hereafter, we briefly
recall some of these classical methods and then consider our balancing heuristics.
All these postprocessing steps are based on node interchanging.

5.1. Reducing the number of edge-cuts

To our knowledge, the first heuristic was proposed by Kernighan and Lin [24]. In
that case, the quality of a balanced 2-edge partition V; UV, is improved by
exchanging subsets of ¥, and V,. The selection criterion of the subsets is deter-
mined from a gain function which is defined as follows. First, for v € V,,
g, = dy,(v) —dy,(v) and for weV,, g,=dy(w)—dy,(w). Then the gain
obtained by exchanging a node v € V; with a node w € V, is equal to:

gv,w =8y + 8w — 25(”7 W)7
where 6(v, w) is defined by:

50, w) = {l if (v,w) € E,

0 otherwise.

So, after computing for each node v € V; and w € V, the values of g, and g,,, the
algorithm chooses a pair of nodes (v;, w;) which maximizes the gain g, .. Then, for
all neighbors u of v, or w; the values of g, are updated. The optimizing process is
iterated until g, _ , , is computed. Finally, the algorithm chooses among all pairs
of subsets {v;,vy,..., v}, {wi,wy,...,w} for k€ {1,...,n— 1} the one whose
swapping corresponds to the maximum of the gain 25‘21 J-

This process can be repeated iteratively until no better improvement, regarding
the number of intersubset edges, is obtained. The complexity of one iteration is
O(N*log N). The number of iterations is not bounded a priori.

Many variants of this heuristic have been proposed in the past years which aim at
reducing the overall complexity. Fiduccia and Mattheyses [15] remarked that the
high cost of Kernighan and Lin’s heuristic is due to the §(v, w) term in the expres-
sion of g, ,,. Thus, instead of selecting nodes by pairs, they proposed to choose them
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one after the other, that is v, then w,, then v, etc. Then the gain is simply:

Sow =&+ &>

where g,, takes into account the fact that v has already been moved from V; to V.
Again, the process can be repeated. The complexity of one iteration is reduced to
O(M). Still, the number of iterations is not bounded.

Recently, Hendrickson and Leland [22,23] generalized Fiduccia and Mattheyses’
method to an arbitrary number of subsets. Instead of a single gain function there
are (p — 1) gain functions associated with each node. Each of these functions com-
putes the gain obtained by moving the given node to a specific subset. Moreover
their method integrates other features. First, their gain function takes into considera-
tion an intersubset cost metric. Second, their starting partition is not necessarily
balanced, so they give precedence to moves from large subsets to small ones. The com-
plexity of one iteration is O((p — 1) M), with no bound for the number of iterations.

Also, Dutt [12] improved Kernighan and Lin’s heuristic in the case of random
sparse graphs. In this case, he proved that the search for optimal pairs can be
done at low cost if the data structure has been built carefully. The complexity of
one iteration is O(M log(N)) but reduces to O(dM) for graphs such that the
average degree d is less than O(log(N)). Again, there is no bound for the
number of iterations.

5.2. Balancing and reshaping the subsets

We now present our postprocessing heuristic which we named a retrofitting
method after the term used by engineers when bracing existing structures. This
method was first presented in [10] and has been naturally suggested by numerous
numerical experiments conducted with GP. This heuristic is made of three steps.
Steps 1 and 3 are identical reshaping steps while step 2 is a balancing step.

The reshaping step tries to redesign the outlines of subsets by deleting the excre-
scences, 1.e. nodes that are attached to the subset to which they belong by a single
edge. From a geometric point of view, by reassigning those nodes to neighboring
subsets and by iterating the process until no more excrescences remain, the shape
of the subsets is improved. Note that these boundary nodes are transferred to
the subset which holds the highest number of its neighbors. Moreover, the value
of my can be improved but cannot deteriorate. Indeed, the number of edges that
are cut from a vertex v goes from d(v) — 1 (by definition of an excrescence) to
d(v) — dy,(v), where V is the subset to which v is reassigned, and dy, (v) > 1.

It is not always possible to eliminate all the excrescences, so the reshaping step
has to stop when the overall shape of the partition, i.e. the number of excre-
scences, does not seem to be improved over the iterations (in practice five itera-
tions). Here, one iteration consists of spanning the whole set of nodes ¥ and
reassigning the excrescences.

As we previously remarked, because of the reassignment of nodes to neighboring
subsets in order to preserve the connectivity of the subsets, the resulting partition
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provided by GP is not balanced in most of the cases. Thus the second step of the
retrofitting method looks for balancing the subsets by moving nodes from large
subsets to small ones. One iteration of this consists of three parts (a), (b) and (c).
First, in part (a), the largest and smallest subsets are determined. Then nodes of
the largest subset are reassigned to its smallest neighbor in part (b). Last, in part
(c), nodes are reassigned to the smallest subset, coming from its largest neighbor.

For this balancing step we have two strategies. On the one hand, the goal of the
first method LB1, presented in [10], is to decrease the value of o, i.e. to balance the
subsets, while trying to reduce m,, the number of edge cuts. Let us detail parts (b)
and (c) for LBI. For this method, a single node is chosen and moved to reduce m,.
Let us call V; the subset from which a node v is taken and ¥, the subset to which it is
reassigned. Then v is selected among the nodes of ¥ bordermg V;. It is the one
which leads to the best partition in terms of edge cuts. In other words it is a
node v of V; which satisfies dy,(v) # 0 and maximizes {dy,(v) — dy,(v)}. More-
over, before moving a node v from subset ¥, one has to make sure that Vi\{v}
remains connected. For that, proposition 3 is used. If this is not the case, then
another boundary node of V; is selected. If no node of V; bordering V; satisfies
this connectivity requirement, then another subset (V; in part (b), V; in part (c))
has to be chosen.

On the other hand, for the second method LB2, the selection of the nodes that are
to be reassigned in parts (b) and (c) differs from LB1 in that a whole front of nodes is
moved (following the main idea used for the GP heuristic). Thus, instead of reas-
signing a single boundary node, all boundary nodes, i.e. all nodes v of ¥, such
that dy (v) # 0, are moved. So, balancing prevails over minimizing the number
of edge cuts. This set of boundary nodes corresponds exactly to F V,H)nv.
Moreover, as in the previous method, one has to check that V,\F(¥;, 1) is con-
nected. This is done using proposition 3. If this is not the case, then another
subset has to be selected. Evidently, this process is valid only when the standard
deviation o = \/(1/p) Y *_,(n, — n)? decreases. If we use a prime (') for new
quantities, call én the number of nodes of the front and let 6o = p(c”” — o?), we
have

S0 = (r; — )’ + (= 2)* — (n; — )* — (n; — 7)?
= (n; — 71— 6n)* + (n; — 71 + 6m)* — (n; — A)* — (n; — A1)’
= 26n{én — (n; — n,)}.

In other words, LB2 is used when én < n, — n;.
For both balancing steps, the process is iterated until the standard deviation
approaches the optimal standard deviation

%m=vgmﬁ+UP—NWFWV+UV—@XW+U—XW,

where x = N /p, or does not decrease anymore (in practice after five iterations).
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The complexity of one iteration of the reshaping step is O(M ). The complexity of
one iteration of the balancing step (either LB1 or LB2) is O(p) for part (a) and
O(m; + my;) for parts (b) and (c). Note that, as for the postprocessing steps
described in subsection 5.1, when the retrofitting method is performed, neither
the number of iterations for the reshaping steps nor for the balancing step are
bounded a priori. Nevertheless, it is expected that the number of balancing steps
which are performed when using LB2 is much smaller than when using LBI.

6. Examples

Many numerical experiments have already been presented by the authors on
physical meshes for the GP heuristic on the one hand [8,9] and GP with the retro-
fitting method using LB1 on the other hand [10]. In [10], a number of comparisons
were made with spectrally derived heuristics. However, on a few tests the balancing
time was important. This led to the design of a new balancing step (LB2), leading to
a heuristic totally based on fronts, which it was hoped would be faster.

The meshes for which we compare the greedy heuristics have the following
characteristics:

Annulus N = 8448, M = 33024,
Airfoil N = 258990, M =773168.
Spheres N = 9020, M = 59418.
Cube N = 15625, M = 186696.

Eppstein N = 131137, M =392256.

Annulus, Airfoil and Eppstein are 2-dimensional meshes, whereas Spheres and
Cube are 3-dimensional. For more details, we refer the reader to [10]. Hereafter
we list in 5 tables the result of the comparison of GP alone or with the retrofitting
method using either LB1 or LB2 (called respectively GP, and GP,). The parameters
listed below are the average standard deviation o /n (%), the percentage of edge cuts
my/M and the elapsed time ¢ in seconds (on a 50 MHz TI “Viking” SuperSparc
processor).

Table 1
Annulus.
o/n (%) mo/ M (%) £ (s)
p GP GP, GP, GP GP, GP, GP GP, GP,
4 5.8 0.3 0.3 2.69 2.63 2.64 0.08 0.52 0.35
16 0 0 0 5.86 5.83 5.83 0.08 0.19 0.18
64 11.2 4.4 4.1 11.87 11.72 11.85 0.08 0.72 0.43

256 63 29 2.9 25.71 24.75 24.79 0.08  0.49 0.38
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Table 2

Airfoil.

o/n (%) my /M (%) t(s)

i GP GP, GP, GP GP, GP, GP GP, GP,
16 98 0 0 0.95 1.00 1.00 3.0 3000 5.7
64 172 6.7 6.7 1.87 1.88 1.92 2.9 46.0 8.7

256 88 43 3.0 4.07 4.08 4.11 2.8 179 14.0

1024 52 30 2.1 8.45 8.35 8.37 3.0 162 128

Table 3

Spheres.

o/n (%) my/M (%) 1(s)

D GP GP, GP, GP GP, GP, GP GP, GP,
4 0 0 0 8.03 8.03 8.03 0.18 0.26 0.25
16 0.1 0 0.1 18.37 18.30 18.29 0.18  0.30 0.30

64 6.7 0.8 0.4 29.91 29.81 29.83 0.18  0.78 0.50

256 3.0 1.8 1.6 48.24 47.51 47.54 0.19 0.44 0.41

Table 4

Cube.

o/n (%) o/ M (%) 710)

J4 GP GP, GP, GP GP,; GP, GP GP, GP,

4 0 0 0 7.43 7.43 7.43 041  0.66 0.62
16 39 0.1 0.1 16.36 16.35 16.37 045 28 2.4
64 03 02 0.2 27.26 27.22 27.22 042  0.76 0.76

256 09 0.5 0.5 46.13 46.06 46.05 0.45 1.0 0.92

Table 5

Eppstein.

o/n (%) my/ M (%) 1(s)

14 GP GP, GP, GP GP, GP, GP GP, GP,
16 33 0 0 1.35 1.35 1.35 1.2 7.7 3.7
64 57 35 2.1 2.96 2.96 2.96 1.1 6.2 5.1

256 1.8 1.1 1.1 6.07 6.01 6.00 1.1 39 34

1024 2.2 1.4 1.4 12.30 12.03 12.02 1.2 49 4.3




212 P. Ciarlet, F. Lamour | Partitioning large sparse graphs

As expected, when GP is used alone, the elapsed time is independent of p. For
low average degree graphs (2D meshes), it generally produces some imbalance
between subsets. Moreover, the retrofitting method is more expensive in these
cases.

We can make several other remarks, when the retrofitting method is used. First,
the average load balancing is improved when using LB2 over LBi. Second, the
number of edge cuts my is only marginally higher for LB2, although it does not
take into account the optimization of my,. Third, elapsed times are always smaller
and, in addition, LB2 produces in some cases results equivalent to those obtained
with LBl much faster. Also, when LB2 is used for a given mesh, there are no
large fluctuations in terms of elapsed time for different values of the number of sub-
sets (see the Airfoil). Finally, let us mention that if we divide the number of edges by
the average of the elapsed time (for a given mesh and different values of p), then we
have, for the partitioning heuristic GP,, the following results*:

Annulus M/t =10 x 10* edges/s.
Airfoil M/t~ 8 x 10* edges/s.

Spheres M/t =~ 16 x 10* edges/s.
Cube M/t~ 16 x 10* edges/s.
Eppstein M/t ~ 10 x 10* edges/s.

There are two behaviors, one for low average degree graphs (Annulus, Airfoil,
Eppstein), and the other for higher average degree graphs (Spheres, Cube). As
previously noted, the retrofitting is less expensive in the latter case because GP
provides better balanced partitions.

7.Conclusions

In this paper, we have presented a heuristic which approximates the p-edge
partitioning problem for large sparse graphs G with a connectivity constraint on
the subsets. It is decomposed into two parts: the computation of an initial partition
and an iterative retrofitting process. We proved the finiteness and correctness of the
initial step and also showed that its complexity is O(M ), where M is the number of
edges of the graph, by using front-based tools. For the retrofitting method, we
designed a new balancing step, also based on front techniques, in order to reduce
the number of iterations of the method. Numerically, we verified on various
examples that the new retrofitting process leads to reduced elapsed time to
compute the partition, and that these elapsed times are linear with respect to M.

* For GP alone, M/t is in the order of 36 x 10* edges/s.
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