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Abstract

The problem considered in this report is the graph partitioning problem. This problem
consists of splitting the set of nodes of a given graph into balanced connected subsets.
Moreover the overall number of edges which have their ends in different subsets must be
minimized. We propose a very fast heuristic to approximate the solution of this problem
for graphs derived from numerical problems.

1 Introduction

Many problems can be represented by graphs where nodes stand for distinct amount of
work and edges between nodes schematize the information exchanges.

Among the problems that one can encounter is how to decompose well the entire graph
problem in several subgraphs in order to solve smaller problems simultaneously, without
having to communicate too much between different subgraphs.

This is identified as the graph partitioning problem (GP-problem for short). More
formally the problem is written as follows. Let & = (V, E) be a graph where V is the set
of nodes and F is the set of edges. The question is how to partition V into p subsets 1},
Va, ..., ¥, such that:

e VilVi=8fori# jand Jf., Vi=V,
o [Vil=|V; [ for 1<i,j<pandi#j,
e | {{vi,v;) € Eandv; €V}, v; € Vj withi# j} | is as small as possible.
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Unfortunately, the GP-problem is an NP-hard problem and so we must be content to
find good heuristics.

Here our concern is to approximate the GP-problem rapidly for graphs which come
from meshes and finite element discretization. Briefly there are two ways of looking at that
problem. One is based on spectral properties of the matrix associated to the graph. Among
the different works, let us mention those of [6], [5] and [4]. The other way is to work directly
on the graph by applying greedy methods (see [2] and {3}). Our approach is from the second
school.

This report resumes the outline of our work, already deseribed in [1], and completes
it. It is organized as follows. Section 2 gives a general definition of greedy algorithms
according to the GP-problem and evaluates the complexity of such algorithms. Section 3
presents the main steps of our graph partitioning algorithm called PAM with some intuitive
justifications of our choices. The overall complexity of our algorithm is also addressed in
this section. The implementation aspects of the algorithm are explained in section 4. We
present a number of representative examples in section 5 and finally conclude in the last
section.

2 About greedy algorithms

Greedy algorithms are a natural and naive way to look at some problems, In some
cases, it seems to give reasonable results, especially here for approximating the solution of
the GP-problem.

According to the GP-problem, a greedy algorithm can be described as an algorithm that
computes one after another each subset V; by simply accumulating nodes when traveling
through the graph. The only problematical questions are: how to start and how to stop?

The way of accumulating nodes in each subset is obvious from the graph structure of
the problem. A starting node v, is chosen and marked. The accretion process is done by
selecting and marking the neighbors of v,, then the unmarked neighbors of the neighbors
of ¥, and sc on as long as the expected total number of nodes is not reached. This can be
viewed as successively building fronts.

The way of choosing a starting node v, will clearly affect the shape of the final partition.
It will also influence the communication scheme, i.e. the number of existing edges between
different subsets of the partition.

In the same way, the manner that one chooses the prescribed number of nodes among
all the candidate nodes of the last front contributes to the quality of the final partition.

Thus a greedy heuristic for solving the GP-problem can be defined roughly by iterating
the following 3 steps:

1. Choose a ”good” starting node v,,
2. Accumulate enough descendants of v,,
3. Stop according to some tie-break strategy in case of multiple choices.

At present, there are no theoretical results on the "goodness” of one starting node.
Neitlier are there results on how good a tie-break strategy is. For those two points only
intuitive guesses help to design GP-problem heuristics. However, an obvious justification
of using greedy heuristics for solving the GP-problem is that they are inexpensive.
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Figure 1: Current boundaries

Indeed, let us find out the overall complexity of such algorithms. Let G = (V, E} be a
graph such that N =|V | and M =| E'|. More, let d denote the average degree of a node
in G, and dp.- the maximum degree of a node in G. Then the complexity of dividing V
into p subsets each having n = N/p nodes can be derived by estimating the cost of each
step of iteration ¢ of the partitioning process.

Step 1. Choose a good starting node among the remaining nodes in O{N') operations.

Step 2. Accumulate iteratively the neighbors of the previous chosen nodes in O(n.d) opera-
tions.

Step 3. 'This step amounts to sorting the nodes of the last front according to some criteria.
The number of nodes of the last front can be as large as O(n). Thus it can be done
in O(nlogy(n)) using a well-known sorting.

So for the general case the overall complexity is max(p, d, logz(%-)).O(N).

3 PAM a greedy partioning heuristic

We now present PAM, our greedy partitioning algorithm, by defining precisely the 3
steps enumerated in the previous section.

In our case, our general purpose is to solve the GP-problem for graphs that come from
physical meshes, usually two- or three-dimensional. Thus we can talk about the boundary
of the graph. We call n, the number of boundary nodes.

As greedy algorithms do, PAM builds iteratively the different subsets of the partition
by accumutlating nodes in each subset and marking them when they have been selected. So
at each iteration one can define the current boundary as the set of nodes that belong to the
boundary of the graph and that have not been marked yet. We can extend the notion of
current boundary even when there is no more unmarked boundary node, by defining a new
one and updating ny. In that case the new current boundary is the set of unmarked nodes
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Figure 2: Virtual boundary

that are the neighbors of marked nodes. Figure 1 illustrates the different definitions of the
current boundary.

A way to redefine the current boundary at low cost is to introduce the notion of wvir-
tual boundaery. Actually, this virtual boundary is defined, at each iteration, as the set of
unmarked nodes that are neighbors of marked nodes, excluding current boundary nodes.
Then, the new current boundary is defined as the virtual boundary and the new virtual
boundary is build anew. See Figure 2 for an example of virtual boundary.

Finally, let us introduce the notion of the updated degree of a node: it is simply the
number of unmarked neighbors of this node. Note that the updated degree starts from the
degree of the node and decreases to zero as the partitioning algorithm goes along.

Now, let us recall that N is the total number of nodes and that n = N/p is the expected
numtber of nodes by subsets for a partition into p subsets. Then the whole process is
described as follows.

Whilei < p
1. Choose an unmarked node v, such that:

{a) v, belongs to the current boundary,
(b) if the current boundary is not new, v, is a neighbor of a node belonging to V;_;
(if possible!),
(¢} v, has a minimal updated degree.
Mark v, and initialise V; with »,.
2. Select the unmarked neighbors of nodes in V;, and let & be their number.
H | V; | +k < n then mark those nodes, add them to V; and update the updated
degree of their neighbors, and then return to 2.
3. Mark (n— | V; |) minimal updated degree nodes and add them to V;,
Update the current and virtual boundaries.
Doi=i+ 1.

'It may not be possible to find a node neighboring the previously built subset if the boundary is
multiconnected.



Mark all the remaining nodes and add them into V,.

Let us discuss about the intuitive justifications of our starting node as well as our tie-
break strategies.

By choosing a node on the current boundary that verifies condition (b), one can be
convinced that this will provide the overall regularity of the partition. As a matter of
fact, because of the definition of the current boundary, the subsets will be built around the
boundary in a concentric way. Condition {c) goes in the sense of the third requirement of
the GP-problem, i.e. tries to reduce the number of edges which have their endpoints in
different subsets. Intuitively, we can explain this by saying that the number of interface
nodes (nodes which have neighbors in other subsets} will be dependent on the number of
neighbors of the starting node. Choosing a starting node with a minimal updated degree
consists of exploring the nodes more in depth first search than in breath first search.

The tie-break strategy in step 3, which dictates the selection of minimal updated degree
nodes, also ensures the minimization of the number of inter-subset edges. Let us now
estimate the complexity of the PAM algorithm.

Step 1. In general, this is done in O{n.d) operations. Indeed, we look at neighbor nodes of the
previous subset satisfying criteria {(a}, (b) and (¢} in Q(n.d) operations. Otherwise,
we choose a node satisfying (a) and (¢) in O(ny) operations. This happens only once
for each current boundary if the boundary is simply connected. If the boundary is
multiconnected (g components), then it can happen g times for the original boundary.

Step 2. As for the general algorithm, it requires O(n.d) operations.

Step 3. First, the number of nodes of the last front is less than n. As the updated degree of
a node varies between 0 and dp,,5, sorting them is done in O(n) operations by piling
them up in (dmaz -+ 1) heaps. On the other hand, updating the current and virtual
boundaries is done respectively in O(n) and Q{n.d) operations.

It is easily seen that a node cannot belong to two different current boundaries. Therefore,
>_ny < N. This proves that the overall complexity our partitioning algorithin is d.O(N)
(or O(M)).

4 Implementation aspects

4.1 Connected subsets

One important property that we have not talked about is the connectivity of the subsets
of the partition. It could happen, in our algorithm, during the construction of one subset,
that there are no more unmarked nodes while the subset in progress has not reached its
final size. One way to complete the subset is to choose a new starting node and to start
agam the process until the number of expected nodes is attained. That would lead to a
multiconnected subset. To avoid that we reassign the nodes of the incomplete subset to the
neighboring subsets following the rule that a node is assigned to the subset where most of
its neighbors are. Then we rebuild the current subset.



In the algorithm presented on pages 4-5, the last subset is trivialy built by choosing
all the remaining nodes. Once again the connectivity of the subset is not guaranteed. In
fact, we have implemented differently the construction of the last subset so that it remains
connected in most cases. In the case of multiple components of the last subset, we reassign
the nodes of the smallest ones (l.e. those which are less then 20 % of the total size)
to neighboring subsets following the same rule described previously. When two or more
components are of the same size {greater than 20 % of the total size), which by experience
do not comes often, we accept the fact that the last subset is not connected.

The complexity of our algorithm does not deteriorate when these extra steps are per-
formed. First, reassigning nodes of an incomplete subset amounts to a backward step 2.
Second, its reconstruction correspond to one more iteration (steps 1, 2 and 3). As for the
special treatment of the last subset, it is actually performed inside the usual iteration plus,
possibly, one or more reassignment and reconstruction steps.

4.2 Balanced subsets

We have called n the number of expected nodes by subset. This number is defined as
the total number of nodes in the graph, N, divided by the number of expected subsets,
p. As the division of N by p is not necessarily exact and as we reassign nodes to some
subsets already built, it could happen that the subsets are not balanced. To prevent this
phenomenom we update the value of expected nodes called n; before each new construction
of a subset. Then at each iteration n; is updated as:

i—1
= N_E;zinj
Top-(G-1)

Notice that updating the value of the number of nodes by subset does not modify the
complexity of our partitioning algorithm.

5 Examples

We present here 6 graph examples which are well known to be good tests for the
robustness of heuristic partitioning methods. The first five examples are commonly known
graphs such as an Eppstein graph, a Spiral graph, a Parc graph, an Airfoil graph and a
Barth graph. The last one is the mine-point finite differences discretization of a square.

Let us first introduce a definition. If G has been partitioned into p subgraphs then we
call Ginq the induced graph such that {1,2,...,p} is its nodes set and that there exists an
edge between node 7 and node § when there exists at least one edge between a node in V;
and one in 1},

We sumninarize in a table, for all examples, our partitioning results relatively to 6 pa-
rameters: the number of subsets (p), the average number of nodes by subset (ng,), the
percentage of inter-subset edges {eq, ), the average degree of the induced graph (day{Ging)),
the number of connected components of the last subset (cc), and finally the elapsed time?
in second (7}). Our examples were run on a Sun SparcStation 10/30.

“it is equal to the difference of the wall-clock times read after and before the execution of the PAM subroutine.



Figure 3: Eppstein graph partitioned into 2 subsets

P ay €ay (%) dau(Gind) [ TP (S)
2 | 274 4 1 1 4.01
8 | 68 14 3 1 0.01
15| 36 20 4 i 0.01

Table 1: Eppstein with 547 nodes and 1566 edges.




Figure 4: Spiral graph partitioned into 4 subsets

P | Nay | Eau (%) day(Ging) | cc Tp (S)
4 | 300 1 2 1 0.02
9 {133 2 2 1 0.02
20 | 48 9 2 1 0.02

Table 2: Spiral with 1198 nodes and 3189 edges.



Figure 5: Parc graph partitioned into 12 subsets

P Nay €ay (%) dau(Gind) ce TP (S)
4 | 309 4 2 3 | 0.02
12 | 103 6 2 1 0.02
27 | 46 13 3 2 | 0.02

Table 3: Parc with 1237 nodes and 3352 edges.
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Figure 6: Airfoil graph partitioned into 32 subsets

P Ttay €au (%) dav(Gind) ce Tp (S)
16 | 266 7 4 1 0.07
32 1133 g 4 1 0.07
128 | 33 21 5 1 0.08

Table 4: Airfoil with 4253 nodes and 12289 edges.
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Figure 7: Barth graph partitioned into 30 subsets

Table 5: Barth with 6691 no

11

P Mgy €qu (%) dau(Ginﬂ' cc Tp (S)
30 | 223 9 4 1 0.13
70 | 96 14 5 1 0.14
200 1 33 24 b 2 014
d

es and 19748 edges.



Figure 8: Square graph partitioned into 400 subsets
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Table 6: Square with 10000 nodes and 39402 edges.
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N M Nay | €av (%) | daw(Gina) | ce | T, (s)
4253 12289 8 45 5 1 0.09
16542 | 48680 32 23 5 2 0.30
65222 | 193768 | 127 11 5 2 1.71

Table 7: Airfoil for 512 subsets.

The first five examples are completely irregular graphs. The irregularity does not affect
the partitioning algorithm which solves the problem in the order of 1/10 th of a second
{Tables 1-5). The percentage of inter-subsel edges is not too important. Of course this per-
centage increases as the ratio N/p decreases. However if we consider significant partitions,
lL.e. subsets of reasonable sizes (with more than 30 nodes), the percentage of inter-subsets
edges represents no more than 25 % of the original communication scheme.

In all these examples the average degree of the induced graph is lower or equal to
the average degree of the original graph. This is reassuring and shows in those cases
that our partitioning method does not add complexity in terms of the general scheme of
communications.

Figures 3 to 7 show a particular partition respectively for the Eppstein graph, the Spiral
graph, the Parc graph, the Airfoil graph and the Barth graph.

The last example is given to show that our algorithm, without any trick, produces the
result that one could expect. As a matter of fact, the given graph is a discretized square, so
the number of nodes 1s of the form N = m?. Then by partitioning this graph in p subsets
where p is like p = ¢? and ¢ divides m, we find by using PAM well balanced square subsets,
as in Figure 8.

Finally, Table 7 clearly shows that the partitioning time does not depend much, in
practice, on the number of nodes and edges. Moreover, for approximatively 200.000 edges
the partition is achieved in less than 2 seconds! This shows that our method is reliable
independently of the number of edges of a given graph, and that it works very fast even for
large graphs.

6 Conclusion

This partitioning method, easy to implement, gives acceptable results at little expense
according to the objectives of the GP-problem. We can try to improve it by guessing new
starting node or/and tie-break strategy. We can also implement local optimizations to cor-
rect resulis which are too far from the established average value. For example, rebalancing
the subsets in terms of the number of nodes or trying to reduce the number of inter-subset
edges. More generally, one has to define what the word acceptable means. It certainly de-
pends on the type of problem for which the GP-problem has to be solved. By experiencing
different partitioning algorithms, greedy or not, we must be able to put in evidence which
algorithm performs better relatively to some priority parameters (percentage of inter-subset
edges, time, average degree of the induced graph ...). This will provide the potential user a
concrete choice.
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However, the knowledge of more theoretical results about the quality of partitioning
methods (for example the lower bound of the numnber of inter-subset edges) would help to
define what a good one is. It is certainly in these directions that our future work will go.
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