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Abstract

One level overlapping Schwarz domain decomposition preconditioners can be viewed as a generalization
of block Jacobi preconditioning. The effect of the number of blocks and the amount of overlapping between
blocks on the convergence rate is well understood. This paper considers the related issue of the effect of the
scheme used to partition the matrix into blocks on the convergence rate of the preconditioned iterative method.
Numerical results for Laplace and linear elasticity problems in two and three dimensions are presented. The
tentative conclusion is that using overlap tends to decrease the differences between the rates of convergence for
different partitioning schemes.

1 Introduction

One level overlapping Schwarz domain decomposition methods are very simple, natural preconditioners
for the parallel solution of the linear systems that arise {rom the discretization of elliptic PDEs. In order to
apply these methods efficiently in parallel one must partition the unknowns among the processors to achieve
both load balancing and reduce required interprocessor communication. However, for block Jacobi methods
the particular partition used can have a large effect on the numerical convergence rate.

Farhat and Lesoinne [0] and Farhat and Simon [10] addressed the problem of load balancing and commu-
nications between processors on a parallel architecture, and have run some experiments on parallel machines
in order to compare the execution times. In this paper we study the effects of several partitioning strategies
(with and without overlap) on the load balancing and eommunications but we focus on the convergence rate
of the method or, equivalently, on the number of iterations required to reach a prescribed {olerance.

We consider the numerical solution of elliptic PDEs in both two and three dimensions on unstructured
grids using the finite element method. The resulting linear system is solved using a domain decormnposition
preconditioned Krylov space method designed for parallel computing. All of our numerical experiments are
performed on sequential machines because we are mainly interested in the effect on the numerical convergence
rate. Future studies will focus on the non-numerical effects introduced by parallel machines.
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The paper is organized as follows. In Section 2, we present the elliptic problems to be solved, that is the
equations and the boundary conditions. We also include a brief overview of the discretization, the iterative
and the domain decomposition methods used in the paper. In the next Section, we give a detailed description
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of the partitioning heuristics, the influence of which we compare in Section 4.

2 Solving the elliptic problems

2.1 The problems and their discretization

Let Q denote the domain imbedded in K2 or R® and I' = Tg|JT'; its boundary. The elliptic problems to be
solved are either the Poisson problem with Dirichlet boundary conditions on T'g and homogeneous Neumann
boundary conditions on Ty or the equations of linear elasticity in the domain §2 with Dirichlet boundary
conditions on T. Let u denote the (scalar) solution of the Poisson problem and u the {vector) solution of the
elasticity equations. Finally let E, Young’s modulus, and v, Poisson’s ratio, be two positive constants. Then
the problems can be written as:

—Au=fm§, u=gon/Tly, g‘Z‘=OOBI‘1,

E 1—
-—1+V{Ag+ 1=

In order to derive a discretization of these problems, the equations are replaced by a suitable variational
formulation and then the finite element method [2] with the P1 finite element is used on the triangulations.
Even though the value of the solution is known on g via the Dirichlet boundary condition, we have chosen fo

keep these (trivial) equations in the linear system. Because of this, the unknowns are the approximations of
the value of the true solution at all vertices of the triangulation, and the matrix is nonsymmetric.
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2.2 Tierative and DD methods

The resulting nonsymmetric linear system is solved using the preconditioned Bi-CGSTAB method, due to
van der Vorst [21]. The preconditioner considered in this paper is designed with the help of domain decompo-
sition principles.

In recent years, many papers have been devoted to the study of new domain decomposition methods. One
of the main reasons for this renewed interest is the emergence of parallel and massively parallel computers.
This is because many domain decomposition methods are naturally parallel. The additive Schwarz method
we consider in this paper is very representative. This method was introduced by Dryja in [7] and Dryja and
Widlund in [8]. For some results obtained on parallel architectures with this method, we refer the reader to
[156].

Here, we consider the case of the one-level additive Schwarz, that is local problems are solved without a
coarse problem. It is well known that the addition of a coarse solver greatly reduces the condition mimber and
therefore the number of iterations, but a coarse solver is defined from a coarse triangulation of the subdomain
which maybe costly to compute. In order to get a better condition number, it is possible, on the other hand,
to consider overlapping subdomains. Here, the overlapping subdomains are simply obtained by extending the
nonoverlapping partitions, at little additional cost. In the following, we thus allow subdomains to overlap.

Finally, let us briefly mention how the local problems are solved: the (complete) LU-factorization of each
local problem is computed and then used as a solver at every iteration of the method., To minimize the fill
(number of non-zero entries) during the factorization, the matrix columns and rows are reordered with nested
dissection following Gieorge’s Sparsepack [13].



3 The partitioning heuristics

In order to partition the domain, the triangulation can be considered as a graph by identifying the notions
of vertices and edges. We call this graph a finite elemeni graph. Let G = (V, E) be a graph where V is the set

of nodes and E is the set of edges. Let p be an integer, then we define the p edge-partition of G as a partition
of V into p disjoint sets Vi, V3, ...V}, such that:

i Uf:lw = V’
o |Vilm|Vlfor1<i,j<pandij,
o m =] {(vi,v;) € E and v; € Vi, v; € V; with i # j} | is as small as possible.

Besides the requirements of the p edge-partitioning problem it may be necessary to impose that each
resulting subset has to be connected.

For all the formulations and variants of graph partitioning, the general problem is a NP-hard problem.
Many heuristics have been developed while few optimal results have been proved.

The heuristic methods proposed in the literature for finite element graphs can be roughly arranged in {wo
categories: the greedy methods and the recursive methods. A detailed study of the heuristics presented here
as well as a fair comparison of the corresponding partitions are given in {6].

Let fist introduce some definitions and notations about graphs that will be used in the following.

Let N =| V | and M =| E | be the number of nodes and edges respectively. The degree of a node v, denoted
d(v), is the number of edges that have one endpoint in v, i.e. the number of neighbors of v. Moreover we use
d to denote the average degree of a node in G.

The Laplacian matrix of a graph G, denoted L(G) = ()i j=1...N, is defined by:

-1 if(v,-,'uj)EE
by=14 dw) ii=j
0 otherwise

As we study finite element graphs we shall talk about the boundary of the graph which is clearly defined with
respect to the meshes.

3.1 Recursive methods

3.1.1 Spectral bisection

Spectral partitioning methods are based on a particular eigenvalue, and on its associated eigenvector, of
the Laplacian matrix of the graph to be partitioned.

In order to understand the intuitive justifications of these methods we must summarize some known prop-
erties of the eigenvalues of the Laplacian matrix of a graph and display their links with the graph bisection, or
2 edge-partitioning, problem.

Let L(() be the Laplacian matrix of G and N > 2. Let A; < A2 € A3 < ... € AN be the cigenvalues of
L{G).

To begin with, A; is always equal to zero. The second smallest eigenvalue, Aq, is also known as the algebraic
connectivity of G. Let us recall that A, = 0 if and only if G is a disconnected graph. In other words, the
mumber of eigenvalues equal to zero gives exactly the number of connected components of the graph. Let us
assume, without loss of generality, that Az is the first non zero eigenvalue.

The 2 edge-partitioning problem can be reformulated in the following terms. Let us consider a vector
ge@={(g)eRY, ¢ =21, 3¢ =0} and the induced balanced partition for which a node i is assigned to
subset V4 if ¢; = 41 or to subset V3 if ¢ = —1.

The number of intersubset edges (or edge cuts) is equal to

m:a%umg



So the 2 edge-partitioning problem amounts to finding a vector ¢ € @ which minimizes this quantity.

By relaxing this discrete minimization problem to a continuous problem, that is to the search of a vector
such that || = ||2= N and ¥ ; = 0, one finds that the minimum of (z, L(G)z) is obtained for # = z3, where
9, is the cigenvector associated with g, named the Fiedler vector, [12].

Knowing this, the idea is to compute a vector ¢ € Q by using 22 in the following way. Let z; be the median
value of the components of #3. Then g; is defined as:

+1 if (m)i > =
gi = -1 if (.’.’62);' <z
+1 if (z4); = z; (for the balancing)

The partition induced by such & vector ¢ is known as the median cut partition. Of course this is not an
optimal partition. Although we cannot say how close to the optimal the median cut is, there are still some
interesting properties about it.

First, there is an important result about the connectivity of a median cut partition which has been stated
by Fiedler {12]. Briefly, if there are exactly "—;[ strictly positive components and % strictly negative components
then both balanced subsets of the partition are connected. Regardless, the connectivity of one of the subsets
is always guaranteed.

Secondly, it have been proved by Ciarlet, Chan and Szeto in {3] that for all p € Q, Nea=pll2llza—all
This result, which does not allow us to conclude about the optimality of ¢, can nevertheless reassures the

promoters of the median cut method by assuming that it is a close enough choice.

3.1.2 Recursive spectral bisection

Tn order to partition a given graph into any number of subsets that is a power of two, the median cut
partitioning method has been used as a step in a divide and conquer process, as in the Recursive Spectral
Bisection algorithm (RSB) due to Simon [20]. There the median cut algorithm is recursively applied to each
subgraph induced by the bisection previously computed until the required number of subsets is obtained.

Moreover, as the computation of the Fiedler vector is time consuming, many studies have been devoted
to speeding up the calculation of this particular vecior. Barnard and Simon, [1], have accelerated the RSB
algorithm by approximating the Fiedler vector. For this, they contract some edges in the graph in order
to obtain a smaller graph and repeat this operation a certain number of times until the contracted graph is
small enough. Then, they compute the Fiedler vector of the smallest graph. From the smallest graph, an
approximation of the Fiedler vector of the previous graph is deduced by an interpolation technique. This
approximated vector is then used as a starting point in an iterative method that computes the Fiedler vector.
Once the refined Fiedler vector is obtained the process goes back to the larger graph and recomputes a Fiedler
vector for this graph using the same strategy (interpolation and refinement), and so on. The algorithm is given
below and it will be referred to as “RP 1”.

Algorithm RP 1

1. Compute the Fiedler vector for the graph by:
(a) Constructing a series of smaller graphs (G"i=1,...,1. obtained by some contraction operations applied
to the original graph, (contraction step).
(b) Computing the Fielder vector for the smallest graph G*.
(¢) Constructing a series of Fiedler vectors corresponding to the series of graphs by:

i. interpolating the previously found Fiedler vector to the next larger graph in a way that provides
a good approximation to next Fielder vector (interpolation step),

ii. computing from the given approximated Ficlder vector, a more accurate vector (refinement step).

2. Sort vertices according to size of entries in Fielder vector.



3. Assign half of the vertices to each subdomain.
4. Repeat recursively (divide and conquer).
The complexity of RP 1 is estimated to O(M log, p).

3.1.3 Recursive multilevel algorithm

In a similar manner, Hendrickson and Leland in [18] used a multilevel technique to partition a graph.
They first reduce the size of the graph, and derive a series of smaller graphs by contracting the edges of the
original graph until the size of the last graph is small enough. They partition the smallest graph using the
median cut technique. Then, they reflect the parfition when uncontracting the series of graphs. Moreover, to
improve the quality of the partition (in term of balancing and of number of intersubset edges) they perform a
local optimization method which exchanges nodes between the subsets of the partition. Finally they repeat the
previous sequence of steps on each subset until the total number of subsets is obtained. The algorithm below

is called “RP 2”.

Algorithm RP 2

1. Construct a series of smaller graphs obtained by contraction operations applied to the original graph.
9. Partition the smallest graph using the median cut method.
3. Propagate the partition by:
(a) Uncontracting the smallest graph.
(b) Reflecting back the partition o the uncontracted graph.
(¢} Refining locally the partition using a local optimization methoed.
(d) Repeating steps (a), (b), (c), until the original graph.
4. Repeat recursively {divide and conquer).
The complexity of RP 2 is estimated to O(M log, p).

8.2 Greedy algorithms

3.2.1 Principles

According to the p edge-partitioning problem a greedy algorithm can be described as an algorithm that
computes each subset V; by simply accumulating nodes when traveling through the graph. The problematical
questions are only: how to start and how to stop?

The way of accumulating nodes in each subset is obvious from the graph structure of the problem. A
starting node v, is chosen and marked. The accretion process is done by selecting and marking the unmarked
neighbors of v,, then the unmarked neighbors of the neighbors of v, and so on as long as the expected total
number of nodes is not reached. This can be viewed as successively building fronts.

The way of choosing a starting node v, will clearly affect the shape of the final partition. Tt will also influence
the communication scheme, i.e. the number of existing edges between different subsets of the partition.

In the same way, the manner that one chooses the prescribed number of nodes among all the candidate
nodes of the last front contributes to the quality of the final partition.

Thus a greedy heuristic for solving the p edge-partitioning problem can be defined roughly by iterating the
following 3 steps:

1. Choose a “good” starting node v,,
2. Build fronts,

3. Stop according to some tie-break strategy in case of multiple choices and mark all the chosen nodes.



At present, there are no theoretical results on the “goodness” of one starting node. Neither are there results
on how good a tie-break strategy is. For those two points only intuitive guesses help to design p partitioning
problem heuristics, However, an obvious justification of using greedy heuristics for solving the p partitioning
problem is that they are inexpensive. We have shown in [5], that for the general case the overall complexity of
such algorithm is O(N max{p, d,iogz(%))).

3.2.2 Front oriented algorithm

The next algorithm, presented in detail in [5], implements the principles of a greedy method as well as some
other original features. First, this algorithm builds connected subsets. On the other hand, it does not always
provide well balanced subsets. The subsets are constructed in a concentric way around the boundary of the
graph. Finally, for each subset, in case of multiple choices between the nodes of the last front, the tie-break
strategy chooses those which are linked to as few unmarked nodes as possible.

More precisely, in the partitioning process, the starting node of each iteration { is chosen in order to belong
simultaneously to the boundary of G, to be an unmarked neighbor of a node of V;_; and to have a minimal
positive current degree. Here, the current degree of a node is the puraber of nodes connected to it which have
not yet been selected, i.e. marked, during the accumulation step. '

As for the tie-break strategy, it is achieved by keeping the nodes that have a minimal current degree. In
fact, the algorithm does not simply build the subsets as mentioned but also check the connectivity of each
of them. Whenever a subset is found to be multiconnected, the algorithm corrects the feature by reassigning
small components to other subsets and by keeping the largest component. The algorithm “GP” is described
next.

Algorithm GP

I.Hi<p
i—1
(a) Compute n; = N%E—f—fjﬂ
(b) Choose an unmarked node v, such that:
i. v, belongs to the current boundary,
ii. if the current boundary is not new, v, is a neighbor of a node belonging to V.3 (if possible!),
iii. v, has a minimal current degree,
Mark v, and initialize V; with v,.
{c) If there are unmarked neighbors of nodes of V;, let & be their mimber,
i. If | Vi | +k < n; then mark those nodes, add them to V; and update the current degree of their
neighbors, and then return to 1.(c).
ii. Mark (n;— | V; |} minimal current degree nodes and add them to V;.
Update the current and virtual boundaries.
Do i =i+ 1 and return to 1.
(d) If there are no more unmarked neighbors of nodes of V; and if | ¥; |< n; then unmark the nodes in
V; and assign them to neighboring subsets. Return to 1.
2. Mark all the remaining nodes and add them into V,. If V} is multiconnected then keep the largest
component and unmark the nodes of the other components and assign these nodes to neighboring subsets.

The complexity of GP is O(M).

174 may not be possible to find a node neighboring the previously built subset if the boundary is multiconnected.



3.3 Local optimization methods

Whatever partitioning methods may be used, many experiments have shown that local optimization meth-
ods can improve greatly the load balancing or the intersubset structure. One of the most well known optimiza-
tion methods for improving a given partition is due to Kernighan and Lin [19].

Fundamentally the method is based on a given 2 edge-partition (1, Va) of the node set V of a graph and
tries to improve it by exchanging a subset of V; with one of V5. The selection criterion of the subsets is
determined from a gain function which is defined as follows. First, for v € V1, gu = dy,(v) — dy,(v) (da(v)
is the number of neighbors of v which belong to A) and for w € V3, guw = dv, (w) — dv,(w). Then the gain
obtained by exchanging a node v € V; with a node w € V3 is equal to:

Gvw = gv + 9w — 26(v, w)

where §(v, w) is defined by:
{1 f(v,w)ekE
b(v, w) = { 0 otherwise
The authors of RP 1 {[1]), have chosen to use the KL algorithm as a postprocessing step after each bisection
has been performed. Nevertheless, as the complexity of the KL method is in the order of O(N?log N}, the KL
method is actually invoked only when the number of nodes in each subset is less than 300.

Because of the complexity of the KL algorithm, Fiduccia and Mattheyses [11] slightly modified the algorithm,
and reduced the overall complexity to O(M). Principally, the FM algorithm chooses to move one node after
another instead of directly exchanging a pair of nodes. The authors of RP 2 generalized the FM method to an
arbitrary number of subsets, [17] and {18]. In this case, the overall complexity is estimated to O((p — 1)M).
This method is then invoked in step 3.(c) for refining the partition.

Finally, the authors of GP have designed, what they call a retrofitting method which has been suggested by
the experiments conducted on their partitioning heuristic [4]. The first step tries to reshape the outlines of the
subsets by deleting some excrescences. Generally these occur during the accumulation step of the partitioning
process when some of the chosen nodes encounter prematurely another subset. Then some nodes are attached
to the subset to which they belong by a single edge. By reassigning those nodes to neighboring subsets and
by iterating the process until no more excrescences remain, the shape of the subsets is improved., Note that
these boundary nodes are transferred to the subset which holds the highest number of its neighbors. It is not
always possible to eliminate all the excrescences, so the reshaping step has to stop when the overall shape of the
partition, i.e. the number of excrescences, does not seem to be improved over the iterations (more precisely five
jterations). Here, one itcration consists of spanning the whole set of nodes V and reassigning the excrescences.

Because of the reassignment of nodes to neighboring subsets in order to preserve the connectivity of the
subsets, the resulting partition provided by GP is not balanced in most of the cases. Thus the second step of
the retrofitting method looks for rebalancing the subsets by moving nodes from large subsets to small ones.
One iteration of this consists of three parts. First, the largest and smallest subsets are determined. Then a set
of nodes (or front) of the largest subset is reassigned to its smallest neighbor. Last, a set of nodes is reassigned
to the smallest subset, coming from its largest neighbor. Moreover this process includes & connectivity test
step which allows a move of a front only if the subsets of the new partition remain connected. The balancing
process is iterated until the standard deviation approaches the optimal standard deviation or until it does not
decrease anymore.

The complexity of one iteration of the reshaping step is O(M) while the complexity of the balancing step
is in the order of O(nd), where n is the average number of node by subset. Note that when the retrofitting
method is performed, neither the number of iterations for the reshaping steps nor for the balancing step are
bounded a priort.

4 Numerical experiments

For our mumerical experiments, we consider three domains. One is imbedded in R? and is the exterior of
the section of a wing, made of four parts. The triangulation of this domain is due to T. Barth (from NASA



Ames). The other two are imbedded in R3: they are a domain bounded by two concentric spheres and an axle
(part of an automobile). The first triangulation comes from L. Crouzet (from CEA) and the second one from
M. Vidraseu (from INRIA). The three domains have been scaled in order to be in [0,1}% or [0,1]*. The wing
grid has 33677 nodes and 99520 cdges, the spheres grid has 8020 nodes and 59418 edges and finally the axle
grid has 25058 nodes and 156842 edges.

The Poisson problem is solved on the wing and the spheres, f is set to ~9z2%sin 3y 4+ 2sin 3y in 2D and 0

in 3D. T = I'N{(z,y),# < 0.2} and g = 2%sindy in 2D, Ty = T and g = = in 3D. For the linear elasticity
4

T
equations, solved on the axle, the constants are set to E =1andv =0.3. fisset to ﬁ%ﬁ;@%"_—‘;.%—) yj . Finally,
s

z

g=4

26
The numerical experiments including both the partitioning heuristics and the iterative solver are tested
through a common tool: the Portable Eztensible Tools for Scienlific Computation (PETSc) developed by
Gropp and Smith [14], [16]. PETSc is a software library for parallel and serial scientific computations, 1t
provides a variety of packages and in particular the iterative solver. In addition to these existing packages,
PETSc makes it easy to include any software written either in C or Fortran. The softwares corresponding
to the partitioning heuristics have been given by their authors and have been used in PETSc as 1s. We have
written interfaces for transferring inputs and parameters as well as for interpreting the results. The RP 1 code,
written by Barnard and Simon, can be obtained by a request to their authors?. The RP 2 code is copyrighted
but can be obtained via a request to Hendrickson or Leland®. The GP code has been written by Clarlet and

Lamour.
The experiments were carried out on a Sun Viking SuperSparc.

4.1 The partitioning characteristics

We summarize the characteristics of the three partitioning heuristics according to two parameters. The
first one measures the balancing of the subsets. It gives a realistic idea of the difference of the size between
large subsets and small ones according to the average size of the subsets: o/n (%). The second one measures
the percentage of intersubset edges (m/M).

We list below the notations that describe the different parameters attached to a given partition:

p is the number of subsets,

n is the average number of nodes by subset,

¢ is the standard deviation of the number of nodes by subset and is equal to \/ e (i — )2,

o/n (%) is the average standard deviation of the number of nodes by subset,
m is the number of intersubset edges,
m/M (%) is the percentage of intersubset edges.

Although o/n measures the size of the subsets it is not representative of the actual load balancing. We can
see from Tables 1-3 that o/n is very small in all cases (and optimal by definition for the recursive heuristics),
with the exception of the first two values for GP in Table 3. But this is not enough to ensure the load balancing
if one looks at Tables 7-9. Further comments are made in the next Section.

2

simon@nas.nasa.gov or barnard@nas.nasa.gov.

3bahendr@cs.sandia.gov or rwlelan@cs.sandia.gov.



5 | 16 | 32 | 64 | 128 | 256
RP 1] 0.02 | 0.05] 0.08 ] 0.11 | 0.38
RP 2| 002|005 | 0.08] 0,11 | 0.38
GP 1104145 056299 | 254

Table 1: Wing: ¢/n (%).

P 16 32 64 | 128 | 256
RP1}008]0.12]0.17|0.71 | 1.20
RP210081!012}017]0.71 | 1.20

GP ]0.08}0.29 ;039087164

Table 2: Spheres: o/n {%).

P 16 32 64 | 128 | 256
RP1} 0.02 | 0.03 |0.13]0.22 | 0.33
RP21 0.02 | 003 ]0.13]0.22]0.33

GP | 25.39 | 14.24 | 7.36 | 3.54 | 3.50

Table 3: Axle: o/n (%)

The ratio m/M measures the communication volume between the subdomains, where M is given while m
is the parameter to be minimized by the heuristics. In general we can see that this volume is smallest for RP
9, followed closely by RP 1. Nevertheless, GP gives reasonably close values, as can be seen in Tables 4-6. The
impact of differences between communication volumes on jteration time is not measurable in our experiments
as we have run them on a sequential machine.

r 16 32 64 | 128 | 256
RP1]201]3.17]4.61]6.89 1017
RP 2| 1.44[247]4.11 1647 | 9.74
GP [269]374]513]773|11.24

Table 4: Wing: m/M (%).

r 16 32 64 128 256
RP 1} 15.83 | 20.59 | 26.53 | 34.09 | 43.08
RP 2 | 14.44 | 1945 | 25.73 | 33.26 | 42.39

GP [ 18.20 | 22.56 | 29.83 | 37.77 | 47.54

Table 5: Spheres: m/M (%).

P 18 32 64 128 256
RP1[5.26 ] 835 | 12.86 | 18.856 | 26.09
RP2 | 436 | 7.40 } 11.80 | 17.74 | 25.09

GP |6.68|11.99 1744 | 24.04 | 31.74

Table 6: Axle: m/M (%).




4.2 The numerical characteristics

Basically, the numerical characteristics of the iterative method are the number of iterations needed to
reach the prescribed tolerance of 10~%, and the amount of work by iteration. Let us first address the latter for
nonoverlapping subdomains,

Mainly, an iteration consists in solving p linear systems, one for each subdomain. Therefore the amount
of work is proportional to the number of nonzero entries, or fill, of the LU-factorization of the local matrices,
that is the restriction of the matrix to each subdomain. Average fills are listed Tables 7-9 in thousands for
nonoverlapping subdomains. Interestingly, GP gives generally better results than the recursive heuristics. This
can be explained in part by the average fill of the local matrices before factorization. It is equal to LM_-!-_;JIY_M
and therefore smaller for GP, as shown by Tables 4-6. The reordering and factorization process does not seem
to reduce these original differences. The reordering is done using Sparsepack’s nested dissection routines.

Moreover, as these methods are designed for parallel architectures, it is natural to study the load balancing,
that is not the average fill but the fill for each subdomain. The most important values are the minimum and
the maximum fills for a given partition. Tables 7-9 also indicate the minimum and maximum fill in square
brackets. In most cases, there is a great imbalance,

The maximum value is representative of the largest amount of work on a processor, in the case of & parallel
experiment. Generally, these are very close for the three heuristics. If we lock at these values as a function of
the number of partitions p, then RP 1 gives the best results for small p whereas GP performs best for large p.
Note that here we only commented (and gave) results concerning nonoverlapping subdomains. This is becanse
the conclusions remain identical for overlapping subdomains.

P 16 32 64 128 256
RP 1| 843 [75.2,94.9] | 35.0130.6,41] | 15.0 [12.1, 16.8) | 6.1[4.7,7.0] | 2.41.5,2.9
RP 3] 90 [81,99.1] | 378 [31.9.43.7] | 16.5 [12.1,18.9] | 6.2 [4.8,7.1] | 2.4[1.2,2.9
GP | 82.5 [70.8,94.9] | 35.3 [24.4,41.2] | 15.0 [11.4,18.1] | 6.0 [4.7,7.22] | 2.3 [1.5,2.9]

Table 7: Wing: Average fills [min,max] without overlap.

P 16 32 64 128 256
RP 1 | 34.8 [25.7,40.9] | 11.8 [8.6,14.5] | 3.9[2.2,5.3] | 1.3[0.5,1.9] | 0.4 [0.2,0.7
RP 2] 35.6 [31.1,43.1] | 12.3 [9,16.3] 412.1,5.9] |1.3[0.7,2.1] [ 04[0.2,0.7

GP | 32.9[13.1,45.9] [ 11.3[7.7,15.3] | 3.6 [2.5,5.3) | 1.2 [0.6,1.9] | 0.4 {0.1,0.7

Table 8: Spheres: Average fills [min,max] without overlap.

P 32 64 128 256
TP 1| 387.7 [238.1,619] | 132.4 [56.4,206.9] | 43.8 (14,78.6] | 14.9[2.5,28.0]
RP 3| 398.9 [228.4,604.9] | 136.1[60.7,222.6] | 45 [9.4,72.8] | 14.7 [1,26.8]
GP | 356.7 [145.4,704] | 115.8 [45.6,242.0] | 37.9 [0.2,70.4] | 12.5 [2.8,25.9]

Table 9: Axle: Average fills [min,max] without overlap.

Let us now investigate the possible origins of the imbalance. It can be caused by some original irmbalance,
i.e. the discrepancy in fill of the local matrices before they are factored. It can also be caused by the structure
of these matrices which affects the reordering and factorization process. The second cause is not clearly related
to the partitioning heuristic, but the first one is.

Indeed, the constraint, when partitioning, is on the number of vertices. Unfortunately, the nonzero entries
of the local matrices correspond exactly to the edges of the graph. Thus, in order to have balanced local
matrices, one has to replace the constraint on vertices by a constraint on edges. But it can not be easily done,
since the average number of edges by subset MP-:—'E is not known a priori: a value for m is obtained only
after the partition is computed.
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Nevertheless, for this particular problem, it is possible design special postprocessing strategies, Here, once
m is determined, some “retrofitting” technique could be applied very simply, targeting the number of edges
instead of the number of vertices. Note that, in this case, the original constraint on the number of vertices
is not crucial any more. Bricfly, let us mention another way of avoiding this problem in 2D} A a matter of
fact, for a given region R of the 2D-triangulation, if Tk denotes the number of triangles and My the number

of edges in the region, then
37w ~ 2Mp.

Based on this observation, it can be interesting to partition the triangulation in terms of triangles, as well
balanced subsets of triangles correspond roughly to well balanced subsets of edges. In 3D, however, there is no
such relationship between the number of tetrahedra and edges in a region.

Now, we consider the number of iterations as a function of both the number of subdomains p and the
overlap.

First, we consider the nonoverlapping case. It is the only case we calculate for the axle because of memory
limitations. We can see from Tables 10-12 that no heuristic performs really better than the others in terms of
the number of iterations. Moreover, these numbers are relatively close to one another for a given p, especially
when they are small (see the 3D examples). Finally, for the spheres and the axle we note that the number of
iterations increases only slowly with the number of subdomains. This is particularly true in Table 12,

» ] 16 | 32 | 64 ] 128 | 266
RP 1| 146 | 158 | 134 | 136 | 152
RP2 | 83 | 94 | 107 | 142 | 79
GP | 105 | 83 | 96 | 119 | 144

Table 10; Wing: Number of iterations without overlap.

P 16 13264 | 128 | 256
RP1§121 25122 28 | 27
RP2{19 |21 21} 29 | 22

GP |19 [21|271] 24 | 29

Table 11: Spheres: Number of iterations without overlap.

P 32 | 64 | 128 | 2566
RP1J11}13} 14 | 17
RP2(10113] 16 | 16

GP |15 (16| 17 | 20

Table 12: Axle: Number of iterations without overlap.

Figures 1-10 illustrate the behavior of the number of iterations according to the overlap, the number of
subdomains being fixed. For Figures 8 to 10, the missing parts of the curves are due to memory limitations.
In the case of overlapping subdomains we can also see that no heuristic performs dramatically better. The
different values of the number of iterations tend to be more clustered as the overlap increases. Once again, the
behavior of the curves is not strictly monotonic. Yet, it tends to decrease as the overlap increases.

We note that the reason for the larger number of iterations for the problem in two dimensions is due to the
Neumann boundary conditions which usually decrease the convergence rate of block J acobi type preconditioners.
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5 Conclusion

We solved some elliptic PDEs in two and three dimensions on unstructured grids using the one level
overlapping Schwarz method, We partitioned the triangulations with three different heuristics and studied the
impact of the partitioning on the numerical results. Based on these experiments, it appears that the three
heuristics behave very similarly in terms of load balancing. For the convergence rate the increasing amount of
overlap tends to smooth out the differences between the iterative solvers. For nonoverlapping subdomains it is
difficult to point out any advantage of one heuristic over the others, since different heuristics perform best on

different problems.
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Figure 1: Wing in 16 subdomains.
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Figure 2: Wing in 32 subdomains.
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Figure 3: Wing in 64 subdomains.
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Figure 4: Wing in 128 subdomains.
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Figure 5: Wing in 256 subdomains.
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Figure 6: Spheres in 16 subdomains.
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Figure 7: Spheres in 32 subdomains.
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Figure 8: Spheres in 64 subdomains.
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Figure 9: Spheres in 128 subdomains.
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Figure 10: Spheres in 256 subdomains.
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