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ABSTRACT

A deterministic solver for neutron calculation is classically based on the two step calculation scheme:
the 2D lattice step to find the homogenized cross sections and the 3D core step usually based
on the neutron diffusion equation for the whole core domain. In general, this equation can be
recast in a mixed variational form, and then discretized by using the Raviart-Thomas-Nédélec Finite
Element. More importantly, the neutron diffusion equation usually admits low regularity solution
due to heterogeneous coefficients. This requires Adaptive Mesh Refinement (AMR) to improve the
accuracy of the solution. In order to have independent local refinement on each subdomain, the
AMR strategy is combined with the domain decomposition+𝐿2 jumps as illustrated in [1] with two
subdomains on 2D numerical test cases. The goal of this work is to extend the above strategy to 3D
structured meshes with multiple subdomains which leads to a more optimal refinement for the full
3D core calculation.

Keywords: diffusion equation, mixed formulation, adaptive mesh refinement, domain
decomposition.

1. INTRODUCTION

Simulations with the neutron transport equation at the core level is costly since it requires to solve a complex
equation with several variables such as space, direction and energy variables. In industrial applications, the
neutron flux at the core level is usually modeled by the neutron diffusion equation.

In this work, we would like to focus on the neutron deterministic code APOLLO3®[2], a shared platform
among CEA, EDF and FRAMATOME. In general, this multi-purpose code is based on the two-step
calculation scheme: the (2D) lattice calculation and the (3D) core calculation. The lattice calculation is
usually performed at the assembly scale in order to get a few groups homogenized cross sections and the full
core calculation step is usually performed with the diffusion equation with the homogenized cross sections
coming from the previous lattice step. In particular, our context is the development of the MINOS solver
based on the mixed Raviart-Thomas-Nédélec finite element discretization of the multigroup diffusion and
simplified transport equation (SP𝑁 ), implemented on Cartesian and hexagonal grids [3].

Therefore in this study, we focus on the one group diffusion equation given by
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div p + Σ𝑎𝜙 = 𝑆 𝑓 in R, (1a)
D −1p + ∇𝜙 = 0 in R, (1b)

𝜙 = 0 on 𝜕R, (1c)

where R is the core calculation domain, D is the diffusion coefficient, Σ𝑎 is the absorption cross section, p
is the current 𝜙 is the flux, and 𝑆 𝑓 is the neutron source.

Since the cross sections and the diffusion coefficients are usually homogenized to be constant on each cell
or assembly in the lattice step, we may have low regularity solution for the neutron diffusion equation which
limit the precision and convergence of the solution [4]. Moreover, according to [5, 6, 7, 8], it is very
interesting to point out that one of the most effective methods to deal with this problem is mesh subdivision
(h-refinement).

Domain Decomposition (DD) refers to the technique of solving partial differential equations in the whole
domain by using subroutines that solve the problems on subdomains. Therefore, this strategy is well-suited
for parallel computing and received a great attention in scientific computing. In order to perform the
domain decomposition calculation, it is essential to ensure the continuity between the subdomains. One
of the most popular method is iterative procedure such as the classical overlap iterative Schwarz method
or the non-overlap one with the Robin transmission condition [9]. Another way to have the continuity
at the interface is using the direct procedure such as the Lagrange multiplier techniques. However, we
have to take into account the fact that we have new unknown for the Lagrange multipliers. Among those
domain decomposition methods, the domain decomposition+𝐿2-jumps method (or DD+𝐿2-jumps method)
is proposed in [4]. The successful applications of the DD+𝐿2-jumps method to criticality calculations is
presented in [10] .

In the framework of reactor core simulations, we are interested in combining the Adaptive Mesh Refinement
(AMR) strategies to the DD+𝐿2-jumps method in order to have independent local refinement in each
subdomain. This allows to reduce the computational cost and improve the accuracy of the solution. In fact,
some preliminary results of an Adaptive Mesh Refinement (AMR) strategy on the domain decomposition+𝐿2

jumps for neutron diffusion equation are discussed in [1] on 2D test cases and two subdomains.

The purpose of this work is to extend the analysis to 3D structured meshes with several subdomains. In
particular, this article is organized as follows. In Section 2, we briefly present the DD+𝐿2-jumps method and
its discretization. Next, the AMR strategy based on a posteriori error estimators is explained in Section 3.
Section 4 is dedicated to the numerical test cases in 3D. Finally, some conclusions and perspectives are
discussed in Section 5.

2. VARIATIONAL FORMULATION AND DISCRETIZATION

In this section, we present the domain decomposition+𝐿2-jumps method applied to the problem (1) as
introduced in [1].

We assume that the domain R is a bounded, connected and open subset of R𝑑 for 𝑑 = 2, 3, having a Lipschitz
boundary which is piecewise smooth. Let us define a partition {R∗

𝑖∗}1≤𝑖∗≤ ∗
𝑁

of R. For 𝜓 ∈ 𝐿2(R), we will
use the notation

𝜓𝑖∗ B 𝜓 |R∗
𝑖∗
,

for 1 ≤ 𝑖∗ ≤ ∗
𝑁 . We will note Γ𝑖∗ 𝑗∗ the interface between two subdomains of R∗

𝑖∗ and R∗
𝑗∗ , for 𝑖∗ ≠ 𝑗∗. We



define the interface Γ by
Γ B ∪

∗
𝑁
𝑖∗=1 ∪

∗
𝑁
𝑗∗=𝑖∗+1 Γ𝑖∗ 𝑗∗ .

We now define the following spaces

𝑃𝐻1
0 (R) B {𝜓 ∈ 𝐿2(R)| 𝜓𝑖∗ ∈ 𝐻1(R∗

𝑖∗), 𝜓 |𝜕R∗
𝑖∗\Γ

= 0, 1 ≤ 𝑖∗ ≤ ∗
𝑁},

PH(div ,R) B {q ∈ 𝐿2(R) | q𝑖∗ ∈ H(div ,R∗
𝑖∗), 1 ≤ 𝑖∗ ≤ ∗

𝑁},
𝑀 B {𝑚 = (𝑚𝑖∗ 𝑗∗)𝑖∗< 𝑗∗ ∈

∏
𝑖∗< 𝑗∗

𝐿2(Γ𝑖∗ 𝑗∗)},

∗
Q B {q ∈ PH(div ,R) | [q · n] ∈ 𝑀},
W B

∗
Q ×𝐿2(R) × 𝑀,

where [q · n] is called the global jump of the normal component and is defined by

[q · n] |Γ𝑖∗ 𝑗∗ B q𝑖∗ · n𝑖∗ + q 𝑗∗ · n 𝑗∗ , for 1 ≤ 𝑖∗ < 𝑗∗ ≤ ∗
𝑁.

The DD+𝐿2-jumps method writes,

Find (p, 𝜙, ℓ) ∈
∗
Q ×𝑃𝐻1

0 (R) × 𝑀 such that:

div p𝑖∗ + Σ𝑎,𝑖∗𝜙𝑖∗ = 𝑆 𝑓 ,𝑖∗ in R∗
𝑖∗ , for 1 ≤ 𝑖∗ ≤ ∗

𝑁, (3a)
D −1
𝑖∗ p𝑖∗ + grad𝜙𝑖∗ = 0 in R∗

𝑖∗ , for 1 ≤ 𝑖∗ ≤ ∗
𝑁, (3b)

𝜙𝑖∗ = ℓ on 𝜕R∗
𝑖∗ ∩ Γ, for 1 ≤ 𝑖∗ ≤ ∗

𝑁, (3c)
[p · n]Γ𝑖∗ 𝑗∗ = 0 for 1 ≤ 𝑖∗ < 𝑗∗ ≤ ∗

𝑁. (3d)

The flux and the current respectively belong to the broken spaces 𝑃𝐻1
0 (R) and PH(div ,R). The space 𝑀

is the space of the Lagrange multipliers defined on the interface Γ. They are introduced in order to impose
the constraint (3d). The key observation in the domain decomposition+𝐿2-jumps method is that the jump
of the normal component of the current belongs to 𝑀 . The associated variational formulation writes

Find u = (p, 𝜙, ℓ) ∈ W such that ∀ w = (q, 𝜓, 𝑚) ∈ W, 𝑐𝑆 (u, w) =
∫
R
𝑆 𝑓𝜓, (4)

where

𝑐𝑆 (u, w) B 𝑐((p, 𝜙), (q, 𝜓)) +
∫
Γ

[p · n]𝑚 −
∫
Γ

[q · n]ℓ.

Let (Tℎ)ℎ be a family of meshes, made for instance of simplices, or of rectangles (𝑑 = 2), resp. cuboids
(𝑑 = 3), indexed by a parameter ℎ equal to the largest diameter of elements of a given mesh. We
introduce Raviart-Thomas-Nédélec approximation spaces indexed by ℎ as follows: Q𝑖∗,ℎ ⊂ H(div ,R∗

𝑖∗) and
𝐿𝑖∗,ℎ ⊂ 𝐿2(R∗

𝑖∗), for 1 ≤ 𝑖∗ ≤ 𝑁∗. Introducing the discrete space of Lagrange multipliers 𝑀ℎ ⊂ 𝑀 , we then
set

Q∗
ℎ =

𝑁 ∗∏
𝑖∗=1

Q𝑖∗,ℎ, 𝐿∗ℎ =
𝑁 ∗∏
𝑖∗=1

𝐿𝑖∗,ℎ, Wℎ = Q∗
ℎ × 𝐿

∗
ℎ × 𝑀ℎ,



The discrete variational formulation writes,

Find uℎ = (pℎ, 𝜙ℎ, 𝑙ℎ) ∈ Wℎ such that ∀wℎ = (qℎ, 𝜓ℎ, 𝑚ℎ) ∈ Wℎ, 𝑐𝑆 (uℎ, wℎ) =
∫
R
𝑆 𝑓𝜓ℎ . (5)

A priori estimates have been derived for low regularity solutions in [4].

3. ADAPTIVE MESH REFINEMENT STRATEGY

3.1. Generalities

In this paper, we aim to illustrate an AMR strategy for the problem (5). The general method generates a
sequence Tℎ𝑘 from the initial mesh Tℎ0 by using the following iterative loop, which is divided into four
modules as presented in Figure 1.

SOLVE ESTIMATE Stopping
criterion MARK REFINE

End

No

Yes

Figure 1. AMR process

The module SOLVE amounts to solving the source problem (5). In module ESTIMATE, the local error
indicator is computed on each element 𝐾 ∈ Tℎ based a posteriori error estimate for the discrete solution [11].
It is defined as

𝜂𝐾 =
©­«𝜂2
𝑟 ,𝐾 +

∑︁
𝐾 ′∈𝑁 ∗ (𝐾 )

𝜂2
𝑓 ,𝐾

ª®¬
1/2

, (6)

with ∗
𝑁 (𝐾) := {𝐾 ′ ∈ Tℎ | dim𝐻 (𝜕𝐾 ′ ∩ 𝜕𝐾) = 𝑑 − 1)} ∩ R∗

𝐾
, where dim𝐻 is the Hausdorff’s dimension R∗

𝐾

is the subdomain which contains 𝐾 ,

𝜂𝑟 ,𝐾 B ∥Σ−1/2
𝑎 (𝑆 𝑓 − div pℎ − Σ𝑎𝜙ℎ)∥𝐿2 (𝐾 ) and 𝜂 𝑓 ,𝐾 B ∥D 1/2(D −1pℎ + grad 𝜙ℎ)∥𝐿2 (𝐾 ) ,

where the reconstruction 𝜙ℎ is defined as in 3.2.

The stopping criterion is defined as max𝐾∈Tℎ𝑘 𝜂𝐾 ≤ 𝜀AMR for a user-defined 𝜀AMR > 0. In Section 4, we
use a relative stopping criterion 𝜀AMR = 𝜀AMR, rel∥𝜙ℎ∥𝐿2 (R) , where 𝜀AMR, rel > 0.

The purpose of the module MARK is to select a set of elements with large error to be refined. For a
user-defined parameter 𝜃, the marking strategy consists in finding for all 1 ≤ 𝑖∗ ≤ 𝑁∗ an optimal set of cells
𝑆𝑖∗ such that one has

𝜂(𝑆𝑖∗) ≤ 𝜃𝑖∗ 𝜂(Tℎ,𝑖∗), where 𝜂(𝑆𝑖∗) B
©­«
∑︁
𝐾∈𝑆𝑖∗

𝜂2
𝐾

ª®¬
1/2

,



and 𝜃𝑖∗ > 0 is a user-defined parameter. According to [12, Section 6], an efficient strategy which preserves
the Cartesian structure of the mesh is the direction marker strategy. One selects for each direction e𝑥 ,
𝑥 = 1, . . . , 𝑑, the smallest set of lines 𝐿𝑥,𝑖∗ ⊂ Tℎ,𝑖∗ such that 𝜂(𝐿𝑥,𝑖∗) ≥ 𝜃𝑖∗𝜂(Tℎ,𝑖∗). The resulting selected
set is ∪1≤𝑖∗≤𝑁 ∗,𝑥=1,...,𝑑𝐿𝑥,𝑖∗ .
Finally, the module REFINE refines, for all 1 ≤ 𝑖∗ ≤ 𝑁∗, the mesh Tℎ,𝑖∗ if the stopping criterion is not
reached locally i.e. max

𝐾∈Tℎ,𝑖∗
𝜂𝐾 > 𝜀AMR.

3.2. Reconstruction

By construction 𝜙ℎ ∈ 𝐿∗
ℎ
, it is likely that 𝜙ℎ ∉ 𝐻1(R). In order to ensure the reliability and efficiency

of the estimators, we introduce a reconstruction of the discrete solution uℎ = (pℎ, 𝜙ℎ, ℓℎ), denoted 𝜁ℎ =

(p̃ℎ, 𝜙ℎ (𝜙ℎ, 𝑙ℎ)), where

• p̃ℎ = pℎ;
• 𝜙ℎ ∈ 𝐻1

0 (R).
In order to reconstruct the neutron flux when dealing with a Cartesian conformal mesh, one can use the
so-called averaging method, described in [12, Section 5.1]. However, for non-conformal meshes, non-
conformities need to be tackled. The method we use here is an extension of the averaging method. Let us
describe it in the case of a RTN0 discretization. For 1 ≤ 𝑖∗ ≤ 𝑁∗, let Vℎ (Tℎ,𝑖∗) be the set associated to
the Q1 Lagrange finite elements on the Cartesian mesh. Let also Vℎ,disc = ∪𝑖∗=1,...,𝑁 ∗Vℎ (Tℎ,𝑖∗) be the set
of nodes associated to the degrees of freedom of the 𝑃𝐻1

0 (Ω)-conforming Lagrange Finite Element space
Q1(Tℎ). We compute 𝜙ℎ,disc ∈ 𝑃𝐻1

0 (Ω) such that

∀𝑎 ∈ V1
ℎ,disc, 𝜙ℎ,disc(𝑎) =


1

|E𝑎 |
∑︁
𝐸∈E𝑎

𝑙ℎ |𝐸 (𝑎) if 𝑎 ∈ 𝑖𝑛𝑡 (Γ𝑆),

1
|T𝑎 |

∑︁
𝐾∈T𝑎

𝜙ℎ |𝐾 (𝑎) otherwise.

The reconstruction 𝜙ℎ ∈ 𝑉1
ℎ

is then defined such that

∀1 ≤ 𝑖∗ ≤ 𝑁∗,∀𝑎 ∈ V1
ℎ , 𝜙ℎ (𝑎) =


1

|E𝑎 |
∑︁
𝐸∈E𝑎

𝑙ℎ |𝐸 (𝑎) if 𝑎 ∈ 𝑖𝑛𝑡 (Γ𝑆),

𝜙ℎ,disc(𝑎) otherwise.

For the practical implementation, an algorithm has been proposed in [1, Section 4.2]. Although the example
has been taken in 2D, the 3D extension extension can be easily performed. The main difference lies in the
fact that in 3D, the 2D-mesh of the interface contains vertices which are not included in any mesh. Indeed,
in order to have a conformal 2D-mesh at the interface, one needs to construct a Cartesian mesh from a list
of vertices contained in a 2D-plane. This construction generates new vertices, as shown in Figure 2.

4. NUMERICAL RESULTS

4.1. Mono-group 3D test-case

The test-case is a 3D extension of the test presented in [13]. We use RTN0 discretization. For the DD+𝐿2-
jumps method, the Lagrange multiplier space is built as the sum of the trace of the normal component of the



Generated vertex

Vertex of subdomain 1

Vertex of subdomain 2

Figure 2. 2D-mesh of the interface for a given configuration. Black vertices belong to one of the two
subdomains, blue vertices are generated to have a Cartesian 2D-mesh of the interface.

discrete current [4, Section 5.2.1] using Gram-Schmidt orthogonalization.

We let R = [0, 30]3 the domain of computation, and D = [10, 20]3. The geometry of the test case is shown
in Figure 3 and the value of the physical parameters are represented in Table I.

Data x∈ D x∈ R \ D
Σ𝑎 (x) 1/2 1.9
D (x) 1/3 1/6
𝑆 𝑓 (x) 1 0

Table I. Physical parameters for the 3D Mono-group test-case

(0,0,0)
30
cm

30cm

30
cm

10
cm

10cm

1
0cm

D

(10,10,10)

Figure 3. Geometry of test case.

The so-called reference solution is computed on a uniform 192×192×192 Cartesian mesh. For the test-case,
the initial mesh configuration is a uniform 12 × 12 × 12 Cartesian mesh. We compared the AMR process
between three different strategies : uniform refinement, AMR with a monodomain refinement, AMR with
the DD+𝐿2-jumps method. The domain decomposition is performed on an uniform Cartesian 3× 3× 3 grid
(𝑁∗ = 27). The stopping criterion is set to 𝜀AMR,rel = 0.015, which gives 𝜀AMR ≈ 0.8.
We apply the AMR process for the DD+𝐿2-jumps method detailed in Section 3 .
In the MARK module, we fix 𝜃𝑖∗ = 0.5 for all 1 ≤ 𝑖∗ ≤ 𝑁∗, except in the subdomain 𝑗∗ located at (7.5, 22.5)3

where we set 𝜃 𝑗∗ = 0.3. The choice is based on numerical results obtained in [11].
Correspondingly, we apply the AMR proces for the monodomain formulation. The ESTIMATE module is



based on the estimators defined in [12, Section 5.1], and the averaging method described in [12, Section
5.2]. In the REFINE module, we fix 𝜃 = 0.5.
All these methods are compared to the reference flux in Table II.

Uniform Monodomain DD+𝐿2-jumps
Iter 𝑁ℎ max

𝐾∈Tℎ
𝜼𝑲 𝐿2-error 𝑁ℎ max

𝐾∈Tℎ
𝜼𝑲 𝐿2-error 𝑁ℎ max

𝐾∈Tℎ
𝜼𝑲 𝐿2-error

0 1728 3.356 0.266 1728 3.356 0.266 1728 3.054 0.266
1 13824 1.249 0.173 3375 2.916 0.245 3469 2.799 0.220
2 46656 0.659 0.125 8000 1.271 0.157 5484 1.269 0.139
3 - - - 17576 0.665 0.098 12001 0.614 0.098

Table II. Comparison between meshes, estimators and relative 𝐿2-error with respect to the reference
solution for different the different mesh configurations where 𝑁ℎ represents the number of mesh
elements in Tℎ.

The AMR strategy for the DD+𝐿2-jumps method requires approximately 4 times less elements than the
uniform refinement to reach the stopping criterion. It also requires 30% less elements that the monodomain
AMR. The final mesh is represented in Figure 4. For the radial component, we chose the slice where 𝑧 = 15.
We clearly see that the AMR procedure mainly refined the central mesh where the source and the interface
between the two materials is located. It is also the subdomain where the regularity of the flux is the lowest.

(a) Radial mesh at 𝑧 = 15 (b) Axial mesh. Starting from the bottom south west, the
subdomains are indexed from west to east, from south to
north, then from bottom to top.

Figure 4. Final mesh for the DD+𝐿2-jumps method.

The sparsity ratio is defined as the number of non zero-elements in a matrix divided by the total number of
elements in the matrix. It is shown in Table III that the sparsity ratio is very similar between the monodomain
and the DD case.

The absolute error of the AMR solutions (for the monodomain and the domain decomposition problems) is
shown in Figures 5 and 6. Its peak is also located at the interface between the materials and in D, indicating
that our method was able to refine the mesh in the regions of interest thanks to rigorous a posteriori estimators.



(a) (b)

Figure 5. Spatial distribution of the 𝐿2-absolute error for the final monodomain mesh. The peak of
the the error is located at the interface between the materials and in D. The values range from 2.10−14

to 0.350.

(a) (b)

Figure 6. Spatial distribution of the 𝐿2-absolute error for the final DDM mesh. The peak of the the
error is located at the interface between the materials and in D. The values range from 2.10−14 to
0.350.



Iteration Uniform refinement Monodomain DD+𝐿2-jumps

0 7.13.10−2 7.13.10−2 5.20.10−2

1 9.41.10−3 3.73.10−2 2.83.10−2

2 2.84.10−3 1.6.10−2 1.94.10−2

3 - 7.43.10−3 9.80.10−3

Table III. Comparison between the different sparsity ratios of the matrix of the system for the different
mesh configurations (in %).

5. CONCLUSIONS

In this work, we applied on 3D structured meshes an adaptive mesh refinement strategy for the domain
decomposition+𝐿2 jumps method for the neutron diffusion equation, which relies on a posteriori error
estimators for the source problem. We have shown numerically that this approach is more effective than in
the monodomain case and the uniform refinement.
Future work will be dedicated to the extension of this method to the SP𝑁 model.
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