Stability Of The $P_{nc}^1 - (P^0 + P^1)$ Element

Erell Jamelot [0000-0002-9919-0793] and Patrick Ciarlet, Jr[0000-0003-1198-5063] and Stefan Sauter [0000-0002-1403-1874]

Abstract We solve the Stokes problem numerically. We analyse the $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ mixed finite element method which exhibits interesting numerical features. However, only an incomplete proof of the inf-sup condition is available. We prove here this condition and the stability of the method.

1 Stokes Problem

A popular low-order method for solving the Stokes problem is the nonconforming Crouzeix-Raviart mixed finite element method [1, Example 4] (cf. [2, 3] for higher orders). The discrete velocity is piecewise affine, continuous in the barycentre of the interfaces between elements, but not globally continuous, \mathbf{P}_{nc}^1 ; and the discrete pressure is piecewise constant, P^0 . This method introduces some consistency error on the discrete velocity, which may lead to an unphysical solution when solving the Navier-Stokes equations, especially when the source field is a strong gradient [4, 5]. To recover consistency, the discrete pressure space can be generated by P^1 -continuous plus P^0 basis functions, cf. the TrioCFD code [6, 7]. This leads to the $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ mixed finite element method, which exhibits interesting numerical features. However, only an incomplete proof of the stability is available in [8, 9]. Below, we prove the inf-sup condition. Consider the Stokes problem set in an open,

Patrick Ciarlet, Jr

Erell Jamelot

Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191 Gif-sur-Yvette cedex, France, e-mail: erell.jamelot@cea.fr

POEMS, CNRS, INRIA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France e-mail: patrick.ciarlet@ensta-paris.fr

Stefan Sauter

Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland e-mail: stas@math.uzh.ch

)

bounded, connected subset Ω of \mathbb{R}^d , d = 2, 3, with a Lipschitz boundary $\partial \Omega$:

Find
$$(\mathbf{u}, p)$$
 such that $-\nu \Delta \mathbf{u} + \nabla p = \mathbf{f}$ and div $\mathbf{u} = 0$ in Ω , (1)

with homogeneous boundary conditions $\mathbf{u} = 0$ on $\partial\Omega$ and a normalisation condition: $\int_{\Omega} p = 0$. The case of inhomogeneous Dirichlet boundary conditions, that is $\mathbf{u} = \mathbf{g}$ on $\partial\Omega$ with $\mathbf{g} \in \mathbf{H}^{\frac{1}{2}}(\partial\Omega)$ such that $\int_{\partial\Omega} \mathbf{g} \cdot \mathbf{n}_{|\partial\Omega} = 0$ can be studied similarly. Given D an open subset of \mathbb{R}^d , let us set $\mathbf{L}^2(D) = (L^2(D))^d$, and $L^2_{zmv}(D) = \{q \in L^2(D) \mid \int_D q = 0\}$. We denote by $(\cdot, \cdot)_D$ the $L^2(D)$ or $\mathbf{L}^2(D)$ inner product, and $\|\cdot\|_D$ the associated norm. Due to Poincaré-Steklov inequality [10, Lemma 3.24], the seminorm in $H_0^1(\Omega)$ is equivalent to the natural norm, so that $(v, w)_{H_0^1(\Omega)} = (\nabla v, \nabla w)_\Omega$ and $\|v\|_{H_0^1(\Omega)} = \|\nabla v\|_\Omega$. Let us set $\mathbf{V} = \{\mathbf{v} \in \mathbf{H}_0^1(\Omega) \mid \text{div } \mathbf{v} = 0\}$ which is a closed subset of $\mathbf{H}_0^1(\Omega)$. We denote by \mathbf{V}^{\perp} the orthogonal of \mathbf{V} in $\mathbf{H}_0^1(\Omega)$.

Proposition 1 [13, Theorem 3.1 (e)]. The operator div : $\mathbf{H}_0^1(\Omega) \to L^2(\Omega)$ is an isomorphism of \mathbf{V}^{\perp} onto $L^2_{zmv}(\Omega)$. We call $C_{div} > 1$ the constant such that: $\forall p \in L^2_{zmv}(\Omega)$, $\exists ! \mathbf{v}_p \in \mathbf{V}^{\perp} | \text{ div } \mathbf{v}_p = p$ and $\|\mathbf{v}_p\|_{\mathbf{H}_0^1(\Omega)} \leq C_{div}\|p\|_{\Omega}$.

Let $\mathbf{f} \in (\mathbf{H}_0^1(\Omega))'$. The variational formulation of Problem (1) reads: Find $(\mathbf{u}, p) \in \mathbf{H}_0^1(\Omega) \times L^2_{zmv}(\Omega)$ such that $\forall (\mathbf{v}, q) \in \mathbf{H}_0^1(\Omega) \times L^2_{zmv}(\Omega)$:

$$\nu(\mathbf{u}, \mathbf{v})_{\mathbf{H}_{0}^{1}(\Omega)} - (p, \operatorname{div} \mathbf{v})_{\Omega} - (q, \operatorname{div} \mathbf{u})_{\Omega} = \langle \mathbf{f}, \mathbf{v} \rangle_{\mathbf{H}_{0}^{1}(\Omega)}.$$
 (2)

One can prove that Problem (2) is well-posed with the T-coercivity theory [14, 15, 16], using Poincaré-Steklov inequality [10, Lemma 3.24] and Proposition 1.

2 Discretization And Stability Of The $P_{nc}^1 - (P^0 + P^1)$ Scheme

Consider $(\mathcal{T}_h)_h$ a family of simplicial triangulations of Ω . For a given $\mathcal{T}_h := \{K\}$, we call $\mathcal{T}_h := \{F\}$ its set of (d - 1)-simplices, called facets (faces if d = 3, edges if d = 2), and $\mathcal{V}_h := \{S\}$ its set of vertices. In the bounds, we will use \leq and \geq for (hidden) constants independent of \mathcal{T}_h .

- For $K \in \mathcal{T}_h$, we call h_K and ρ_K the diameters of K and its inscribed sphere respectively, and we let: $\sigma_K = \frac{h_K}{\rho_K}$. When the $(\mathcal{T}_h)_h$ is a shape-regular triangulation family (see e.g. [10, def. 11.2]), there exists a constant $\sigma > 1$, called the shape regularity parameter, such that for all h, for all $K \in \mathcal{T}_h, \sigma_K \leq \sigma$.
- Let $\mathcal{F}_h = \mathcal{F}_h^i \cup \mathcal{F}_h^b$, where $\mathcal{F}_h^b = \{F \in \mathcal{F}_h \mid F \subset \partial\Omega\}, \mathcal{F}_h^i = \mathcal{F}_h \setminus \mathcal{F}_h^b$. For $K \in \mathcal{T}_h$, we set $\mathcal{F}_K^i = \{F \in \mathcal{F}_h^i \mid F \subset \partial K\}$.

For $F \in \mathcal{F}_h$, M_F denotes the barycentre of F, and \mathbf{n}_F its unit normal (outward oriented if $F \subset \partial \Omega$). For $K \in \mathcal{T}_h$ and $F \subset \partial K$, we denote by $\mathbf{n}_{F,K}$ the normal vector of F outgoing from K. Let \hat{K} be the reference simplex. For $K \in \mathcal{T}_h$, we denote by $T_K : \hat{K} \to K$ the geometric mapping such that $\forall \hat{\mathbf{x}} \in \hat{K}, \mathbf{x}_{|K} = T_K(\hat{\mathbf{x}}) = \mathbb{B}_K \hat{\mathbf{x}} + \mathbf{b}_K$, Stability Of The $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ Element

where $\mathbb{B}_K \in \mathbb{R}^{d \times d}$ and $\mathbf{b}_K \in \mathbb{R}^d$. Let us set $J_K = \det(\mathbb{B}_K)$. Recall that [10, Lemma 11.1]: $|J_K| = |K|/|\hat{K}|$, $||\mathbb{B}_K|| \le h_K/\rho_{\hat{K}}$, $||\mathbb{B}_K^{-1}|| \le h_{\hat{K}}/\rho_K$. For $v \in L^2(\Omega)$, we set: $v_K = v_{|K}$, $\hat{v}_K = v \circ T_K$. By changing the variable, we get: $||v||_K^2 = |J_K| ||\hat{v}_K||_{\hat{K}}^2$. Let $v \in H^1(K)$, then $\nabla v_{|K} = (\mathbb{B}_K^{-1})^T \nabla_{\hat{\mathbf{x}}}\hat{v}$, and $||\nabla v||_K^2 \le ||\mathbb{B}_K^{-1}||^2 |J_K| ||\nabla_{\hat{\mathbf{x}}}\hat{v}||_{\hat{K}}^2$, $||\nabla_{\hat{\mathbf{x}}}\hat{v}||_{\hat{K}}^2 \le ||\mathbb{B}_K||^2 |J_K|^{-1} ||\nabla v||_K^2$. Let $K \in \mathcal{T}_h$ and $F \subset \partial K$, we denote by $T_{F,K}$ the geometric mapping such that $\forall \mathbf{x} \in F$, $T_{F,K}(T_K^{-1}(\mathbf{x})) = \mathbf{x}$. We let $\hat{F}_{F,K} = T_K^{-1}(F)$. According to [1, Eq. (3.17)]:

$$\forall K \in \mathcal{T}_{h}, \, \forall F \subset \partial K, \quad |F| \, |K|^{-1} \lesssim \rho_{K}^{-1}. \tag{3}$$

We set $\mathcal{P}_h H^1 = \{ v \in L^2(\Omega \mid \forall K \in \mathcal{T}_h, v_{|K} \in H^1(K) \}$, endowed with: $(v, w)_h := \sum_{K \in \mathcal{T}_h} (\nabla v, \nabla w)_K, \|v\|_h^2 = \sum_{K \in \mathcal{T}_h} \|\nabla v\|_K^2$. Let $F \in \mathcal{F}_h^i$ such that $F = \partial K_L \cap \partial K_R$ and $\mathbf{n}_F = \mathbf{n}_{F,K_L}$. The jump of $v \in \mathcal{P}_h H^1$ across F is defined by: $[v]_F := v_{|K_L} - v_{|K_R}$. For $F \in \mathcal{F}_h^b$, we set: $[v]_F := v_{|F}$.

For a subset D of \mathbb{R}^d , for $k \in \mathbb{N}$, we call $P^k(D)$ the set of degree k polynomials on D, $\mathbf{P}^k(D) = (P^k(D))^d$, and $\mathcal{P}^k_{\underline{disc}}(\mathcal{T}_h) = \{q \in L^2(\Omega) \mid \forall K \in \mathcal{T}_h, q_{|K} \in P^k(K)\}$. For k > 0 we define $\mathcal{P}^k(\mathcal{T}_h) = C^0(\overline{\Omega}) \cap \mathcal{P}^k_{\underline{disc}}(\mathcal{T}_h)$. We call $\pi_0 : L^2(\Omega) \mapsto \mathcal{P}^0_{\underline{disc}}(\mathcal{T}_h)$ the L^2 orthogonal projection onto $\mathcal{P}^0_{\underline{disc}}(\mathcal{T}_h)$, such that $\forall q \in L^2(\Omega), \pi_0(q) = \sum_{K \in \mathcal{T}_h} \underline{q}_K \mathbb{1}_K$ where $\forall K \in \mathcal{T}_h, \underline{q}_K = \int_K q/|K|$.

For $K \in \mathcal{T}_h$ and a vertex *S* of *K*, $\lambda_{S,K}$ denotes the barycentric coordinate related to *S*. We can endow $\mathcal{P}^1(\mathcal{T}_h)$ with the basis $(\phi_S)_{S \in \mathcal{V}_h}$ such that: $\forall K \in \mathcal{T}_h, \phi_{S|K} = \lambda_{S,K}$ if $S \in K$, zero otherwise, so that $\mathcal{P}^1(\mathcal{T}_h) = \text{vect}((\phi_S)_{S \in \mathcal{V}_h})$. Using [12, Thm. 5] and Eq. (3), one can prove that:

$$\forall w \in P^{k}(K), \, \forall F \subset \partial K, \quad \|w\|_{F} \lesssim (|F| \, |K|^{-1})^{\frac{1}{2}} \|w\|_{K} \lesssim (\rho_{K})^{-\frac{1}{2}} \, \|w\|_{K}.$$
(4)

Using Eq. (4) with $w = v - \underline{v}_K$ and Poincaré-Steklov inequality [10, Lemma 12.11] in *K*, it holds for (with below, $\underline{v}_F = \int_F v/|F|$):

$$\forall v \in P^k(K), \forall F \subset \partial K, \quad \|v - \underline{v}_F\|_F \lesssim \|v - \underline{v}_K\|_F \lesssim (\sigma_K h_K)^{1/2} \|\nabla v\|_K.$$
(5)

Using the proof of [17, Lemma 2] and [12, Thm. 5], we can prove that:

$$\forall v \in P^1(K), \quad \|\nabla v\|_K \leq (\rho_K)^{-1} \|v - \underline{v}_K\|_K.$$
(6)

Let $X_{0,h}$ be the space of the discrete velocity of the nonconforming Crouzeix-Raviart mixed finite element method, defined by:

$$\mathbf{X}_{h} = (X_{h})^{d}, \qquad X_{h} = \{v_{h} \in \mathcal{P}_{disc}^{1}(\mathcal{T}_{h}) \mid \forall F \in \mathcal{F}_{h}^{i}, \ \int_{F} [v_{h}] = 0\};$$

$$\mathbf{X}_{0,h} = (X_{0,h})^{d}, \ X_{0,h} = \{v_{h} \in X_{h} \mid \forall F \in \mathcal{F}_{h}^{b}, \ \int_{F} v_{h} = 0\}.$$
(7)

The condition on the jumps of v_h on the inner facets is often called the patch-test condition. Due to this condition, one can prove that :

Proposition 2 [1, Lemma 2]. The broken norm $v_h \rightarrow ||v_h||_h$ is a norm over $X_{0,h}$.

For $K \in \mathcal{T}_h$ and $F \subset \partial K$, $\lambda_{F,K}$ denotes the barycentric coordinate related to the vertex $S_{F,K}$ opposite to facet F in K. We can endow X_h with the basis $(\psi_F)_{F \in \mathcal{T}_h}$ such that for all $K \in \mathcal{T}_h$, $\psi_{F|K} = 1 - d\lambda_{F,K}$ if $F \subset \partial K$ and zero otherwise. We then have $\psi_{F|F} = 1$, so that $[\psi_F]_F = 0$ if $F \in \mathcal{F}_h^i$, and for all $F' \neq F$, $\int_{F'} \psi_F = 0$. We have: $X_h = \text{vect}((\psi_F)_{F \in \mathcal{T}_h})$ and $X_{0,h} = \text{vect}((\psi_F)_{F \in \mathcal{T}_h^i})$.

Let $\Pi_h : \mathbf{H}^1(\Omega) \mapsto \mathbf{X}_h$ be the Crouzeix-Raviart interpolation operator, such that: $\forall \mathbf{v} \in \mathbf{H}^1(\Omega), \Pi_h(\mathbf{v}) = \sum_{F \in \mathcal{F}_h} \underline{\mathbf{v}}_F \psi_F, \underline{\mathbf{v}}_F = \int_F \mathbf{v}/|F|.$

Proposition 3 [17, Lemma 2]. The interpolation operator Π_h is such that: $\forall \mathbf{v}_h \in \mathbf{H}_0^1(\Omega)$, $\|\Pi_h(\mathbf{v}_h)\|_h \leq \|\mathbf{v}_h\|_{\mathbf{H}_0^1(\Omega)}$.

However, due to the consistency error on the discrete velocity, it is well-known [18, 19] that choosing the space of the discrete pressures equal to $\mathcal{P}_{disc}^0(\mathcal{T}_h) \cap L^2_{zmv}(\Omega)$ yields inaccurate results when solving Navier-Stokes equations. Starting from [20], a new element is proposed in [8]. The space of the discrete pressures is then: $Q_h = Q_{0,h} + Q_{1,h}$, where $Q_{0,h} := \mathcal{P}_{disc}^0(\mathcal{T}_h) \cap L^2_{zmv}$ and for k > 0, $Q_{k,h} := \mathcal{P}^k(\mathcal{T}_h) \cap L^2_{zmv}(\Omega)$. One can build an L^2 -orthogonal sum letting $\tilde{Q}_{1,h} = \{q_h \in Q_h \mid \forall K \in \mathcal{T}_h, \int_K q_h = 0\}$.

Proposition 4 We have: $Q_h = Q_{0,h} \stackrel{\perp}{\oplus} \tilde{Q}_{1,h}$. It holds for all $q_h \in Q_h$: $||q_h||_{\Omega}^2 = ||\pi_0(q_h)||_{\Omega}^2 + ||q_h - \pi_0(q_h)||_{\Omega}^2$.

To prove the discrete inf-sup condition of $\mathbf{X}_{0,h} \times Q_h$, we need some Lemmas.

Lemma 1 Let k > 0, $(\mathbf{v}, q) \in \mathbf{X}_{0,h} \times Q_{k,h}$. It holds:

$$\left|\sum_{K\in\mathcal{T}_{h}}\sum_{F\subset\partial K}\left(\mathbf{v}\cdot\mathbf{n}_{F,K},\,q\right)_{F}\right|\lesssim\sigma\left\|\mathbf{v}\right\|_{h}\left\|q-\pi_{0}(q)\right\|_{\Omega}.$$
(8)

Proof. We start with the proof of [20, Lemma 3.1]. Using the patch-test condition, one obtains:

$$\sum_{K \in \mathcal{T}_h} \sum_{F \subset \partial K} (\mathbf{v} \cdot \mathbf{n}_{F,K}, q)_F = \sum_{K \in \mathcal{T}_h} \sum_{F \subset \partial K} \left((\mathbf{v}_K - \underline{\mathbf{v}}_F) \cdot \mathbf{n}_{F,K}, q_K - \underline{q}_K \right)_F.$$

We have, using Eq. (4) with $w = q_K - q_K$ and Eq. (5) for the components of **v**:

$$\left| \left((\mathbf{v}_K - \underline{\mathbf{v}}_F) \cdot \mathbf{n}_{F,K}, q_K - \underline{q}_K \right)_F \right| \lesssim \sigma_K \| \underline{\underline{\nabla}} \mathbf{v}_K \|_K \| q_K - \underline{q}_K \|_K$$

Summing and using the discrete Cauchy-Schwarz inequality, we obtain (8).

Introducing the element-wise divergence operator div_h , we prove next that one can build an explicit right inverse of div_h from Q_h to $\mathbf{X}_{0,h}$.

Lemma 2 For all $q_h \in Q_h$, there exists $\mathbf{v}_{0,h} \in \mathbf{X}_{0,h}$ such that:

$$-(\operatorname{div}_{h} \mathbf{v}_{0,h}, \pi_{0}(q_{h}))_{\Omega} = \nu^{-1} \|\pi_{0}(q_{h})\|_{\Omega}^{2},$$
(9)

$$\|\mathbf{v}_{0,h}\|_{h} \le C_{\text{div}} \, \nu^{-1} \, \|\pi_{0}(q_{h})\|_{\Omega}. \tag{10}$$

Stability Of The $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ Element

Proof. Let $q_h \in Q_h$. From Proposition 1, $\exists \mathbf{v}_{\pi_0(q_h)} \in \mathbf{H}_0^1(\Omega) \mid \operatorname{div} \mathbf{v}_{\pi_0(q_h)} = \pi_0(q_h)$ and $\|\mathbf{v}_{\pi_0(q_h)}\|_{\mathbf{H}_0^1(\Omega)} \leq C_{\operatorname{div}} \|\pi_0(q_h)\|_{\Omega}$. Let $\mathbf{v}_{0,h} = -\nu^{-1} \prod_h (\mathbf{v}_{\pi_0(q_h)})$. Integrating by part twice, we get: $\forall K \in \mathcal{T}_h$, $\int_K \operatorname{div} \mathbf{v}_{0,h} = -\nu^{-1} \int_K \operatorname{div} \mathbf{v}_{\pi_0(q_h)}$, hence (9). Using Proposition 3, we get (10).

We can also build an explicit right inverse of the discrete divergence operator from $Q_{1,h}$ to $\mathbf{X}_{T,h} = {\mathbf{v}_h \in \mathbf{X}_{0,h} | \forall F \in \mathcal{F}_h^i, \mathbf{v}_h \cdot \mathbf{n}_F = 0}$, if [20, Hyp. 4.1] holds:

Hypothesis 1. We suppose that \mathcal{T}_h is such that each element $K \in \mathcal{T}_h$ has at most d-1 facets that lie on $\partial \Omega$.

Lemma 3 Assuming Hypothesis 1, $\forall q_{1,h} \in Q_{1,h}$, $\exists \mathbf{v}_{1,h} \in \mathbf{X}_{T,h}$ such that:

$$(\nabla q_{1,h}, \mathbf{v}_{1,h})_{\Omega} \gtrsim \nu^{-1} \, \sigma^{-2(d-2)} \, \|q_{1,h} - \pi_0(q_{1,h})\|_{\Omega}^2, \tag{11}$$

$$(\operatorname{div} \mathbf{v}_{1,h}, q_{0,h})_K = 0 \quad \forall q_{0,h} \in Q_{0,h},$$
 (12)

$$\|\mathbf{v}_{1,h}\|_{h} \lesssim \nu^{-1} \sigma^{2} \|q_{1,h} - \pi_{0}(q_{1,h})\|_{\Omega}.$$
 (13)

Proof. Let us consider $q_{1,h} \in Q_{1,h}$. For all $K \in \mathcal{T}_h$, we let $q_K := q_{1,h|K}$ and $\hat{q}_K = q_K \circ T_K$. Since $q_{1,h} \in H^1(\Omega)$ we have (see e.g. [21, Prop. 2.2.10]): $\forall F \in \mathcal{F}_h^i \mid F = K \cap K', \nabla q_K \times \mathbf{n}_F = \nabla q_{K'} \times \mathbf{n}_F$. We construct $\mathbf{v}_{1,h} \in \mathbf{X}_{T,h} \mid \forall F \in \mathcal{F}_h^i$, $\mathbf{v}_{1,h}(M_F) = \mathbf{v}^{-1} h_F^2 \mathbf{n}_F \times (\nabla q_{1,h} \times \mathbf{n}_F)$, where h_F is the diameter of F. We have:

$$\forall K \in \mathcal{T}_{h} \quad (\nabla q_{1,h}, \mathbf{v}_{1,h})_{K} = \nu^{-1} \left(d+1 \right)^{-1} |K| \sum_{F \in \mathcal{F}_{K}^{i}} h_{F}^{2} |\nabla q_{K} \times \mathbf{n}_{F}|^{2}.$$
(14)

Let $\mathbf{n}_{\hat{F}_{F,K}}$ be the unit normal vector of the facet $\hat{F}_{F,K}$ outgoing from \hat{K} . We have: $\mathbf{n}_{F,K} = |K| (\mathbb{B}_{K}^{-1})^{T} |\hat{F}_{F,K}| |F|^{-1} \mathbf{n}_{\hat{F}_{F,K}}.$

Consider d = 2. Changing the variable, assuming Hypothesis 1, we get:

$$\sum_{F \in \mathcal{F}_{K}^{i}} h_{F}^{2} |\nabla q_{K} \times \mathbf{n}_{F}|^{2} = \sum_{F \in \mathcal{F}_{K}^{i}} |\hat{F}_{F,K}|^{2} |\nabla_{\hat{\mathbf{x}}} \hat{q}_{K} \times \mathbf{n}_{\hat{F}_{F,K}}|^{2} \gtrsim |\nabla_{\hat{\mathbf{x}}} \hat{q}_{K}|^{2}.$$
(15)

Consider d = 3. Changing the variable, one now finds that $|\nabla q_K \times \mathbf{n}_F| = |\hat{F}_{F,K}| |F|^{-1} |\mathbb{B}_K \nabla_{\hat{\mathbf{x}}} \hat{q}_K \times \mathbf{n}_{\hat{F}_{F,K}}|$. Hence: $|\nabla q_K \times \mathbf{n}_F| \ge |F|^{-1} ||\mathbb{B}_K^{-1}||^{-1} |\nabla_{\hat{\mathbf{x}}} \hat{q}_K \times \mathbf{n}_{\hat{F}_{F,K}}|$. Notice that $h_F |F|^{-1} ||\mathbb{B}_K^{-1}||^{-1} \ge \sigma_K^{-1}$. Assuming Hypothesis 1, we then have:

$$\sum_{F \in \mathcal{F}_K^i} h_F^2 |\nabla q_K \times \mathbf{n}_F|^2 \gtrsim \sigma_K^{-2} |\nabla_{\hat{\mathbf{x}}} \hat{q}_K|^2.$$
(16)

Using Poincaré-Steklov inequality [10, Lemma 12.11] in \hat{K} , we have: $|K| |\nabla_{\hat{\mathbf{x}}} \hat{q}_K|^2 \gtrsim ||\hat{q}_K - \underline{q}_K||_{\hat{K}}^2$ with $\underline{q}_K = \int_K q_K / |K|$. Using (15) and (16) in (14), it holds:

$$(\nabla q_{1,h}, \mathbf{v}_{1,h})_K \gtrsim \nu^{-1} \, \sigma_K^{-2(d-2)} |K| \, |\nabla_{\hat{\mathbf{x}}} \hat{q}_K|^2 \gtrsim \nu^{-1} \, \sigma_K^{-2(d-2)} \|q_K - \underline{q}_K\|_K^2.$$
(17)

We obtain (11) by summation. Remark that $\nabla \psi_{F|K} = |K|^{-1} |F| \mathbf{n}_{F,K}$. Let us prove (12). Recall the orthogonality $\nabla \psi_{F|K}(M_F) \perp \mathbf{v}_{1,h}(M_F)$, so that $(\operatorname{div} \mathbf{v}_{1,h}, q_{0,h})_K = |K| q_{0,h}(K) \sum_{F \in \mathcal{F}_K^i} \nabla \psi_{F|K}(M_F) \cdot \mathbf{v}_{1,h}(M_F) = 0$. Let us prove (13). For all $K \in \mathcal{T}_h$, $\underline{\nabla} \mathbf{v}_{1,h|K} = \sum_{F \in \mathcal{F}_K^i} \mathbf{v}_{1,h}(M_F) \otimes \nabla \psi_{F|K}$. Hence: $\|\underline{\nabla} \mathbf{v}_{1,h}\|_K^2 \leq v^{-2} \sum_{F \in \mathcal{F}_K^i} |F|^2 |K|^{-1} h_F^4 |\nabla q_K \times$ $\mathbf{n}_{F}|^{2}. \text{ Using (3), and assuming Hypothesis 1, we get: } \|\underline{\nabla}\mathbf{v}_{1,h}\|_{K}^{2} \leq \nu^{-2} \sigma_{K}^{2} h_{K}^{2} |K| \sum_{F \in \mathcal{F}_{K}^{i}} |\nabla q_{K} \times \mathbf{n}_{F}|^{2} \leq \nu^{-2} \sigma_{K}^{2} h_{K}^{2} \|\nabla q_{K}\|_{K}^{2}. \text{ From Eq. (6): } \|\underline{\nabla}\mathbf{v}_{1,h}\|_{K} \leq \nu^{-1} \sigma_{K}^{2} \|q_{K} - \underline{q}_{K}\|_{K}.$

Let $b_h : \mathbf{X}_h \times Q_h \to \mathbb{R}$ be defined by $b_h(\mathbf{v}_h, q_h) = -(\operatorname{div}_h \mathbf{v}_h, q_{0,h})_{\Omega} + (\mathbf{v}_h, \nabla q_{1,h})_{\Omega}$ with $q_h = q_{0,h} + q_{1,h}$ such that $(q_{0,h}, q_{1,h}) \in Q_{0,h} \times Q_{1,h}$. **Theorem 1 (Stability)** *The following continuity property holds:*

$$\forall (\mathbf{v}_h, q_h) \in \mathbf{X}_{0,h} \times Q_h, \quad |b_h(\mathbf{v}_h, q_h)| \leq \sigma \, \|\mathbf{v}_h\|_h \, \|q_h\|_{\Omega}. \tag{18}$$

Assuming Hypothesis 1, the following inf-sup condition holds:

$$\forall q_h \in Q_h, \ \exists \mathbf{v}_h \in \mathbf{X}_{0,h}, \quad b_h(\mathbf{v}_h, q_h) \gtrsim \frac{1}{\sqrt{2}} C_{\text{div}}^{-2} \sigma^{-2d} \|\mathbf{v}_h\|_h \|q_h\|_{\Omega}.$$
(19)

Proof. Let us prove (18). Let $(\mathbf{v}_h, q_h) \in \mathbf{X}_{0,h} \times Q_h$. Integrating by parts, we have:

$$b_h(\mathbf{v}_h, q_h) = -(\operatorname{div}_h \mathbf{v}_h, \pi_0(q_h))_{\Omega} + \sum_{K \in \mathcal{T}_h} \sum_{F \subset \partial K} (\mathbf{v}_h \cdot \mathbf{n}_{F,K}, q_{1,h})_F.$$
(20)

Using Cauchy-Schwarz, we have: $|(\operatorname{div}_h \mathbf{v}_h, \pi_0(q_h))_{\Omega}| \le \sqrt{d} ||\mathbf{v}_h||_h ||\pi_0(q_h)||_{\Omega}$. Using (8) in (20), we obtain (18) from Proposition 4. Let us prove (19), starting from

the proof of [20, Lemma 4.2]. Let $q_h \in Q_h \setminus \{0\}$, where $q_h = q_{0,h} + q_{1,h}$ is such that $(q_{0,h}, q_{1,h}) \in Q_{0,h} \times Q_{1,h}$. Let $\mathbf{v}_h := \mathbf{v}_{0,h}$ be like in Lemma 2. Using (20) with $\mathbf{v}_h = \mathbf{v}_{0,h}$, (8) and (9), letting $\tilde{q}_{1,h} = q_h - \pi_0(q_h)$, we have:

$$b_h(\mathbf{v}_{0,h}, q_h) \gtrsim \nu^{-1} \|\pi_0(q_h)\|_{\Omega}^2 - \sigma \|\mathbf{v}_{0,h}\|_h \|\tilde{q}_{1,h}\|_{\Omega}.$$
 (21)

Using (10) and Young inequality, we have for all $\varepsilon > 0$:

$$-\|\mathbf{v}_{0,h}\|_{h} \|\tilde{q}_{1,h}\|_{\Omega} \ge -\frac{1}{2}C_{\text{div}} \nu^{-1} (\varepsilon \|\pi_{0}(q_{h})\|_{\Omega}^{2} + \varepsilon^{-1} \|\tilde{q}_{1,h}\|_{\Omega}^{2}).$$
(22)

We now insert the bound (22) in (21) to get:

$$b_h(\mathbf{v}_{0,h}, q_h) \gtrsim \nu^{-1} \left(\left(1 - \frac{\varepsilon}{2} C_{\text{div}} \sigma\right) \|\pi_0(q_h)\|_{\Omega}^2 - \frac{C_{\text{div}}}{2\varepsilon} \sigma \|\tilde{q}_{1,h}\|_{\Omega}^2 \right).$$
(23)

Let $\mathbf{v}_{1,h}$ be like in Lemma 3. Using (11) and (12), we get:

$$b_h(\mathbf{v}_{1,h}, q_h) = (\nabla q_{1,h}, \mathbf{v}_{1,h})_{\Omega} \gtrsim \nu^{-1} \, \sigma^{-2(d-2)} \, \|\tilde{q}_{1,h}\|_{\Omega}^2$$
(24)

Last, we set $\mathbf{v}_h^{\star} = \mu \mathbf{v}_{0,h} + \mathbf{v}_{1,h}$, where $\mu > 0$. Using (23) and (24), we have:

$$\begin{split} b_h(\mathbf{v}_h^{\star}, q_h) &= \mu \, b_h(\mathbf{v}_{0,h}, q_h) + b_h(\mathbf{v}_{1,h}, q_h), \\ &\gtrsim \nu^{-1} \Big(\, \mu \left(1 - \frac{\varepsilon}{2} \, C_{\text{div}} \, \sigma \right) \, \| \pi_0(q_h) \|_{\Omega}^2 + \left(\sigma^{-2 \, (d-2)} - \frac{\mu \, C_{\text{div}}}{2 \, \varepsilon} \, \sigma \right) \, \| \tilde{q}_{1,h} \|_{\Omega}^2 \Big). \end{split}$$

Let us choose $\varepsilon = (C_{\text{div}} \sigma)^{-1} < 1$ and $\mu = \sigma^{-2(d-2)} \varepsilon^2$. We obtain that:

$$b_h(\mathbf{v}_h^{\star}, q_h) \gtrsim C_{\min} \nu^{-1} \|q_h\|_{\Omega}^2 \text{ with } C_{\min} = \varepsilon^2 \sigma^{-2(d-2)} = C_{\operatorname{div}}^{-2} \sigma^{-2(d-1)}.$$
 (25)

Stability Of The $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ Element

Let us bound $\|\mathbf{v}_{h}^{\star}\|_{h}$ by $\|q_{h}\|_{\Omega}$. We have: $\|\mathbf{v}_{h}^{\star}\|_{h}^{2} \leq \left(\mu^{2} \|\mathbf{v}_{0,h}\|_{h}^{2} + \|\mathbf{v}_{1,h}\|_{h}^{2}\right)$. Using (10) and (13) $\|\mathbf{v}_{h}^{\star}\|_{h}^{2} \leq \nu^{-2} \left(\mu^{2} C_{\text{div}}^{2} \|\pi_{0}(q_{h})\|_{\Omega}^{2} + \sigma^{4} \|\tilde{q}_{1,h}\|_{\Omega}^{2}\right)$, hence:

$$\|\mathbf{v}_{h}^{\star}\|_{h}^{2} \leq C_{\max}^{2} \nu^{-2} \|q_{h}\|_{\Omega}^{2} \text{ with } C_{\max} = \sqrt{2} \sigma^{2}.$$
(26)

Using (26) in (25), we get (19) since $C_{\min} C_{\max}^{-1} = \frac{1}{\sqrt{2}} C_{\text{div}}^{-2} \sigma^{-2d}$.

Let $\mathbf{V}_h = {\mathbf{v}_h \in \mathbf{X}_{0,h} | \forall q_h \in Q_h, b_h(\mathbf{v}_h, q_h) = 0}$. We know from [22, Lemma 3.1] that $\mathbf{V}_h \subset {\mathbf{v}_h \in \mathbf{X}_{0,h} | \forall K \in \mathcal{T}_h, \text{div } \mathbf{v}_{h|K} = 0}$. Using $P^0 + P^1$ discrete pressures improves consistency. Indeed, integrating by parts, we have that for all $(\mathbf{v}_h, q_{1,h}) \in \mathbf{V}_h \times Q_{1,h}, 0 = b_h(\mathbf{v}_h, q_{1,h}) = -(\text{div}_h \mathbf{v}, \pi_0(q_{1,h}))_{\Omega} + \sum_{F \in \mathcal{T}_h} \int_F q_{1,h}[\mathbf{v}_h] \cdot \mathbf{n}_F = 0 + \sum_{F \in \mathcal{T}_h} \int_F q_{1,h}[\mathbf{v}_h] \cdot \mathbf{n}_F$. Hence:

Lemma 4 For all $(\mathbf{v}_h, q_{1,h}) \in \mathbf{V}_h \times Q_{1,h}$, it holds: $\sum_{F \in \mathcal{F}_h} \int_F q_{1,h}[\mathbf{v}_h] \cdot \mathbf{n}_F = 0$.

Let $\ell_{\mathbf{f}} \in \mathcal{L}(\mathbf{X}_h, \mathbb{R})$ be such that $\forall \mathbf{v}_h \in \mathbf{X}_h$, $\ell_{\mathbf{f}}(\mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h)_{\Omega}$ if $\mathbf{f} \in \mathbf{L}^2(\Omega)$, $\ell_{\mathbf{f}}(\mathbf{v}_h) = \langle \mathbf{f}, \mathcal{I}_h(\mathbf{v}_h) \rangle_{\mathbf{H}_0^1(\Omega)}$ if $\mathbf{f} \notin \mathbf{L}^2(\Omega)$, where $\mathcal{I}_h : \mathbf{X}_{0,h} \to \mathbf{Y}_{0,h}$ is for instance an averaging operator [10, §22.4.1], with $\mathbf{Y}_{0,h} = \{\mathbf{v}_h \in \mathbf{H}_0^1(\Omega) \mid \forall K \in \mathcal{T}_h, \mathbf{v}_{h|K} \in \mathbf{P}^k(K)\}$. The discretization of Problem (1) with the $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ element reads: Find $(\mathbf{u}_h, p_h) \in \mathbf{X}_{0,h} \times Q_h$ such that $\forall (\mathbf{u}_h, p_h) \in \mathbf{X}_{0,h} \times Q_h$

$$\mathbf{v}(\mathbf{u}_h, \mathbf{v}_h)_h + b_h(\mathbf{v}_h, p_h) + b_h(\mathbf{u}_h, q_h) = \ell_{\mathbf{f}}(\mathbf{v}_h).$$
(27)

Due to Proposition 2 and Theorem 1, Problem (27) is well posed.

3 Convergence Of The $P_{nc}^1 - (P^0 + P^1)$ Element

Following the proofs of [1, Theorems 3, 4, 6], we can prove

Theorem 2 Suppose that Hypothesis 1 holds and that the solution of Problem (1) is such that $(\mathbf{u}, p) \in (\mathbf{V} \cap \mathbf{H}^2(\Omega)) \times (H^1(\Omega) \cap L^2_{zmv}(\Omega))$. It holds:

$$\|\mathbf{u} - \mathbf{u}_h\|_h \lesssim \sigma \, h \, \nu^{-1} \, \|\mathbf{f}\|_{\Omega}. \tag{28}$$

If
$$\Omega$$
 is convex $\|\mathbf{u} - \mathbf{u}_h\|_{\Omega} \leq \sigma^2 h^2 v^{-1} \|\mathbf{f}\|_{\Omega}$. (29)

$$\|(p - p_h) - \pi_0(p - p_h)\|_{\Omega} \leq \nu \,\sigma^{(2\,d-1)} \,h \,\|\mathbf{f}\|_{\Omega}.$$
(30)

$$\|\pi_0(p - p_h)\|_{\Omega} \leq \nu C_{\text{div}} \,\sigma^{(2d+1)} \,h\|\mathbf{f}\|_{\Omega}.$$
 (31)

In the case of inhomogeneous Dirichlet boundary conditions, one can also recover (28) and (29), following [1, \$7], where a lifting of **g** is used.

When $\Omega \subset \mathbb{R}^2$, we have moreover the two Lemmas below.

Lemma 5 For all $(\mathbf{v}_h, q_h) \in \mathbf{V}_h \times Q_{2,h}, (\nabla q_h, \mathbf{v}_h)_{\Omega} = 0.$

Proof. Let $(\mathbf{v}_h, q_h) \in \mathbf{V}_h \times Q_{2,h}$. Integrating by parts and using Lemma 4, we get that $\forall q_{1,h} \in Q_{1,h}: (\nabla q_h, \mathbf{v}_h)_{\Omega} = -\sum_{F \in \mathcal{F}_h} \int_F q_h[\mathbf{v}_h] \cdot \mathbf{n}_F = -\sum_{F \in \mathcal{F}_h} \int_F (q_h - q_{1,h})[\mathbf{v}_h] \cdot \mathbf{n}_F$ $\mathbf{n}_F = \sum_{F \in \mathcal{F}_h} \int_F (q_h - q_{1,h})[\mathbf{v}_h - \mathbf{v}_h(M_F)] \cdot \mathbf{n}_F$. Hence, we obtain: $(\nabla q_h, \mathbf{v}_h)_{\Omega} = -\sum_{K \in \mathcal{T}_h} \sum_{F \subset \partial K} \int_F (q_h - q_{1,h})(\mathbf{v}_h - \mathbf{v}_h(M_F)) \cdot \mathbf{n}_{F,K}$. Choose $q_{1,h}$ such that $\forall S \in \mathcal{V}_h$, $q_{1,h}(S) = q_{2,h}(S)$. Then, $\forall F \in \mathcal{F}_h$, the degree 3 polynomial $(q_h - q_{1,h})(\mathbf{v}_h - \mathbf{v}_h(M_F))$ vanishes at the quadrature points of Simpson's rule. Since it is exact for degree 3 polynomials, $\forall F \in \mathcal{F}_h$, $\int_F (q_h - q_{1,h})(\mathbf{v}_h - \mathbf{v}_h(M_F)) \cdot \mathbf{n}_{F,K} = 0$ and $(\nabla q_h, \mathbf{v}_h)_{\Omega} = 0$. \Box

Lemma 6 Let $\phi \in H^3(\Omega) \cap L^2_{zmv}(\Omega)$ such that $|\phi|_{H^3(\Omega)} \neq 0$. Then, $\forall \mathbf{v}_h \in \mathbf{V}_h$, $(\nabla \phi, \mathbf{v}_h)_{\Omega} \leq \sigma h^2 |\phi|_{H^3(\Omega)} ||\mathbf{v}_h||_{\Omega}$.

Proof. Let $\mathbf{v}_h \in \mathbf{V}_h$. Using Lemma 5 and Cauchy-Schwarz, it holds: $|(\nabla \phi, \mathbf{v}_h)_{\Omega}| = |(\nabla (\phi - q_h), \mathbf{v}_h)_{\Omega}|$ for all $q_h \in Q_{2,h}$. We then use [10, Lemma 11.9] to conclude. \Box

Theorem 3 Suppose that Ω is convex. Let $p \in H^3(\Omega) \cap L^2_{zmv}(\Omega)$ such that $|p|_{H^3(\Omega)} \neq 0$. Consider Problem (1) with $\mathbf{f} = \nabla p$. Then (\mathbf{u}_h, p_h) , the solution of Problem (27) is such that (where $\delta p = p - p_h$):

$$\nu \|\mathbf{u}_{h}\|_{h} \leq \sigma^{2} h^{3} \|p\|_{H^{3}(\Omega)}, \qquad \nu \|\mathbf{u}_{h}\|_{\Omega} \leq \sigma^{3} h^{4} \|p\|_{H^{3}(\Omega)}.$$
(32)

$$\|\delta p - \pi_0(\delta p)\|_{\Omega} \leq \sigma^4 h^2 \|p\|_{H^2(\Omega)}, \ \|\pi_0(\delta p)\|_{\Omega} \leq C_{\text{div}} \sigma^6 h^2 \|p\|_{H^2(\Omega)}.$$
(33)

Proof. Setting $\mathbf{v}_h = \mathbf{u}_h$ as test-function in Problem (27) and using Lemma 6, it holds: $v \|\mathbf{u}_h\|_h^2 = (\nabla \phi, \mathbf{u}_h)_\Omega \leq \sigma h^2 |\phi|_{H^3(\Omega)} \|\mathbf{u}_h\|_\Omega$. From [1, Theorem 4], we have: $\|\mathbf{u}_h\|_\Omega \leq \sigma h \|\mathbf{u}_h\|_h$. We deduce that $v \|\mathbf{u}_h\|_h \leq \sigma^2 h^3 |\phi|_{H^3(\Omega)}$. Using this estimate, we get that $v \|\mathbf{u}_h\|_\Omega \leq \sigma^3 h^4 |\phi|_{H^3(\Omega)}$. The proof of (33) is similar to that of Eqs (30)-(31), using (32) and noticing that $\forall K \in \mathcal{T}_h$, $\|\nabla (\phi - \pi_1 \phi)\|_K \leq \sigma_K h_K |\phi|_{H^2(K)}$.

4 Numerical Results

To get $p_h \in L^2_{zmv}(\Omega)$, we eliminate a degree of freedom in $\mathcal{P}^0_{disc}(\mathcal{T}_h)$ and in $\mathcal{P}^1(\mathcal{T}_h)$ and post-process by subtracting the mean-value. Let us set: $\|(\mathbf{u}, p)\|_{\nu}^2 := \|\nabla \mathbf{u}\|_{\Omega}^2 + \nu^{-2} \|p\|_{\Omega}^2$. Let $\delta_h \mathbf{u} = \Pi_h \mathbf{u} - \mathbf{u}_h$, $\delta p = p - p_h$ and π^1_{disc} be the L^2 -orthogonal projection onto $\mathcal{P}^1_{disc}(\mathcal{T}_h)$. We compute the discrete errors values: $\varepsilon_0^{\nu}(\mathbf{u}_h) := \|\delta_h \mathbf{u}\|_{\Omega}/\|(\mathbf{u}, p)\|_{\nu}$, $\varepsilon_1^{\nu}(\mathbf{u}_h) := \|\delta_h \mathbf{u}\|_h/\|(\mathbf{u}, p)\|_{\nu}$ and $\varepsilon_0^{\nu}(p_h) := \nu^{-1}(\|\pi_0(\delta p)\|_{\Omega}^2 + \|\pi^1_{disc}(\delta p) - \pi_0(\delta p)\|_{\Omega}^2^{\frac{1}{2}}/\|(\mathbf{u}, p)\|_{\nu}$. Let $\tau_{0,\mathbf{u}}$, $\tau_{1,\mathbf{u}}$ and τ_p be the averaged convergence rates of $\varepsilon_0^{\nu}(\mathbf{u})$, $\varepsilon_1^{\nu}(\mathbf{u})$ and $\varepsilon_0^{\nu}(p)$.

We first consider a 2D case illustrating Thm. 3, with the prescribed solution $\mathbf{u} = 0$, $\mathbf{f} = \nabla \psi$ with $\psi(x, y) = \exp(-10(1 - x + 2y))$. Fig. 1 shows $\varepsilon_0^{\nu}(\mathbf{u}_h)$, $\varepsilon_1^{\nu}(\mathbf{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ against *h*, for $\nu = 10^{-2}$, with P^0 (left) or $P^0 + P^1$ (right) discrete pressures, comparing the $\mathbf{P}_{nc}^1 - P^0$ [1, Example 4] and $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ schemes. Tab. 1 reports observed convergence rates, which are better for the $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ scheme.

Let us consider stationary Navier-Stokes equations set in $\Omega = (0, 1)^3$: Find (\mathbf{u}, p)

Fig. 1 2*D* case. Plots of $\varepsilon_0^{\nu}(\mathbf{u}_h)$, $\varepsilon_1^{\nu}(\mathbf{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ for $\nu = 10^{-2}$.

 Table 1
 2D case, averaged convergence rates on the last five meshes.

P^0	$P^{0} + P^{1}$	P^0	$P^{0} + P^{1}$	P^0	$P^0 + P^1$
$\tau_{0,u}$ 2.02	4.03	$\tau_{1,u}$ 1.01	3.07	τ_p 1.60	2.10

such that $-\nu \Delta \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{f}$ and div $\mathbf{u} = 0$ in Ω , with inhomogeneous Dirichlet boundary conditions. Computations are done with the TrioCFD code [6, 7] with the $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ scheme. The convection term is discretized using the MUSCL scheme [6]. We study the prescribed solution $\mathbf{u} = (y - z, z - x, x - y)^T$, $p = \frac{1}{2}(x^2 + y^2 + z^2) - xy - xz - yz - 1/4$ so that $\mathbf{f} = 0$. Fig. 2 shows $\varepsilon_0^{\nu}(\mathbf{u}_h)$ (left) and $\varepsilon_0^{\nu}(p_h)$ (right) against *h*, for $\nu = 10^{-1}$; 10^{-2} ; 10^{-3} .

Fig. 2 3D case. Plots of $\varepsilon_0^{\nu}(\mathbf{u}_h)$ and $\varepsilon_0^{\nu}(p_h)$ for $\nu = 10^{-1}$, $\nu = 10^{-2}$ or $\nu = 10^{-3}$.

Table 2 reports the convergence rates $\tau_{0,\mathbf{u}}$ (left), and τ_p (right). More numerical results are available in [8, 9, 6, 23]. The $\mathbf{P}_{nc}^1 - (P^0 + P^1)$ scheme shows good approximation properties and should therefore be suitable for solving the Navier-Stokes equations in the context of industrial simulation. More generally, it seems interesting

Table 2 3D case, averaged convergence rates on the last three meshes.

ν	10^{-1}	10 ⁻²	10-3	ν	10^{-1}	10 ⁻²	10^{-3}
$\tau_{0,\mathbf{u}}$	1.68	1.88	1.41	τ_p	0.70	1.72	1.35

to design and study discrete pressure enrichment for higher order nonconforming Crouzeix-Raviart mixed FEM [2, 3].

Acknowledgements We would like to thank P.-E. Angeli for his contribution to §4.

References

- 1. Crouzeix M., Raviart, P.-A.: RAIRO, Sér. Anal. Numer., 7, 33, 33-75 (1973).
- 2. Sauter, S.: Computers & Mathematics with Applications, 149, 49-70 (2023).
- 3. Sauter, S., Torres, C.: Mathematics of Computation, 92, 341, 1033–1059 (2023).
- 4. Hecht, F.: RAIRO, Sér. Anal. Numér. 15, 2, 119-150 (1981).
- 5. Linke, A.: Comput. Methods Appl. Mech. Engrg. 268, 782-800 (2014).
- Angeli, P.-E. et al: FVCA8 benchmark for the Stokes and Navier-Stokes equations with the TrioCFD code, in: Cancès, C., Omnes, P. (eds.) *Finite Volumes for Complex Applications VIII* - *Methods and Theoretical Aspects*, pp. 181-302, Springer (2017).
- 7. CEA/DM2S, TRUST-TrioCFD code, https://triocfd.cea.fr/.
- Heib, S.: Nouvelles discrétisations non structurées pour des écoulements de fluides à incompressibilité renforcée, PhD thesis, Univ. Pierre et Marie Curie - Paris VI, France (2003).
- Fortin, T.: Une méthode éléments finis à décomposition L² d'ordre élevé motivée par la simulation d'écoulement diphasique bas Mach, Univ. Pierre et Marie Curie - Paris VI (2006).
- 10. Ern, A., Guermond, J.-L.: Finite elements I, Springer (2021).
- 11. Ern, A., Guermond, J.-L.: Finite elements II, Springer (2021).
- 12. Warburton, T., Hesthaven, J.S.: Comput. Methods Appl. Mech. Engrg., 192, 25, 2765–2773 (2003).
- Amrouche, C., Ciarlet, P. G., Mardare, C.: Journal de Mathématiques Pures et Appliquées, 104, 2, 207-226 (2015).
- Bonnet-Ben Dhia, A.-S., Ciarlet Jr., P.: Méthodes variationnelles pour l'analyse de problèmes non coercifs, M.Sc. AMS lecture notes (ENSTA-IPP) (2023).
- Barré, M., Ciarlet Jr., P.: The T-coercivity approach for mixed problems, C. R. Acad. Sci. Paris, Ser. I, to appear, https://univ-rennes2.hal.science/INRIA/hal-03820910,.
- 16. Jamelot, E.: Improved stability estimates for solving Stokes problem with Fortin-Soulie finite elements, submitted, https://cea.hal.science/cea-03833616v3.
- 17. Apel, T., Nicaise, S., Schöberl, J.: Numerische Mathematik 89, 2, 193-223 (2001).
- Emonot, P.: Méthode de volumes éléments finis : applications aux équations de Navier-Stokes et résultats de convergence, PhD thesis, Université Claude Bernard - Lyon I, France (1992).
- 19. John, V., Linke, A., Merdon, C., Neilan M., Rebholz, L.G.: *SIAM REVIEW*, **59**, 3, 492–544 (2017).
- 20. Bernardi, C., Hecht F.: ESAIM: M2AN, 34, 5, 953-980 (2000).
- Assous, F., Ciarlet Jr., P., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism, Springer (2018).
- 22. Burman, E., Hansbo, P.: Numer. Methods Partial Differ. Equ., 21, 5, 986-997 (2005).
- 23. Gounand, S.: https://cea.hal.science/cea-02489502/document (2015).

10