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Hereafter, we describe and analyze, from both a theoretical and a numerical point of view, 
an iterative method for efficiently solving symmetric elliptic problems with possibly discon- 
tinuous coefficients. In the following, we use the Preconditioned Conjugate Gradient method 
to solve the symmetric positive definite linear systems which arise from the finite element 
discretization of the problems. We focus our interest on sparse and efficient preconditioners. 
In order to define the preconditioners, we perform two steps: first we reorder the unknowns 
and then we carry out a (modified) incomplete factorization of the original matrix. We study 
numerically and theoretically two preconditioners, the second preconditioner corresponding 
to the one investigated by Brand and Heinemann [2]. We prove convergence results about 
the Poisson equation with either Dirichlet or periodic boundary conditions. For a meshsize 
h, Brand proved that the condition number of the preconditioned system is bounded by 
O(h -1/2) for Dirichlet boundary conditions. By slightly modifying the preconditioning 
process, we prove that the condition number is bounded by O(h-l/3). 

Keywords: Conjugate gradients, sparse modified preconditioners, ordering strategies. 

1. I n t r o d u c t i o n  

Modified preconditioners for solving elliptic problems discretized by finite 
differences have been introduced by Dupont et al. [8]. Gustafsson [12-14] on the 
one hand and Meijerink and Van der Vorst [16, 17] on the other hand then 
studied modified incomplete Cholesky factorization methods for solving problems 
with discontinuous coefficients. More recently, Brand and Heinemann [2] 
investigated a modified preconditioner based on a reordering of the nodes they 
called the Repeated Red Black ordering. Moreover, Brand [1] proved some 
theoretical results concerning this new ordering. The main advantage of a 
modified preconditioner over its unmodified version is that, generally, even 
though they require the same amount of work to be built, the condition number 
of the preconditioned linear system improves when the former is used. In the 
following, we use the Preconditioned Conjugate Gradient method to solve the 
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symmetric positive definite discretization of elliptic problems with possibly dis- 
continuous coefficients. We study two preconditioners based on the Repeated 
Red-Black ordering. The second preconditioner corresponds to the one investi- 
gated by Brand and Heinemann. We consider LDL'r-incomplete factorizations of 
the original problem, which we study both numerically and theoretically. In 
particular, for the modified factorizations, we prove convergence results about 
the Poisson equation with either a Dirichlet or periodic boundary conditions. 
For Dirichlet boundary conditions and a meshsize h, Brand proved that the con- 
dition number of the preconditioned system is bounded by O(h-I/2). By slightly 
modifying the preconditioning process, we prove that the condition number is 
bounded by O(h-1/3). 

The paper is organized as follows. We define the elliptic problems to be 
solved and their discretization in section 2. In section 3, we introduce the 
Repeated Red-Black ordering and briefly recall some results about incom- 
plete factorizations in section 4. Then we define the two preconditioners in 
sections 5 and 6, before studying them numerically (section 7) and theoretically 
(section 8). 

2. The continuous and discrete p rob lems  

The aim of this paper is to solve numerically the following problem: 

(a(OY) 0 ) ,  (2.1) -div (d  grad u) = g in Ft, where d(x,y) = b(x,y) 

u = 0 on OFt, (2.2) 

where Ft =]0, 1 [x]0, 1[ and a, b and g are given functions, a and b being positive over 
the domain. The coefficients of ~ can have jumps over Ft. Problems with other 
boundary conditions can be handled without difficulty. 

We discretize the problem by using the standard finite element method with 
isosceles right triangles. All hypotenuses are parallel to the x + y = 1 diagonal 
of the domain. The length of the horizontal and vertical edges is a constant 
number called the meshsize h = 1/(m + 1). Here m is an integer equal to the 
number of nodes (or vertices) in each direction parallel to the x- or y-axis. 
Denote by n the number of nodes (n = m2). The nodes are labeled sequentially 
by row. 

Then, by using the usual P1 approximation leading to the classical five-point 
scheme, we obtain a sparse linear system with n equations and n unknowns, 
where x is approximating the node values of u: 

Ax =f.  (2.3) 
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Definition 2.1 
Denote by tridim(ai, bi, ci) the tridiagonal matrix 
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is of order n where T = tridi m ( -1 ,4 ,  - 1 )  and I is the identity matrix of order m. 

Properties on a and b ensure that the matrix A is symmetric positive definite. So 
we use the Preconditioned Conjugate method to solve (2.3). In the following, we 
first reorder the nodes and then define sparse preconditioners of A. 

3. Repeated Red-Black ordering 

In this section we introduce a numbering which can be derived from the classical 
Red-Black numbering (see [2]) or the Alternating Diagonal numbering (see [7]). 
These two numberings are defined in the following way: if the nodes are associated 
with the squares of a chessboard, then the Red unknowns are labeled diagonally 
before the Black ones, which are also labeled diagonally�9 The main difference 
with the Repeated Red-Black ordering (denoted by RRB) is that the Black 
nodes are no longer labeled sequentially. 

From now on, we use the Brand and Heinemann terminology (see again [2]). The 
RRB ordering principle is based on a recursive process�9 At a given step, k, the set of 
remaining nodes, that is, the set of "not yet" labeled nodes, is split into two halves 
respectively called R [k] and B [kl. The nodes of R [k] are then labeled sequentially and 
the process is reiterated for the set of nodes B [kl. 

We suppose that the number of nodes is of the form n = 2/. Then the process 
stops naturally when the set of remaining nodes is reduced to only one element. 
We can also choose to stop the process at step K and then the nodes of B [KI are 
also labeled sequentially. The first strategy is called the complete RRB ordering 
and the second one the K-step RRB ordering. They are respectively denoted by 
RRB(c) and RRB(K). 
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Fig. 1. Steps 1 and 2 of the numbering process. 

We give in this paragraph the splitting criterion for the set of remaining nodes. If 
during step k the splitting occurred along diagonals, then it is done along parallels 
to the axis at step k + 1. Conversely, if the splitting occurred along parallels to the 
axes, it is done along diagonals. More precisely, if at a given step the splitting occurs 
in the direction of angle 0, then the next one is done in the direction of angle 0 + 7r/4. 

An RRB(2) ordering example is given in figures 1 and 2. 

Remark 3.1 
This method applies for a number of nodes of the form n = 2 t. As we label half of 
the remaining nodes at each step, the maximum number of steps is equal to l. If n is 
not a power of 2, the same method still applies, but the number of nodes labeled at 
each step is no longer equal to half the number of the remaining nodes. 

4. F a c t o r i z a t i o n  o f  a matr ix  

4.1. Complete factorization 

One can think of two ways to achieve the complete factorization of a symmetric 
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Fig. 2. RRB(2) ordering. 

positive definite matrix A = L/)L T, where/~ is lower triangular with a unit diagonal 
and /) is diagonal. The first method is "algebraic", whereas the second one is 
"geometrical". 

The first approach is Cholesky's factorization algorithm for matrix A. It relies on 
a column by column or row by row construction of the matrix. We consider the row 
by row construction. At step i of the algorithm, the entries of row i of L are com- 
puted in increasing order before the diagonal entry of /9 ,  as a function of the 
corresponding entry of A and entries of L a n d / )  previously computed (see for 
example [10] or [4]). 

The second approach is to remove successively the vertices of the graph associ- 
ated to A and to reason on the edges (between vertices) of the graph. We use here 
the notations of [15] (see the appendix). In that case, the construction of the 
matrices/~ and/3 is column by column like. Let A ~ = A and A 1 = A ~ We perform 
the removal of a vertex in figure 3. 

Vertex 1 is adjacent to its neighbors 2, 3, 4, and 5 (and to itself). Therefore, in 
column 1 of L, only Lll , L21 , L31 , L41 and Ls1 are non-zero entries. Moreover, 
the removal of vertex 1 produces new edges between vertices 2, 3, 4 and 5 (all 
vertices are adjacent to one another). 

5 

4 li 2 

I. removing 
vertex 1 

Fig. 3. Removing a vertex. 
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It induces a modification of the restriction of our starting point ,41 to the nodes 2, 
3, 4, 5 . . . .  We call A I the new matrix and A (l) its restriction: 

A l =  

0 0) 
A(l) 

To remove vertex 2, our starting point is now ,4 2 = A 1 . The removal process is then 
carried out iteratively on the vertices: at step i, columns i of L and the ith entry of / )  
are computed by removing vertex i and a new matrix, called A; (and its submatrix 
A (i)) is obtained; the starting point of step i + 1 is ,4i+l = Ai. 

4.2. Incomplete factorization 

A way of designing preconditioners M for the matrix A is to perform an 
incomplete factorization of A according to the RRB ordering. 

Denote by P the permutation matrix allowing to shift from the row ordering to 
the RRB ordering. In the following, we rename A the matrix P A P  -l  . 

We know that if M is a nonsingular matrix, then A = M -  R represents a 
splitting of the matrix A and that if M is symmetric positive definite (therefore 
equal to M = LDLT),  then M is an (LDLT-)incomplete factorization of A. More- 
over, the incomplete factorization is said to be modified if the row sums of R are 
equal to zero. 

In the following, the basic idea is to perform an incomplete factorization with a 
prescribed structure of L and to set M = L D L  T. We propose two preconditioners, 
called Ml and )142. Brand and Heinemann investigated the latter [2]. Our factoriz- 
ations are either unmodified or modified. 

This kind of incomplete factorization was first investigated by Dupont  et al. [8, 9], 
although the term modified does not appear in these papers. 

We have previously introduced the complete factorization process. It is done by 
iteratively removing nodes to get A =/~,/~['r. The process can be changed quite 
simply to give an incomplete factorization of A (= L D L  T - R). At step i of the 
process, only prescribed non-zero entries of A ;-1 are kept and a new matrix a i is 
obtained: 

h i = h i-1 + R i, where R i ~ O. 

The new process computes an unmodified incomplete factorization of the 
matrix. To produce a modified incomplete factorization, we add the entries of 
A i-I that were neglected in the previous case to the corresponding diagonal 
entry. This is done by modifying consequently the ith diagonal entry of R'. We 
provide a thorough description of the method in the appendix. 
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nine-point scheme 

Fig. 4. Nine-point scheme in B It] . 

5. The first precondit ioner 

In this section, our goal is to construct a matrix L~ to get an incomplete factor- 
ization M] = L1DILT. This matrix Mi is designed to be an efficient preconditioner 
of A for the Preconditioned Conjugate Gradient method. The factorization process 
is recursive, as for the construction of the RRB ordering. At a given step, k, the 

[kl k nodes of R are removed in the factorization process of Al. Here, the removal 
of a single node is considered as an inner step. The corresponding columns of L1 
are built and so are A~ and its submatrix AI k), defined on ffk]. If an RRB(c) order- 
ing was performed, then the process is carried out until the end. In the case of an 
RRB(K) ordering, the process is carried out until the last level B t/(] is reached, 
and then the complete factorization of A__I K+I) is performed. 

The process is completely defined by the structure of A k+l. From the whole 
graph, only edges corresponding to a five-point scheme in ~[k] are kept in Al k+l = 
A k + R k+l . We now describe the construction of the submatrix Al l) + Rl2).-When 
the nodes of R Ill are removed, it is easy to see that a node of B Ill is adjacent 
to its eight neighbors (and to itself), according to figure 4. 

This nine-point scheme rules the structure of All)-if the complete factorization 
process takes place. For AI 1) + RI 2), only entries corresponding to the five-point 
scheme in B Ill are kept (see figure 5). 

Therefore, we have entirely described the structures of both submatrices AI 1) and 
Al l )+  RI 2) which respectively correspond to the left- and right-hand figures in 
figure 6. 

Remark 5.1 
There are two differences between (sub)matrices AI ~ + RI 1)= A and Al l) + RI 2). 
On the one hand, the meshlines are horizontal instead of being diagonal. On the 
other hand, the meshsize is now equal to x/~h. These two reasons justify the 

X 
five-point scheme 

Fig. 5. Five-point scheme in BIII. 
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Edges that are created by 
removing the Red nodes 

Edges that are kept for 
the first precondltioner 

Fig. 6. Non-zero entries of AI ') and AI ') + RI 2). 

alternating splitting directions, along diagonals or parallels to the axes, together 
with the multiplication by a factor v~ of the meshsize at each step. 

The method previously described leads to a preconditioner Mlu , where the suffix 
u stands for unmodified. 

Lemma 5.1 
Mlu is a symmetric positive definite matrix. 

Proof 
See the appendix. [] 

Adding the entries that are neglected during the transition from the exact nine- 
point to the approximate five-point schemes to the corresponding diagonal entry 
leads to the modified preconditioner called Mlm. 

Lemma 5.2 
Mira is a symmetric positive definite matrix. 

Proof 
See the appendix. [] 

6. The Brand and H e i n e m a n n  precondit ioner  

Another preconditioner is considered in this section. This preconditioner has 
been investigated by Brand and Heinemann [2]. The factorization process is still 
recursive. The only difference with the construction of the preconditioner M1 is 
the definition of the matrix R k+l (or its submatrix R~ k+l)) at step k., Here, edges 
are kept if and only if they correspond to a five-point scheme in B [kl, for k' >__ k. 
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/ N / N / \ /  
, , , , , , , ,  X X X  
I N / \  I N /  
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I N / \  I N /  X X X  
/ N / N / N /  
Edges that are created by 
removing the Red nodes 

Edges that are kept for 
the second precondttloner 

Fig. 7. Non-zero entries of A~ 1) and A~ I> + R~ 2>. 

In that case, the structure of submatr ices/1~ 1) (for a complete factorization) and 
A~ l) + R~ 2) are given in figure 7. 

Remark 6.1 
Two steps are necessary to build the preconditioner M 2. In the first place, the 
binary matrix is built: the default entry (false) is set to true if it corresponds to a 
five-point scheme edge in one of the B [kl. In the second place, the factorization 
process is carried out and an entry of A_A_2 k+l is kept if the same entry of the binary 
matrix is true. 

The method leads to the M2, preconditioner. 

Lemma 6.1 
M2u is a symmetric positive definitive matrix. 

Proof 
See the appendix. []  

Adding the entries that are neglected during the factorization to the correspond- 
ing diagonal entry leads to the modified preconditioner called M2m. 

Lemma 6.2 
M2m is a symmetric positive definite matrix. 

Proof 
See the appendix. [] 

Note that the four preconditioners Mlu , MI,,, M2u and M2m have exactly the 
same structure. Actually, if we compare figures 6 and 7, the number of non-zero 
entries is greater for the second preconditioner. But we only described the first 
step of the factorization process. During the second step, these "extra" entries 
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are included in A~ = A 2 + R~ because they correspond to the five-point scheme in 
B [2]. The number of non-zero entries is therefore the same for all the pre- 
conditioners. 

Remark  6.2 
When it is necessary, we will denote by M~ (i E {1,2}, x E {u, m}) the precondi- 
tioner derived from a RRB(K) ordering. 

7. N u m e r i c a l  results  

We now compare the Preconditioned Conjugate Gradient method with the 
four preconditioners to a reference iterative method, also based on the Pre- 
conditioned Conjugate Gradient method. The reference preconditioner is an 
ILU factorization of A according to the row ordering, called IC(1, 1) by Meijerink 
and van der Vorst [17]. The IC(1, 1) factorization is equal to L D L , where 
L* is lower triangular with the structure of the lower triangular part of A and 
a unit diagonal and D* is diagonal. Figure 8 depicts the structure. This choice is 
motivated by Duff and Meurant [7]. They stressed that this preconditioner is 
often the most efficient to solve numerically the problem (1.1-2) on various 
examples. Moreover, we give the results obtained with a MILU factorization of 
A (here M stands for modified) with the tridiagonal structure depicted in 
figure 8. 

We try the methods on two test problems. The test problems are defined by 
choosing the values of a and b, the diagonal entries of the operator d .  For 
problem #1, our model problem, the Poisson equation, a = 1 and b = 1 over 
the domain. For problem #2, a = 100 and b = 1 over the domain. The number of 
nodes n is equal to 256, 1024, 4096 or 16384. We choose the right-hand s idef  of the 
linear system as follows: define fCi, j = lg(3fi, Yi) where u(x,  y) = x(1 - x)y(1 - y) e xy, 
and c o m p u t e f  = A.~. 

All methods are based on the Preconditioned Conjugate Gradient method. In 
order to be able to use it, two parameters have to be fixed. The first one is the initial 
estimate x ~ of the solution which is uniformly set to 0. If r k denotes the residual at 

L~ = 

1 
12.x 

Im +1,1 

1 ) 
~ ~176176 

i .+1 . .  1 

~  '.o ".~ 

Fig. 8. Structure associated to It(l, 1). 
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iteration k, then the stopping criterion is fulfilled when 

Ilrk+l[Io~ 

IIr~ 
where [lyll~ = max/[Yil. The value of e is set to  10 -6 in the following. 

This section is divided into two parts. In the first place, we focus our interest on a 
RRB(K) ordering with a fixed value of  K. Then, in the second place, we consider a 
RRB(K) ordering where the value of K varies, in order to compensate for the 
number  of  non-zero entries of  the preconditioners which increases too rapidly 
with respect to n. 

We give two different kinds of  results. On the one hand, the number of iterations 
of  the Preconditioned Conjugate Gradient method to reach the prescribed decrease 
of  the norm of  the residual. On the other hand, the number of non-zero entries needed 
to store the preconditioners, which does not depend on the problem to be solved. 

7.1. The RRB(4) ordering 

We have chosen to set K to 4 because this value is a fair tradeoff between a 
reasonable number  of iterations and an acceptable number of  non-zero entries. 

Remark 7.1 
The smaller is the value of K, the smaller is the number of iterations and the bigger 
is the number  of  non-zero entries. In particular, for K = 1, the complete Cholesky 
decomposit ion of  A is computed and the Preconditioned Conjugate Gradient 
method converges in one step. 

We collect in tables 1 and 2 the number  of iterations needed to reach the 
prescribed stopping criterion for each preconditioner and each problem. 

Table 1 
Problem #1: number of iterations. 

n ILU Mh, M2,, MILU Mlm M~n 

256 14 14 12 13 16 8 
1024 23 21 19 18 18 8 
4096 41 37 32 28 19 8 

16384 69 66 36 39 19 8 

Table 2 
Problem #2: number of iterations. 

n ILU Ml,, M2. MILU Ml. , M2m 

256 6 25 20 7 72 36 
1024 9 49 39 11 104 44 
4096 14 87 67 18 120 46 

16384 23 110 117 28 130 46 
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We are able to draw some conclusions from these tables. 
First of all, unmodified incomplete preconditioners behave rather similarly. The 

number of iterations is proportional to 1/h. Concerning ILU, the result has pre- 
viously been proved (see for example [11]). 

The modified incomplete preconditioners are more efficient than their 
unmodified counterpart, with the exception of ILU for problem #2 although it 
should be noted that the row ordering favours the ILU preconditioner very 
much. Indeed, for this problem and this ordering, the matrix A is almost tri- 
diagonal. Now the ILU factorization of a tridiagonal symmetric positive definite 
matrix is also the Cholesky factorization of the matrix. Thus, in that case, the 
incomplete factorization ILU is almost complete, which accounts for the good 
results. 

Lastly, we focus on the modified incomplete preconditioners. For the model 
problem, Gustafsson [12] proved that the number of iterations is proportional to 
l/.v/h for MILU. The numerical results are in accordance: for the model 
problem, the number of iterations behaves like 3.5/v:h. For both preconditioners 
Mlm and M2m, the numerical results are even more interesting, as the number of 
iterations seems bounded, in each case, independently of the meshsize h (maybe 
with the exception of Mira and problem #2). Moreover, the second preconditioner 
M2,,, is always more efficient than the first preconditioner Ml,,. 

We now study the number of non-zero entries, respectively called Z(n) and 
ilu(n), required to store M and ILU (see table 3). 

For ILU, the ratio goes to 3, as only two diagonals of L* and the diagonal of D* 
may have non-zero entries (not uniformly equal to 1). On the contrary, the ratio 
Z(n)/n does not seem to be bounded for M. So we need to choose a new RRB 
ordering to be able to make objective comparisons. 

7.2. RRB(K) ordering, K varying 

To solve the unbounded ratio problem, we let K vary. The goal is twofold: to 
have a number of non-zero entries Z(n) proportional to n and to keep the 
number of iterations (almost) independent of the meshsize. 

We now define K as a function of n to get Z(n) proportional to n. We need two 
lemmas. 

Table 3 
Z(n) and ilu(n): non-zero entries for M and ILU. 

n Z(n) Z(n)ln ilu(n) ilu(n)/n 

256 1182 4.62 751 2.93 
1024 5178 5.06 3039 2.97 
4096 23154 5.65 12223 2.98 

16384 109794 6.70 49023 2.99 
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L e m m a  7.1 

During the removal of the nodes of (R[k])l <k < K, the number of non-zero entries 
generated for the matrix M is less than 5n. 

Proof 
In fact, during these K steps, two nodes i a n d j  ( j  > i) are adjacent in the graph of 
M if node j  belongs to the five-point scheme of node i. Now, a node i is related to at 
most five nodes (including himself) inside a five-point scheme graph. As the 
number of nodes of tAi-fR [kl is less than n, less than 5n non-zero entries are 
generated during these steps. [] 

L e m m a  7.2 

During the complete factorization of the matrix A_ (K), the number of non-zero 
entries generated for the matrix M is in the order of 2-3K/2n3/2. 

Proof 
The number of nodes of B Ix] is equal to 2-Kn. A (K) is thus a 2-Xn x 2-Kn matrix. 
Moreover, its average half-bandwidth is in the order of 2-X/2x/-ti. Therefore, the 
number of non-zero entries generated during the complete factorization of A (r) 
is in the order of 2-3K/Zn 3/2. --['-7 

We are now able to state the following. 

T h e o r e m  7.1 
If K is equal to [_�89 log2 (n) + 4j, then Z(n), the number of non-zero entries of M, is 
less than 6n. 

Proof 
To find an upper bound of Z(n), it is enough to get an upper bound for both steps 

, K Ik] IK1 of the removal process, the first one on t_Ji- l R and the second one on B . We 
have immediately Z(n) < 5.5n, which proves the result. [] 

This condition on K is weaker than the one used by Brand in [1], where 
K = L�89 This value of K gives a number of non-zero entries in the 
order ofn 3/4 for the complete factorization ofA (x). On the other hand, Brand noted 
that for K = [�89 the number of floating operations to build the pre- 
conditioner is proportional to n. In our case, this number is proportional to n 4/3. 
Both choices for K are therefore valid. 

The values of  K, Z(n) and Z(n)/n are given in table 4. 
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I14 314 

Fig. 9. Subdomains wj and w2 for problem #3. 

Table 4 
Z(n): non-zero entries for M. 

n K Z(,O Z(n)ln 

256 4 1182 4.62 
1024 4 5178 5.06 
4096 5 21424 5.23 

16384 6 84083 5.13 

We now study the number  o f  i terat ions as a funct ion o f  n with the new values o f  

K. To  emphasize the results, we considered a third test problem,  called p rob lem #3: 
a = b = 1 in wl and a --- b = 1000 in w2 (see figure 9). In the next two tables, we give 

only the results obta ined with the modified precondi t ioners .  
In tables 5 and 6, the precondi t ioners  M are defined by the R R B ( K )  orderings 

with values o f  K equal to those o f  table 4. 

Remark 7.2 
We provide a bound of the condition number of the preconditioned system for the 
model problem in the next paragraph for both preconditioners. 

Table 5 
Number of iterations: Mira and M2,,,. 

n problem #1 problem #2 problem #3 

256 16 8 72 36 16 9 
1024 18 8 104 44 19 10 
4096 27 9 163 46 28 10 

16384 39 11 243 49 46 12 

Table 6 
FLOPs(n): M1,, and M2m. 

n problem #1 problem #3 

256 1.84 0.92 1.83 1.03 
1024 1.35 0.60 1.43 0.75 
4096 1.17 0.39 1.20 0.43 

16384 0.96 0.27 1.11 0.29 
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To end this section, we compare the number of floating operations required for 
solving problems #1 and #3, with the ILU and the modified preconditioners. As 
stated earlier, problem #2 is very anisotropic and we stressed the fact that the 
ILU factorization is the most efficient preconditioner. If we call FLOPs(n) the 
ratio: 

FLOPs(n) = FLOPs(Mim) 
FLOPs(ILU) ' 

we have the results as given in table 6. 
When the number of nodes n is multiplied by four, the ratio FLOPs(n) is reduced 

by average factors of 1.5 for M2m and 1.4 for Mlm. Therefore, the Preconditioned 
Conjugate Gradient methods with Mlm and M2m as preconditioners are all the 
more efficient as the meshsize is small, with a clear advantage for the latter one. 

8. B o u n d i n g  the cond i t i on  n u m b e r  for  the Poisson  equa t ion  

In the following, we bound the condition number of K -x ({Mim } A)i=I,2, for the 
Poisson equation and K =  l_�89 + 4 / .  It is well known that the condition 
number n(M-1A) is equal to the ratio Amax(M-IA)/Amin(M-1A) when both 
matrices A and M are symmetric. Now, we prove the following. 

Lemma 8.1 
Let M1,M 2 and M 3 be three symmetric 
t~(Mi-lM3) _< t~(MIIM2)t~(M21M3). 

positive definite matrices. Then 

Proof 
The eigenvalues of MIIM3 and MI1/2M3M 11/2 
for example [5]) that 

and 

are equal. Moreover, we know (see 

Amin(MI1/2M3MI 1/2) = inf (MII/2M3Mll/2x'x) 
(x,x) 

Amax(Mll/2M3MI 1/2) = sup 
x#0 

If we let y = Mll/2x, then 

�9 ~min (MI  I/2M3MI 1/2) 

and 

( MI1/2 M3MII/2x, x) 
(X~ X) 

= inf (M3y, y) 
y40 (Mly, y) 

Amax(MIU2M3M-~I/2) ( M3y' Y) = sup =----- . 
y#O (Mly, y) 
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Thus 

/ r  - 1 M 3 )  = I,g(M?I/2M3M? 1/2) )~max(M?l/2M3M? 1/2) 
= /~min(Mll/2M3Mll/2) 

(M3y, y) 
s u p  
y#0 (MlY, Y) 
�9 ~ (M3y ,  Y) 
l n I  - -  
y#0 (Mly , y) 

This leads immediately to the result, as the supremum (resp. the infimum) of a 
product is lower (resp. greater) than or equal to the product of the suprema 
(resp. infirna). [] 

8.1. Periodic boundary conditions 

We solve numerically 

- A u  = g in ]0, 1 [2, 

u(O,y)=u(1,y), u(x,O)=u(x, 1). 
The solution to this problem is unique up to a constant. In the following, we 

therefore neglect the zero eigenvalue. Here, we provide a bound of the condition 
number for the modified preconditioner M~m. As we are considering a problem 
with periodic boundary conditions, we slightly modify its discretization. The mesh- 
size h is still equal to 1/(m + 1), but the number of unknowns is now (m + 1) 2, as we 
have to handle the periodic conditions. Therefore, A is a (m + 1) 2 • (m + 1) 2 
matrix. On each row, there is a 4 on the diagonal and four non-zero off-diagonal 
entries equal to -1 .  If we use the classical Red-Black (or RRB(1)) ordering, 
then we rewrite 

41 ' 

where L is the matrix which corresponds to the five-point operator with stencil 

0 
1 0 

1 

If we remove the nodes of R Ill, then we get 

A=(_I IL  i ) (  41 

and 

. 

( ( 
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Fig. 10. The new domain.  

where S (= 41 - �88 L L  "r) alr}d S~ respectively correspond to the following nine- and 
five-point operators in B [I (even on the boundary): 

1 
4 

_! _! _! _! 
2 2 2 2 

l 3 _! 2 
4 4 

I I I I 
2 2 2 2 

_! 
4 

Therefore, the eigenvalues of { M ~ m } - I A  are either 1 or the eigenvalues of {S~ }-1S. 
By using the periodic boundary condition, it is easy to see that S and SI 
can be extended (as nine- and five-point operators) over the domain in 
figure 10. 

Now, we are able to compute the eigenvalues, following [3], and we find, for 
(u , v )  E q-/= {(cos27rkh, cos2rdh), 0 < k, ! < m, k # 0 or ! # 0}: 

A(S) = 3 - u -  v -  uv, 

A ( S ~ ) = 2 - u = v .  

Thus, the eigenvalues o f  { M ~ m } - l  A are either 1 or ~3 - u - v - uv) / ( 2 - u - v) ,  for 
(u, v) E a//. In particular, q/ is  imbedded in [-1, 1] ~ \ {(1, 1)}. Now, let 

3 - u - v - u v  if(u,v) e [_ l ,1 ]2{ (1  1)}, 
f ( u , v )  = 2 -  u -  v 

2 if(u,v) = (1,1). 

Lemma 8.2 
f is continuous over ]--[-1~1] 2 and continuously differentiable over ] -  1,1[ 2. More- 
over, for all (u , v )  in ,1[ 2, dJ(u,v) # 0. 

P r o o f  
It uses standard calculus and is omitted here. [] 
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Therefore, we have the following situation: f is continuous over the compact set 
[-1,1] 2, df  is continuous over] - 1, 1[ 2 and d./'(,,,v) r 0 for all (u,v). Thus it is well 
known that f reaches its maximum (and its minimum) on the boundary. We find 
that 

max f(u,v) =2. 
(u,v)~ [-I ,  112 

We find the minimum value o f f  to be equal to 1. Finally, we have 

t~({mlm}-lA)  < 2. 

Moreover, as SI corresponds (apart from a scaling factor of 1/2) to the original 
problem on the new domain (see figure I0), we also have 

k+l  -1 /'i;({mlm ) Mfm)_<2 f o r l < k < K .  

We are now able to prove the following. 

Theorem 8.1 
For the Poisson equation with periodic boundary conditions discretized on an 
(m + 1) x (m + 1) grid and K =  [�89 +4 j ,  the condition number of the pre- 
conditioned system {M~,}-IA is such that 

t~({MKm}-IA) < 25/3(m + 1)2/3. 

Proof 
It suffices to use the previous results together with lemma 8.1 for the prescribed 
value of K. [] 

8.2. DMchlet boundary conditions 

We solve 

- A u  = g i n  ]0, 1[ 2 , 

u = 0 on the boundary. 

We provide a bound of the condition number for both modified preconditioners. 
With the RRB(1) ordering 

A =  4I 
- L  4I ' 

where L is the matrix which corresponds to the five-point (except near the bound- 
ary) operator with stencil 

1 
1 0 1. 

1 
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By removing the red nodes, we get 

A=( I i)(4I ,) 
and 

Milm= ( I ) ( 4 I  ) ( 1  --la/LT) 
- �88  I S~ , i E{1,2}. 

Here, S and S~ correspond to their periodic counterpart of the previous section 
(except near the boundary). To describe $2 I, we suppose that an RRB(2) ordering 
is performed, that is, B [1] = R [zl tO B [21. Then, according to its definition, $2 l corre- 
sponds (except near the boundary) to a nine-point operator in B [21 and a five- 
point operator in R I21, like the ones already defined for S and S~" 

_ !  
4 

1 1 _ l  
2 2 2 

i 3 _ 1  2 
4 4 

1 i _ !  
2 2 2 _ !  

4 

Remark 8.1 
We have mentioned the fact that the expressions of the operators are valid except 
near the boundary. As a matter of fact, there are two differences. First, some 
off-diagonal terms may be equal to zero if the related node is on the boundary. 
Secondly, as Brant noticed in [1], the diagonal entry may actually be greater than 
2 (when it is supposed to be 2). Indeed, near the boundary, some off-diagonal 
terms that are added to the diagonal entry when the modified factorization is 
performed may be equal to 0 instead of -1 /4 .  This is not really a problem, because 
Brand also pointed out that considering that all diagonal entries are equal to 2 
indeed gives an upper bound of the actual condition number. 

The matrices S, S] and S / are defined on B Ill : R [21 tO B I21. Blockwise, they can 
therefore be written 

(3I-�88 -~M r)  
S= -�89 312-1N ' 

S I = (  21 ~M T" 

- � 8 9  ) '  

S ~ = (  2I ~ M T )  
-�89 31-2-�88 ' 
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where N and M correspond to the following operators (except near the boundary) 

1 
0 1 0 1 

1 0 0 0 1 0 0 0 .  
0 1 0 1 
1 

As in the case of periodic boundary conditions, the eigenvalues of {M]m}-IA are 
either 1 or the eigenvalues of {S]}-~S. Unfortunately, the S~ matrices are no 
longer simply related to the original problem, unlike the case of periodic boundary 
conditions. So we can not deduce the condition number of K -l {Mira } A from 
{M],,,}-IA by iterating the process. We have to go one step further, to Mi 2. 
Although the nodes of R R1 are removed, the matrices can still be factorized in 
the following way 

Mi2= ( I ) ( 4 I  ) ( I - - I L T )  
iE {1,Z}. 

- �88 I S ] I ' 

Next, we have to find the expression of the S~. For the first method, we pointed out 
that, using the partitioning B [11 = R [z] tO B [zl, S~ is of the form 

$I = ( 21 - � 89  T 
- 1 M  21 J" 

When the removal of the nodes of R [21 is performed, this leads to the following 
complete and incomplete factorizations 

SI=(_~ M i)(2I  (I 1MT\, 2I_~MM T ) -41 ) 
S~ ( I (21 - � 88  T = I , ) 

=(21 ) 
-�89 I - 1 N + I M M  T 

Interestingly, $12 is now a friendly five-point operator on B [21 (except near the 
boundary) 

1 
4 

_ !  1 l 
4 4 ,  

1 
4 

equal to the original problem apart from a scaling factor of 1/4. Therefore, if we are 
able to bound the condition number of {Sl2} -I S, we can provide a bound for the 
condition number of {MKm}-IA. 
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For the second method, we find 

~,=( , i)(~I ~,~ ~ ~, ~ ) ( i  ) 
I 

x~(  4'~ i)( ~' (i ~ ~ , ~ )  , ) 

- � 8 9  2 I  1 1 T - g N  +gMM 

And S g corresponds to a five-point operator on B [2] (except near the boundary) 

1 
2 

_ !  2 _ !  2 2~ 
1 
2 

thus the same conclusion holds for {S2}-Is  and {M~m}-lA. A way to compute the 
eigenvalues of {$2}-1S is to study those of { S ] } - I ( S -  $2), because 

{s~)-ls  = i + ( s ~ } - l ( s -  s~). 

(s  z -- Si )i=1,2 are respectively equal to 

2I _ ~ MM T ' 

('-~" ) 
( s -  s~) = 

I+ �88  T 

Now, if A is an eigenvalue of {$2}-1(S - S2i), then there exists a non-zero vector x, 
defined on B Ill, such that 

( s  - S~)x  = ~S~, x. 

We have B Ill = R [2] tO B [21, so we can write x = (x r xb) y. The eigenvalue problem 
for the first preconditioner is now 

( I - l N ) x r  = A{2Xr--�89 

(2I--~MMT)Xb = ~{-�89 + ( I - � 8 8  +~MMT)xb}. 

Or, equivalently, 

(2I-~MMT)xb = ~{-~M([2~--  I]I +�88 + ( I - � 8 8  +~MMT)}xb �9 

With a suitable x b, i.e. an eigenvector of both matrices, we are able to find the 
explicit value of ~. This has to be done for the n/4 eigenvalues )~. Fortunately, 
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we can exhibit a vector Xb for each eigenvalue, for Xb is defined on a regular grid of 
meshsize H = 2h and both matrices are very similar to five-point operators on this 
grid. Therefore, we take a classical set of (n/4) vectors (Xbkt)l <__k,t<_~.,, defined by 

(xkbl)ij = sin(ikTrH) sin(firtH), for 1 < i, j < �89 

M([2A - 11I + �88 N) - '  M Tx k' = 

where Uk = cos(�89 and Vl = cos(�89 

Lemma 8.3 
1 - 1 T xkb I The matrix-vector products of N, M M  T or M([2A - 1]I + aN) M and are 

equal to 

Nx  k' 4(u~ + v~ 1)x~', 1 u  b ~ 

M M T x ~ t  2 2 kl = 16UkV l X b , 

16u2v~ x~', 
2 A -  2 + u 2 + v 2 

Proof  
The result concerning Nx~ l is straightforward, because N is a five-point operator on 
the grid. For the remaining products, R [2]the proof is a little less obvious. As a matter 
of fact, the vector MVx~J is defined on . However, it can be easily shown that it is 

kl is such that its components are equal to those equal to 4UkVtX kt, where the vector x r 
of x kt. For the sake of brevity, the (technical) proof of this point is omitted. By the 
same trick, Mx kl = 4UkVlX kt. [] 

We have replaced the eigenvalue problem by 

-f _-'~-fffkk - +-4Au2kv2 V 2 } { 2 - 2 u 2 v ~ } ~ t = A [ 2 A  + 2 + 2 u 2 v  2 - u  2 - v  2 xkJ, 

for 1 _< k, l<_�89 

For each value of k and 1, we have thus a second degree equation in A to solve: 

pI(A) - al(u2k, V~)k 2 + bt(u2,v~)A + ct(u2, v 2) = 0 ,  

where 

al (x, y) = 2x + 2y - 4, 

bl (x, y) = -2x2y  - 2xy 2 + x 2 + y2 + 2xy - 4x - 4y + 8, 

cl (x, y) = - 2 x 2 y  - 2xy 2 + 4xy + 2x + 2y - 4. 

Here, both x = u~ and y = v~ belong to ]0, 1[. For the sake of clarity, the depen- 
dence ofp l  in (x,y)  is omitted. Let us prove now that the roots of pl are greater 
than 0 and lower than 3. First, note that the roots are real, because they are also 
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eigenvalues of a symmetric matrix. Then, we have to check that 

(i) al < 0. 
(ii) Pl (0) < 0 and P'1 (0) > 0. 

(iii) Pl (3) < 0 and P'l (3) < 0. 

For  (i) and (ii), we simply factorize the three polynomials in x and y to find that 
the inequalities hold for any (x, y) in ]0, 112: 

a 1 = 2(x + y -- 2) < 0, 

pl(0) = (x + y -  2)(2 - 2xy) < O, 

p'l(O) = 8 + (x + y) (x  + y -  2 x y - 4 )  > O. 

To prove (iii), we use some standard calculus to study Pl (3) and P'l (3) as con- 
tinuously differentiable functions of x and y in the compact set [0, 1] 2, which 
yields the results. Using (i), (ii) and (iii) together with the fact that the roots of 
Pl are real, we find 

0 < A < 3 .  

Therefore, the eigenvalues of  {S~} - IS  range from 1 to 4. Finally, 

k+2 -1 k ~({M~m}-IA) < 4 and so on t~({Mlm } Mlm) < 4. 

We are now able to prove the following. 

Theorem 8.2 
For the Poisson equation with Dirichlet boundary conditions discretized on an 
(m + 1) x (m + 1) grid and K = [�89 ) + 4 3, the condition number of  the pre- 
condit ioned system {MKm}-IA is such that 

t~({MKm}-IA) <_ 3m 2/3. 

Proof  
See theorem 8.1. []  

where 

In the same way, the eigenvalue problem for the second preconditioner is 

(I + I N - ~ M M T ) x b  = A {  - ~ M ( [ 2 A -  111 + I N ) - I M ' r .  

+ ( 2 I -  �89 + ~ M M ' r ) } x b .  

The eigenvalues are the roots of  

pz(A) - a2(u~, v~)A 2 + b2(u~, v~)A + c2(u 2, v 2) = O, 

a2(x,y ) = 4x + 4y - 8, 

b2(x,y) = -2x2y  - 2xy 2 + 2x 2 + 2y 2 + 4xy - 6x - 6y + 8, 

c2(x,y ) = _2x2y _ 2xy2 + x 2 + y2 + 6xy - 2x - 2y. 
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By using the same technique, we find that 

(i) a 2 < 0. 
(ii) p2(0) < 0 and p~(0) > 0. 

(iii) P2 (1) < 0 and p~ ( 1 ) < 0. 

In this case 
0 < A < I .  

Therefore, the eigenvalues of {S~}-IS range from 1 to 2. Finally, 
k+2 -I  k ~;({M2,,,}-IA) < 2 and so on ~({M2m } M~m) < 2. 

We are now able to prove the following. 

Theorem 8.3 
For the Poisson equation with Dirichlet boundary conditions discretized on an 
(m + 1) x (m + 1) grid and K = Lllog2(n) +43, the condition number of the pre- 
conditioned system {M~m}-lA is such that 

I,~({MKm}-IA) <_ 2m 1/3. 

Proof 
See theorem 8.1. [] 

9. Conc lus ion  

Based on the Repeated Red-Black ordering, we have studied two distinct pre- 
conditioners for solving symmetric positive definite discretizations of elliptic prob- 
lems. Although the two preconditioners have the same structure, the second one 
performs better. On the other hand, they both compare quite favorably with the 
MILU factorization (for the row ordering). This is in particular true for the condi- 
tion numbers of the preconditioned linear systems. For the Poisson equation with 
Dirichlet boundary conditions and a meshsize h, we proved that they are respec- 
tively bounded by O(h -2/3) a n d  O(h-1/3). 
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Appendix 

We study here the modified and unmodified incomplete factorization processes. 
Among other results, we prove that the preconditioners Mix (i E { 1,2},  x E {u, m})  
are symmetric positive definite. Let us begin by a description of the processes. They 
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can be defined by: 

A ~ = A, 

d k = A k-I + R k "~ 
Ak = (Lk)_1A_Ak(Lk)_ T ~ f o r k = l , . . . , n - 1 .  

In the complete factorization case, the matrices R k are set to zero. To be more pre- 
cise, at step k, the structure of  the matrices is the following (see [15]): 

Ak_l = ( Dk_ . O )  
0 A (k-l) ' 

where Dk-i is a (k - 1) x (k - 1) diagonal matrix and A (k-l) is (n - k + 1) x 
(n - k + 1). When processing an incomplete factorization, let:  k(0 0) 

0 R (k) ' 

where R (k) is (n - k + 1) x (n - k + 1). The structure of  R (k) depends on the factor- 
ization process (modified or not): 

(~ ( )/ o 
RI k) = rk �9 

0 
and 

r(m k) = rk --(rk)k+l ". �9 

(rk)n 

In the modified case, the row sums of  the matrix are equal to zero. We have 
A k = A k-1 q- R k then, if  ( / )  A ( k - l ) + R ( k ) = (  dkbk b~Bk) and Lk= 1 , 

o �88 I._k 
we also have 

1 T 
and A (gl = B ~ - -:-bkbk. 

ak 
0) o (~ o) A k = ( o k  A(k) 

Theorem A.1 
When the factorization process ends, A = LDL T - R, where 

L = L 1 . . . L n _  1, D = A n _ I = ( D ; _ I  A (n-l)0) and 
j = n - I  

R =  ~ R  j. 
j=l 
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Proof 
To prove the result, it suffices to note that, according to the respective structure of 
L k and R k+l, (Lk)R k+l (Lk) T = R k+l . By induction, it follows that 

A = A ~ = d 1 -  R ! = (LI)Al(Ll) T -  R 1 

= ( L I L 2 ) A 2 ( L I L 2 )  T - R I _ R 2 

j = k  

= (L ' . . .Lk)Ak(L  ' . . .Lk )  T - Z Rj 
�9 j = l  

j = n - I  

= ( L ' . . . L " - ' ) A " - ' ( L  1 . ' 'L" - ' )  T -  Z Rj" 
j = l  

[] 

Remark A.1 
The structure of L is such that its kth column is equal to the kth column of L k, i.e. 
1 on the diagonal and bk/dk below. 

The definition and theorems hereafter are helpful to prove the positive definite- 
ness of the preconditioners previously introduced. We follow Meijerink and Van 
der Vorst [16] for the unmodified preconditioners and Brand [1] for the modified 
ones, although directly considering LDL T factorizations instead of LU factoriz- 
ations requires new theorems�9 

Definition A.1 
A is a nonsingular M-matrix if aij <_ O, '4i # j ,  A is nonsingular and A -1 >_ 0. A 
nonsingular symmetric M-matrix is called a Stieltjes matrix. 

Theorem A.2 
Let A be a symmetric matrix such that aij <_ O, Vi # j. Then A is a Stieltjes matrix if 
and only if A is symmetric positive definite. 

Proof 
See [I 1]. [] 

Theorem A.3 
If A is a Stieltjes matrix, then A 1 is also a Stieltjes matrix for the complete factor- 
ization process. 

Proof 
Let 

A=A(O)=  (d l  bT)  
bl B 1 " 
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Then 

where 

A ( 1 )  ' 

A(l) = Bi 1 blbT" 

As bl _< 0 and dl > 0, then -(1/dl)blb T <_ O. Therefore all off-diagonal entries of 
A (l) are non-positive. Thus it remains only to prove that for a given non-zero 
vector Xl, (AO)Xl,Xl)n-i > 0: 

l (bTx,,b~x,), (A(1)Xl'Xl)n-I = (Blxl 'x l)n-I  - dl 

1 1 T = (Blx, ,X,)n-l  + 2(bTXl,---~bTlxl)  +d, (---~bTx,,----~l bl Xx), 

= (Ax, x)n, w h e r e x =  ---fl blxl . [] 
\ xl 

Remark A.2 
By induction, it shows that, for the complete factorization process, if A k-I is a 
Stieltjes matrix, then A__ k = A k-I is SO, tOO. As this is particularly true for k = 1 
(initial step), then L/)L T is symmetric positive definite. We already knew that, 
because the preconditioner is equal to the original matrix! We only emphasize 
this point because we use the same induction reasoning to prove the positive 
definiteness of the preconditioners. 

Theorem A.4 
If A is a Stieltjes matrix and B is such that: 

aij < bij <_ 0 Vi ~ j and 

then B is also a Stieltjes matrix. 

0 < aii ~ bii , 

Proof 
See [16]. [] 

Lemmas 5.1 and 6.1 
The unmodified preconditioners are symmetric positive definite. 

Proof 
We proceed by induction. Note particularly that the initial step is included here- 
after for k = 1. At step k, we have 

a k = A k-I + R k, 
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where R k is defined by: 

rki = 0 ,  1 < i < n 

~) 1 if the entry is neglected, 

dJ = 0 otherwise, 
for i r 

The induction assumption is that A k-1 is a Stieltjes matrix. Therefore, ~71 _< O, 
Vi 7~j. So 

a~-l < a_jk.j < O Vi C j and O < aki7l -- ~i. 

By theorem A.3, A k is a Stieltjes matrix. By induction, it follows that during the 
unmodified factorization process the matrices A__ k are Stieltjes matrices, thus lead- 
ing to symmetric positive definite preconditioners. []  

Theorem A.5 
If  A is a weakly diagonally dominant  Stieltjes matrix, then A l is also a weakly 
diagonally dominant  Stieltjes matrix for the complete factorization process. 

Proof 
l a~j We know that A 1 is a Stieltjes matrix. Therefore ai; > 0, Vi, and 0, Vi 7~j. We 

still have to prove that it is weakly diagonally dominant ,  that is, 

Zany_> 0, re. 
J 

This is immediately true for i = 1. For  i, j > 2, we have a~j - (1/all)alialj, so (for 
i>_2) 

all 
Z a~j = Z aij - - - Z  alj 

j j>2 al l  j>2 

Z al i ( 
=- a i j - - - -  all + 

j a l l  

> - al----L/)_.2 alJ >- O. 
all j 

Z alj} 
j>_2 

[]  

Theorem A.6 
If  A is a weakly diagonally dominant  Stieltjes matrix and B is such that: 

aij < bij < 0 Vi ~ j and Z aij = Z bij Vi, 
J J 

and B is irreducible, then B is also a weakly diagonally dominant  Stieltjes matrix. 

Proof 
See [6] or [1]. [ ]  
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Lemmas 5.2 and 6.2 
The  modif ied  precondi t ioners  are symmetr ic  posi t ive definite. 

Proof  
It is similar to the p r o o f  o f l e m m a s  4.1 and  4.3. The only asser t ion which remains  to 
be checked  is tha t  A__ k is irreducible.  This  is a consequence  o f  its s tructure.  As we 
keep a f ive-point  scheme structure,  the graph  associa ted to the matr ix  is s t rongly 
connec ted .  Thus  d k is i r reducible (see [18]). [ ]  

A b y - p r o d u c t  is that ,  in the modif ied case, R is negat ive semidefinite. Indeed,  its 
off -diagonal  entries are non-nega t ive  and its rows  sums are equal  to zero. Thus  the 
fo l lowing holds.  

Theorem A.7 
F o r  a modif ied  incomple te  fac tor iza t ion  o f  A, 

)~min(M-1A) > 1. 

Proof  
W e  have A = M - R and we k n o w  that  R is negative semidefinite. Therefore  

(Ax, x).  = (Mx, x).  - (Rx, x).  

>_ (Mx,  x)n. 

This yields the result. [ ]  
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