Explicit T-coercivity for the Stokes problem: a coercive
finite element discretization™

Patrick Ciarlet Jr®, Erell Jamelot?*

*POEMS, CNRS, Inria, ENSTA, Institut Polytechnique de Paris, 828 Boulevard des
Maréchauzx, 91120 Palaiseau, France
b Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des
Fluides, 91191, France

Abstract

Using the T-coercivity theory as advocated in [Chesnel, Ciarlet, T-coercivity
and continuous Galerkin methods: application to transmission problems with
sign changing coefficients (2013)], we propose a new variational formulation
of the Stokes problem which does not involve nonlocal operators. With this
new formulation, unstable finite element pairs are stabilized. In addition, the
numerical scheme is easy to implement, and a better approximation of the
velocity and the pressure is observed numerically when the viscosity is small.
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1. Introduction

The Stokes problem describes the steady state of incompressible Newto-
nian flows. It is derived from the Navier-Stokes equations [32]. With regard
to numerical analysis, the study of the Stokes problem helps to build an ap-
propriate approximation of the Navier-Stokes equations. We propose here
to write a new variational formulation of the Stokes problem using the 7'-
coercivity theory, following Section 2 in [24].

In Section 2, we recall the T-coercivity theory as written in [25, 24].

*Explicit T-coercivity for Stokes
*Corresponding author: Erell Jamelot
Email addresses: patrick.ciarlet@ensta-paris.fr (Patrick Ciarlet Jr),
erell.jamelot@cea.fr (Erell Jamelot)

Preprint submitted to Computers € Mathematics with Applications March 7, 2025



In Section 3 we apply this theory to the generalized Stokes problem,
that is possibly with divu # 0. In particular, solving this problem with
homogeneous boundary condition helps solving the incompressible Stokes
problem with inhomogeneous Dirichlet boundary conditions. We prove ba-
sic T-coercivity by finding an operator 7' such that the global variational
formulation of the generalized Stokes problem is T-coercive.

From that point on, we assume that divu = 0 and solve the incompress-
ible Stokes problem. In Section 4, we build and analyse a new variational
formulation with this operator T (explicit T-coercivity). Then in Section 5
we propose a numerical algorithm based on the new variational formulation
and, in the Section after, we introduce discretizations and we study more
specifically stability properties. As a particular case, it is shown that the un-
stable finite element pair P! x PY yields stability. Finally, we provide some
numerical experiments in Section 7 to illustrate our points.

Some concluding remarks are made in Section 8.

2. T-coercivity

We recall here the T-coercivity theory as written in [25, 24]. Consider
the variational problem, where V' and W are two Hilbert spaces and £ € W":

Find u € V such that Vw € W, a(u, w) = {(w). (2.1)

Classically, we know that Problem (2.1) is well-posed if a(-, -) satisfies the sta-
bility and the solvability conditions of the so-called Banach-Necas-Babugka
(BNB) Theorem (see e.g. [30, Theorem 25.9]). For some models, one can also
prove the well-posedness using the T-coercivity theory. Whereas the BNB
theorem relies on an abstract inf-sup condition, T-coercivity uses explicit inf-
sup operators. We refer for instance to [17, 46, 13, 24, 14, 12] for problems
with sign-changing coefficients, to [22, 21, 51] for integral equations, to [15]
for interior transmission problems; to [39, 20, 25, 40, 37] for Helmholtz-like
problems, to [43, 27, 33] for the neutron diffusion equation, to [26] for the
magnetostatic problem.

Definition 1 (basic T-coercivity). Let V and W be two Hilbert spaces and
a(-,-) be a continuous bilinear form over V-x W. It is T-coercive if

3T € L(V,W), bijective, Ja > 0, Yo € V, |a(v, Tv)| > a||v|f3. (2.2)
Obviously, if (2.2) holds for some T € L(V, W), then T is injective.
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Theorem 1 (well-posedness [25, 24]). Let a(-,-) be a continuous bilinear form
on V- x W. The Problem (2.1) is well-posed if, and only if, the form a(-,-)
is T'-coercive in the sense of definition 1.

Two extensions of T-coercivity are proposed in [24, §2.3.2]. The first one
is, when one is interested in solving the discretized problem, to mimic the
design of the operator T at the discrete level to obtain a uniform discrete
inf-sup condition: we call it the discrete T'-coercivity. Among the above cited
references, this is developed in [22, 39, 17, 25, 24, 40, 27, 12, 37, 51, 42]. The
second one is the use of the operator 1" directly in the variational formulation:
an equivalent variational formulation is obtained, which reads

Find u € V such that Vv € V, a(u, Tv) = {(Tv). (2.3)

By design, a(-,T-) is a continuous bilinear form, coercive on V' x V. We call
it the ezplicit T-coercivity, see [26].

3. The Stokes problem

Let Q be a connected bounded domain of R¢, d = 2, 3, with a polygonal
(d = 2) or Lipschitz polyhedral (d = 3) boundary 0€2. We consider the
generalized Stokes problem:

—vAu+gradp = f,

Find (u, p) such that divu — g,

(3.1)

with Dirichlet boundary conditions for u and a normalization condition for

p: / p = 0. If the Dirichlet boundary conditions are homogeneous, we write

0
(3.1) g, and (3.1)np else.

The vector field u represents the velocity of the fluid and the scalar field
p represents its pressure divided by the fluid density which is supposed to be
constant. The first equation of (3.1) corresponds to the momentum balance
equation and the second one corresponds to the conservation of the mass.
The constant parameter v > 0 is the kinematic viscosity of the fluid.

Let us provide some definition and reminders. Let us set L?*(Q)
(L3(Q))4, HA(Q) == (H}(Q)4, HYHQ) := (H~Y(Q))? the dual space of H}(Q
a?d L2,,(Q) = {q € L*(Q)] Joq =0}, L2,,(09) == {g € L*(3)| [,q4
0}.
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The natural function space for the velocity is H*(Q2) and, if homogeneous
boundary conditions are prescribed, it is H(2), while for the pressure the
natural function space is L?, (). The data is (f,g). The vector field f €
H~!(Q) represents a body force divided by the fluid density. The scalar field
g € L?,,,(Q) is some abstract data that will be useful for the analysis of the
case of nonhomogeneous Dirichlet boundary conditions.

Let us first recall the Poincaré-Steklov inequality:

HCPS > O’VU € H&(Q), HUHLQ(Q) < Cps” gradeLz(Q). (32)

Thanks to this result, in H} () the semi-norm is equivalent to the full norm,
so we choose an inner product equal to (v, w)Hé(Q) = (grad v, grad w)gz (o)
with associated norm |[v]|g1 ) = [|gradvllLz). Let v, w € Hy(Q). We

denote by (v;)%_, (resp. (w;)%,) the components of v (resp. w), and we set
Gradv = (9;v;)¢,_, € L*(Q), where L*(Q) := [L*(Q)]"*?. We have:

(Grad vV, Grad W)ILZ(Q) = (V,W)H(lj(Q) = Z(Ui, wz)Hé(Q)

and:

1/2
1Vll30) = (Z”UJHHl ) = || Grad v||.>(q)

Let us set V := {v € H}(Q)| divv = 0}. The vector space V is a closed
subset of HA(Q2). We denote by V+ the orthogonal complement of V in
H{ (). We recall that there exists a (nonlocal) right inverse of the divergence
operator:

Proposition 1 ([32, Corollary 1.2.4]). The operator div: H{(Q) — L*(Q) is
an isomorphism of V+ onto L%, (Q). We call Cgiy > 1 the smallest constant
such that:

Vpe L2,,(Q), 3V, € VI | divy, = p and ||[V,[lmye) < Canllpllrz@). (3-3)

zmv(
In the statement of Proposition 1, we note that since

vv € Hy(Q), [Vl = lleurlviiz ) + | div vz

one has necessarily Cg;, > 1.



The variational formulation of Problem (3.1)y reads:
Find (u,p) € H}(Q) x L2, ,(Q) such that
V(u,V)H(l)(Q) — (p,divv)r2q = (f,V)Hfl(Q)ﬂHé(Q) Vv € H(Q) ; (3.4)
(q, div u)L2(Q) = (g, Q)LQ(Q) ‘v’q < Lzmv(Q)

This is a saddle point-problem. Using classical theory, one proves that Prob-
lem (3.4) is well-posed with the help of Poincaré-Steklov inequality (3.2) and
Proposition 1. Check for instance the proof of [32, Theorem 1.5.1].

Let us set X := H}(Q) x L2, () which is a Hilbert space which we
endow with the following norm:

B 1/2
IV, D)l = (IVIEr ) +v 7 lallze@) (3.5)
o(®)

This norm is chosen to account for physical phenomena due to small viscosity.
Typically, if the result of a physics experiment is (u,p), the ratio of the
two components of the norm |[|(u, p)|x,., respectively equal to [[u[|m1(q) and
v |pllL2(q), varies linearly with v.

We define the following continuous symmetric bilinear form:

a: X xX — R
(W, p) x (viq) = v, V)mq — (P, divv)rzq) — (¢, diva’)2q) -

(3.6)
We also define the linear continuous form:
{ l: X — R . (3.7)
(v,q) = <f7V>H*1(Q),H(1)(Q) — (9,020

We can write Problem (3.1) in an equivalent way as follows:
Find (u,p) € X s.t. a((w,p), (v,q)) =£4((v,q)) V(v,q) € X. (3.8)
Let us prove that Problem (3.8) is well-posed using basic T-coercivity.
Proposition 2. The bilinear form a(-,-) is T-coercive.

Proof. We follow here the proof given in [5, 16]. Let us consider (u’,p’) € X
and let us build (v*,¢*) = T(u',p’) € & satisfying (2.2) (with V =W = X).
We need three main steps.



1. According to Proposition 1, there exists v,; € V* such that:
divvy =p' in Q and ||\7p/||H(1](Q) < Cyiv ||p'||L2(Q). (3.9)

Let us set (v*,¢*) := (M — v~'vy, —Ap'), with A > 0 to be fixed. We
obtain:

a ((u’,p’), (V*v q*)) = V)‘Hu/H%{(l)(Q) + v Hp/H%?(Q) - (ulv GP’)H}](Q)‘
(3.10)

2. In order to bound the last term of (3.10), we use the Young inequality
and then inequality (3.9), and it follows that for all n > 0:

-1
- N n
(W', Vi )me) < 5 W o) + 5 (Can)” 11720 (3.11)
2 o "2
3. Using the bound (3.11) in (3.10):

-1
77 Lo
a((u,p), (v, q")) > (M - 5) |IU’||?{5<9>+<’/ s (Cdiv)2) IP'1Z2(0)-

We look for 7 > 0 such that 2vA > n and 1 > % (Cgiy)?, which amounts
to requiring

1
A > = (Cgiy)?
7 (Caw)
According to the above, provided that A > }l(Cdiv)Q, we have proved that
the operator T € L(X) defined by Ty ((u',p)) = (M/ —v~1v,,, —\p') is such
that:

Jay >0, V(W) € X,a (W, p), T (0, p)) = ax (0, 9%,

As noted in Section 2, the injectivity of the operator T) follows. Given
(v*,¢*) € X, choosing (0, p') = (A" 'V*—v A" 20, —A71g*) yields Th (0, p')) =
(v*,q%). Hence, the operator Ty € L(X) is bijective. ]

Remark 1. In the above proof, we established that the bijective operator
T\ ((0,p)) = (W — v v, —\p)) leads to T-coercivity as soon as A >
%(C’div)Q. Observe that one can have even more flexibility in the choice of T’
by choosing a different factor in front of v,/, and then choosing A accordingly.



Remark 2. Interestingly, another operator 7" has been proposed in [3], when
2 is a 2D convex domain. The main difference is that another right inverse
of the divergence operator p' — v,y is chosen. Unfortunatly, some orthogo-
nality properties are lost with this choice, so difficulties arise. We refer to
Appendix A for a discussion.

We can now prove the following result for the generalized Stokes problem:

Theorem 2. Problem (3.8) is well-posed, so it admits one and only one solu-
tion for any (f,9) € HY(Q) x L2, (). Writing u = uy +u, with ug € V
and u; € V*, the solution is such that:

[u ey @) < Caivllgllrz@),

VE € Q) Vo € 22,(@) | ol < v IEls e
12l 22 < Caiv |flla-10) + v Ciiy 9]l 20
(3.12)

Proof. According to Proposition 2, the continuous bilinear form af(-,-) is 7-
coercive. Hence, according to Theorem 1, Problem (3.8) is well-posed. Let
us now derive (3.12). Consider (u,p) the unique solution of Problem (3.8),
where u = uy + u; with uy € V and u;, € V*. Choosing v = 0, we
obtain that divu, = g, so that [[uillmiq) < Caivllgllz2@). Now, choosing
v = uy and using orthogonality, we have: v Huo”%{g)(m = (f, wo)u1 ()1 () <
[£ll-1(9) lwollE (), so that: [[ugllmy) < v
in (38), ¢ =0and v=-v, € V+, where divv, = p and ||\7p||H(1)(Q) <
Caiv [|P|lz2(0) (see Proposition 1). Since ug € V, it holds that (ug, vp)ui () =
0. This gives:

flla-1). Next, we choose,

HPH%%Q) = (p,divvy)r2) = _<f"~’p>H—1(Q),H(1)(Q) + V<Aula‘~’p>H—1(Q),H(1)(Q)>
< (el + vlusllye ) ¥l
< Cuiv (”fHH*l(Q) + v Caiv ||9||L2(Q)) 121l 20,
so that: [|p||z2) < Caiv [[flla-1@) + v Cy l9llz2(@)- O

In the following sections, we will consider that g = 0, i.e. we focus on the
classical incompressible Stokes model.



4. New variational formulations
We solve the classical incompressible Stokes model, with g = 0.

4.1. Explicit T-coercivity
Let A > %(Cdivﬂ In remark 1, we introduced the operator Ty € L(X)

defined by: N N
%
T { (Vi) = (W —v19,—Ag)’ (4.1)

where v, € V* is given by (3.3): divv, = ¢ and [[V4llmy @) < Caiv llgllz20)-
We now write the variational formulation (3.8) with test function T) ((v,q))
instead of (v, q). Let us define ay, ((0',p'), (v,q)) = a((0,p'),T(v,q)). We
have:

ay (W, p), (v,q)) = v AW, V)i — (0, V)
=P, divv) 2 + v (0, @) 120 (4.2)
+)\(q, le u’)Lz(Q).

The term with v, requires some knowledge of the nonlocal right inverse of the
divergence operator. We will see in the next section that it can be removed.
According to Proposition 2, we have the...

Proposition 3. The bilinear form (4.2) is coercive.

Introducing ¢5((v,q)) := €(T\(v,q)), we can propose a first new varia-
tional formulation to Problem (3.1), which reads:

Find (u,p) € X s.t.  ay ((u,p), (v,q)) =l((v,q) V(v,q) € X. (4.3

Using the bijectivity of T}, it is obvious that (4.3) is equivalent to (3.8), so
well-posedness of (4.3) is a direct consequence of the well-posedness of (3.8),
and vice versa.

Let us derive an "explicit” expression of £,((v, q)), which will prove useful
later on. We recall that we have in the sense of distributions:

— A(-) = curlcurl(-) — grad div(-), (4.4)



so that
v’ € H_I(Q), E”(Zf/,Wf/) € L2

zZmuv

(Q2) x V|
(4.5)
f’ = grad zp — A wy = grad zp + curl curl wy,

where (wg/, z¢/) solves (3.1)g with v = 1 and data f = f" and g = 0.

Proposition 4. Let f' € H1(Q). Given, q € L?,,,, let v, € V* be defined by
(5.3). We have:
<f,a‘~’q>H*1(Q),H(1)(Q) = —(ar, Q>L2(Q)- (4.6)
Proof. Let f' be decomposed as in (4.5).
On the one hand, integrating by parts twice and using (4.4), we get:

—(curlcurlwy, Vo)u1o i) = —(curleurlvy, we)g10) i«
= (Av,, Wf’>H—1(Q),H(1](Q) — (gradg, Wf’>H—1(Q),H(1)(Q)7
= —(Vq Wf’)H(l)(Q) + (¢, div Wf')L2(Q)7
= 0,

resp. since divv, = ¢, v, € V+, wp € V, and divwy = 0.
On the other hand, integrating by parts once, we have:

(grad ZfM%)H—I(Q),H})(Q) = — (2p, Q)Lz(sz),
so the claim follows. O
So, we have the

Corollary 1. The right-hand-side £y is equal to

(v,q) = A{f, V>H—1(Q),H(1)(Q) + ’/_1(va Q)L2(Q)-
Proof. This is an obvious consequence of (4.6). O

4.2. New variational formulation using orthogonality

Going back to the original Problem (3.1)y, we note that all solutions
(W',p') to Problem (4.3) are such that u’ € V. So, in the statement of
Problem (4.3), the term (u’, v)my (o) can be removed by orthogonality from
the expression (4.2) of the bilinear form a,: as a matter of fact, according to
(3.3), forallg € L?,,,(Q), (0, V¢) o) = 0because v, € V. Interestingly, in
this manner one improves the stability in the proof of Proposition 2, because
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the cross term vanishes in the expression (3.10): no treatment is required and
the resulting bilinear form is coercive for all A > 0. So, we propose to remove
the second term in the expression (4.2) of the bilinear form with operator T},
that is, we introduce the bilinear form a,(+,-) such that:

ay: XXX — R
(W), (v,@)) = v AW V)mye) + v (02 . AT

+ A [ (g, diva) 29y — (P, div v) 2 |
Proposition 5. The bilinear form (4.7) is coercive.

Proof. We have:

ay ((u/vp/)a (u/7p/>> = V)\Hu/H%-I(l)(Q) + V_l ||p/||%2(9)7
> v min(L, ) [|(0, p)]x,-

O

With the help of explicit T-coercivity and using orthogonality, we can
now propose a second new variational formulation to Problem (3.1) 5, which
reads:

{ Find (u,p) € X such that

ax ((w,p), (v, q)) = ME, Vig-1(q)mi@) + v (26, @) 2 YV, q) € X.
(4.8)

Theorem 3. For all A > 0, Problem (4.8) is well-posed and is equivalent to
Problem (3.1)g with g = 0.

By contrast with remark 1, the result here holds for all A > 0.

Proof. The bilinear form ay(-, ) is continuous and coercive. Let f € H™*(Q),
and let z¢ be given by (4.5), the linear form ¢,(-) is continuous. According
to Lax-Milgram Theorem, Problem (4.8) is well-posed. It exists a unique
solution (u, p) which depends continuously on the data.

Regarding the equivalence with Problem (3.1)y with ¢ = 0, we already
observed that solving (4.3) is equivalent to solving (3.8), and that both of
them are equivalent to solving Problem (3.1)y with ¢ = 0. Then, if (u,p)
solves Problem (3.1)y with data f € H™!(Q) and g = 0, one has in particular
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that u € V. Hence it follows from the above that (u,p) solves (4.8) with
data f and g = 0, resp. z¢ given by (4.5).

Conversely, assume that (u,p) solves (4.8), with data f € H™1(Q), and z¢
given by (4.5). Denote by (u', p') the solution to Problem (3.1)y with data
f. According to the above and by linearity, (u —uf, p — pf) solves (4.8) with
vanishing data, hence to is equal to (0,0) by uniqueness: in other words,
(u, p) solves Problem (3.1)y with data f. O

Notice that we can write Problem (4.8) with two equations as:

Find (u,p) € X s.t. for all (v,q) € X
(Z) 14 )\(u, V)H(l)(Q) — )\(p, div V)LQ(Q) = )\<f, V>H*1(Q),Hé(§2)7 (49)
(ZZ) )\(q, div u)L2(Q) + V_l (p, q)L2(Q) = V_l (Zf, q>L2(Q)

This new variational formulation appears as a stabilized variational formula-
tion, in the sense of §I1.1.2 in [32], pages 120-123. It can be solved once zt,
or a suitable approximation of z, is available. This suggests to use (4.9) as
a post-processing step as follows:

e Compute z¢ by solving numerically the Stokes problem (3.4) with v = 1,
and data f;

e Solve (4.9) with the data f and the computed zs.

Notice that we can recover that the solution u to (4.9) belongs to V in a
simple manner: let us split u = uy + u,, where (ug,u;) € V x V+, so that
divu = divu, . Choosing v =u, in (4.9)-(¢), and ¢ = divu in (4.9)-(i7):

(i) v HULH%{g)(Q) — (p,diva)2i) = (f,u)m-10) 1@ = — (26, diva) 2(0),
(17) A div u||%2(m + v p, divu) 12q) = v (2, divu) 12 ().
(4.10)
Summing (4.10)-(¢) and (4.10)-(i7) times v, we obtain:

y (HuiH%{é(Q) + A divu||§2(9)> — 0.

Hence, u;, =0 and divu = 0.

In Appendix A, we present another variational formulation (not relying
on orthogonality) that can be obtained with the help of explicit T-coercivity.
In Appendix B, we address the case of the classical incompressible Stokes
model, with nonhomogeneous Dirichlet boundary conditions.
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5. Numerical algorithms

We solve the classical incompressible Stokes model, with g = 0. We pro-
pose below two strategies depending on whether z¢ is known or not. Below,
we consider homogeneous Dirichlet boundary conditions (see Appendix B for
nonhomogeneous Dirichlet boundary conditions).

If z¢ is known, one solves (4.9) directly. If this is not the case, we propose
to start from some approximate value of z¢, and then to iterate by solving a
series of problems like (4.9).

We propose here to study the numerical algorithms derived from these
strategies. The discretization will be detailed in Section 7. Let N, (resp.
N,) be the number of discrete velocity (resp. pressure) unknowns. Let A €
RN« x RN« be the velocity stiffness matrix, B € R x R« be the velocity-
pressure coupling matrix and M € R x R be the pressure mass matrix.
So, after discretization, if z¢ is known, one solves a linear system like

Find (U, P) € RM x R¥ such that:
VAU — A\BTP = AF (5.1)
ABU +v'MP = vIMZ

where U € R™ represents the discrete velocity, resp. P € R™ the discrete
pressure, while F' € RV« stands for f, and Z € R™ stands for z. Classically,
U — (AU|U) measures discrete velocities, P — (MP|P) measures discrete
pressures and, as a consequence, U +— (BU|M~'BU) measures the divergence
of the discrete velocities.

On the other hand, if z¢ is not known, starting from an initial guess
P71 eRM, forn=0,1,..., one solves linear systems like

Find (U", P") € RN x R™ such that:
VAAU" — ABTP" = AF, . (5.2)
MBU" +v ' MP" = v IMP"!

In this situation, one needs to prove that the iterative solver is actually
converging, and to provide a stopping criterion.

Remark 3. The matrix of algorithm (5.2) is similar to the one of the first-
order artificial compressibility algorithm [49, 34, 35]. In [34] and [35], the
space discretization is done with the MAC approximation on a Cartesian
grid [38]. In [35], it is also done with the Taylor-Hood finite element [50].
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Theorem 4 (Convergence). Assume that the matrices A € RN=>Ne gnd M €
RNo*Ne qre symmetric positive-definite. Then, the sequence (U™, P"), of
solutions to (5.2) is converging, and it converges to (U™, P>°) € RN x Rr
which 1s governed by

Find (U, P®) € RN« x RM such that:
vA QOO _ BTBOO — Eu

BU* _ 0 . (5.3)
M (P> — P7') € im(B)

Proof. In the proof, we use the change of variable Y := M%B € R, and
specifically Y = M%Bn for n > —1. Then let §P* = P" — P" ! and
§Y" := (Mz2§P") for n > 0.

1/ We notice first that the following recursive relation holds:

Vn>1, (M4 ABA'BY)§P" = MsP" !, (5.4)

where the matrix ABA~'B7 is a symmetric positive matrix. By construction,
1L

§Y" = vAM2BU" € im(M~2B). Since R™ = im(M~2B) & ker(BTM2),

one has 6Y" = ker(B"M~2)* and (5.4) reads:

Vn>1, (I+ M zBA 'B"M 2)§Y" = 5y"™ . (5.5)

The iteration matrix (I + AM~2BA~'BTM~2)~! restricted to ker(B’M~2)+
is a symmetric positive definite matrix, whose eigenvalues are all strictly
smaller than 1. Hence, its spectral radius p, is strictly smaller than 1.

2/ We deduce that it exists Cy € (0,1) independent of the data and of n
such that for all n > 1, [6Y"|s < CA|0Y" 5. Thus, the series >, ., 6Y" is
a convergent series. Noticing that Zf:[:o 5Y" =YY —Y ! we conclude that
the sequence (Y"),, is a convergent sequence and we set Y™ = lim,,,,, Y".
By construction Y — Y~ € im(M~2B) = ker(BTM~2)*, and for all n, the
algorithm doesn’t change the orthogonal projection of Y™ onto ker(IB%TM_%),
which is equal to that of Y~ onto ker(BTM~z2).

3/ Because Mz is invertible, we obtain that the sequence (P™), is also a
convergent sequence and we call P> = M’%XC’O its limit. In the same way,
noting that A is invertible, we obtain that the sequence (U"),, is a convergent
sequence and we call U* = v 'A7Y(F, + BT P™) its limit.

Passing to the limit, it holds that BU™ = 0 and M(P>™ — P~ ') € im(B).

]
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Remark 4. In the above proof, we notice that the mapping A — p, is mono-
tonically decreasing. In section 7 dedicated to the numerical experiments, we
set the value of A equal to 10.

Remark 5. There are two exclusive cases for Problem (5.3):

e cither, im(B) = R™»: a discrete inf-sup condition holds. Uniqueness of
™ is guaranteed and the last line of (5.3) is trivial;

e or, im(B) C R™: there is no discrete inf-sup condition. However in
this case, the last line of (5.3) guarantees the uniqueness of ™. As a
matter of fact, the algorithm does not change the orthogonal projection
of P" onto ker(B”), which is equal to that of P~" onto ker(B”), where
orthogonality is understood with respect to the inner product (M - |-).

Let us consider that the assumptions of theorem 4 hold. A critical ingre-
dient is to define the stopping criterion, in particular what are the relevant
quantities of interest. By definition, (M§P"|6P") = |6Y"|3 is strictly mono-
tonically decreasing. Hence, denoting by |- |4 : U — (AU|U)"/? the norm of
the discrete velocity, resp. |- |y : P+ (MP|P)? the norm of the discrete
pressure, we define the stopping criterion by comparing the adimensional-
ized quantities |[0P"|y and |U"|4 (we note that both quantities are easily
computable). This amounts to setting the stopping criterion as

0P| < €|U"|a (5.6)

for ad hoc € > 0. In our numerical experiments, we fixed n = 1 or n = 8
with e = 10712,

Finally, we recall that BU™ stands for the divergence of the discrete veloc-
ity divu}, and that one aims at diminishing the value of its norm. Consid-
ering again the auxiliary variable §Y" introduced in the proof of theorem 4,
we find:

A MY2BUME = b2 |oy 2.
As a consequence of the proof of the previous theorem, we infer that the
sequence of norms (|M~/2BU"|,), is strictly monotonically decreasing, and
so is (|| divup | r2))n-

6. Discretization and stability estimates

We solve numerically the new variational formulation, written like in
Problem (4.9). Below, we consider homogeneous Dirichlet boundary condi-
tions (see Appendix B for nonhomogeneous Dirichlet boundary conditions).
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6.1. Discretizations
Consider (75,);, a simplicial triangulation sequence of Q. For all D C R,

and k € N, we call P*(D) the set of order k polynomials on D, P*(D) =
(P*(D))4, and we consider the broken polynomial space:
Pi.(Th) = {q€ L*(Q); VT €Ty, qr € P*T)}.
We use the notation P°(73) for Py,
of P*-Lagrange functions:
V= vy € HY(Q); VYT € T, vpr € PHT)}
‘l)]h(q = {Uh c th,cg; Vhjon = 0} .

(Tr). We define the conforming spaces

We set Vi := (Vi) and V§i? = (Vi) We call Qf = Pk (T) N
L2,,,(Q). Notice that Vi3¥ x QF c HY(Q) x L2,,,(€) and div V3 C QF .

Let k& > 1. The (conforming) discretization of Problem (4.9) with the
Scott-Vogelius P* x Py~ finite element [48, 11] reads:

disc
. k,cg k—1 k,cg k—1 .
Find (un, pr) € Vi)' x Q" s.t. for all (vi, qn) € V3! x Q7
14 )\(uh, Vh)H(l)(Q) — /\(]?h, div Vh)L2(Q) = )\<f, Vh>H*1(Q),H(1)(Q)7 (61)
Man, divug) 2 + v (0n, @n) @) = v (25, @) 12(0)-
Writing f = —vAu + grad z¢ (recall (3.1) with z¢ = p), Problem (6.1) reads:

Find (up,pn) € V’&’,ﬁg x Q! s.t. for all (vi, qn) € Vg:fbg x Q!
v A(ay, Vh)Hé(Q) — AP, div i) r2(0) = v A(u, Vh)Hé(Q) (6.2)
—A(Zf,diV Vh)LQ(Q)a ’

Mg, div llh)L2(Q) + v (pa, Qh)L2(Q) =v (2, Qh)L2(Q)-
Remark 6. It is well known that discretizing (3.4) with the Scott-Vogelius
P* x P{fwl finite element, 1 < k < 3, is not stable on all shape regular meshes
[36]. A wide range of strategies to get round this problem have been explored
for years. Below is a quick overview of these strategies:

e The discrete velocity space can be enriched see [9, 4, 7, 23, 44] for k = 1.

e The discrete variational formulation can be stabilized, see [10, 8, 53, 2]
for k =1, [1] for k = 2.

e The mesh can be designed in such a way that the uniform discrete inf-
sup condition applies, see [31] for & = 1, [48, 52, 6] for k > 1 and [36]
for k > 4.
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6.2. Error estimate when z¢ is known

Let IIj ., be the L?(Q)-orthogonal projection operator from L?(2) to
Vi, and II, 49 be the L?(Q)-orthogonal projection operator from L*(Q) to
PE1(T;). We have the

disc

Proposition 6. Let (u,p) € X be the exact solution and (uy,pp) € Xj be the
solution to Problem (6.1). We have the following error estimate:

[(up =, pr = pag2e) | vx < V14 dX [[u =TI cqullay0)- (6.3)
Suppose that u € P*(Q). Then u, = u and p, = 1 442t

Notice that the error estimate for the velocity is independent of the pres-
sure. Hence, the (conforming) discretization of Problem (4.9) with the Scott-

Vogelius P* x PC’;Z.;} finite element and for which z¢ is known is a so called

pressure robust method for which the discrete velocity uy, tends to u inde-
pendently of v. The discrete pressure p, tends to IIj go2¢ all the faster the

smaller v is. Let us now prove Proposition 6.

Proof. Setting z¢j, = Ip q92¢, we have: (z¢, divvy)r2) = (2eh, div vy) 2o
and (2¢, qn)r2) = (26,4, qn)r2() for all v, € V’&h, and all ¢, € QF'. Sum-
ming both equations of Problem (6.2) and reshuffling terms, it comes:

Find (us, py) € VE, x Q17" st for all (vy,, q,) € VE, x Qf "
V)\(uh —u, Vh)H(l)(Q) + 7/_1 (ph — Zf,h, Qh>L2(Q) (64)
= )\(ph — Zf,h, div Vh)LQ(Q) — )\(qh, div uh)L2(Q).

Choosing v, = uj, — Il u = (u, —u) + (u — I, ,,u) and ¢, = pp, — 2¢ in
(6.4), and dividing by Av, we obtain:

fuan — 2 0 + (W, = 1,0 = g aayioy + A0 — 22y
= —Vﬁl(ph — Zf.h, div Hh7cgu)L2(Q).

Hence, using Cauchy-Schwarz inequality, we get:

lan, — u”%{é(g) + >‘71V72||ph - Zf,h”%%g)
< lun = ullgye) [ = gl o) + v Ipn — 2zenll 220 (| div Ty cull 20
< . 2 )\—1 —2” . 2 )1/2><
= (“LIh u”Hé(Q) + 4 DPh Zf.h L2(Q)

(”11 - Hh,CguH%—I(l](Q) + A|| le Hh,cguH%Z(Q))

1/2
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Finally || div I} cgul[z2(0) < Vd|u— 1Ty cqut][ (0> SO We have:

[(wn, —w,pr = 20) | 2, v < V14 dA[[u— o)

If u € P*(Q), then IIj, ,,u = u and the right-hand side is equal to 0. Hence,
u, = u and py, = 2¢ . L]

6.3. Error estimate when z¢ is not known

If z¢ is not known explicitly, let us assume that we have at hand an

approximation p¢d € Qi_l and use it to solve the following approximation

of Problem (4.9):

Find (0,p) € X s.t. for all (v,q) € X :
14 /\(ﬁ, V)H(l)(Q) — )\(]5, div V)LQ(Q) = /\<f, V>H*1(Q),H(1)(Q)7 (65)

ol

Mg, div ) pz20) + v (B @)r2) = v (07 @) 12(0)-
Let us write again f = —vAu + grad z, so that Problem (6.5) reads:

Find (q,p) € X s.t. for all (v,q) € X' :

14 )\(ﬁ — u, V)H(l)(Q) — A(ﬁ — Zf, div V)L2(Q) = O, (66)

Mg, div ) r2(q) + vt (p — pod] 92 = 0.

Proposition 7. Let (u,p) € X be the exact solution and (0,p) € X be the
solution to Problem (6.5). We have the following estimates:

N < __ old
{||p Zf||L2(Q) 2 ||Zf DPr, ||L2(Q)a (6.7)

[0 —ullg o) (V) iz — i 2oy
Proof. Choosing v =1u—u and ¢ = p— 2¢ in (6.6), summing both equations
and dividing by Av, it comes:

o — uHiI})(Q) + AW (= PR P — 26) 120 = 0.

Writing p — p2@ = (p — 2¢) + (2¢ — p3'?), we obtain:
1@ —a,p—2)l5 5, = —A7v (2t — PR D — 26) 1200

<Az = P 2 1D — 2|20

We obtain successively estimates (6.7). O
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The discretization of Problem (6.5) with the Scott-Vogelius P* x P 1
finite element reads:

Find (n, pp) € Vi, X Q' s.t. for all (v, qn) € Vi, Qrt:
v A (Qn, Vi)my) — APR™, div va)rze) = ME, Vi) a-10) 11(9):
Mg, divag) o) + v~ (03, an) @) = v (07, an) 2@ -
(6.8)

Theorem 5. Let (u,p) € X be the exact solution and (G, i) € X be the
solution to Problem (6.8). We have the following error estimate:

(@, = v, pp™ = Whag2e) | 2 vx < V1 dA Ju =T cqul[my0)

6.9
(V)T gg2e — P L2 @) (09

Suppose that u € P*(Q). Then 11, .,;u = u and we obtain the estimate below:

1(8n =, P = Thag2e) || e yx < (VA) T [T ag2e — pl 2y (6.10)

In particular, if p¢? is a good approximation of IIj 4,2¢, the solution

(p, pp?) is also a good approximation of (u, I, ge2¢). Interestingly, the
above with & = 1 corresponds to the P! x P° finite element pair, which is
known to be unstable for the discretization of the usual variational formula-

tion (3.4) of the Stokes problem. Let us prove Theorem 5.

Proof. Setting z¢, = I, g92¢, we have: (£, vi)u—1(0)mi@) = v (W, Vi) —
(26,1, div Vi) [2() for all v;, € V§ . Hence, Problem (6.8) can be written as:

Find (, ppe) € VE, x Qp " s.t. for all (vi,qn) € VE, x Q)
V)\(ﬁh —u, Vh)H(l)(Q) — )\(pzew — Zf.h, div Vh)LQ(Q) = 0,
Agn, div i) 2y + v~ (DR = PP, ) 2() = 0.

(6.11)

Choosing (vp, gn) = (Qy, — I} cou, PR — z¢ ) in Problem (6.11), we have:

{ vA(Uy, —u,ay, — iy g)mi o) — AR — 2en, div(ay, — o)) r2() = 0,

PR — zgp, div i) p2i) + v (PR — pR pre® — zen) 12) = 0.

Summing both equations and dividing by Av, it now comes:

(U, — 0, 0y — T )i (o) = A7 072 (DR — PR DR — 2e0) 12(9)

U (PR — 2, div I o) p2(0) = 0.
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new old

Noticing that @, — Il ,u = (4, —u) + (u — I, ,u) and PP — pi* =
(P — ze0) + (260 — DY), we get:

| (p, — u, ppe — Zf,h)”iaﬁy + (an —u,u — Hh,cgu)H})(Q)
new

N A C Y e R

new

— Zf7h)L2(Q) +v! (ph — Zf,h div Hh,cgu)LQ(Q) =0.

Using Cauchy-Schwarz inequality, we deduce that:

(@, =, pp = zen)l% 5, < 100 =l o) [l = T coul gy o)
(V)T [P = 2zl 20 ((\/XV)’I 260 — 5| 220 + VA div Hh,cgu||L2(sz)> :

Using again Cauchy-Schwarz inequality as in the proof of Proposition 6,
together with || div Iy, coul| 20y < Vd [|u — [Ty cqu[| 3 (), We obtain the esti-
mates (6.9) and (6.10). O

6.4. Discussion on the error indicators

As we noted after stating Theorem 5, if the error indicator on the pressure
lze. — P9 L2(e) Is small, so is ||z¢, — PP 12(q). Indeed, assuming that the
errors on the velocities are negligible compared to these indicators, one de-
rives from (6.9) the bound ||z¢ , —pp || z2() < |26 — 15| 12(2). Interestingly,
this situation is likely to occur when the viscosity is small, since there is a
multiplicative factor equal to (v/Ar)~! in front of the error indicators on the
pressure. This further justifies the use of the iterative algorithm presented

in Section 5 in this case.

7. Numerical results

The numerical algorithms presented here are written using the same no-
tation as in Section 5.

We propose some numerical experiments with g = 0, depending on whether
or not z¢ is known explicitly. In the latter case, we first compute some approx-
imation p9@. In principle, either a classical, conforming or nonconforming,
discretization can be used to compute pj'd. Hence, we apply an iterative
approach with a nonconforming initial computation followed by (several iter-
ations of) our new formulation. We call the second part the post-processing.
For each test-case, (u,p) is given, whereas the viscosity v can vary (see the
discussion after (3.5)). The numerical results are obtained on a github plat-
form, implemented in Octave language, see [41].
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7.1. Resolution algorithm

Consider a nonconforming discretization of the classical variational for-
mulation (3.4), cf. [28]. Let V" ¢ HYQ) (resp. VI ¢ HYQ)) be
the nonconforming discretization space of H'(2) (resp. HL(Q)). We set
Vﬁ'}f'”(" = (\f"’,f"'”'")‘/ and Vg_‘;}" = (\(f ’)177('»,)({. The discrete velocity space is Vf);;(
and the discrete pressure space is fo]. Let (wz)f\i“l be a basis of V](;’ZC, and
(¢:)™7, be a basis of Q¥ We set: U = (U,)N, where u;, := SN Uy,
P = (Bi)i\gl where pj, = Zz]'V:pl_Pi¢i? and F, = (Euz>fvzul We let £ €
L(Vere,R) be such that Vv, € Vgie, le(vi) = (£, vi)2o) if £ € L2(Q),
éf(Vh) = <f, jh(vh»H*l(Q),Hé(Q) if f Q/ LQ(Q), where jh : Vg:Zc — Vl&h is
for instance an averaging operator [29, §22.4.1]. Then F,; = f¢(¢);). Let
A € R x RN be the velocity stiffness matrix, B € R x R« be the
velocity-pressure coupling matrix and M € R x R™ be the pressure mass
matrix. The linear system to be solved is

Find (U, P) € RM x R such that:
vAU -B'P = F
BU = 0

(7.1)

U

Let us set K = BA'BT € R x R, The matrix K is a symmetric matrix,
furthermore it is positive definite as soon as the kernel of B is reduced to {0}.
When it is the case, the coupled velocity-pressure problem (7.1) can be solved
using the three + one steps below (the fourth step being straightforward):

Prediction: Solve in U, such that vAU, = F,.

Pressure solver: Solve in P such that KP = —-vBU,.

Correction: Solve in dU such that v AU = B” P. (7.2)
Update: U=0U+U,.

One can check easily that the above computed solution (U, P) solves (7.1).
The pressure solver with matrix K is based on the Uzawa algorithm, which
is the conjugate gradient algorithm in the context of the Stokes problem. It
can be preconditioned by the inverse of the mass matrix associated to the
discrete pressure M (see e.g. [47, Lemma 5.9]). Thanks to the uniform dis-
crete inf-sup condition, the number of iterations of the conjugate gradient
algorithm is independent of the meshsize. The matrices Ml and B are kept

with all the PCZ;CI degrees of freedom for the discrete pressure. To take into
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account the zero mean value constraint, at each iteration of the precondi-
tioned conjugate gradient algorithm, the discrete pressure is first computed
in L?(Q2), then orthogonally projected in L?_ (£2). We use the Cholesky fac-
torization (computed once and for all) to solve linear systems with matrix

A.

Consider next the variational formulation (6.1) or (6.8). Let (¢;)X* be the
Lagrange basis of V§ ,, and (qﬁi)ﬁvjl be a basis of Q¥ . We set: U := (U,)N
where wj, ;= YN Uy and P = (P,)Y?, where py, := S0 P.¢;. We set
F, = (E,)X where F,; = (f,¢3)u-1@my@ and F, = (F,,)i where
F,. = (2,020, cf. (6.1), or F,; = (pp, ¢i)12(), where the discrete
pressure p9'¢ is an approximation of z¢, cf. (6.8). The linear system to be

solved is
Find (U, P) € RY: x R¥ such that:

VAU — ABTP = \F, ) (7.3)
MBU + v~ 'MP = Vﬁlﬁp

In that case, we set Ay = A+ABTM!B € RV x RV, which is automatically
a symmetric positive definite matrix. To solve the coupled velocity-pressure
problem (7.3), one relies on the two steps below :

Velocity solver: Solve in U such that v AU = F,, + B'"M™'F,.

Pressure solver:  Solve in P such that M P = F, — vABU. (7.4)

One can check easily that the above computed solution (U, P) solves (7.3).
The matrix A, can be assembled easily since M is a block-diagonal matrix.
Using P! x PY discretization, the computation of P is straightforward. Again,
matrices M and B are kept with all the Pj’;cl degrees of freedom for the
discrete pressure. We proceed as before to take into account the zero mean
value constraint.

Remark 7. We recall that solving the linear system (7.1) via the solver (7.2)
is not so straightforward, even with v = 1. Solving the linear system (7.3) is
much easier.

7.2. Settings

We consider Problem (3.1) with homogeneous or nonhomogeneous bound-
ary conditions in Q = (0,1)% Let (u,p) be the exact solution, and (uy, ps)
be the numerical solution. We compare numerical methods, showing how
the coercive P! x P° formulation can be used in a post-processing step (i.e.
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solving (6.8) with p¢'® known), improving then the approximation of the dis-
crete velocity. On Figures 2 to 11, and in Tables 3 to 7 we give the following
names to our numerical methods:

e Method with Crouzeix-Raviart (CR): computations are made with the
nonconforming Crouzeix-Raviart P!, x P° formulation [28, Example
4], which is not a pressure robust method. We call p,. the resulting
discrete pressure.

e Method with exact pressure (EP): computations are made with the co-
ercive P! x PY formulation (6.1) and A = 1, knowing the exact pressure
z¢ (i.e. we solve Problem (6.1)).

e Method with post-processing (Post): computations are made in two
steps. In a first step, we approximate the pressure by the CR-method.
Then, in a post-processing step, we use this numerical pressure as the
source term in the EP-method (i.e. we solve Problem (6.8) with p¢ld =
Pne) and A = 10. Unless the stopping criterion (5.6) is achieved, we
iterate eight times the second step, updating p$'¢ at each new iteration.

The algorithm corresponds to Algorithm (5.2).

Let Nt be the number of triangles. For the velocity, the number of unknowns
is of order N,, ~ 3 Ny for the CR-method and N, =~ Np for the EP-method.
For the pressure, the number of unknowns is N, = Np — 1 for both methods.
As a consequence, there are roughly twice as many unknowns for the CR-
method than there are for the EP-method. We report in Table 1 the number
of unknowns "# dof” for the numerical tests.

h # dof CR | # dof EP | # dof CR | # dof EP
1.00x 107 | 1048 566 2184 1114
500 x 1072 || 4376 2270 8064 4074
2.50 x 1072 || 17368 8846 30 464 15314
1.25 x 1072 || 67816 34230 117664 | 58994
6.25 x 103 | 272624 | 136954 | 464448 | 232866

Table 1: Number of unknowns: first two test cases (left), last test case (right).

We propose three numerical examples based on manufactured solutions.
Let Zj ., be the interpolation operator from C%(Q) to V,ll""’ and T, ,. be the
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interpolation operator from C°(Q) to V,”. We use the discrete L*-error for
the velocity and for the pressure:

ep(up) = ||Ii1111—uh||L2(m/||(u,p)||X,u (75)
eo(pn) = v |[hagp — prll 2/ l(w,p)|lxw

where 7, is either equal Zj . or Zj ... For the EP-method and the Post-
method, we moreover compare the indicators €7, and €} defined by:

el = ||Grad(Zpyu — up)||2) /I (0, p) |2 .

: ; 7.6
eh = | divu|| 2@ /||(w,p)|lx.w o

We first plot the results as error curves for both the velocity and the pressure
as a function of the meshsize, and we give the numerically observed average
convergence rates. Second, we report the elapsed CPU times for the CR-
method and the Post-method. In the Tables, column "overhead” indicates
the ratio between the cost of the second (post-processing) step for the Post-
method and the cost of the first step (CR-method). Finally, we plot the
errors of the two methods as a function of the elapsed CPU times of the
resolution algorithm.

For the Post-method "Post” plots represent the errors after a single itera-
tion of the second step and "Post-8” plots represent the errors after iterating
the second step eight times, updating p'¢ at each new iteration, cf. Algo-
rithm (5.2).

Remark 8. The use of discrete mixed formulations with H(div)-conforming
projection of the test function on the right-hand side leads to a pressure
robust discrete velocity [45, 19]. It has been proven to be an efficient nu-
merical solution to solve Stokes problem when the parameter v is small,
however the H(div)-conforming discrete spaces must be chosen with care.
The Post-method can also be used in that case to obtain an H!-conforming
reconstruction of the discrete velocity, see §7.5.

7.3. Regular manufactured solutions

We postulate that for the EP-method and the Post-method, £f(u,) <
Cy h?, where Cp is independent of the meshsize. The error estimates for
the CR-method are given by [28, Theorems 3, 4, 6]. Notice that the norm
II(-,)|lx» depends on the viscosity v (3.5) and that the error estimates on
the pressure and the velocity are linked. We check the convergence rates
and the viscosity dependency of the error estimates. The first test enters the
framework of §6.2, see the estimate (6.3).
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e Test case with a linear velocity: Figures 1-4, Tables 2-3.

We consider Problem (3.1)yy with f = gradp, where: u = (—y,z)T and
p=a3+y>—1/2.

The number of unknowns are reported on Table 1 (left).

As expected in (6.3), the EP-method returns € (uy) = O(10719), ek (py,) =
O(107") for v = 1; and &f(uy) = O(107%), &4 (py) = O(107'7) for v = 1079,
so the errors are not reported.

Figure 1 (resp. 2) shows the discrete error values ef(uy,) (left) and £f(ps)
(right) plotted against the meshsize for v = 1 (resp. v = 107%). Notice
that the Post-method improves the approximation initially computed with
the CR-method.

Figure 3 shows the discrete error values ¢} and €7, plotted against the
meshsize for v = 107%. Notice that the ratio €% /&% is of order 0.5 for the
Post-method with a single iteration and of order 0.1 for the Post-method
with eight iterations.

Table 2 shows the average convergence rates for the velocity, 7, and the
pressure, 7,. For the CR-method, the average convergence rate for the pres-
sure, 7, is better than expected, possibly because the source term is a poly-
nomial of degree 3 which gradient is numerically exactly integrated.

Table 3 shows the CPU times for the CR-method and the Post-method
with either one, or eight, iterations. With our stopping criterion, around
30 iterations of the preconditioned conjugate gradient algorithm are needed
to solve the pressure solver of algorithm (7.2) with the CR-method: this is
consistent with Remark 7. By design, the Post-method which includes the
CR-method as its first step requires more CPU time. However, we notice
that the CPU time of the second (post-processing) step, the overhead, is
only a small fraction of the first step, and also that it decreases dramatically
as the meshsize decreases. This can be explained by the fact that on the one
hand, there are fewer unknowns and, on the other hand, algorithm (7.4) is
faster than algorithm (7.2) (cf. Remark 7). For the Post-method, it seems
worth doing eight iterations, especially when the meshsize is small.

Figure 4 shows the discrete error values ef(uy) (left) and ef(ps) (right)
plotted against the CPU time for v = 1075, To reach &f(u;) < 2 x 1075, the
required CPU time is 0.5 s for the Post-method with one iteration and less
than 0.01 s for the Post-method with eight iterations, to be compared with
20 s for the CR-method.
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Figure 1: Linear velocity, v = 1. Plots of ef(uy) (left) and e (pp) (right).
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Figure 2: Linear velocity, v = 1075. Plots of &4(uy,) (left) and &f(py,) (right).
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Figure 3: Linear velocity, v = 1075. Plots of €/ (left) and €% (right).
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v 7 | CR | Post | Post-8
1 Ta | 2.031 199 | 1.93
7, | 155 ] 159 | 1.71
10-6 | T 2.03 197 | 2.53
T, | 1.55 | 1.68 | 1.78

Table 2: Linear velocity. Average convergence rates.

h CPU CR CPU Post | overhead | CPU Post-8 | overhead
1.00 x 1071 | 4.34 x 1073 | 5.08 x 1073 17% 7.40 x 1073 70 %
500 x 1072 1 2.32x 1072 | 2.61 x 1072 13% 4.46 x 1072 92 %
250 x 1072 | 2.51 x 1071 | 2.69 x 107! 7.2% 3.65 x 107! 45 %
1.25 x 1072 | 3.00 x 10™° | 3.07 x 10 2.3% 3.54 x 1010 10%
6.25 x 1072 | 4.89 x 101! | 4.94 x 101! 1.0% 5.20 x 101! 6.3%
Table 3: Linear velocity, v = 1076, CPU time (s).
102 e 107! e
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Figure 4: Linear velocity, v = 107°. Plots of 4 (uy) (left) and £§(ps) (right) against CPU

time (s).

e Test case with a sinusoidal solution: Figures 5-8, Tables 5-4

We consider Problem (3.1)y with f = —v A u + grad p, where:

u— ((1 —cos(27x)) sin(27y)
(cos(2my) — 1) sin(27 x)

The number of unknowns are reported on Table 1 (left).
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Figure 5 shows € (uy) (left) and ef(ps) (right) plotted against the mesh-
size, for v = 1. In that case, for the Post-method, there is no need doing
eight iterations, so we give numerical results for computations with a single
iteration only. The Post-method and the EP-method give similar velocity er-
rors. The CR-method and the Post-method give similar pressure errors. For
a given meshsize h, the velocity error is smaller for the EP-method and the
Post-method than for the CR-method; and the pressure error is smaller for
the CR-method than for the EP-method, but it is obtained at a higher cost.
Notice that the Post-method reduces the velocity error without worsening
the pressure error.

Figure 6 shows € (uy) (left) and £f(ps) (right) plotted against the mesh-
size, now for v = 107%. Both post-processings improve the initial compu-
tation. Even with eight iterations, the overhead cost remains affordable,
especially when the meshsize is small.

The EP-method gives much smaller velocity and pressure errors than the
CR-method since it is a pressure robust method. For a given meshsize h,
we note that the Post-method allows to reduce the velocity error by a factor
larger than 10. The pressure error of the Post-method using one iteration
is close to that of the CR-method, while it is greatly improved using eight
iterations.

Figure 7 shows the discrete error values ¢} and €7, plotted against the
meshsize for v = 107%. Tterating several times yields again a significant
decrease of the indicators.

Table 4 shows the average convergence rates for the velocity, 7, and the
pressure, 7,. In the case v = 1, the average convergence rates are as expected.
In the case v = 107% the average convergence rate for the velocity, T,
is better than expected for the EP-method and the Post-method, and the
average convergence rate for the pressure, 7,, is better than expected for the
Post-method, probably because the asymptotic convergence regime has not
been reached.

Table 5 below shows the CPU times for the CR-method and the Post-
method with either one, or eight, iterations. As we have used the same
meshes, the computation times are similar to those in Table 3, showing once
again that the overhead cost decreases dramatically as the mesh size de-
creases.

Figure 8 shows &f(uy,) (right) and €f(pn) (left) plotted against the CPU
time for the CR-method and the Post-method with a single iteration ("Post”
plot) or eight iterations ("Post-8” plot). In the same way as for the first test,
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we note that to reach €f(uy) < 5 x 1079, the required CPU time is 0.2 s for
the Post-method with one iteration and less than 0.02 s for the Post-method
with eight iterations, to be compared with the CR-method which does not
reach this threshold.

1072 —— — 107!

10735 /
S0t 1 S0

10-° E V

—— CR = EP [ —e— CR = EP

[ —e— Post —o—Post
1076 —+ : 1073 ——— -
1072 1071 1072 107!

h h

Figure 5: Sinusoidal velocity, v = 1. Plots of €f(uy,) (left) and e (py) (right).
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Figure 6: Sinusoidal velocity, v = 107°. Plots of e} (uy,) (left) and €} (py,) (right).

e Comment on the algorithm

At this stage, we noticed that eight iterations was a good compromise. In
order to design an optimized algorithm, another stopping criterion could be
set by comparing two successive computations of p??, i.e. comparing |6P" |y
to |0P™" . The choice of A could also be further optimized, depending on

v and on the meshsize.
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Figure 7: Sinusoidal velocity, v = 107°. Plots of €/ (left) and €%, (right).

v 7 | CR | EP | Post | Post-8
1 Ta | 1.99 | 2.07 | 2.06 -
7, |1.03 106|111 | -
10-6 Ta | 2.05 | 2.17 | 2.47 2.36
7, | 1.31 | 1.07 | 1.47 | 1.74

Table 4: Sinusoidal velocity. Average convergence rates.
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e Some observations

The coercive P! x P° formulation (EP-method) gives pressure robust results,
the obvious limitation being that it requires to know explicitly the potential of
the gradient part of the source term. If it is not known, the two step method
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h CPU CR CPU Post | overhead | CPU Post-8 | overhead
1.00 x 107! | 3.85 x 1072 | 4.64 x 1073 21% 7.06 x 1073 83 %
5.00 x 1072 | 2.22 x 1072 | 2.51 x 1072 13% 4.27 x 1072 92 %
2.50 x 1072 | 2.43 x 107! | 2.58 x 107! 6.2% 3.45 x 107! 42 %
1.25 x 1072 | 4.27 x 10M° | 4.34 x 1070 1.6 % 4.78 x 1010 12%
6.25 x 1073 | 4.53 x 10*! | 4.57 x 10+! 0.7% 4.82 x 10*! 6.4 %

Table 5: Sinusoidal velocity, v = 107¢. CPU time (s).

greatly reduces the velocity error, compared with the calculation carried out
using the Crouzeix-Raviart P! x P° formulation (CR-method). Moreover,
using the second (post-processing) step iteratively greatly improves the initial
result. Finally, the reduction factor is greater the smaller v is.

7.4. Low regularity manufactured solution: Figures 9-11, Tables 6-7

Last, we consider Problem (3.1)yy with a low regularity solution. Let
(p,0) be the polar coordinates centered in (0.5,0.5). Let a = 0.45. We set
f = —v Au+ gradp where (u,p) = (p“eg,p — [, p). Results are given for
v = 107% The number of unknowns are reported on Table 1 (right). We
used a refined mesh around (0.5,0.5), where the solution is of low regularity.

Figure 9 shows the discrete error values £f(u,) (left) and ef(pn) (right)
plotted against the meshsize. We remark that EP-method shows far bet-
ter results than the CR-method, and that the Post-method allows again to
improve the approximation of the CR-method.

Figure 10 shows the discrete error values €/ (left) and €Y, (right) plotted
against the meshsize. We have €%, /e} = 0.5 for the Post-method with a single
iteration while €%, /e¥ ~ 0.1 or the Post-method with eight iterations.

Table 6 shows the averaged convergence rates between the successive
meshes. For the EP-method and the CR-method, we postulate that, asymp-
totically, 7w = 1 + o and 7, = a. In both cases, the obtained convergence
rates are better than expected, which suggest that the asymptotic conver-
gence regime is not reached.

Table 7 below shows the CPU times for the CR-method and the Post-
method with eight iterations. Again, the overhead cost decreases sharply
with the meshsize.

Figure 11 shows the discrete error values € (uy,) (left) and ef(py) (right)
against the CPU time for the CR-method and the Post-method with eight
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iterations. To reach £4(u;,) < 1077, the required CPU time is 0.02 s for the
Post-method with eight iterations, to be compared with more than 100 s for
the CR-method.
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Figure 9: Low regularity velocity, v = 107%. Plots of e} (uy,) (left) and e} (pp) (right).
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Figure 10: Low regularity velocity, v = 107°. Plots of €/ (left) and %, (right).

7.5. Numerical results using Raviart-Thomas projection

The use of Crouzeix-Raviart P} x P? formulation with H(div)-conforming
projection of the test function on the right-hand side leads to a pressure ro-
bust discrete velocity [45, 19]. In this case too, we can use the Post-method
to obtain a precise H!-conforming approximation of the discrete velocity. On
Figures 12-14, we represent £f(u,) and £f(p,) against the meshsize for our
three tests. For the CR-method, we use the lowest order Raviart-Thomas
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7 | CR | EP | Post-8
el 20 [ 22] 28
7, | 1.6 | 0.7 1.9

Table 6: low regularity velocity, v = 1076, Averaged convergence rates.

h CPU CR | CPU Post-8 | overhead
1.00x 1071 [ 1.12x 1072 | 1.92 x 102 1%
5.00 x 1072 | 2.77 x 1071 | 3.31 x 107! 19%
2.50 x 1072 | 3.15 x 107° | 3.40 x 1070 7.9%
1.25 x 1072 | 1.06 x 10! | 1.20 x 10t! 13%
6.25 x 1073 | 1.32 x 1072 | 1.39 x 1072 5%

Table 7: Low regularity velocity, v = 1076, CPU time (s).
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Figure 11: Low regularity velocity, v = 1075, Plots of &4 (uy) (left) and &} (ps) (right)
against CPU time (s).

projection [45, §3.2] to compute p¢'¢, which is then used in the Post-method
with A = 1. For the first test (linear velocity), we obtain &4(u;) < 10713 and
e (pn) < 10712 and regardless, we observe that the errors (close to machine
precision for the CR-method) do not deteriorate when the Post-method is ap-
plied. The pressure error €f(p,) remains unchanged for the other two tests.
The approximation of the velocity is improved for all three tests.
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Figure 12: Linear velocity, v = 1075. Plots of 4 (uy,) (left) and £§(ps) (right).
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8. Conclusion

We proposed and analysed a new variational formulation of the Stokes
problem based on T-coercivity theory. This variational formulation is coer-
cive, and can be discretized with the Scott-Vogelius P* x Pfigcl finite element
for all £ > 1. To solve the linear system resulting from the discretization, we
need to know the pressure, or at least some approximation of it, which in our
numerical tests is the discrete pressure obtained using the classical noncon-
forming method with the Crouzeix-Raviart PL_x PV finite element. This two
step method improves the numerical results by notably reducing the errors
obtained after the use of the classical method, especially when the viscosity
is small. More significantly, the two step method consistently outperforms

the classical method in terms of precision with respect to CPU time.
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Appendix A. New variational formulation without orthogonality

Let us briefly consider what would happen if we were to consider a non-
local right inverse of the divergence operator, that is different from the one
proposed in Proposition 1. For example, with values in the whole of H}(£2)
(not restricted to V+). Such an operator g — v, is considered in Section 3.1
of [18] (2D domain with a smooth boundary) and in [3] (2D convex domain).
For this operator, let Cy;, be a constant such that:

Vg e L2, (), 3v, € Hy(Q)| divv, = ¢ and ||\7q||H(1)(Q) < Call|| 20
(A.1)
For both operators, we emphasize that v, does not belong to V* in general.
Let A > 1(Caiv)? (cf. remark 1). T-coercivity can be obtained as before,
with the operator

[ X —R
{ (v,q) = QAv—-vlv,=Aq)’ (A.2)
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Define ay ((',p'), (v,q)) =a ((u’,p’), T(v, q)) We have:
ay (W,p),(v,q)) = v AW, V)mi) — (W, V)me)
=P, divv) 2 + v (0, @) 120 (A.3)
+A(g, div’) 2.

However, for u’ € V (that is for solutions (u’,p) to Problem (4.3)), the
term (1, V)m (o) can no longer be removed from the expression (4.2) of the
bilinear form a, because orthogonality is lost. As a matter of fact one has

(W, Vo) mi ) = (curlu’, curl vz (o).

Hence, in the non-orthogonal case, one has to choose an ad hoc constant
A > 1(Caiv)? to ensure T-coercivity (cf. Proposition 2). Similarly in the
expression of the right-hand side £,.

Proposition 8. Let ' € H1(Q) be decomposed as in (4.5). Given, q €
L2,..(Q), let v, € H(Q) be defined by (A.1). We have:

<f/, ‘_/q>H—1(Q),H(1)(Q) = — (Zf/, Q)LQ(Q) + (Curl Wy, curl ‘_/q)LQ(Q)- (A4)

To conclude on the use of explicit T-coercivity in the non-orthogonal case,
we observe that the problem, if split as in (4.9), leads to a more intricate
variational formulation, which reads

Find (u,p) € X s.t. for all (v,q) € X
(Z)/ v )\(u, V)H(l)(Q) — >\(p, div V)LQ(Q) = )\<f, V)H—l(Q),Hé(Q)a
(i) — (0, Vy)my) + Mg diva)2q) + v (9, @) 120

= v (26, q)12(0) — V! (curl we, curl V)2 ().

Regarding the right-hand side in (i), it requires the knowledge of both z¢ and
of wg (or of suitable approximations): a two-step procedure could be used
as before (see the end of §4.2). One needs to evaluate also (1, V)i =
(curlu, curlv,)r2(q) in the left-hand side of (i7"). The latter part requires
some knowledge of the nonlocal right inverse of the divergence operator [3].
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Appendix B. Nonhomogeneous Dirichlet boundary conditions

We now solve the classical incompressible Stokes model, with non zero
Dirichlet boundary conditions. Hence, we focus on Problem (3.1)yy with
g = 0. The variational formulation reads:

Find (u,p) € H(Q) x L?_ (9) such that

zZmuv

V(u7 V)H(l)(ﬂ) - (Pa div V)L2(Q) = <f> V>H*1(Q),H(1)(Q) Vv € H(l)(Q)a
(¢,divu)z@) = 0 Vg e L?,,(Q),
u = gon df,

(B.1)
where g € Hz(9Q) is some boundary data such that g -n € L?,.(09).
Let ug € H*(Q) be such that ug = g on 9Q and —Aug = 0 in Q. Then
consider (ug,p) € H{(2) x L2 () the unique solution to (3.1)g with data
(f + vAug, — divug):
Find (up,p) € X such that for all (v,q) € X

a((wg, p), (v,q)) = (f, V>H*1(Q),H})(Q) + (g, div ug)Lz(Q), (B.2)

where we use that (ug, v)pyq) = 0. Defining u = ug +up € H'(Q), we
find that (u,p) is solution to Problem (B.1). Uniqueness and continuous
dependence with respect to the data are easily obtained. The next step is to
replace (v,q) by T((v,q)) = (A\v — v~ 'v,, —Aq). One finds by orthogonality
that for all (v,q) € X:

vA (o, V)i 0y — AP, divv) 2ie) + v (D, @) r2(0) + Mg, divug) r2q)
= M, Va1 — v (F Va9 mi@ — Ma, divug) ).

Hence, a new variational formulation for nonhomogeneous boundary Dirichlet
conditions is:

Find (u,p) € HY(Q) x L?_ (Q) such that for all (v,q) € X

zZmuv

I//\(ll, V)H}J(Q) - )\(p, div V)LZ(Q) + I/_l(p, Q)L2(Q) + )\(q, div u)Lz(Q)

l B.3
= )‘<f7V>H—1(Q),H(1)(Q) +tv 1(Zf, Q)L2(Q)- (B.3)

This is the same variational formulation as the one with homogeneous Dirich-
let boundary conditions, except that u € H'(Q) and ujpo = g.
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Regarding the numerical algorithms, if z¢ is known, one solves a linear
system like
Find (U, P) € RM x R™ such that:
VAAU — ABTP = AF —v)AUyy (B.4)
ABU + v 'MP = vIMZ - MBUygy

where, in the right-hand side, U y;; € R accounts for ug. This is completely
similar to (5.1). While, if z¢ is not known, starting from an initial guess
P ' eRM, forn=0,1,..., one solves linear systems like

Find (U™, P") € RN« x R™» such that:
VAAU" = ABTP" = M\E,—vAAUyy . (B.5)
MBU™ + v 'MP" = v 'MP" ' -~ ABUyy

Interestingly, one recovers the same results as those of Theorem 4, because
one finds identical iterating matrices, cf. (5.4) and (5.5).

Let ﬂh‘(,.,, be the LQ(S2)—(’)1‘th()g(’)1ml projection operator from LQ(SZ) to
VY. The (conforming) discretization of Problem (B.3) with P* x Pi_!
finite element reads:

Find (un, pn) € Vi x Qf 7" s.t. for all (vi,qn) € Viy? x Q!

v A(up, Vh)H(l,(Q) — A(pn, div Vh)Lz(Q) = A(f, Vh>H—1(Q)7H(1)(Q)7 (B.6)
Agn, divug) 20y + v~ (pry an)z2@) = v (26, an) 220, .
upp0 = (I ug) e

For nonhomogeneous boundary Dirichlet conditions, one can study the error
estimates by introducing ug, = u, — ﬁ/,_wug € V’g’,clg and using the re-
sults that have been obtained for the homogeneous iooundary conditions.
First, in the estimate (6.7) of Proposition 7, we change the term ||z¢ —
PP 120 in the right-hand side of the two equations into ||z¢ — P4l r2q) +
|| div(ug — 11, ., ug)| 20y Second, in the estimate (6.9) of Theorem 5, we
add v/\|| div(ug — 1T, . ug) | 20 to the right-hand side.
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