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STUDY OF A DEGENERATE NON-ELLIPTIC EQUATION TO MODEL PLASMA
HEATING

Patrick Ciarlet, Jr.1, Maryna Kachanovska1 and Étienne Peillon1

Abstract. In this manuscript, we study solutions to resonant Maxwell’s equations in heterogeneous
plasmas. We concentrate on the phenomenon of upper-hybrid heating, which occurs in a localized
region where electromagnetic waves transfer energy to the particles. In the 2D case, it can be modelled
mathematically by the partial differential equation − div (α∇u) − ω2u = 0, where the coefficient α is
a smooth, sign-changing, real-valued function. Since the locus of the sign change is located within the
plasma, the equation is non-elliptic, and degenerate. On the other hand, using the limiting absorption
principle, one can build a family of elliptic equations that approximate the degenerate equation. Then,
a natural question is to relate the solution of the degenerate equation, if it exists, to the family of
solutions of the elliptic equations. For that, we assume that the family of solutions converges to a
limit, which can be split into a regular part and a singular part, and that this limiting absorption
solution is governed by the non-elliptic equation introduced above. One of the difficulties lies in the
definition of appropriate norms and function spaces in order to be able to study the non-elliptic equation
and its solutions. As a starting point, we revisit a prior work [12] on this topic by A. Nicolopoulos, M.
Campos Pinto, B. Després and P. Ciarlet Jr., who proposed a variational formulation for the plasma
heating problem. We improve the results they obtained, in particular by establishing existence and
uniqueness of the solution, by making a different choice of function spaces. Also, we propose a series
of numerical tests, comparing the numerical results of Nicolopoulos et al to those obtained with our
numerical method, for which we observe better convergence.
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1. Introduction

When an electromagnetic wave is sent inside a plasma, it can transfer energy to the particles to produce plasma
heating in a localized region. This phenomenon is related to the so-called resonant waves. In a magnetized
plasma set in a region of R3 under an exterior constant magnetic field B0 = (0, 0, B0), the electric field E and
the magnetic induction B are governed by the following Maxwell system in the time-harmonic regime (ω > 0):

curlE = iωB,

curlB = − iω
c2

εE,
with ε =

 α iδ 0
−iδ α 0
0 0 β

 (1)
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where ε is the cold plasma dielectric tensor [10,14]. For a single species plasma, the coefficients α, δ and β read:

α(x) = 1− Cα,ωNe(x), δ(x)= Cδ,ωNe(x), β(x) = 1− Cβ,ωNe(x), (2)

where Ne(x) is the particle density (assumed to be a continuous function) and Cα,ω, Cδ,ω and Cβ,ω are three
real-valued frequency-dependent constants which do not vary in space. We consider an upper hybrid resonance
in the plasma, see [14], Chapter 2-6, and recent works [3–7,10–13], which is characterized by the fact that α = 0
on some curve inside the region. Like in the above cited works, we will be particularly interested in the cases
when the density Ne(x) is s.t. the sign of α changes continuously between subregions separated by an interface.

We will consider a simplified model, which we derive in detail below. We denote by (e1, e2, e3) an orthonormal
basis of R3, with (x1, x2, x3) the normalized orthogonal coordinates. With obvious notations, E = E1e1+E2e2+
E3e3, etc. We will assume in this manuscript that all quantities are independent of x3 (a variable corresponding
to the direction of the exterior magnetic field), i.e., E1 = E1(x1, x2), etc. Then, because of the block diagonal
structure of ε, we observe a decorrelation between E3, B⊥ = B1e1+B2e2 on one hand, and E⊥ = E1e1+E2e2,
B3 on the other. As a matter of fact, the Maxwell system (1) can be split into two independent systems, referred
to as the system for the Ordinary mode: 

curl⊥E3 = iωB⊥,

curl⊥ B⊥ = − iωβ
c2

E3,
(O-mode)

and the eXtraodinary mode: 
curl⊥ E⊥ = iωB3,

curl⊥B3 = − iω
c2

ε⊥E⊥,
(X-mode)

where ε⊥ =
(

α iδ
−iδ α

)
. The differential operators are defined by curl⊥ v = ∂1v2 − ∂2v1 and curl⊥ v = ∂2v e1 −

∂1v e2.
For the discussion that follows, we will need to introduce auxiliary notation. Let x⊥ = x1e1 + x2e2, ∆⊥ v =

∂11v + ∂22v, div⊥ v = ∂1v1 + ∂2v2 and ∇⊥ v = ∂1v e1 + ∂2v e2. In this case we evidently have that curl⊥ =
−Rπ/2 ∇⊥ and curl⊥ = −div⊥Rπ/2, where Rπ/2 =

(
0 −1
1 0

)
is the π/2 rotation matrix.

Let us now focus on the equations governing the scalar unknowns E3 and B3. The second-order PDE
derived from the system for the Ordinary mode is −∆⊥E3 = ω2β

c2 E3. In the case when the sign of β changes
continuously, this equation is reminiscent of an Airy equation [10].

On the other hand, the second-order PDE derived from the (X-mode) is

div⊥
(
Rπ/2ε−1

⊥ Rπ/2 ∇⊥B3

)
=
ω2

c2
B3.

We will assume that the tensor ε⊥ is invertible everywhere in the region, more precisely, that α2(x⊥)−δ2(x⊥) ̸= 0
for all x⊥, and thus the above expression is well-defined. Let us define the two-by-two tensor

α := c2Rπ/2ε−1
⊥ Rπ/2 =

c2

δ2 − α2

(
α −iδ
iδ α

)
.

Then, since it holds that α and δ depend on the space variable x⊥ only via the density of the plasma Ne(x⊥),
α and δ have the same level curves.

As discussed before, we assume that the coefficient α(x⊥) vanishes on some interface I. In view of the last
remark, the tensor α(x⊥) is constant on I, and it holds that α = iA there, with A being a real-valued skew-
symmetric matrix. Denoting by δ+ the value of δ on the interface I, we remark that δ(x⊥)− δ+ = −δ+α(x⊥).
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From this it follows that we can decompose α(x⊥) as

α(x⊥) = −α0(x⊥) + iA, α0(x⊥) = α0(x⊥)H(x⊥),

where α0 = c2α
α2−δ2 , and H(x⊥) is a Hermitian matrix given by

H(x⊥) =

(
1 −i (δ(x⊥) + α(x⊥)/δ

+)
i (δ(x⊥) + α(x⊥)/δ

+) 1

)
.

In what follows, we will assume that H(x⊥) is positive definite in the whole computational region, which in
particular requires that ∣∣δ(x⊥) + α(x⊥)/δ

+
∣∣ < 1.

Since A is skew-symmetric, div⊥ (A∇⊥B3) = 0, so the second-order PDE governing B3 becomes

−div⊥ (α0 ∇⊥B3)− ω2B3 = 0. (3)

We suppose that the electron density Ne is C2-regular, so that α0 and H are also C2-regular. We assume that the
interface I = {α0(x⊥) = 0} is a C1-loop (without self-intersections), and that |α0(x⊥)| behaves like dist(x⊥, I)
in its neighborhood.
Hence, considering the model derived from the eXtraodinary mode with unknown B3 in the neighborhood of
the interface leads to a degenerate elliptic PDE. How to solve this equation will be the manuscript’s goal. This
problem was originally investigated by A. Nicolopoulos, M. Campos Pinto, B. Després and P. Ciarlet Jr. in [12],
where a numerical method based on a mixed variational formulation was proposed. In this manuscript we revisit
this method and propose some improvements.
The outline is as follows. We introduce in Section 2 the geometrical and functional settings used in this paper.
We also discuss the a priori regularity assumptions on the solution using the limiting absorption principle. Then
in Section 3, we investigate the construction and the discretization of the method introduced in [12]. Numerical
experiments indicate that the discrete solution does not converge to the exact solution. Then, in Section 4, we
propose a new method, designed to overcome the limitations of the original one. Its properties are studied in
Section 5. Finally, we discretize the new method in Section 6: numerical experiments show drastic improvement
over the original method.

2. Mathematical setting

We consider a bounded Lipschitz domain D in R2. Let λ > 0 and f ∈ L2(∂D). We study the following
boundary value problem: {

−div⊥ (α0 ∇⊥B3)− ω2B3 = 0 in D,
(α0 ∇⊥B3) · n⊥ + iλB3 = f on ∂D, (4)

where n⊥ denotes the outward unit vector field to ∂D. According to our model, it holds that α0(x⊥) =
α0(x⊥)H(x⊥), where the scalar field α0 and the hermitian matrix field H are C2(D)-regular. We set Dp = {x⊥ ∈
D : α0(x⊥) > 0}, Dn = {x⊥ ∈ D : α0(x⊥) < 0}, and recall that the interface I = {x⊥ ∈ D : α0(x⊥) = 0} is a
C1-loop (without self-intersections). We assume here that meas(Dp,n) > 0, and that I does not intersect ∂D.
Observe that outside every neighborhood of I we are solving a classical second-order elliptic PDE with smooth
coefficients. Hence, following the classical theory, we shall look for a solution that belongs to H1 outside this
neighborhood. To fix ideas, we consider the case where that D is a tubular neighborhood of I. Finally, we recall
that |α| behaves like dist(·, I) in a neighborhood of the interface.

Like in [12], we focus on the problem (4) posed in the neighborhood of the interface. Let Ω = (−a, a)× (0, L)
be a subset of R2, with the normalized orthogonal coordinates (x, y). Introduce the volume preserving bijective



4 TITLE WILL BE SET BY THE PUBLISHER

transform ψ : (x, y) → x⊥ (more precisely, |det(Dψ)| = 1) which maps Ω to D with the following properties,
see Figure 1:

• the preimage of the interface I is the straight line Σ = {0} × [0, L] ;
• the preimage of the subregion Dn is the rectangle Ωn = (−a, 0)× (0, L) ;
• the preimage of the subregion Dp is the rectangle Ωp = (0, a)× (0, L) ;
• the preimage of ∂Dn \ I is the straight line {−a} × [0, L) ;
• the preimage of ∂Dp \ I is the straight line {a} × [0, L) ;
• the image of (−a, a)× {0} is equal to the image of (−a, a)× {L}.

t

n

•

Dn

Dp

I

D

x⊥ = ψ(x, y)

x = −a
y = 0

x = a

y = L

ΩpΩn

Σ

Γn Γpτ

ν

Figure 1. [Left] The tubular neighborhood D of I. [Right] The domain Ω = (−a, a)× (0, L).
[Center] The transform ψ : Ω → D with ψ(Σ) = I, ψ(Ωp,n) = Dp,n and ψ(Γp,n) = ∂Dp,n \ I.

We split the boundary of Ω into 4 components:

Γp = {a} × [0, L), Γn = {−a} × [0, L),

Γ1 = (−a, a)× {0}, Γ2 = (−a, a)× {L}.

Via the mapping ψ−1, the problem is recast onto the rectangle Ω = (−a, a)× (0, L). Let us introduce

α(x, y) = [Dψ(x, y)]−1α0(x⊥)[Dψ(x, y)]
−t with the correspondence x⊥ = ψ(x, y).

Because the transform is volume preserving (see e.g. [1], §2.1.3), we find that the BVP (4) is equivalently
reformulated with the unknown u = B3 ◦ ψ (and data still denoted by f) as −div(α∇u)− ω2u = 0 in Ω,

α∇u · n+ iλu = f on Γn ∪ Γp,
u(x, 0) = u(x, L), (α∇u · ey)(x, 0) = (α∇u · ey)(x, L), x ∈ (−a, a).

(5)

Above, the divergence and gradient operators are the classical 2D operators, while n denotes the outward unit
vector field to ∂Ω. The last conditions account for periodicity.
The requirement that the transform is volume preserving does not reduce the scope of the study. Indeed, if the
transform is not volume preserving, then the definition of α(x, y) in (5) changes to

α(x, y) = [Dψ(x, y)]−1α0(x⊥)[Dψ(x, y)]
−t det(Dψ(x, y)).

This applies for both the second-order term in Ω, and for the flux-like term on ∂Ω. Regarding the zero-order
terms, we note first that, in Ω, the zero-order term becomes −ω2u(x, y) det(Dψ(x, y)). But, since there exist



TITLE WILL BE SET BY THE PUBLISHER 5

two constants Cmin, Cmax > 0 such that Cmin ≤ |det(Dψ(x, y))| ≤ Cmax for all (x, y) ∈ Ω, one simply needs to
add a smooth, bounded away from above and below, weight to the zero-order term in the domain Ω. For the
zero-order term on the boundary ∂Ω, one has to make a similar modification, ending up with a second weight
with the same properties.
In what follows, we make two simplifying assumptions. First of all, we modify the model (5), by replacing
it with its isotropic analogue. This allows to single out the difficulty related to the change of the sign of the
coefficient in the principal part of the operator, but disregards the anisotropic character of the original model.
Let us remark that this assumption, in general, is not compatible with the original problem setting. Thus,
our first assumption is that α is pointwise proportional to the identity matrix, that is α(x, y) = α(x, y) ( 1 0

0 1 )

everywhere in Ω. Here the new coefficient α is scalar, and it holds that α(x, y) ∈ C2
per,y

(
Ω
)
. 1 In this situation,

the model can be recast as −div(α∇u)− ω2u = 0 in Ω,
α∂nu+ iλu = f on Γn ∪ Γp,
u(x, 0) = u(x, L), (α∂y)u(x, 0) = (α∂y)u(x, L), x ∈ (−a, a).

(6)

Second, we assume that r(y) = ∂xα(0, y) > 0 for every y ∈ (0, L). Because the coefficient α is a scalar, we
observe that the interface Σ is now described by {(x, y) : α(x, y) = 0}, while the two subdomains are respectively
described by Ωp = {(x, y) : α(x, y) > 0} and Ωn = {(x, y) : α(x, y) < 0}.

There remains to specify the requested regularity of u, so as to allow for the modelling of plasma heating. In
this manuscript, we look for limiting absorption solutions of the above problem, namely, we look for u being an
L2-weak limit of uν , as ν → 0+, where uν is the unique solution of the (coercive) limiting absorption problem:

find uν ∈ H1(Ω) s.t.
−div((α+ iν)∇uν)− ω2uν = 0 in Ω,
(α+ iν)∂nu

ν + iλuν = f on Γn ∪ Γp,
uν(x, 0) = uν(x, L), (α∂y)u

ν(x, 0) = (α∂y)u
ν(x, L), x ∈ (−a, a).

(7)

Remark 2.1. Remark that we study the family of problems (7), where the absorption appears in the principal
part of the operator, rather than in zero-order terms, as in more classical cases. Indeed, in real plasmas, due to
the presence of dissipation, the frequency-dependent cold plasma dielectric tensor ε has a small imaginary part,
cf. [8], Chapters 15.4.4, 15.5 (which in the model (7) we study is modelled by ν > 0).

Up to our knowledge, the limiting absorption principle can be justified in 1D, as well as for particular values
of α(x, y) in slab geometries [5, 6]. Let us provide an illuminating example whose goal is two-fold. On one
hand, we will show how the limiting absorption principle leads to the occurrence of a logarithmic singularity in
the solution. On the other hand, we will highlight the difficulty in the choice of the functional framework that
would accommodate such singular solutions. Consider the 1D boundary-value problem: given c1, c2 ∈ R, find
u solving

−(xu′)′ = 0 on I := (−a, a), u(−a) = c1, u(a) = c2.

Testing the above equation with any admissible function v ∈ H1
0 (I) supported away from 0 in either I+ = (0, a)

or I− = (−a, 0) and integrating by parts, one obtains the formulation∫
I+

|x|u′v′ −
∫
I−

|x|u′v′ = 0.

1We define C2
per,y

(
Ω
)
:=

{
v ∈ C2

(
Ω
)
: ∂m

y v(x, 0) = ∂m
y v(x, L), ∀m ≤ 2

}
.
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Looking at the above formulation, it is natural to introduce the spaces H1
1/2(I±) = C∞(I±)

∥.∥|α|1/2 , where

∥v∥2|α|1/2 =

∫
I
|v|2 +

∫
I+∪I−

|x||v′|2.

The associated bilinear form is then continuous in H1
1/2(I−)×H

1
1/2(I+). A straightforward computation shows

that in this function space u is a piecewise constant function

u = c1 on (−a, 0), u = c2 on (0, a).

We see that the above solution does not contain any singularity other than the jump at the origin.
On the other hand, we can have a look at the limiting absorption solution to the above equation, where the

absorption solution solves

−((x+ iν)(uν)′)′ = 0 on I, uν(−a) = c1, u
ν(a) = c2.

In particular, for each ν > 0 the H1(I)-solution to this problem is unique. With z 7→ log z defined by its
principal value (i.e., log(z) = log |z|+ iArg(z), Arg z ∈ (−π, π]), we compute the solution to the above equation

uν = aν log(x+ iν) + bν , with aν =
c2 − c1

log(a+ iν)− log(−a+ iν)
and bν = c2 − aν log(a+ iν).

Since lim
ν→0+

log (x+ iν) = log |x|+ iπ1x<0 for x ∈ R∗, the limiting absorption solution u+(x) = lim
ν→0+

uν is given

by the pointwise limit

u+(x) = a+ (log |x|+ iπ1x<0) + b+, a+ =
c1 − c2
iπ

, b+ = c2 − a+ log a.

Note that
∫
I |x||(u+)′|2 = +∞ as soon as a+ ̸= 0. We thus see the difference between the two solutions

u ∈ H1
1/2(I−) × H1

1/2(I+) and u+: the first one has a jump singularity only, while the second one has both
a logarithmic and a jump singularities. Interestingly, from the physics viewpoint, we know that it is the
logarithmic singularity that is responsible for plasma heating phenomenon [5, 6]. Therefore, for the 2D model
(6), we focus on using the latter one, that is solutions that include the jump and the logarithmic singularities
(log |x|+ iπ1x<0). From now on, we use the notation

S(x) := log |x|+ iπ1x<0

to describe those singularities.
Let C∞

per,y

(
Ωj
)

= {v ∈ C∞(Ωj) : ∂my v(x, 0) = ∂my v(x, L), ∀m}, j ∈ {p, n}. Introduce the two spaces

H1
1/2(Ωj) = C∞

per,y

(
Ωj
)∥.∥|α|1/2 , j ∈ {p, n}, with associated norm

∥v∥2|α|1/2 =

∫
Ωj

|v|2 +
∫
Ωj

|α||∇v|2, j ∈ {p, n}.

Defining the above spaces is motivated by the same observation as above: multiplying the second-order PDE
by any admissible function v supported either in Ωp or Ωn and integrating by parts, one gets a volume term
like ±

∫
Ωp,n

|α|∇u · ∇v. So, in light of the 1D example, we consider from now on that one can recast the 2D
model with solution u as follows.
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Assumption 2.1. The family of solutions (uν)ν>0 of (7) converges in L2(Ω) to u+ ∈ L2(Ω) (which we will
refer to as a ’limiting absorption solution’)

uν
L2(Ω)−−−−→
ν→0+

u+. (8)

Moreover, u+ can be represented as
u+ = u+reg + u+sing,

where the pair (u+reg, u
+
sing) is such that u+reg |Ωp,n

∈ H1
1/2(Ωp,n) and u+sing(x, y) = g+(y) S(x). Here Ω ∋ (x, y) 7→

g+(y) is s.t. g+ ∈ H1
per(Σ), and Ω ∋ (x, y) 7→ S(x) = log |x|+ iπ1x<0.

Starting from (8), it is easy to verify that the limiting absorption solution u+ is governed by the 2D model
− div

(
α∇u+

)
− ω2u+ = 0 in Ωp,n,

α∂nu
+ + iλu+ = f on Γp,n,

u+(x, 0) = u+(x, L), (α∂y)u
+(x, 0) = (α∂y)u

+(x, L), x ∈ (−a, a) a.e.

(9)

Remark that, compared to (6), the above is written in the domains Ωp and Ωn separately. In Appendix A, we
prove further results for u+. We identify the function u+reg with a pair

u+ = (u+reg |Ωp
, u+reg |Ωn

) ∈ H1
1/2(Ωp)×H1

1/2(Ωn).

For generic g(y), we use the notation
sg(x, y) := g(y) S(x).

As noticed in the 1D example, when the singular coefficient g+ does not vanish, sg+ does not belong to the
space H1

1/2(Ωp)×H1
1/2(Ωn), hence the notation sg+ , with s for “singular”.

Given u+ = (u+p , u
+
n ) ∈ H1

1/2(Ωp)×H
1
1/2(Ωn) and g+ ∈ H1

per(Σ) a solution of the system (9), no transmission
condition through Σ is imposed a priori between u+p and u+n . On the other hand, the convergence assumption
(8) contains a hidden transmission condition through Σ, as we will see in Section 5.

Let us conclude by the simple result below.

Proposition 2.2. Let u be governed by (6). Then the following holds true.
(1) If u is a limiting absorption solution, as defined in Assumption 2.1, then u ∈ H1(Ω \ VΣ), for every

neighborhood VΣ of the interface.
(2) If u can be decomposed as u = ureg + using where ureg|Ωp,n

∈ H1
1/2(Ωp,n) is periodic in y-direction

and using(x, y) = g(y) S(x), and if there holds that u ∈ H1 (Ω \ VΣ) for every neighborhood VΣ of the
interface, then (x, y) 7→ g(y) is s.t. g ∈ H1

per(Σ).

Proof. The first assertion follows from the decomposition of u+ of Assumption 2.1: indeed, it is straightforward
to check that both u+reg, u

+
sing ∈ H1(Ω \ VΣ).

As for the second statement, we start by expressing g(x, y) = g(y) from the decomposition u = ureg + using
(where we assume without loss of generality that a < 1, so that S ̸= 0 on (−a, a)):

g = (u− ureg) S
−1.

Therefore, as S−1 ∈ L∞(Ω), from the assumption u, ureg ∈ L2(Ω), it follows immediately that (x, y) 7→ g(y) ∈
L2(Ω). Since we also have that ∥g∥2L2(Ω) = 2a∥g∥2L2(Σ), we conclude that y 7→ g(y) ∈ L2(Σ). From a similar
argument it follows that ∂yg ∈ L2(Σ) and is periodic. □
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3. The numerical method from Nicolopoulos et al [12]

We now recall the main ingredients that were used by Nicolopoulos et al [12, 13] to build a numerical
approximation to problem (6), with its solution split into a regular and a singular part. A stronger assumption
on the singular part is used in [12], namely that g ∈ H2

per(Σ). This choice has strong consequences on the
variational reformulation of the model, see §3.1, and also on its numerical approximation, see §3.2.

3.1. Main ideas and formulation of the method

In order to explain the method of [12], let us introduce the following functions, which we describe as “singu-
larities with absorption”

sνg(x, y) := g(y) log

(
x+

iν

r(y)

)
with ν > 0, g ∈ H1

per(Σ), (10)

and where r(y) = ∂xα(0, y). The absorption parameter scaled by 1/r(y) will ensure some nice convergence
properties on second order derivatives, see Lemma 5.11. We also introduce the weighted L2(Σ)-norm ∥g∥r :=(∫

Σ
|g(y)|2r(y)dy

)1/2, and its associated inner product is denoted by (·, ·)r.
Note that for any g ∈ L2(Σ), it is easily checked that sνg → sg in L2(Ω) as ν → 0+. We then have the following
lemma, whose proof is left to the reader.

Lemma 3.1. Given g ∈ H1
per(Σ), the following limits hold in L2(Ω) as ν → 0+:

sνg → sg, ∂ys
ν
g → ∂ysg,

(α+ iν)∂xs
ν
g → α∂xsg, ∂x((α+ iν)∂xs

ν
g) → ∂x(α∂xsg).

Let φ be a truncation function satisfying

Definition 1. Given φ1 ∈ C1
0 ((−a, a);R) and φ1 = 1 in the vicinity of x = 0, let φ(x, y) = φ1(x).

The method of [12] relies on the observation that, for g ̸= 0, the singular ansatz sg does not belong to
H1

1/2(Ωn)×H
1
1/2(Ωp). Moreover, one can check through simple computations that, as soon as g ∈ H1

per(Σ), and
in particular for g ∈ H2

per(Σ), it holds that

lim
ν→0+

∫
Ω

ν|∇sνg |2φdx = π ∥g∥2r > 0. (11)

Physically, the above identity is related to the plasma heating [6, 13]. The above observation serves as a basis
to construct a functional to minimize; this minimization procedure will yield a variational formulation. Let
uν ∈ H1(Ω) be the unique solution of (7) (see [12], Proposition 6). By Assumption 2.1, uν → u+reg + sg+ in
L2(Ω), as ν → 0+. We then split

uν = uνreg + sνg+ , so that sνg+ → sg+ and uνreg → u+reg in L2(Ω), (12)

see also Lemma A.2. Recall that u+reg is identified with a pair of functions u+ = (u+p , u
+
n ). To carry out the

derivation of the model, one needs some a priori convergence results. One can prove the following result (see
Lemma A.4, Appendix A).

Proposition 3.2. Let (uν)ν>0 be a family governed by (7) fulfilling Assumption 2.1. Then,

lim
ν→0+

∫
Ω

ν
∣∣∇uνreg∣∣2 φdx = 0. (13)
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Next we introduce the function sνh, with h ∈ H2
per(Σ) being an artificial variable (we follow [12] keeping the

assumption on the H2
per(Σ) regularity for h), and define the following energy functional:

J ν(uνreg, g
+, h) :=

∫
Ω

ν
∣∣∣∇(uνreg + sνg+ − sνh

)∣∣∣2 φdx. (14)

Clearly, J ν(uνreg, g
+, h) is non-negative. According to Proposition 3.2 and identity (11), as ν → 0+, J ν(uνreg, g

+, h)

converges to the limit π ∥g+ − h∥2r. Thus, for h = g+, as ν → 0+, J ν(uνreg, g
+, h) goes to zero.

The difficulty is now to link this functional to the problem in question. This can be done with the help of
the following identity:

J ν(uνreg, g
+, h) = Im

(∫
Ω

(α(x, y) + iν)
∣∣∣∇(uνreg + sνg+ − sνh

)∣∣∣2 φdx) .
To summarize the above-said, the limit of (uνreg, g+, g+) as ν → 0+ should solve the limiting minimization

problem min
(u, g+,h)

J +(u, g+, h), where J +(u, g+, h) := limν→0+ J ν(uνreg, g
+, h), subject to the constraint of

u, g+ satisfying Assumption 2.1. It remains to write the respective saddle-point problem.
To do so, we follow [12], where it is suggested to use a stronger assumption, namely that g+ (and, consequently,

h) belongs to the space H2
per(Σ). Introducing Q := H1

1/2(Ωp)×H1
1/2(Ωn) and V (2) := Q×H2

per(Σ)×H2
per(Σ),

we find that the limit is governed by the following mixed variational formulation (cf. Appendix B for a detailed
derivation):

Find (u, g, h) ∈ V (2) and λ ∈ Q such that{
a(2) ((u, g, h), (v, k, l))− b(2) ((v, k, l),λ) = 0, ∀(v, k, l) ∈ V (2),

b(2) ((u, g, h),µ) = ℓ(2)(µ), ∀µ ∈ Q.

(15)

First, the form a(2) : V (2) × V (2) → C is s.t. Im a(2) = dJ +, and can be recast as

a(2) ((u, g, h), (v, k, l)) :=
∑

j∈{p,n}

∫
Ωj

α(uj + sg−h)∂x(vj + sk−l)∂xφdx−
∫
Ωj

α(vj + sk−l)∂x(uj + sg−h)∂xφdx

−
∫
Ωj

(
−div(α∇sh)− ω2sh

)
(vj + sk−l)φdx+

∫
Ωj

(−div(α∇sl)− ω2sl)(uj + sg−h)φdx. (16)

The sesquilinear form b(2) : V (2) ×Q→ C is, in its turn, given by

b(2) ((u, g, h),v) = b(2)reg(u,v) + b
(2)
sing(g,v), (17)

where, for all u,v ∈ Q, g ∈ H2
per(Σ)

b(2)reg(u,v) :=
∑

j∈{p,n}

∫
Ωj

(
α∇uj · ∇vj − ω2ujvj

)
dx+

∫
Γj

iλujvjds, (18)

b
(2)
sing(g,v) :=

∑
j∈{p,n}

∫
Ωj

(
−div(α∇sg)− ω2sg

)
vjdx+

∫
Γj

(α∂nsg + iλsg)vjds. (19)

Remark that neither b(2)reg nor b(2)sing do not depend on h. Finally, the antilinear form ℓ(2) : Q→ C is defined as

ℓ(2)(µ) =
∑

j∈{p,n}

∫
Γj

f µ ds.
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To stabilize the method in order to guarantee uniqueness, two stabilization terms are added to (15). Namely,
one considers

Find (u, g, h) ∈ V (2) and λ ∈ Q such that{
a(2)ρ,µ ((u, g, h), (v, k, l))− b(2) ((v, k, l),λ) = 0, ∀(v, k, l) ∈ V (2),

b(2) ((u, g, h),µ) = ℓ(2)(µ), ∀µ ∈ Q,

(20)

where

a(2)ρ,µ ((u, g, h), (v, k, l)) = a(2) ((u, g, h), (v, k, l)) + i
(
−ρ(g, k)H2(Σ) + µ(∂yyh, ∂yyl)L2(Σ)

)
,

with ρ, µ > 0. It is shown in [12], Theorem 16, that for ρ, µ > 0, and f ∈ L2(Γp ∪ Γn), the problem (20) is
well-posed. Up to our knowledge, there exists no proof that the solution to (20) is a limiting absorption solution
of the original problem.

3.2. Numerical experiments and comments

In [12], a conforming discretization of (20) was proposed, with V (2)
h1,h2

= Qh1
×H2

h2
×H2

h2
,

Qh1
= {vh1

∈ Q : vh1
|K ∈ P1(K), for all K ∈ T Ω

h1
},

H2
h2

= {ph2 ∈ H2
per(Σ) : ph2 |K ∈ Hm(K), for all K ∈ T Σ

h2
},

where Hm(K) is Hermite finite element of order m, T Ω
h1

is a triangulation of Ω with meshsize h1 that is con-
forming with respect to the interface Σ (for all K ∈ Th1

, int(K) ∩ Σ = ∅), and T Σ
h2

is a triangulation of Σ with
meshsize h2. Notice that the restriction to Ωp (respectively Ωn) of elements of Qh1 belongs to H1(Ωp) (resp.
H1(Ωn)). On the other hand, there is no matching condition at the interface for elements of Qh1

.
In the original paper [12], the numerical experiments were done for a single discretization. Meshes structured

in the vicinity of the interface Σ (see [12] for an illustration) were used for both regular and singular parts,
with h2 = 4h1. In particular, the question of the convergence of the discrete solution to the continuous one was
not addressed. The goal of this section is to provide insight into this question, by letting h1 vary and keeping
h2 = 4h1.

We use the code provided by A. Nicolopoulos written in FreeFem++ [9]. We use a fully structured mesh, i.e.
a mesh composed of right-angled triangles of the same size, and possessing a mirror (reflection) symmetry with
respect to the interface Σ. The singular coefficient g+ is discretized with the 2D HCT finite elements penalized
along the normal direction.

We consider the case α(x, y) = x, ω = 0 and perform two experiments with L = 2 on the domain Ω =
(−1, 1) × (−1, 1) with known exact solutions. We choose the boundary data according to (9), with λ = 1, so
that, in the first case, the exact solution is purely regular and equal to u+(x, y) = 1 (thus f = i on Γp ∪ Γn),
and in the second case it is given by u+(x, y) = −K0(πx)e

iπy, where K0 is a modified Bessel function of the
second kind2 (thus f |Γn,p

= eiπy (πK1(an,pπ)− iK0(an,pπ)), with an = −1 and ap = 1). The plots of −K0(πx)

and the regular part of −K0(πx), which is equal to −K0(πx)− S(x) are given in Figure 2.
In the first case g+(y) = 0, while in the second case, sg+(x, y) does not vanish, and g+(y) = eiπy. The

stabilization parameters ρ2, µ2 are taken equal.
We denote by eL2(u+), resp. eQ(u

+), the relative error of the regular part in L2(Ω)-norm, resp. in |·|Q
seminorm. And we denote by eL2(g+) the relative error of the singular coefficient in L2(Σ)-norm. Note that,
when measuring volume errors, we do not take into account the cells that touch the interface. Although
u+(x, y) = 1 belongs to the discrete space, the computed solution does not seem to converge, see Figure 3. This
phenomenon happens regardless of the value of the stabilization parameters ρ2, µ2. The situation improves

2For x < 0, we use the convention Km(x) = limν→0+ Km(x+ iν), m ∈ N.
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−5
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x

−ReK0(πx)
− ImK0(πx)

−1 −0.5 0 0.5 1

0

5

10

x

−ReK0(πx)− Re S(x)
− ImK0(πx)− Im S(x)

Figure 2. The real and imaginary parts of −K0(πx) and of its regular part.

10−2 10−1

10−4

10−3

10−2

h

eL2(u+)
eQ(u

+)
eL2(g+)

Figure 3. The relative L2 and absolute Q errors (the latter measured in the Q-seminorm) for
the regular part of u+(x, y) = 1; the absolute error for the vanishing singular part g+ = 0, with
ρ2 = µ2 = 10−5.

somewhat for the singular solution, where one observes a monotonic decrease of the relative error in L2(Σ)-
norm for the singular coefficient g+, see Figure 4a. However, convergence for the regular part is not obvious in
∥·∥Q norm nor in L2(Ω)-norm, see again Figure 4a. In Figure 4b, we provide convergence curves depending on
the choice of the parameters ρ2 = µ2. As expected, the convergence seems to stagnate for larger values of ρ2,
and finally we see that decreasing ρ2 from 10−5 to 10−6 has no visible effect on the convergence curves.

These experiments seem to indicate that the numerical method of [12] does not converge numerically. We
do not know whether the source of the instability is intrinsic to the numerical variational formulation itself, or
is due to the penalization of the HCT elements in the normal direction, used in the implementation. In this
manuscript, we will not dwell on the precise reason for this instability. Instead, we propose in Section 4 an
alternative method, which we study mathematically in Section 5. Interestingly, this method can be discretized
in a conforming manner without using Hermite elements on the interface: it relies on the more common P1

finite elements.
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10−2 10−1

10−3

10−2

10−1

100

h

eL2(u+) eL2(g+)
eQ(u

+)

(a) ρ2 = µ2 = 10−5.

10−2 10−1

10−3

10−2

10−1

h

ρ2 = 10−2 ρ2 = 10−5

ρ2 = 10−3 ρ2 = 10−6

ρ2 = 10−4

(b) Relative L2 errors on the regu-
lar part with different stabilization
parameters ρ2 = µ2.

Figure 4. Relative errors for u+(x, y) = −K0(πx)e
iπy.

4. An alternative method

One of the drawbacks of the formulation (20) is that it requires the extra regularity on g (g ∈ H2
per(Σ)),

which renders the underlying numerical method quite cumbersome to implement. Also, a priori, there is no
reason to assume such a regularity, especially from the variational viewpoint. As a matter of fact, this regularity
assumption can be weakened. To see that, we observe that the form a(2) can be rewritten by integration by
parts of the last two integrals along the y-direction (recall that φ is independent of y):

a(1) ((u, g, h), (v, k, l)) :=
∑

j∈{p,n}

∫
Ωj

α
[
(uj + sg−h)∂x(vj + sk−l)− ∂x(uj + sg−h)(vj + sk−l)

]
∂xφdx

−
∫
Ωj

(
α∂ysh ∂y (vj + sk−l) +

(
−∂x (α∂xsh)− ω2sh

)
(vj + sk−l)

)
φdx

+

∫
Ωj

(
α∂ysl ∂y (uj + sg−h) + (−∂x(α∂xsl)− ω2sl)(uj + sg−h)

)
φdx.

(21)

The periodic boundary condition on ∂yg is now a natural boundary condition.
Remark that the expression

∫
Ωj
α∂ysh ∂y(vj + sk−l)dx is well-defined for all h, k, l ∈ H1

per(Σ) and vj ∈
H1

1/2(Ωj). Indeed,∣∣∣∣∣
∫
Ωj

α (log |x|+ iπ1x<0) ∂yh ∂yvjdx

∣∣∣∣∣ < +∞,

∣∣∣∣∣
∫
Ωj

α |log |x|+ iπ1x<0|2 ∂yh ∂y (k − l)dx

∣∣∣∣∣ < +∞.

Thus, we consider the larger function space V (1) × Q with V (1) := Q × H1
per(Σ) × H1

per(Σ). The form a(1) is
naturally continuous and sesquilinear on V (1) × V (1).



TITLE WILL BE SET BY THE PUBLISHER 13

Remark 4.1. The form a(1) can also be obtained as the differential of a limit functional, like a(2), by repeating
almost verbatim the derivation in Appendix B, and the limit functional writes:

J + (u, g, h) :=
1

2i
a(1) ((u, g, h) , (u, g, h)) . (22)

While for g, h ∈ H2
per(Σ) one has also:

J + (u, g, h) =
1

2i
a(2) ((u, g, h) , (u, g, h)) .

Remark 4.2. It does not seem possible to further reduce the regularity of g, h, k, l because their first derivative
appears in (21).

The same integration by parts along the y-direction can be applied to the form b
(2)
sing: we define, for all v ∈ Q,

g ∈ H1
per(Σ),

b
(1)
sing(g,v) :=

∑
j∈{p,n}

∫
Ωj

(
α∂ysg∂yvj + (−∂x(α∂xsg)− ω2sg)vj

)
dx+

∫
Γj

(α∂nsg + iλsg)vjds. (23)

We now define b(1) : V (1) ×Q→ C, which is, in its turn, given by

b(1) ((u, g, h),v) := b(1)reg(u,v) + b
(1)
sing(g,v), (24)

with
b(1)reg = b(2)reg : Q×Q→ C. (25)

Finally, we introduce ℓ(1) = ℓ(2) : Q→ C.

Remark 4.3. Compared to the definition of b(2)sing (19), only the first order derivatives of g appear. Hence,
if g ∈ H1

per(Σ), then b
(1)
sing (g, ·) defines a continuous antilinear form on Q, and, moreover, ∥b(1)sing(g, ·)∥Q′ ≲

∥g∥H1(Σ) (to be compared with ∥b(2)sing(g, ·)∥Q′ ≲ ∥g∥H2(Σ)). While for g /∈ H1(Σ), b(1)sing(g, ·) cannot be defined.
On the other hand, the regular parts of b(2) and b(1) are identical, and so are the right-hand sides.

Hence, we end up with the following variational formulation:

Find ((u, g, h) ,λ) ∈ V (1) ×Q such that{
a(1) ((u, g, h), (v, k, l))− b(1) ((v, k, l),λ) = 0, ∀(v, k, l) ∈ V (1),

b(1) ((u, g, h),µ) = ℓ(1)(µ), ∀µ ∈ Q.

(26)

Remark 4.4. Let us provide a few comments on (26). First of all, the second line in (26) implies that the
function u defined via u|Ωn,p

= un,p + sg indeed satisfies the original problem (6). Second, to understand the
meaning behind the auxiliary unknowns h and λ, we consider the first line in (26). We take as a test function
(v, k, l) = (0, k, k). Using the explicit expressions of a(1), cf. (21), and of b(1)sing, cf. (23), we obtain the identity
valid for any k ∈ H1

per(Σ):

0 =
∑

j∈{p,n}

∫
Ωj

(
α∂ysk ∂y (ujφ− λj + sg−hφ) + (−∂x(α∂xsk)− ω2sk)(ujφ− λj + sg−hφ)

)
dx

+

∫
Γj

(α∂nsk + iλsk)λjds.



14 TITLE WILL BE SET BY THE PUBLISHER

It is in particular valid for h = g and λ = uφ. This intuition will be confirmed later, see Theorem 5.15.

With this method, a stabilized counterpart of (26) reads:

Find ((u, g, h) ,λ) ∈ V (1) ×Q such that{
a(1)ρ ((u, g, h), (v, k, l))− b(1) ((v, k, l),λ) = 0, ∀(v, k, l) ∈ V (1),

b(1) ((u, g, h),µ) = ℓ(1)(µ), ∀µ ∈ Q,

(27)

where

a(1)ρ ((u, g, h), (v, k, l)) = a(1) ((u, g, h), (v, k, l))− iρ
(
(g, k)H1(Σ) − (h, l)H1(Σ)

)
,

with ρ > 0. The stabilization terms involve the H1
per(Σ) scalar product, which corresponds to the fact that g

does belong to H1
per(Σ).

Retracing the steps of [12], we can prove the well-posedness result below regarding the stabilized variational
formulation. We use a classical approach to the well-posedness of the mixed formulations. According to the
Babuška-Brezzi theory, it is sufficient to prove a surjectivity property of the operator B(1) : V (1) 7→ Q′ associated
to the form b(1) and an inf-sup condition for the form a

(1)
ρ on the kernel of B(1). The kernel of the operator B(1)

can be characterized as

Ker B(1) = {(u, g, h) ∈ V (1) : b(1)reg(u,v) + b
(1)
sing(g,v) = 0, for all v ∈ Q}. (28)

We observe that, since the third variable h does not appear in the characterization of the kernel, it can take
any value. We use this property on several occasions throughout the manuscript.

To study the surjectivity of the operator B(1), we introduce the following problem: given ℓ ∈ Q′,

Find v ∈ Q s. t.

b(1)reg (v,µ) = ℓ(µ), ∀µ ∈ Q.
(29)

Problem (29) is well-posed. The result can be proven like in Proposition 13 of [12]. As a straightforward
consequence, one finds that

Proposition 4.5. The operator B(1) is surjective.

We can now state the well-posedness result of the stabilized variational formulation.

Theorem 4.6. Let ρ > 0. For all f ∈ L2(Γp ∪ Γn), the stabilized mixed formulation (27) admits a unique
solution.

Proof. One needs to verify an inf-sup condition for the form a
(1)
ρ on the kernel of B(1). Again, the proof mimics

the one in [12], and is based on the following two equalities for (u, g, h) ∈ Ker B(1):

a(1)((u, g, 0), (u, g, 0)) = −2iλ
∑

j∈{p,n}

∥uj + sg∥2L2(Γj)
, a(1) ((0, 0, h) , (0, 0, h)) = 2iπ ∥h∥2r . (30)

For completeness, we give the proof of these equalities in Corollary D.5. Regarding the inf-sup condition, we
note that for any (u, g, h) ∈ Ker B(1),

Im a(1)ρ ((u, g, h), (−u,−g, h)) = 2π∥h∥2r + 2λ
∑

j∈{p,n}

∥uj + sg∥2L2(Γj)
+ ρ∥g∥2H1(Σ) + ρ∥h∥2H1(Σ)

≥ C̃
(
∥u∥2Q + ∥g∥2H1(Σ) + ∥h∥2H1(Σ)

)
,
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where the last inequality is valid as the norm of u is controlled by the norm of g. In the statement of Proposition
13 (with f = 0) in [12], one shows that ∥u∥Q ≤ ∥b(2)sing (g, ·) ∥Q′ ≲ ∥g∥H2(Σ), while in our case the same argument
yields a stability bound ∥u∥Q ≲ ∥b(1)sing(g, ·)∥Q′ ≲ ∥g∥H1(Σ), according to the discussion after (23). □

5. Existence and uniqueness of the solution of the mixed variational
formulation (26)

We now study the mixed problem (26) (without stabilization) in more details. Namely, we address the
uniqueness and existence of its solution. First, one can prove that the solution to the mixed problem (26) is
unique. Moreover, its existence can be ensured through a direct construction: indeed, under Assumption 2.1,
the limiting absorption solution satisfies (26) with an appropriate choice of the Lagrange multipliers h,λ.

In order to prove these results, we introduce a notion of weak jump of the regular part of the solution (§5.1).
This notion will serve to prove, on one hand, the uniqueness of the solution to the mixed formulation (26) (§5.2)
and, on the other hand, its consistency with the original limiting absorption problem (7) (§5.3).

5.1. Weak jump of a regular part

It is possible to define a notion of a jump in a weak sense for functions u ∈ Q which satisfy the constraint in
the mixed formulation (26). Before doing so, let us introduce auxiliary notation. First of all, let

H1
per(Σ, r) :=

{
k ∈ L2

r(Σ) : ∥k∥2H1
per(Σ,r)

= ∥k∥2r + ∥∂yk∥2r <∞ and k(0) = k(L)
}
,

where, see the discussion after (10), ∥k∥r =
(∫

Σ
|k(y)|2r(y)dy

)1/2
. Remark that the norms in H1

per(Σ, r) and
H1
per(Σ) are equivalent. For the sake of conciseness, ⟨·, ·⟩Σ denotes ⟨·, ·⟩(H1

per(Σ,r))
′
,H1

per(Σ,r)
(i.e. the duality

bracket with the pivot space L2
r(Σ)) until the end of the manuscript. The notion of the weak jump is formalized

in the statement of the following lemma.

Lemma 5.1. Let u ∈ Q, g ∈ H1
per (Σ) and ℓ ∈ Q′, supp ℓ ∩ Σ = ∅ related by4

b(1)reg (u,v) + b
(1)
sing (g,v) = ℓ (v) , ∀v ∈ Q. (31)

Let φ be a cutoff function as in definition 1, and φε(x) = φ
(
x
ε

)
with ε > 0. The jump [u]Σ of the regular

part is defined as

∀k ∈ H1
per(Σ), ⟨[u]Σ, k⟩Σ := lim

ε→0

∑
j∈{p,n}

∫
Ωj

uj(−∂x (α∂x (skφε)))dx, (32)

and it is finite for all k. The limit is independent of the choice of φ.

Before proving the lemma, let us make a few comments. For piecewise regular u ∈ H1(Ωp) ×H1(Ωn), the
above definition of the jump coincides with the classical definition [u]Σ = γ0(up)− γ0(un), γ0 denotes the trace
on Σ, seen either as a part of Ωp, or of Ωn. Indeed, in this case (32) yields

∑
j∈{p,n}

∫
Ωj

uj(−∂x (α∂x (skφε)))dx =

∫
Σ

[γ0(up)− γ0(un)] (α∂x(skφε))|Σdy +
∑

j∈{p,n}

∫
Ωj

α∂xuj∂x(skφε)dx.

4By writing supp ℓ∩Σ = ∅, we mean that there exists δ > 0 and a δ-vicinity Ωδ of Σ, Ωδ := {(x, y) ∈ Ω : |x| < δ}, s.t. ℓ(v) = 0
for all v ∈ H1

1/2
(Ω) : supp v ⊂ Ωδ.
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The first term in the right-hand side of the above can be made more explicit. Indeed, by the regularity
assumption on α and using an explicit form of sk, we have α∂x (skφε) ∈ H1(Ω) and α∂x(skφε)|Σ = k(y)r(y).
With the use of the inequality ∥α∂x(skφε)∥L2(Ωj)

≲ ∥k∥L2(Σ), the second term is bounded with the help of
Cauchy-Schwarz inequality:∣∣∣∣∣

∫
Ωj

α∂xuj∂x(skφε)dx

∣∣∣∣∣ ≤ ∥u∥H1(Ωj∩{|x|<aε}) ∥α∂x(skφε)∥L2(Ωj)
≲ ∥u∥H1(Ωj∩{|x|<aε}) ∥k∥L2(Σ) −−−→ε→0

0,

so that ∑
j∈{p,n}

∫
Ωj

uj(−∂x (α∂x (skφε)))dx =

∫
Σ

[u]Σk rdy + oε→0(1).

On the other hand, the jump defined by (32) is not finite for all u ∈ Q; take e.g., u = (log |log |x|| , 0). Finally,
we note that, even for u satisfying (31), the jump [u]Σ is defined in a very weak sense, since it is taken in the
dual space of H1

per(Σ, r).
Before proceeding to prove Lemma 5.1, let us define, for ℓ ∈ Q′, s.t. supp ℓ ∩ Σ = ∅, any ψ ∈ C1(Ω) and

k ∈ H1
per(Σ), the quantity

ℓ∞(skψ) := lim
ε→0

ℓ(skψ(1− φε)), (33)

where the sequence (φε)ε>0 is defined in the statement of Lemma 5.1. The above quantity is well-defined and
independent of the choice of φ, since supp ℓ ∩ Σ = ∅.

Proof of Lemma 5.1. We test (31) with v = sk(1− φε) ∈ Q. On one hand, we have

b(1)reg (u, sk (1− φε)) −−−→
ε→0

ℓ∞ (sk)− b
(1)
sing (g, sk) , (34)

where ℓ∞(sk) is defined like in (33), with ψ ≡ 1. On the other hand, integrating by parts in the x-direction
b
(1)
reg (u, sk (1− φε)) gives:

b(1)reg (u, sk (1− φε)) =
∑

j∈{p,n}

∫
Ωj

{
uj(−∂x (α∂x (sk (1− φε)))) + α∂yuj∂y (sk (1− φε))

}
dx

−
∫
Ωj

ω2ujsk (1− φε) dx+

∫
Γj

(
uj(α∂nsk) + iλujsk

)
ds

= b
(1)
sing (k,u) + 2iλ

∑
j∈{p,n}

∫
Γj

ujskds−
∑

j∈{p,n}

∫
Ωj

{
α∂yuj∂yskφε − ω2ujskφε

}
dx− Jε,

with

Jε =
∑

j∈{p,n}

∫
Ωj

uj(−∂xα∂x (skφε))dx,

cf. the definition of the jump (32). Next, using Lebesgue’s dominated convergence theorem yields

lim
ε→0

b(1)reg (u, sk (1− φε)) = b
(1)
sing (k,u) + 2iλ

∑
j∈{p,n}

∫
Γj

ujskds− lim
ε→0

Jε.



TITLE WILL BE SET BY THE PUBLISHER 17

Replacing the left-hand side of the above by (34) shows that lim
ε→0

Jε is finite and, with the Definition (32), the
jump of u is expressed as

⟨[u]Σ, k⟩(H1
per(Σ,r))

′
,H1

per(Σ,r)
= b

(1)
sing (k,u) + b

(1)
sing (g, sk) + 2iλ

∑
j∈{p,n}

∫
Γj

ujskds− ℓ∞ (sk) . (35)

As claimed, the last expression does not depend on the chosen cutoff function φ. □

Remark 5.2. We can relax the condition on the support of ℓ by requiring only that lim
ε→0

ℓ (sk (1− φε)) exists

and is independent of (φε)ε. In particular, if it holds that b(1)reg (u,v) + b
(1)
sing (g,v) = ℓ (v) for any v ∈ Q with

ℓ(v) =
∑

j∈{p,n}

∫
Ωj

fjvjdx where fj ∈ L2(Ωj), j ∈ {p, n},

then the trace can be defined as in (35).

Remark 5.3. The definition of the jump (32) does not depend on the jump part of the singularity iπk(y)1x<0.
Indeed, in (32), sk can be replaced by k(y) log |x| or k(y) (log |x| − iπ1x<0). This holds because, given φ as in
Lemma 5.1, we have, by the Cauchy-Schwarz inequality and after integration by parts in the x-direction,∣∣∣∣ ∫

Ω

u∂x(α∂x(1x<0φεk(y)))dx

∣∣∣∣ = ∣∣∣∣ ∫
Ωn

un∂x(α∂x(φεk(y)))dx

∣∣∣∣
=

∣∣∣∣ ∫
−aε<x<0

α∂xun∂xφεk(y)dx

∣∣∣∣ ≲ ∥un∥H1
1/2

({|x|<aε}) ∥k∥L2(Σ) −−−→ε→0
0.

Therefore, the jump can also be computed as

⟨[u]Σ, k⟩Σ = lim
ε→0

∑
j∈{p,n}

∫
Ωj

uj(−∂x (α∂x (k(y) (log |x| − iπ1x<0)φε)))dx. (36)

This identity will be useful later, see §5.3.2.

5.2. Uniqueness of the solution

The goal of this section is to prove the following result.

Theorem 5.4. The solution to (26), if it exists, is unique.

Remark 5.5. Let us remark that the uniqueness result does not follow directly from the identities (30). Indeed,
applying these identities allows to conclude that h = 0, and (uj + sg)|Γj

= 0, for j ∈ {p, n}; the latter, however,
does not imply that u = 0 and g = 0.

The proof of this theorem hinges on some technical results, which will additionally allow us to understand
some properties of solutions to (26). First, given a solution ((u, g, h) ,λ) ∈ V (1) ×Q of (26), the condition (31)
is obviously satisfied for u, g with ℓ = ℓ(1), and consequently the jump [u]Σ is well-defined. Therefore, we can
reexpress a(1) using the jump [u]Σ.

Lemma 5.6. Let (u, g, h) ∈ V (1) be such that ℓ : v 7→ b(1) ((u, g, h) ,v) ∈ Q′ with supp ℓ ∩ Σ = ∅. Let φ satisfy
Definition 1 and supp ℓ ∩ suppφ = ∅. For any (v, k, l) ∈ Ker B(1), we have

a(1) ((u, g, h) , (v, k, l)) = 2iπ (g − h, k − l)r−⟨[u]Σ, k − l⟩
Σ
+⟨[v]Σ, g − h⟩

Σ
. (37)
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A proof of Lemma 5.6 can be found in Appendix D, see Lemma D.1.

Remark 5.7. In the context of Lemma 5.6 and in the light of Remark 4.1, one can rewrite the minimization
functional J + (u, g, h) = 1

2ia
(1) ((u, g, h) , (u, g, h)) on the kernel of B(1):

J + (u, g, h) = π ∥g − h∥2r − Im ⟨[u]Σ, g − h⟩
Σ
, ∀(u, g, h) ∈ Ker B(1).

We now have the necessary ingredients to prove Theorem 5.4.

Proof of Theorem 5.4. Let ((u, g, h) ,λ) ∈ V (1) ×Q be such that{
a(1) ((u, g, h), (v, k, l))− b(1) ((v, k, l),λ) = 0, ∀(v, k, l) ∈ V (1),

b(1) ((u, g, h),µ) = 0. ∀µ ∈ Q.

First, we recall that (0, 0, h) ∈ Ker B(1), cf. (28). Using the identities (30) yields h = 0.
So, one has in particular

a(1) ((u, g, 0), (v, k, l)) = 0, ∀(v, k, l) ∈ Ker B(1). (38)

We now prove that (u, g) = (0, 0) by choosing ad hoc test functions in Ker B(1).
As a matter of fact, since (0, 0, g) , (u, g, 0) ∈ Ker B(1), from (37) it follows that

a(1)((u, g, 0), (0, 0, g)) = −2iπ ∥g∥2r + ⟨[u]Σ, g⟩Σ,

a(1)((u, g, 0), (u, g, 0)) = 2iπ ∥g∥2r − 2i Im ⟨[u]Σ, g⟩Σ,

so that
Im a(1) ((u, g, 0) , (u, g, 2g)) = −2π ∥g∥2r .

Recalling (38), the above implies that g = 0.
Finally, (u, 0, 0) ∈ Ker B(1) implies that b(1)reg (u,v) = 0 for any v ∈ Q. According to the well-posedness of the
problem (29), this implies that u = 0.
The above allows to handle the part of the solution that belongs to V (1). To conclude, one has to handle the
Lagrange multiplier. According to the above, it is governed by

b(1) ((v, k, l),λ) = 0, ∀(v, k, l) ∈ V (1).

But the operator B(1) : V (1) 7→ Q′ is surjective thanks to Proposition 4.5: one has indeed λ = 0. □

5.3. Further properties and existence of the solution

Below, we denote by u the pair (up, un) ∈ Q.

5.3.1. Consistency and jump of the regular part
Theorem 5.4 shows that the mixed variational formulation (26) has at most one solution. Therefore, if we can

construct a solution to this formulation, it will be unique. It is thus reasonable to look for (u, g) as the limiting
absorption solution of the original formulation (7), as ν → 0+. From the content of Section 3.1, we should
expect that h = g. Moreover, again, by explicit computations, in this case one can show that the Lagrange
multiplier λ is equal to uφ. However, this is not straightforward when comparing §3.1 and the Remark 5.7, due
to the presence of the extra term involving the jump [u]Σ in the functional J +, which did not seem to occur in
the original functional J ν . This term becomes more apparent in the following proposition.
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Proposition 5.8. Let (u, g) ∈ Q × H1
per(Σ) be such that b(1)reg (u,v) + b

(1)
sing (g,v) = ℓ(1) (v) for any v ∈ Q.

Then, for any (v, k, l) ∈ V (1),

a(1) ((u, g, g) , (v, k, l))− b(1) ((v, k, l) ,uφ) = −⟨[u]Σ, k − l⟩
Σ
. (39)

As a consequence, ((u, g, g) ,uφ) is the solution of (26) if and only if [u]Σ = 0.

The above proposition shows that h = g and λ = uφ if and only if the jump of the regular part of the
solution u vanishes. Notice that the above proposition does not ensure the existence of a solution to the mixed
variational formulation (26), nor that (u, g, g) is the solution, since it may happen that the solution of (26)
satisfies [u]Σ ̸= 0.

Nonetheless, the above shows that the question of the consistency of the mixed variational formulation with
the original limiting absorption problem reduces to the question of vanishing of the jump of the regular part
[u]Σ, where we seek (u, g) to be the limiting absorption solution. Precisely, it will be proved that its jump
vanishes in Proposition 5.13.

The proof of Proposition 5.8 again relies on two auxiliary lemmas, which we present below and which are
proven in Appendix D. First, let us introduce the form

Cφ (U, V ) :=

∫
Ω

α
[
U∂xV − ∂xUV

]
∂xφdx, (40)

with φ as in Definition 1, so that ∂xφ vanishes in the vicinity of Σ. Using the definitions of Cφ and b
(1)
sing (cf.

(23)), we rewrite the sesquilinear form a(1) originally defined in (21). Below there is no contribution on Γn or
Γp because φ also vanishes in their vicinity:

a(1) ((u, g, h), (v, k, l)) =
∑

j∈{p,n}

∫
Ωj

α(uj + sg−h)∂x(vj + sk−l)∂xφdx−
∫
Ωj

α(vj + sk−l)∂x(uj + sg−h)∂xφdx

−
∫
Ωj

(
α∂ysh ∂y (vj + sk−l) +

(
−∂x (α∂xsh)− ω2sh

)
(vj + sk−l)

)
φdx

+

∫
Ωj

(
α∂ysl ∂y (uj + sg−h) + (−∂x(α∂xsl)− ω2sl)(uj + sg−h)

)
φdx

= Cφ (u+ sg−h,v + sk−l)− b
(1)
sing (h, (v + sk−l)φ) + b

(1)
sing (l, (u+ sg−h)φ). (41)

We will need the following two identities, whose proofs can be found in Appendix C.

Lemma 5.9. For u,v ∈ Q, Cφ(u,v) = b
(1)
reg(v,uφ)− b

(1)
reg(u,vφ).

Proof. This is a direct application of Proposition C.1, where we used the fact that suppφ ∩ Γj = ∅, j ∈ {p, n},
so that the boundary term disappears. □

Lemma 5.10. Let (u, g) ∈ Q×H1
per(Σ) be like in Proposition 5.8. Then, for any k ∈ H1

per(Σ),

Cφ(u, sk) = b
(1)
sing (k,uφ) + b

(1)
sing (g, skφ)− ⟨[u]Σ, k⟩Σ.

Proof. This is a direct application of Proposition C.5, with ℓ = ℓ(1), where we used the following identities:
supp ℓ(1) ∩ suppφ = ∅, φ|Σ = 1 and the fact that φ|Γj

= 0 for j ∈ {n, p}. □

With these identities, we can prove Proposition 5.8.
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Proof of Proposition 5.8. By (41),

a(1) ((u, g, g) , (v, k, l)) = Cφ (u,v + sk−l)− b
(1)
sing (g, (v + sk−l)φ) + b

(1)
sing (l,uφ). (42)

Replacing in the above Cφ from Lemmas 5.9 and 5.10 yields

a(1) ((u, g, g) , (v, k, l)) = b
(1)
reg(v,uφ)− b(1)reg(u,vφ) + b

(1)
sing (k − l,uφ) + b

(1)
sing (g, sk−lφ)

− ⟨[u]Σ, k − l⟩
Σ
− b

(1)
sing (g, (v + sk−l)φ) + b

(1)
sing (l,uφ)

= b
(1)
reg(v,uφ) + b

(1)
sing (k,uφ)− b(1)reg(u,vφ)− b

(1)
sing (g,vφ)− ⟨[u]Σ, k − l⟩

Σ
.

The sum of the first two terms above is by definition b(1) ((v, k, l) ,uφ). The sum of the next two terms gives
ℓ(1)(vφ) by the assumption of the proposition, and vanishes because supp ℓ(1) ∩ suppφ = ∅. This allows us to
conclude. □

5.3.2. Properties of the limiting absorption solution
Given g ∈ H1

per(Σ), let us introduce some “artificial singularities” with non-zero absorption λ

sλg (x, y) = g(y) log

(
x+

iλ

r(y)

)
.

For positive λ, one recovers the “singularities with absorption” of (10). We remark that one has convergence
almost everywhere as ν → 0+:

sνg
a.e.−−−−→
ν→0+

s+g := g (log |x|+ iπ1x<0) , and s−νg
a.e.−−−−→
ν→0+

s−g := g (log |x| − iπ1x<0) .

We then have the following lemma (which generalizes Lemma 3.1 to the case of artificial singularities), whose
proof is left to the reader.

Lemma 5.11. Given g ∈ H1
per(Σ), the following limits hold in L2(Ω) as ν → 0+:

s±νg → s±g , ∂ys
±ν
g → ∂ys

±
g ,

(α± iν)∂xs
±ν
g → α∂xs

±
g , ∂x((α± iν)∂xs

±ν
g ) → ∂x(α∂xs

±
g ).

Note that sg = s+g . We adopt this convention from now on. From the above lemma, it follows in particular
that for any ψ ∈ C∞(Ω),

∂x((α± iν)∂x(s
±ν
g ψ)) −−−−→

ν→0+
∂x(α∂x(s

±
g ψ)) in L2(Ω). (43)

Going back to our problem, one can prove the result (see Lemma A.1)

(α+ iν)∇uν L2(Ω)−−−−→
ν→0+

α∇
(
u+reg + u+sing

)
. (44)

Then, one has the result below, which follows directly from Assumption 2.1 on the limiting absorption solution
and Lemma 5.11. As argued in Proposition 5.8, in order to construct a solution to (26), it is sufficient to

find u ∈ Q, g ∈ H1
per(Σ) such that

b(1)reg (u,v) + b
(1)
sing (g,v) = ℓ(1) (v) , ∀v ∈ Q,

[u]Σ = 0.
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Let us show that the limiting absorption solution verifies the sufficient conditions above. The problem with
absorption (7) can be written in the variational form:

find uν ∈ H1(Ω) such that

bν(uν , v) = ℓ(1)(v), ∀v ∈ H1(Ω),
(45)

with bν(u, v) =
∫
Ω

[
(α+ iν)∇u · ∇v − ω2uv

]
dx+ iλ

∑
j∈{p,n}

∫
Γj

uvds.

First, we remark that the limiting absorption solution (u+, g+) verifies the desired variational formulation.

Lemma 5.12. Let (u+, g+) ∈ Q×H1
per(Σ) be as in Assumption 2.1. Then, for any v ∈ Q,

b(1)reg
(
u+,v

)
+ b

(1)
sing

(
g+,v

)
= ℓ(1) (v) .

Proof. See Lemma A.3 (Appendix A). □

Next, we show that the limiting absorption solution (u+, g+) has a vanishing jump.

Proposition 5.13. Let (u+, g+) ∈ Q×H1
per(Σ) be as in Assumption 2.1. Then [u+]Σ = 0.

Proof. Let u+, g+ be like in Assumption 2.1. To prove that [u+]Σ = 0, we will use the identity (36) defining
the jump with s−k , for a given k ∈ H1

per(Σ). More precisely, let φ be a truncation function as in the Definition
1 and, for ε > 0, φε(x, y) = φ

(
x
ε , y
)
. We will show that the quantity below is well-defined and converges to 0

as ε→ 0+:

Jε(k) =
∑

j∈{p,n}

∫
Ωj

u+j
(
−∂x(α∂x

(
s−k φε

))
dx.

We reexpress Jε(k) with the help of (43) and the convergence (uνreg)ν to u+ of Lemma A.2:

Jε(k) = lim
ν→0+

Jνε (k), with Jνε (k) =
∑

j∈{p,n}

∫
Ωj

uνreg
(
−∂x

(
(α− iν) ∂x

(
s−νk φε

)))
dx for ε > 0.

The main idea of the proof consists in reexpressing Jνε via bν(uν , s−νk φε). By (45) and the decomposition
uν = uνreg + sνg+ , defined in Lemma A.2,

bν(uνreg, s
−ν
k φε) + bν(sνg+ , s

−ν
k φε) = ℓ(1)

(
s−νk φε

)
= 0, (46)

since supp ℓ(1) ∩ suppφε = ∅. One has, by integrating by parts in the x-direction,

bν(uνreg, s
−ν
k φε) =

∫
Ω

∂xu
ν
reg(α− iν) ∂x

(
s−νk φε

)
dx+

∑
j∈{p,n}

∫
Ωj

[
(α+ iν)∂yu

ν
reg∂y(s

−ν
k φε)− ω2uνregs

−ν
k φε

]
dx

= Jνε (k) +
∑

j∈{p,n}

∫
Ωj

[
(α+ iν)∂yu

ν
reg∂ys

−ν
k − ω2uνregs

−ν
k

]
φεdx.

Indeed, the boundary terms vanish due to the choice of φ, which is supported away from Γn and Γp. As ν → 0+,
by Lemmas A.2, 5.11 and the limit (43), it holds that

bν(uνreg, s
−ν
k φε) → Jε(k) + Iε, Iε =

∑
j∈{p,n}

∫
Ωj

[
α∂yu

+
j ∂ys

−
k − ω2u+j s

−
k

]
φεdx. (47)
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Next let us consider the second term in (46). Performing once again integration by parts in the x-direction, one
finds

bν(sνg+ , s
−ν
k φε) =

∫
Ω

[
(α+ iν) ∂ys

ν
g+ ∂y

(
s−νk φε

)
− ∂x

(
(α+ iν) ∂xs

ν
g+

) (
s−νk φε

)]
dx−

∫
Ω

ω2sνg+
(
s−νk φε

)
dx,

and by Lemma 5.11, as ν → 0+,

bν(sνg+ , s
−ν
k φε) → b

(1)
sing

(
g+, s−k φε

)
=

∫
Ω

[
α∂ys

+
g+ ∂y

(
s−k φε

)
+
((

−∂x
(
α∂xs

+
g+

))
− ω2s+g+

) (
s−k φε

)]
dx. (48)

Finally, by Lebesgue’s dominated convergence theorem, as ε → 0+, the quantities Iε, b
(1)
sing

(
g+, s−k φε

)
both go

to 0. Therefore, combining (47) and (48) in (46), and taking ε→ 0+, we obtain that

lim
ε→0+

Jε(k) = 0,

which leads to the conclusion thanks to the alternate definition of the jump (36). □

5.3.3. Existence and uniqueness of the solution
We start with the following proposition about the existence of the solution to (26).

Proposition 5.14. Given (u+, g+) satisfying Assumption 2.1, (u+, g+, g+,u+φ) satisfies (26).

Proof. It suffices to verify that the limiting absorption solution (u+, g+) as defined in Assumption 2.1 satisfies
the assumptions of Proposition 5.8, with [u+]Σ = 0. This follows from Lemma 5.12 and Proposition 5.13. □

The principal result of this section is then summarized below.

Theorem 5.15. Given (u+, g+) satisfying Assumption 2.1, (u+, g+, g+,u+φ) is the unique solution of (26).

Proof. The solution to the mixed formulation (26) is unique by Theorem 5.4 and exists by Proposition 5.14. □

Remark 5.16. The mixed formulation takes its origin in the minimization of a functional limν→0+ J ν , see
(14). The minimum of this functional is achieved in particular when h = g+, and thus it is unsurprising that
the Lagrange multiplier h is chosen as g+ in the above. As for the explicit form λ = u+φ, it follows from the
computations.

6. Numerical experiments

Below, we study the numerical approximation of (26), or of its stabilized version (27). In order to test the
accuracy of the method described in Section 4, we reproduce the experiments conducted in Section 3.2, replacing
the discrete space V (2)

h,h with the space V (1)
h = Qh ×H1

h ×H1
h,

Qh =
{
vh ∈ Q : vh|K ∈ P1(K), for all K ∈ T Ω

h

}
,

H1
h =

{
gh ∈ H1

per(Σ) : gh|K ∈ P1(K), for all K ∈ T Σ
h

}
.

Above, T Ω
h is a triangulation of Ω that is conforming with respect to the interface Σ, and T Σ

h is a triangulation
of Σ, both with meshsize h, however we do not impose that T Σ

h is the trace of T Ω
h on Σ. Different triangulations

T Ω
h are used, which are all symmetric with respect to the interface Σ, and we choose equidistant triangulations

T Σ
h . Like in Section 3.2, elements of Qh have no matching condition at the interface. The relative errors eL2

and eQ are the same as those of Section 3.2.
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(a) eL2 (u+) errors for u+(x, y) =
−K0(πx)eiπy with a stabilization
parameter ρ1 = 10−5.
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h with h = 0.25.

Figure 5. Influence of structuring T Ω
h on the stability of the method.

The code is written in FreeFem++ [9]. Whereas 2D HCT finite elements were used to discretize the singular
part g+h in [12], we now use P1 Lagrange finite elements on the interface Σ5.

We consider the same setting as in Section 3.2, where α(x, y) = x and ω = 0, with a purely regular solution
u+(x, y) = 1 (i.e. g+(y) = 0), and with a singular solution u+(x, y) = −K0(πx)e

iπy where the singular coefficient
is equal to g+(y) = eiπy. Like in Section 3.2, we choose the Robin boundary data so that the exact solutions
satisfy it with λ = 1.

We use φ(x, y) = 1
2 (1 + cos(2πx))1|x|<0.5 as C1(Ω)-cutoff function. Notice that φ is prescribed equal to

1 only on the interface in the experiments (compare with Definition 1). The approach in Section 4 and its
theoretical justification in Section 5 remain valid also for this choice of φ. It has been also checked numerically
that the results presented below do not depend on the choice of φ provided that φ ∈ C1(Ω), ∂yφ = 0, φ|Σ = 1
and is compactly supported in x ∈ (−a, a).

Influence of the triangulation. The design of T Ω
h has a noticeable influence on the numerical stability of the

method. Recall that we refer to a mesh as to a fully structured mesh if it is composed of right-angled triangles of
the same size, and possesses a mirror (reflection) symmetry with respect to the interface Σ. A semi-structured
mesh is s.t. its restriction to the geometrical support of φ is a fully structured mesh. Both of these types of
meshes are referred to as to ’structured’ meshes. The rest of the meshes are then called unstructured.

In particular, we observe that the method is unstable with an unstructured triangulation T Ω,unstr
h , see

Figure 5a, even though it is symmetric. On the same figure, we see that one can stabilize the method by using
a structured triangulation T Ω,str

h , as long as structuring occurs on the geometrical support of φ (see Figure 5b),
i.e. a semi-structured mesh.

Numerical convergence and stabilization parameter. In our experiments we use semi-structured meshes. We
observe on Figure 6 that the method using H1

h performs significantly better than the one using H2
h2

, compare
with Figures 3 and 4. Let us remark that, as before, when computing eL2(u+) and eQ(u

+), we exclude cells
that are adjacent to the interface.

5To our knowledge, in FreeFem++, it is not possible to combine 1D and 2D discretizations. So, in practice, to represent elements
of H1

h, we use P1 Lagrange finite elements on a single elongated cell in the x-direction, and as many cells in the y-direction as there
are in T Σ

h , with periodic conditions in x.
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eL2(u+) eQ(u
+) eL2(g+) eH1(g+)
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(a) For u+(x, y) = 1 with ρ1 =

10−6.
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(b) For u+(x, y) =

−K0(πx)eiπy with
ρ1 = 10−6.

Figure 6. Relative errors with T Ω,str
h (replaced by absolute errors for the vanishing singular

part g+ and for the Q-seminorm of u+ in the left plot). Notice the difference in the scale of
the two figures.
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Figure 7. eL2(u+) errors with T Ω,str
h for u+(x, y) = −K0(πx)e

iπy.

In Figure 6a, we notice that the errors increase when decreasing h: this is likely due to the fact that already
for the coarsest discretization the machine precision had been reached, and for finer discretizations we can
observe the effects of the round-off errors in cells close to the interface (note that the total area of the excluded
cells diminishes linearly with the meshsize). Let us remark that the results do not seem to change significantly
when diminishing ρ1.

We observe on Figure 7 that the relative error on uρ1,h decreases proportionally to the stabilization parameter
ρ1. Moreover, one can still compute the discrete solution for ρ1 = 0 and, for the range of meshsizes that we
use, it gives the same results as those obtained for ρ1 = 10−6. The latter is due to the fact that, for the chosen
meshsizes, the error due to stabilization is negligible, even for “small” values of ρ1. On the other hand, we have
proved that the solution to the (non-stabilized) variational formulation (26) exists and is unique, see Theorem
5.15. So uniqueness also holds for its conforming discretization: as a result, the discrete solution exists.
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We conclude that the stabilization parameter is not necessary for our approach.
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2

h

dL2 (uφ,λ) dQ (uφ,λ)

(a) Difference between uhφ
and λh.
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10−3

10−2

2

h

dL2 (g, h) dH1 (g, h)

(b) Difference between gh and
hh.

10−2 10−1

10−2.25

10−2.2

h

∥∥ [uh]Σ
∥∥
L2(Σ)

(c) Behaviour of the discrete jump [uh]Σ with re-
spect to the meshwidth.

Figure 8. Experiment with α(x, y) that depends non-trivially on y.

Experiments. Now, we take the same geometry, with α(x, y) = x(1 + 1
2 cos(πy)) +

x2

2 cos(πy), ω = 0, λ = 1

and data f(x, y) = i
(
1{1}×(0,1) − 1{−1}×(−1,0)

)
. Remark that α depends on y non-trivially, and thus the exact

solution is not known. According to Section 5.3.2, given the limiting absorption solution (u+, g+), which has
a vanishing jump according to Proposition 5.13, (u+, g+, g+,u+φ) is equal to the solution (u, g, h,λ) of (26).
Therefore, we expect that uhφ− λh, gh − hh and finally [uh]Σ go to zero in the appropriate norm ∥ · ∥• when
the triangulations T Σ

h and T Ω,str
h are refined. We will refer to the norms of these quantities as indicators. First,

we observe that the value of each norm ∥λh∥, ∥gh∥ and ∥hh∥ stabilizes quickly with respect to the meshsize h.
Hence, in Figure 8, we can report the relative errors defined by (with a norm in Q (resp. H1) replaced by the
corresponding semi-norm)

d•(uφ,λ) =
∥uhφ− λh∥•

∥λh∥•
, or d•(g, h) =

∥gh − hh∥•
∥gh∥•

.
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In Figures 8a and 8b, we see that the first two indicators converge nicely to 0. Regarding the last indicator (the
norm of the jump [uh]Σ), we observe in Figure 8c that it does not converge in L2(Σ)-norm (or, if it does, the
convergence is extremely slow). This is not entirely surprising, since, in general, [uh]Σ ∈ (H1

per(Σ, r))
′. This

indicates that the jump must indeed be handled carefully.

7. Conclusion and perspectives

In this paper, we have discussed, analyzed and improved the method introduced by Nicolopoulos et al [12]
for solving a degenerate PDE with a continuously sign-changing coefficient α. This has led to the design of
an improved mixed variational formulation. Analysis has shown that this new mixed variational formulation is
coherent with the limiting absorption principle under suitable assumption on the splitting of its solution. On
the other hand, when it is stabilized, this formulation can be fully analyzed via classical techniques of functional
analysis. Numerical examples support the analysis.

Nevertheless, several issues need to be addressed. The first one is the limiting absorption principle Assumption
2.1. Of special interest is the case where the support of the data intersects with the interface. Another one
consists in simplifying the mixed formulation (26), the analysis of which is somewhat cumbersome due to its
mixed nature.

Regarding the model, the degeneracy is caused by the continuous sign-change of the coefficient α through
an interface Σ. One could also consider another family of degeneracy, namely the sign of α changes but α also
blows up through an interface. This case has been investigated in [10] for instance.
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Appendix A. Auxiliary results for the limiting absorption solution

The goal of this appendix is to prove several auxiliary results on the limiting absorption solution under
Assumption 2.1.

Lemma A.1. Let (uν)ν>0 be a family of the solutions of (7). Assuming (8), there holds

(α+ iν)∇uν L2(Ω)−−−−→
ν→0+

α∇u+.

Proof. The variational formulation for (7) reads: find uν ∈ H1(Ω) s.t. for all v ∈ H1(Ω),∫
Ω

[
(α+ iν)∇uν · ∇v − ω2uνv

]
dx+ iλ

∑
j∈{p,n}

∫
Γj

uνvds =
∑

j∈{p,n}

∫
Γj

f v ds. (49)

We split the proof into two steps.
Step 1. Proof that ν∥∇uν∥ → 0 as ν → 0+.
We test the equation (49) with vν = uν and take the imaginary part of the resulting expression. This yields

ν∥∇uν∥2 + λ∥uν∥2L2(Γp∪Γν)
≤ ∥f∥L2(Γp∪Γn)∥u

ν∥L2(Γp∪Γν).

One obtains that λ∥uν∥L2(Γp∪Γν) ≤ ∥f∥L2(Γp∪Γn), so ν∥∇uν∥2 ≤ λ−1∥f∥2L2(Γp∪Γn)
, hence the claim.

Step 2. Proof that α∇uν → α∇u+ in L2(Ω). We will show that (α∇uνn)n∈N is a Cauchy sequence for any
(νn)n∈N ⊂ R+, s.t. lim

n→+∞
νn = 0.

For this we consider the difference of (49) written for ν = νn and ν = νm, namely∫
Ω

[
α (∇uνn −∇uνm) · ∇v + i (νn∇uνn − νm∇uνm) · ∇v − ω2 (uνn − uνm) v

]
dx

+ iλ

∫
Γp∪Γn

(uνn − uνm) v ds = 0.
(50)

Let us denote enm = (uνn − uνm). We test the equation (50) with v = αenm, which yields∫
Ω

[
|α∇enm|2 + α∇enm · ∇α enm

]
dx+

∫
Ω

i (νn∇uνn − νm∇uνm) ·
(
∇α enm + α∇enm

)
dx

−
∫
Ω

ω2α|enm|2dx+ iλ

∫
Γp∪Γn

α|enm|2ds = 0.

Taking the real part of the above, and using the Cauchy-Schwarz inequality to bound sign-indefinite terms
yields (with ∥.∥∞ denoting the L∞-norm):∫

Ω

|α∇enm|2dx ≤ ∥∇α∥∞∥α∇enm∥∥enm∥

+ ∥νn∇uνn − νm∇uνm∥(∥∇α∥∞∥enm∥+ ∥α∇enm∥) + ω2∥α∥∞∥enm∥2.

With the help of the Young inequality, we obtain the following bound:

∥α∇enm∥ ≤ C (∥enm∥+ ∥νn∇uνn − νm∇uνm∥) ,

where the constant C depends on ∥α∥W 1,∞ and ω2 only. Because ν∥∇uν∥ → 0 as ν → 0+ and uν converges in
L2(Ω) as ν → 0+, we conclude that (α∇uνn)n∈N is an L2(Ω)-Cauchy sequence, and thus converges. Evidently,
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its limit is α∇u+; this follows from the following expression (which allows to define the distribution α∇v for
v ∈ L2(Ω) and α ∈ C1(Ω)):

α∇uν = ∇(αuν)− uν∇α.

We have that uν∇α → u+∇α in L2(Ω); similarly, αuν → αu+, thus, in the sense of distributions, ∇(αuν) →
∇(αu+), and by the uniqueness of the distributional limit we conclude with the desired result. □

Let ν > 0, and uν satisfy (7). Introducing uνreg := uν − sνg+ and using the previous lemma together with
Lemma 3.1, one has the improved result below.

Lemma A.2. Let ν > 0 and uν satisfy (7). Under Assumption 2.1, the unique solution uν ∈ H1(Ω) of (7) can
be decomposed as

uν = uνreg + sνg+ ,

where sνg+ is defined as in (10), and it holds that

uνreg
L2(Ω)−−−−→
ν→0+

u+reg, and (α+ iν)∇uνreg
L2(Ω)−−−−→
ν→0+

α∇u+reg.

The result that follows relies on the definitions (25), (23) of the forms b(1)reg and b(1)sing.

Lemma A.3. Let (u+, g+) ∈ Q×H1
per(Σ) be governed by (9). Then, for any v ∈ Q,

b(1)reg
(
u+,v

)
+ b

(1)
sing

(
g+,v

)
=

∑
j∈{p,n}

∫
Γj

f v ds. (51)

Proof. Let us proceed as follows6. First of all, we know that

−div(α∇u+)− ω2u+ = 0 in D′(Ω). (52)

Moreover, using the decomposition of Assumption 2.1 and the fact that ∂x(α∂xsg+) ∈ L2(Ω), cf. Lemma 5.11,
we conclude that

d+ := div
(
α∇u+reg

)
+ ∂y

(
α∂ysg+

)
∈ L2(Ω). (53)

Testing the equation (52) with vp ∈ C∞
per,y

(
Ωp
)

on Ωp, using the boundary conditions of (9) and integrating by
parts yields (cf. (53), Lemma A.2 and the periodicity of g+):∫

Ωp

{
α∂xu

+
reg ∂xvp − ∂x

(
α∂xsg+

)
vp + α∂y

(
u+reg + sg+

)
∂yvp

}
dx−

∫
Ωp

ω2
(
u+reg + sg+

)
vpdx

+ iλ

∫
Γp

(u+reg + sg+) vpds+

∫
Γp

α∂nsg+vpds−
〈
α∂nu

+
reg, γ0vp

〉(
H

1/2
per (Σ)

)′
,H

1/2
per (Σ)︸ ︷︷ ︸

IΣ

=

∫
Γp

f vpds.

Here the normal n is directed in the exterior of Ωp. It remains to show that IΣ vanishes. Let φ be a truncation
function as in the Definition 1, and, for given ε > 0, φε(x, y) = φ

(
x
ε , y
)
. By integration by parts, we have for

any ε > 0,

IΣ =

∫
Ωp

{
d+ vpφε + α∂y(u

+
reg + sg+) ∂y(φεvp)

}
dx+

∫
Ωp

α∂xu
+
reg ∂x(vpφε)dx.

6The main difficulty in the proof lies in the fact that a priori it is not clear whether H1(Ω) functions are dense in the space
Q, and thus passing from the variational formulation (45) with absorption to the variational formulation in the statement of the
lemma is not completely straightforward. Therefore, instead we prefer working with the PDE formulation directly.
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It suffices to consider the case ε → 0. The convergence of the first integral follows from Lebesgue’s dominated
convergence theorem and the fact that ∂yφε = 0. As for the second integral, we can estimate it as follows
(where Ωεp = Ωp ∩ suppφε):∣∣∣∣∣

∫
Ωp

α∂xu
+
reg ∂x(vpφε)dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Ωε

p

α∂xu
+
reg ∂xvp φεdx

∣∣∣∣∣+
∣∣∣∣∣
∫
Ωε

p

α∂xu
+
reg vp ∂xφε dx

∣∣∣∣∣
≤ C

(∥∥u+reg∥∥H1
1/2

(Ωε
p)
∥vp∥H1

1/2
(Ωε

p)
+
∥∥u+reg∥∥H1

1/2
(Ωε

p)
∥vp∥L∞(Ωε

p)
∥φε∥H1

1/2
(Ωε

p)

)
.

Remark that there exists C1 > 0, s.t. for all ε > 0, ∥φε∥H1
1/2

(Ωε
p)

≤ C1. Since, additionally, u+reg ∈ H1
1/2(Ωp), we

conclude that, as ε→ 0+, ∣∣∣∣∣
∫
Ωp

α∂xu
+
reg ∂x(vpφε)dx

∣∣∣∣∣ −→ 0.

Therefore, IΣ = 0, and hence for all vp ∈ C∞
per,y(Ωp), it holds that

∫
Ωp

{
α∂xu

+
reg ∂xvp + α∂y

(
u+reg + sg+

)
∂yvp − ∂x

(
α∂xsg+

)
vp
}
dx

−
∫
Ωp

ω2
(
u+reg + sg+

)
vpdx+ iλ

∫
Γp

(u+reg + sg+) vpds+

∫
Γp

α∂nsg+vpds =

∫
Γp

f vpds.

Repeating the argument for vn ∈ C∞
per,y

(
Ωn
)
, we conclude that a similar identity holds true in Ωn. By

density of the functions C∞
per,y

(
Ωn
)
× C∞

per,y

(
Ωp
)

in Q, we arrive at the formulation (51). □

Lemma A.4. Let (uν)ν be a family governed by (7) fulfilling Assumption 2.1, and φ ∈ C1(Ω) be such that
suppφ ∩ Γp ∪ Γn = ∅. Then

lim
ν→0+

∫
Ω

ν
∣∣∇uνreg∣∣2 φdx = 0.

Proof. Firstly, remark that
∫
Ω
ν
∣∣∇uνreg∣∣2 φdx = Im Eνreg with

Eνreg =
∫
Ω

{
(α+ iν)

∣∣∇uνreg∣∣2 φ− ω2|uνreg|2φ
}
dx.

Therefore, using that ∇uνregφ = ∇(uνregφ)− uνreg∇φ and that uν = uνreg + sνg is a weak solution of the problem
with absorption (7), one has

Eνreg =
∫
Ω

{
(α+ iν)∇uνreg · ∇(uνregφ)− ω2uνregu

ν
regφ

}
dx−

∫
Ω

(α+ iν)∇uνreg · uνreg∇φdx

= −
∫
Ω

{
(α+ iν)∇sνg · ∇(uνregφ)− ω2sνgu

ν
regφ

}
dx−

∫
Ω

(α+ iν)∇uνreg · uνreg∇φdx

= −
∫
Ω

{
(α+ iν)∂ys

ν
g ∂y(u

ν
regφ) +

[
−∂x

(
(α+ iν)∂xs

ν
g

)]
uνregφ

}
dx

+

∫
Ω

ω2sνgu
ν
regφdx−

∫
Ω

(α+ iν)∇uνreg · uνreg∇φdx,



30 TITLE WILL BE SET BY THE PUBLISHER

where an integration by parts in the x-direction is made in the last equality. According to Lemma 3.1 and
Lemma A.2, the following convergences hold in L2(Ω) as ν → 0+:

sνg → sg, ∂ys
ν
g → ∂ysg, −∂x

(
(α+ iν)∂xs

ν
g

)
→ −∂x (α∂xsg) ,

uνreg → u+reg, (α+ iν)∇uνreg → α∇u+reg,

so that Eνreg converges to (see (25), (23) for the definitions of the forms b(1)reg and b(1)sing):

E+
reg = −b(1)sing(g

+,u+φ)−
∑

j∈{p,n}

∫
Ωj

α∇u+j · u+j ∇φdx

= b(1)reg(u
+,u+φ)−

∑
j∈{p,n}

∫
Ωj

α∇u+j · u+j ∇φdx =

∫
Ω

{
α
∣∣∇u+j ∣∣2 φ− ω2|u+j |

2φ
}
dx,

where are used the facts that (u+, g+) is a weak solution of (9) by Lemma A.3, ∇(u+j φ)− u+j ∇φ = ∇u+j φ and
the condition on the support of φ not touching Γp∪Γn. Finally, considering Im E+

reg gives the desired result. □

Appendix B. From the energy functional to the mixed formulation

Let φ be as in Definition 1, and the sequence (uν)ν be such that uν ∈ H1(Ω) is a unique solution to
the problem with absorption (7). By Lemma A.2, each uν can be decomposed as uν = uνreg + sνg+ . Given
h ∈ H2

per(Σ), the energy functional defined in (14) writes:

J ν(uνreg, g
+, h) =

∫
Ω

ν
∣∣∣∇(uνreg + sνg+ − sνh

)∣∣∣2 φdx = Im Eν , where

Eν =

∫
Ω

[
(α(x, y) + iν) |∇ (uν − sνh)|

2 − ω2 |uν − sνh|
2
]
φdx.

Our goal is to minimize the limit J + of J ν(uνreg, g
+, h) when ν goes to 0+.

In order to compute the limit of J ν(uνreg, g
+, h), we will integrate by parts the expression for Eν . First, using

Definition 1 of φ, i.e., ∂yφ = 0, and the identity ∇Uφ = ∇ (Uφ)− U∇φ, one can rewrite Eν as

Eν =

∫
Ω

[
(α(x, y) + iν)∇ (uν − sνh) · ∇ ((uν − sνh)φ)− ω2 (uν − sνh) (u

ν − sνh)φ
]
dx

−
∫
Ω

[
(α(x, y) + iν)∂x (u

ν − sνh) (u
ν − sνh)∂xφ

]
dx.

Then we separate

Eν = eν(uν , (uν − sνh)φ)− eν(sνh, (u
ν − sνh)φ)− cν(uν − sνh, u

ν − sνh),

where

eν(u, v) =

∫
Ω

[
(α(x, y) + iν)∇u · ∇v − ω2uv

]
dx, cν(u, v) =

∫
Ω

(α(x, y) + iν)∂xuv∂xφdx.

Since uν is a weak solution of the problem with absorption (7), (uν − sνh)φ ∈ H1(Ω) and suppφ ⊂ (−a, a) (cf.
Definition 1 for φ), we have that for all ν > 0, eν(uν , (uν − sνh)φ) = 0. It remains to integrate by parts the term
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eν(sνh, (u
ν − sνh)φ), which is allowed since h ∈ H2

per(Σ). Using the boundary conditions, we find that:

eν(sνh, φ(u
ν − sνh)) =

∫
Ω

[
− div ((α(x, y) + iν)∇sνh)− ω2sνh

]
(uν − sνh)φdx.

Given that sνh = h log
(
x+ iν

r(y)

)
, according to Lemma 3.1 and noting that ∂y((α + iν)∂ys

ν
h) → ∂y(α∂ysh) for

h ∈ H2
per(Σ), the following limits hold in L2(Ω):

sνh → sh, (α(x, y) + iν) ∂xs
ν
h → α∂xsh, div ((α(x, y) + iν)∇sνh) → div(α∇sh).

Therefore, using Assumption 2.1 and Lemma A.1, according to the limits above and [2], Prop.3.5, we have that

eν(sνh, φ(u
ν − sνh)) → e

(
sh,u

+ + sg+−h
)

and cν(uν − sνh, u
ν − sνh) → c

(
u+ + sg+−h,u

+ + sg+−h
)
,

where the sesquilinear forms are respectively given by

e(sh, v) =
∑

j∈{p,n}

∫
Ωj

[
−div (α∇sh) v − ω2shv

]
φdx, c(u, v) =

∑
j∈{p,n}

∫
Ωj

α(x, y)∂xuv∂xφdx.

We observe that the limit depends on the triple (u+, g+, h). Then we define

J +
(
u+, g+, h

)
:= − Im e

(
sh,u

+ + sg+−h
)
− Im c

(
u+ + sg+−h,u

+ + sg+−h
)
.

From this point on, one finds by integrating by parts that J + (u+, g+, g+) = 0 (this is reminiscent of the proof
of Lemma A.4). Since we know that the limit of J ν(uνreg, g

+, h) is non-negative, we conclude that (u+, g+, g+)

is a minimizer of J +. Finally, it is straightforward to compute the differential of J +:

dJ + ((u, g, h) , (v, k, l)) = Im a(2) ((u, g, h) , (v, k, l))

where a(2) is a sesquilinear form defined on V (2) × V (2) by

a(2) ((u, g, h) , (v, k, l)) = e(sl,u+ sg−h)− e(sh,v + sk−l) + c(v + sk−l,u+ sg−h)− c(u+ sg−h,v + sk−l),

cf. the definition (16).

Appendix C. Auxiliary Green’s identities

Below, we denote by u the pair (up, un) ∈ Q. Recall that the term Cφ (u+ sg−h,v + sk−l) appears in the
expression (41) of the form a(1), with

Cψ (U, V ) :=

∫
Ω

α
[
U∂xV − ∂xUV

]
∂xψdx. (54)

The goal of this appendix is to express Cψ (U, V ) using the sesquilinear forms b(1)reg and b(1)sing.

The first step is the following manipulation, which will be used elsewhere:[
u ∂xv − ∂xuv

]
∂xψ = ∂x(uψ)∂xv − ∂xu∂xvψ − ∂xu∂x(vψ) + ∂xu∂xvψ

= ∂x(uψ)∂xv − ∂xu∂x(vψ).
(55)
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Therefore, given a Lipschitz domain O and u, v smooth in O, we have∫
O
α
[
u∂xv − ∂xuv

]
∂xψdx =

∫
O
α
[
∂x(uψ)∂xv − ∂xu∂x(vψ)

]
dx. (56)

From now on, unless stated otherwise, we will assume that ψ satisfies the following assumption.

Assumption C.1. Let ψ ∈ C1
(
Ω;R

)
be such that ∂yψ = 0.

With this assumption, we obviously have that

∂y (uψ) ∂yv = ∂yu∂y (vψ) = ∂yu∂yvψ. (57)

We observe that, depending on whether U , V are regular, i.e., belonging to H1
1/2(Ωp)×H

1
1/2(Ωn), or singular,

i.e., of the form sg, with g ∈ H1
per(Σ), the expression (54) of Cψ (U, V ) will obviously change. There are three

different cases:
• U , V are both regular, in Q, see Proposition C.1,
• U , V are both singular, i.e., U = sg and V = sk, see Proposition C.3,
• U is regular and V is singular, see Proposition C.5.

The simplest case is when U, V ∈ Q. According to the above, using (57) with u = U and v = V allows us
reexpress the right-hand side of the identity (56) with O = int

(
Ωp ∪ Ωn

)
. Namely,∫

O
α
[
U∂xV − ∂xUV

]
∂xψdx =

∫
O

[
α∇(Uψ) · ∇V − ω2(Uψ)V

]
dx−

∫
O

[
α∇U · ∇(V ψ)− ω2U(V ψ)

]
dx.

(58)

Recalling the definition (25) of b(1)reg:

b(1)reg(u,v) =
∑

j∈{p,n}

∫
Ωj

(
α∇uj · ∇vj − ω2ujvj

)
dx+ iλ

∫
Γj

ujvjds, (59)

one has the following proposition.

Proposition C.1. Let u,v ∈ Q and ψ satisfy Assumption C.1. Then

∑
j∈{p,n}

∫
Ωj

α
(
uj∂xvj − ∂xujvj

)
∂xψdx = b

(1)
reg(v,uψ)− b(1)reg(u,vψ) + 2iλ

∑
j∈{p,n}

∫
Γj

ujvjψds.

Proof. First, we use the identity (58) with U = uj , V = vj and O = Ωj , j ∈ {p, n}. With the definition (59) of
b
(1)
reg, this yields

∑
j∈{p,n}

∫
Ωj

α
(
uj∂xvj − ∂xujvj

)
∂xψdx = b(1)reg(uψ,v)− b(1)reg(u,vψ).

Then, we have b(1)reg(uψ,v) = b
(1)
reg(v,uψ) + 2iλ

∑
j∈{p,n}

∫
Γj
ujvjψds which leads to the desired result. □

Let us now consider the second case, when U and V are both singular, that is U = sg and V = sk. Evidently,
we cannot apply (58) for O = Ωp,n and ψ non-vanishing on the interface, since the terms

∫
Ωp,n

α∇(sgψ) ·∇skdx
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and
∫
Ωp,n

α∇sg · ∇(skψ)dx are not defined. This difficulty can be overcome by integrating by parts in the
x-direction. Let u, v be sufficiently smooth in O, then∫

O
α
[
u∂xv − ∂xuv

]
∂xψdx

=

∫
O

[
(uψ) (−∂x (α∂xv))− (−∂x (α∂xu)) vψ

]
dx+

∫
∂O

[
u(α∂nv)− (α∂nu) v

]
ψds (60)

=

∫
O

[
α∂y (uψ) ∂yv + (uψ) (−∂x (α∂xv)− ω2v)

]
dx

−
∫
O

[
α∂yu∂y (vψ) +

(
−∂x (α∂xu)− ω2u

)
vψ
]
dx+

∫
∂O

[
u(α∂nv)− (α∂nu) v

]
ψds. (61)

Lemma C.2. For g, k ∈ H1
per(Σ) and ψ ∈ C1

(
Ω;R

)
(not necessarily satisfying Assumption C.1), for j ∈ {p, n},

it holds that∫
Ωj

α
[
sg∂xsk − ∂xsgsk

]
∂xψdx =

∫
Ωj

[
sg(−∂x(α∂xsk))− (−∂x(α∂xsg)) sk

]
ψdx

+

∫
Γj

[
sg(α∂nsk)− (α∂nsg)sk

]
ψds+ σj

∫
Σ

g(y)k(y)r(y)ψ(0, y) dy,

where σp = 0 and σn = 2iπ.

Proof. Applying (60) in O = Ωεj = {x ∈ Ωj : dist(x,Σ) > ε}, ε > 0, j ∈ {p, n}, with u = sg and v = sk yields∫
Ωε

j

α
[
sg∂xsk − ∂xsgsk

]
∂xψdx =

∫
Ωε

j

[
sg(−∂x(α∂xsk))− sk(−∂x(α∂xsg))

]
ψdx

+

∫
Γj

[
sg(α∂nsk)− (α∂nsg)sk

]
ψds− ajI

ε
j ,

with ap = 1 and an = −1 and

Iεj =

∫
{x=ajε}

[
sg(α∂xsk)− (α∂xsg)sk

]
ψdy.

As ε → 0+, the volume integrals over Ωεj converge to the volume integrals over Ωj , since the integrands
are obviously in L1(Ωj). Let us compute the remaining limit lim

ε→0+
Iεj . Recall that sg(x, y) = g(y) S(x) with

S(x) = log |x|+ iπ1x<0. As ε→ 0+,

Iεj =

∫
Σ

g(y)k(y)
α(ajε, y)

ajε

[
S(ajε)− S(ajε)

]
ψ(ajε, y)dy → σj

∫
Σ

g(y)k(y)r(y)ψ(0, y)dy,

where σp = 0, σn = 2iπ. □

The proposition below is a rewriting of formula (61), using the above lemma and the definition (23) of b(1)sing,
recalled here for convenience:

b
(1)
sing(g,v) =

∑
j∈{p,n}

∫
Ωj

(
α∂ysg∂yvj + (−∂x(α∂xsg)− ω2sg)vj

)
dx+

∫
Γj

(α∂nsg + iλsg)vjds.
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Proposition C.3. Let g, k ∈ H1
per (Σ) and ψ satisfy Assumption C.1. It holds that∫

Ω

α
[
sg∂xsk − ∂xsgsk

]
∂xψdx = b

(1)
sing (k, sgψ)− b

(1)
sing (g, skψ)

+ 2iλ
∑

j∈{p,n}

∫
Γj

sgskψds+ 2iπ

∫
Σ

g(y)k(y)r(y)ψ(0, y)dy.

Applying the last proposition with ψ = 1 yields immediately the following counterpart of Green’s third
formula.

Corollary C.4. For each g, k ∈ H1
per (Σ),

b
(1)
sing(g, sk)− b

(1)
sing(k, sg) = 2iπ(g, k)r + 2iλ

∑
j∈{p,n}

∫
Γj

sgskds. (62)

The third and last case consists in taking U regular and V singular, namely U belonging to a certain sub-
space of H1

1/2(Ωp,n) and V = sk. Let us introduce ψΣ(x, y) = ψ(0, y) in Ω. According to Assumption C.1,
ψΣ ∈ C1

(
Ω;R

)
with ∂xψΣ = ∂yψΣ = 0, so ψΣ is actually a constant.

Proposition C.5. Let u ∈ Q, g ∈ H1
per (Σ) and ℓ ∈ Q′ with supp ℓ ∩ Σ = ∅, be such that

b(1)reg (u,v) + b
(1)
sing (g,v) = ℓ (v) , ∀v ∈ Q. (63)

Let k ∈ H1
per(Σ) and ψ satisfy Assumption C.1. Then

∑
j∈{p,n}

∫
Ωj

α
[
uj∂xsk − ∂xujsk

]
∂xψdx = b

(1)
sing (k,uψ)− ℓ∞ (skψ)

+ b
(1)
sing (g, skψ) + 2iλ

∑
j∈{p,n}

∫
Γj

ujskψds− ψΣ⟨[u]Σ, k⟩Σ, (64)

where the jump [u]Σ is defined in the statement of Lemma 5.1 and ℓ∞(skψ) as in (33).

The proof of the previous proposition relies on the following technical lemma, most of the proof of which is
left to the reader.

Lemma C.6. Let u ∈ Q, g ∈ H1
per(Σ), and ψ satisfy Assumption C.1. Then, (ψ − ψΣ) ∂xuj ∈ L2 (Ωj), and

(ψ − ψΣ) ∂xsg ∈ L2 (Ω). As a consequence, u ∈ L2(Ω), s.t. u|Ωp,n
= up,n, satisfies (ψ − ψΣ)u ∈ H1(Ω).

Moreover, the trace γ0 [(ψ − ψΣ)u] = (ψ − ψΣ)u|Σ vanishes.

Proof. We will prove the statement about the trace of hp := (ψ − ψΣ)up ∈ H1(Ωp) only. With the standard
density argument, it suffices to prove the result for up ∈ C∞(Ωp). We start with the expression

hp(0, y) = hp(x, y)−
∫ x

0

∂shp(s, y)ds, (x, y) ∈ Ωp.

Applying the Cauchy-Schwarz inequality in R2 and L2(Ωp) yields

|hp(0, y)|2 ≤ 2|hp(x, y)|2 + 2

∣∣∣∣∫ x

0

∂shp(s, y)ds

∣∣∣∣2 ≤ 2|hp(x, y)|2 + 2x

∫ x

0

|∂shp(s, y)|2ds.
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Remark that a priori (x, y) 7→ hp(x, y)/x ∈ L2(Ωp). Integrating both sides of the above inequality in the strip
Ωεp = {(x, y) ∈ Ωp : |x| < ε}, ε ∈ (0, 1), allows to obtain the following inequality, where all terms in the
right-hand side are finite:

∫
Σ

|hp(0, y)|2dy ≤ ε−1

(
2

∫
Ωε

p

|hp(x, y)|2dx+ ε2∥∇hp∥2L2(Ωε
p)

)

≤ ε

(
2

∥∥∥∥hp(x, y)x

∥∥∥∥2
L2(Ωε

p)

+ ∥∇hp∥2L2(Ωε
p)

)
.

The above is valid for all ε > 0, hence taking ε→ 0 in the above shows that ∥γ0hp∥L2(Σ) = 0. □

Proof of Proposition C.5. We start by using (56), with O = Ωp,n:

∑
j∈{p,n}

∫
Ωj

α
[
uj∂xsk − ∂xujsk

]
∂xψdx = I1 − I2,

with I1 =
∑

j∈{p,n}

∫
Ωj

α∂x (uj (ψ − ψΣ)) ∂xskdx, and I2 =
∑

j∈{p,n}

∫
Ωj

α∂xuj∂x (sk (ψ − ψΣ))dx.

Remark that the above two integrals are well-defined by Lemma C.6. On one hand, integrating by parts in Ωj ,
j = p, n, and noting that, according to Proposition C.5, (ψ − ψΣ)u ∈ H1(Ω) with vanishing trace on Σ, and
α∂nsk|Σ = k(y) r(y) yields

I1 =
∑

j∈{p,n}

∫
Ωj

uj (ψ − ψΣ) (−∂x (α∂xsk))dx+
∑

j∈{p,n}

∫
Γj

uj (ψ − ψΣ)α∂nskds

= b
(1)
sing (k,u(ψ − ψΣ))−

∑
j∈{p,n}

∫
Ωj

(
α∂y (uj (ψ − ψΣ)) ∂ysk − ω2 (uj (ψ − ψΣ)) sk

)
dx

+ iλ
∑

j∈{p,n}

∫
Γj

uj (ψ − ψΣ) skds.

On the other hand,

I2 = b(1)reg (u, sk(ψ − ψΣ))−
∑

j∈{p,n}

∫
Ωj

(
α∂yuj∂y (sk (ψ − ψΣ))− ω2uj(sk (ψ − ψΣ))

)
dx

− iλ
∑

j∈{p,n}

∫
Γj

uj (ψ − ψΣ) skds.

Hence, using ∂yψ = 0,

∑
j∈{p,n}

∫
Ωj

α
[
uj∂xsk − ∂xujsk

]
∂xψdx = b

(1)
sing (k,u(ψ − ψΣ))− b(1)reg (u, sk(ψ − ψΣ))

+ 2iλ
∑

j∈{p,n}

∫
Γj

ujsk (ψ − ψΣ) ds.

(65)
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Comparing the above with the statement of the proposition, it remains to rewrite b(1)reg (u, sk(ψ − ψΣ)), using
the identity (63) and the fact that ψΣ is constant:

b(1)reg (u, sk(ψ − ψΣ)) = ℓ (sk(ψ − ψΣ))− b
(1)
sing (g, sk(ψ − ψΣ))

= ℓ∞ (skψ)− b
(1)
sing (g, skψ)− ψΣ

(
ℓ∞ (sk)− b

(1)
sing (g, sk)

)
, (66)

where ℓ∞ (skψ) and ℓ∞ (sk) are well-defined because supp ℓ ∩Σ = ∅. Notice that b(1)sing (g, skψ) and b(1)sing (g, sk)
are also well-defined since b(1)sing (g,v) is well-defined as soon as v ∈ L2 (Ω), ∂yv ∈ L2 (Ω) and the trace of u on
Γj belongs to L2(Γj) for j = p, n. Recall that the jump [u]Σ satisfies (35), namely

ℓ∞ (sk)− b
(1)
sing (g, sk)− b

(1)
sing (k,u) = 2iλ

∑
j∈{p,n}

∫
Γj

ujskds− ⟨[u]Σ, k⟩Σ.

Combining (65), (66) and the above identity results in the desired expression. □

Remark C.7. Let φ be as in Definition 1. With this particular regular function, the previous propositions are
respectively summarized as, with u, v, g and k satisfying the assumptions of the corresponding propositions,

(prop. C.1) Cφ (u,v) = b
(1)
reg(v,uφ)− b(1)reg(u,vφ), (67)

(prop. C.3) Cφ (sg, sk) = b
(1)
sing(k, sgφ)− b

(1)
sing(g, skφ) + 2iπ(g, k)r, (68)

(prop. C.5) Cφ (u, sk) = b
(1)
sing (k,uφ)− ℓ∞ (skφ) + b

(1)
sing (g, skφ)− ⟨[u]Σ, k⟩Σ. (69)

Appendix D. Expressions of a(1)

This section is dedicated to the study of a(1) on Ker B(1). For the convenience of the reader, we recall the
expression (41) of the form a(1), written using the respective definitions (40) and (23) of the forms Cφ and b(1)sing:

a(1)((u, g, h), (v, k, l)) = Cφ (u+ sg−h,v + sk−l) − b
(1)
sing (h, (v + sk−l)φ) + b

(1)
sing (l, (u+ sg−h)φ). (70)

The following technical lemma allows to reexpress the form a(1) ((u, g, h), (v, k, l)) for (u, g) satisfying the
assumption of Proposition C.5 and (v, k, l) ∈ Ker B(1).

Lemma D.1. Let u ∈ Q, g ∈ H1
per (Σ) and ℓ ∈ Q′ with supp ℓ ∩ Σ = ∅, be such that

b(1)reg (u,v) + b
(1)
sing (g,v) = ℓ (v) , ∀v ∈ Q. (71)

Let φ in the definition of a(1) satisfy additionally to definition 1 supp ℓ ∩ supp φ = ∅. Then, for any (v, k, l) ∈
Ker B(1), it holds that

a(1) ((u, g, h) , (v, k, l)) = 2iπ (g − h, k − l)r − ⟨[u]Σ, k − l⟩
Σ
+ ⟨[v]Σ, g − h⟩

Σ
. (72)

Proof. We start by developing the first term in the definition of a(1) given by (70). Our goal is to rewrite it in
terms of the forms b(1) and b(1)sing. Since (v, k, l) ∈ Ker B(1), u = v, g = k satisfy the assumption of Proposition
C.5 with ℓ = 0. Then, the form Cφ is skew-hermitian, which yields, together with (67), (68), (69) the following
expression:

Cφ (u+ sg−h,v + sk−l) = Cφ (u,v) + Cφ (u, sk−l) + Cφ (sg−h,v) + Cφ (sg−h, sk−l)
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= b
(1)
reg(v,uφ)− b(1)reg(u,vφ)

+ b
(1)
sing (k − l,uφ)− ℓ∞ (sk−lφ) + b

(1)
sing (g, sk−lφ)− ⟨[u]Σ, k − l⟩

Σ

− b
(1)
sing (g − h,vφ)− b

(1)
sing (k, sg−hφ) + ⟨[v]Σ, g − h⟩Σ

+ b
(1)
sing(k − l, sg−hφ)− b

(1)
sing(g − h, sk−lφ) + 2iπ(g − h, k − l)r.

Remark that in the above the term ℓ∞(sk−lφ) is well-defined and vanishes, since supp ℓ∩suppφ = 0. Rearranging
the terms in the above yields

Cφ (u+ sg−h,v + sk−l) = b
(1)
reg(v,uφ) + b

(1)
sing (k,uφ)−

[
b(1)reg(u,vφ) + b

(1)
sing (g,vφ)

]
− b

(1)
sing(l, (u+ sg−h)φ) + b

(1)
sing (h, (v + sk−l)φ)

− ⟨[u]Σ, k − l⟩
Σ
+ ⟨[v]Σ, g − h⟩

Σ
+ 2iπ(g − h, k − l)r.

Using the definition (24) of the form b(1), namely b(1) = b
(1)
reg + b

(1)
sing, and the assumptions of the lemma on

(v, k, l) and (u, g, h) we rewrite the above as follows:

Cφ (u+ sg−h,v + sk−l) = −ℓ (vφ)− b
(1)
sing(l, (u+ sg−h)φ) + b

(1)
sing (h, (v + sk−l)φ)

− ⟨[u]Σ, k − l⟩
Σ
+ ⟨[v]Σ, g − h⟩

Σ
+ 2iπ(g − h, k − l)r.

Again, since supp ℓ∩ suppφ = ∅, the first term in the above vanishes. Plugging in the resulting expression into
the definition (70) of a(1) yields the desired expression (72). □

The results that follow lead to an alternative expression to a(1) on Ker B(1) ×Ker B(1).

Proposition D.2. Let (u, g, h) , (v, k, l) ∈ Ker B(1). Then we have the following identity:

⟨[u]Σ, k⟩Σ − ⟨[v]Σ, g⟩Σ = 2iπ(g, k)r + 2iλ
∑

j∈{p,n}

∫
Γj

(u+ sg) (v + sk)ds. (73)

Proof. Let J := ⟨[u]Σ, k⟩Σ − ⟨[v]Σ, g⟩Σ. According to the jump formula (35), we have

J = b
(1)
sing (k,u) + b

(1)
sing (g, sk) + 2iλ

∑
j∈{p,n}

∫
Γj

ujskds

− b
(1)
sing (g,v)− b

(1)
sing (k, sg) + 2iλ

∑
j∈{p,n}

∫
Γj

sgvjds.

Making use of the fact that b(1)((u, g, h),v) = 0, b(1)((v, k, l),u) = 0 and using the definition 24 of b(1) yields

J = b(1)reg (u,v)− b
(1)
reg (v,u)︸ ︷︷ ︸

J1

+ b
(1)
sing (g, sk)− b

(1)
sing (k, sg)︸ ︷︷ ︸

J2

+2iλ
∑

j∈{p,n}

∫
Γj

(ujsk + sgvj) ds.

From the definition 25 of b(1)reg, it follows that J1 = 2iλ
∑

j∈{p,n}

∫
Γj
ujvjds. Applying (62) to reformulate J2, we

readily arrive at (73). □
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Remark D.3. The above proposition can easily be extended to any (u, g) , (v, k) ∈ Q × H1
per (Σ) for which a

jump exists, as in Lemma 5.1. Indeed, reproducing the computations in the proof leads to:

⟨[u]Σ, k⟩Σ − ⟨[v]Σ, g⟩Σ = 2iπ(g, k)r + 2iλ
∑

j∈{p,n}

∫
Γj

(u+ sg) (v + sk)ds

+ ℓ(u) + ℓ∞ (sg)− (ℓ (v) + ℓ∞ (sk)) .

The above proposition yields immediately the following property.

Corollary D.4. Let (u, g, h) ∈ Ker B(1) with g ̸= 0. Then Im ⟨[u]Σ, g⟩Σ > 0.

Proof. It is a direct application of previous proposition with v = u and k = g, so that

Im ⟨[u]Σ, g⟩Σ = π ∥g∥2r + λ
∑

j∈{p,n}

∥u+ sg∥2L2(Γj)
.

□

Finally, Proposition D.2 and Lemma D.1 allow us to prove the following result, the second part of which is
a reformulation of Proposition 23 of [12], now in V (1).

Corollary D.5. Let (u, g, h) , (v, k, l) ∈ Ker B(1). Then

a(1) ((u, g, h), (v, k, l)) = 2iπ(g − h, k − l)r − 2iπ(g, k)r − 2iλ
∑

j∈{p,n}

∫
Γj

(u+ sg)(v + sk)ds.

In particular, it holds that

a(1) ((u, g, 0), (u, g, 0)) = −2iλ
∑

j∈{p,n}

∥uj + sg∥2L2(Γj)
, and a(1) ((0, 0, h), (0, 0, h)) = 2iπ ∥h∥2r .
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