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Abstract. At the core scale, neutron deterministic calculations are usually
based on the neutron diffusion equation. Classically, this equation can be recast
in a mixed variational form, and then discretized by using the Raviart-Thomas-
Nédélec Finite Element. The goal is to extend the Adaptive Mesh Refinement
(AMR) strategy previously proposed in [1] to the Domain Decomposition+L2

jumps which allows non conformity at the interface between subdomains.
We are able to refine each subdomain independently, which eventually leads to
a more optimal refinement. We numerically investigate the improvements made
to the AMR strategy.

1 Introduction

Numerical simulation of the neutron transport equation usually requires a high computational
cost. The reason comes from the fact that one has to deal with many variables: the neutron
position in space, the velocity direction and the neutron energy. In industrial applications,
calculations at core scale are usually modeled by the neutron diffusion equation. Our context
is the development of the project APOLLO3®, a shared platform among CEA, EDF and
FRAMATOME, which includes different deterministic solvers in order to perform lattice
and core calculations [2]. Particularly, we are interested in the MINOS solver based on the
mixed Raviart-Thomas-Nédélec finite element method and implemented on Cartesian and
hexagonal grids for the multi-group SPN equation [3]. In this work, we focus on the steady
state monokinetic neutron diffusion equation on a reactor core R,

D −1p + ∇φ = 0 in R,

div p + Σaφ =
1

keff

νΣ fφ in R,

φ = 0 on ∂R,

(1)

where D is the diffusion coefficient, Σa is the absorption cross section, Σ f is the fission cross
section, ν the average number of neutrons emitted per fission, p is the current, φ is the flux,
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and keff is the effective multiplicative factor. Since the cross sections and the diffusion coeffi-
cients are usually heterogeneous (piecewise constant), the solution of the diffusion equation
may have some singularities which limit the precision and convergence of the solution [4]. It
is well known that the mesh subdivision method is one of the most effective ways to treat this
problem [1, 5–7].

The domain decomposition is a strategy that is well-suited for parallel computing. It al-
lows to split the problem posed on the whole domain into subproblems posed in subdomains,
which may be solved in parallel. Among those domain decomposition methods, the domain
decomposition+L2-jumps method (or DD+L2-jumps method) is proposed in [4]. The au-
thors show, under some assumptions, the convergence of this method for a non-conforming
decomposition. We mention [8] for a successful application of the DD+L2-jumps method
to criticality calculations. In the framework of reactor core simulations, we are interested
in Adaptive Mesh Refinement (AMR) strategies. Suitably combined to the DD+L2-jumps
method, a posteriori error estimates allow to adapt independently the mesh of each subdo-
main.

The purpose of this work is to develop an adaptive solution of the DD+L2-jumps method
applied to the steady state problem. In particular, this article is organized as follows. Section 2
introduces the DD+L2-jumps method and its discretization. In Section 3, we present our
AMR strategy for the source problem based on a posteriori error estimators. Numerical
results are shown in Section 4. Finally, Section 5 draws some concluding remarks.

2 Variational formulation and discretization
2.1 Monodomain problem

We assume that the domain R is a bounded, connected and open subset of Rd for d = 2, 3,
having a Lipschitz boundary which is piecewise smooth. To be convenient, let us introduce
the following spaces :

L B L2(R), V B H1
0(R),

Q B H(div ,R):= {v ∈ (L2(R))d | div v ∈ L2(R)}, X B Q × L.

Let (Th)h be a family of meshes, made for instance of simplices, or of rectangles (d = 2),
resp. cuboids (d = 3), indexed by a parameter h equal to the largest diameter of elements of
a given mesh. We introduce Xh = Qh × Lh, the conformal discrete space associated with the
Raviart-Thomas-Nédélec elements, which satisfies

Qh ⊂ Q, and Lh ⊂ L.

The discrete variational formulation associated to Problem (1) writes

Find (ζh, kh
eff) ∈ Xh × R

+ such that for all ξh ∈ Xh , c(ζh, ξh) =
1

kh
eff

f (ζh, ξh). (2)

where the bilinear forms are defined on X × X for all ζ B (p, φ) and ξ B (q, ψ) ∈ X,

• c(ζ, ξ) B −
∫
R

D −1p · q +

∫
R

φ div q +

∫
R

div pψ +

∫
R

Σaφψ,

• f (ζ, ξ) B
∫
R

νΣ fφψ.

Traditionally, this problem is solved by the inverse power iteration algorithm, which relies on
the resolution of a discrete source problem [9, Chapter 4]. Let S f ∈ L be a given source term,
the source problem writes

Find ζh ∈ Xh such that for all ξh := (qh, ψh) ∈ Xh , c(ζh, ξh) =

∫
R

S fψh. (3)



2.2 Domain decomposition+L2-jumps method

In this section, we present the domain decomposition+L2-jumps method applied to the source
problem (3). Let us define a partition {

∗

Ri}1≤i≤
∗
N of R. For ψ ∈ L, we will use the notation

ψi B ψ|∗
Ri
,

for 1 ≤ i ≤
∗

N. We will note Ξi j the interface between two subdomains of
∗

Ri and
∗

R j. We
define the interface Ξ by

Ξ B ∪
∗
N
i=1 ∪

∗
N
j=i+1 Ξi j.

We now define the following spaces
∗

PH
1
0 (R) B {ψ ∈ L2(R)|ψi ∈ H1(

∗

Ri), ψ|∂∗Ri\Ξ
= 0, 1 ≤ i ≤

∗

N},
∗

PH(div ,R) B {q ∈ L2(R) | qi ∈ H(div ,
∗

Ri), 1 ≤ i ≤
∗

N},

M B {ψI ∈
∏
i< j

L2(Ξi j)},

∗

Q B {q ∈
∗

PH(div ,R) | [q · n] ∈ M},

W B
∗

Q ×L2(R) × M,

where [q · n] is called the global jump of the normal component and is defined by

[q · n]|Ξi j B qi · ni + q j · n j, for 1 ≤ i < j ≤
∗

N.

The DD+L2-jumps method writes,
Find (p, φ, φI) ∈

∗

Q ×
∗

PH
1
0 (R) × M such that

−D −1
i pi − gradφi = 0 in

∗

Ri, for 1 ≤ i ≤
∗

N,
div pi + Σa,iφi = S f ,i in

∗

Ri, for 1 ≤ i ≤
∗

N,
φi = φI on ∂

∗

Ri ∩Ξ, for 1 ≤ i ≤
∗

N,
[p · n]Ξi j = 0 for 1 ≤ i < j ≤

∗

N.

The flux and the current respectively belong to the broken spaces
∗

PH
1
0 (R) and

∗

PH(div ,R).
The space M is the space of the Lagrange multipliers, defined on the interface. They are
introduced in order to impose the constraint on the jump of the normal component of the
current. The key observation in the domain decomposition+L2-jumps method is that the jump
of the normal component of the current belongs to M. The associated variational formulation
writes

Find u = (p, φ, φI) ∈ W such that ∀ w = (q, ψ, ψI) ∈ W, cS (u, w) =

∫
R

S fψ, (4)

where

cS (u, w) B c((p, φ), (q, ψ)) +

∫
Ξ

[p · n]ψI −

∫
Ξ

[q · n]φI .

The discrete variational formulation writes,

Find uh = (ph, φh, φI,h) ∈ Wh such that ∀wh = (qh, ψh, ψI,h) ∈ Wh, cS (uh, wh) =

∫
R

S fψh, (5)

where Wh is a conformal discrete approximation space of W. A priori estimates have been
derived for low regularity solutions in [4].



3 Adaptive mesh refinement strategies

3.1 Generalities

In this paper, we aim to illustrate an AMR strategy for the problems (3) and (5). The general
method generates a sequence Thk from the initial mesh Th0 by using the following iterative
loop, which is divided into four modules as presented in Figure 1.

SOLVE ESTIMATE max
K∈Thk

ηK ≤ εAMR? MARK
No

Yes

REFINE

Stop

Figure 1: Description of the AMR process.

The module SOLVE amounts to solving the source problem (3) (respectively Prob-
lem (5)). In module ESTIMATE, the ηK local error indicator on each element is computed
from a posteriori error estimate for the discrete solution. The stopping criterion is defined
as max

K∈Thk

ηK ≤ εAMR for a user-defined εAMR > 0. In Section 4, we use a relative stopping

criterion εAMR = εAMR, rel‖φh‖L2(R), where εAMR, rel > 0. The purpose of the module MARK
is to select a set of elements with large error to be refined. For a user-defined parameter θ, the
marking strategy consists in finding an optimal set of cells S such that one has

η(S ) ≤ θ η(Thk ), where η(S ) B

∑
K∈S

η2
K

1/2 .
According to [10, Section 6], an efficient strategy which preserves the Cartesian structure of
the mesh is the direction marker strategy. One selects for each direction ex, x = 1, . . . , d,
the smallest set of lines Lx ⊂ Thk such that η(Lx) ≥ θη(Thk ). The resulting selected set is
S = ∪x=1,...,dLx. We will use this marking strategy through the rest of this paper.
Finally, the module REFINE refines the mesh. In the case of monodomain approach, the
marker strategy is designed such that it preserves the Cartesian structure of the mesh. This
constraint is somehow relaxed in the case of the DD+L2-jumps method. Since the DD+L2-
jumps method allows non conformity at the interface between two subdomains, the marker
strategy can be applied independently on each subdomain.

In the case of generalized eigenvalue problem, we simply replace the definition of the
SOLVE module in Figure 1 by the resolution of Problem (2). We refer to [1, Section 3] for a
generalized algorithm.

3.2 A posteriori error estimators for the source problem

3.2.1 Reconstruction

Since the discrete flux is computed with Raviart-Thomas-Nédélec elements, it is possible that
φh < V . We introduce a reconstruction ζ̃h = (p̃h, φ̃h) of ζh = (ph, φh) defined as

p̃h = ph ∈ Qh ⊂ H(div ,R), φ̃h ∈ V.



Note that the current is not reconstructed. For different reconstruction methods in the mon-
odomain case, we refer to [1, Section 5]. For the DD+L2-jumps method, a reconstruction
ũh = (p̃h, φ̃h, φ̃I,h) of uh = (ph, φh, φI,h) is defined as

p̃h = ph ∈ Qh ⊂ H(div ,R), φ̃h ∈ V, φ̃I,h = φ̃h on Ξ.

3.2.2 Monodomain problem

In [10], the authors show the existence of a posteriori error estimates for Problem (3). For all
ζ = (p, φ), ξ = (q, ψ) ∈ X, we define

• d(ζ, ξ) B
∫
R

D −1p · q +

∫
R

Σaφψ +

∫
R

ψ div p −
∫
R

φ div q = c(ζ, (−q, ψ)),

• ||ζ ||+ B
∫
R

D −1p · p +

∫
R

Σaφ φ +
∑

K∈Thk

h2
K(D min

K )−1||div p||2L2(K).

For K ∈ Th, we define N(K) B {K′ ∈ Th | dimH(∂K′ ∩ ∂K) = d − 1)}, where dimH is the
Hausdorff’s dimension. N(K) corresponds to the set of the neghbours of K, including K. We
let

• XK B {ζ = (p, φ) ∈ X | Supp(φ) ⊂ K,Supp(p) ⊂ N(K)}.

• For ζ ∈ X, the XK-local norm is then defined by

|ζ |+,K B sup
ξ∈XK ,‖ξ‖+≤1

d(ζ, ξ).

The residual and flux estimators write

ηr,K B ‖Σ
−1/2
a (S f − div ph − Σaφ̃h)‖L2(K) and η f ,K B ‖D

1/2(D −1ph + grad φ̃h)‖L2(K). (6)

According to [10, Theorem 5.6], we have the reliability of the previous estimators

|ζ − ζ̃h|+,K ≤

η2
r,K +

∑
K′∈N(K)

η2
f ,K

1/2 .
Under some hypothesis on the data, we also have the efficiency of these estimators [10, The-
orem 5.7].

3.2.3 DD+L2-jumps method

For the DD+L2-jumps method, we can follow the steps for the monodomain case. Similarly
as above, we let u = (p, φ, φI) ∈ W, and

• ‖u‖+,∗ B
∫
R

D −1p · p +

∫
R

Σaφ φ +
∑
K∈Th

h2
K(D min

K )−1‖div p‖2L2(K),

• WK B {ζ = (p, φ) ∈ X |Supp(φ) ⊂ K,Supp(p) ⊂
∗

N(K)}, where
∗

N(K) := N(K)∩
∗

RK with
∗

RK , the subdomain which contains K,

• For ζ ∈ X,
|ζ |+,K,∗ B sup

w=(ξ,ψI )∈WK ,‖w‖+,∗≤1
d(ζ, ξ).



(a) Checkerboard test case. (b) Dauge-Center test case.

Figure 2: The geometry for the test cases.

One can prove that if φ̃I,h = φ̃h on Ξ, then

|ζ − ζ̃h|+,K,∗ ≤

η2
r,K +

∑
K′∈
∗
N(K)

η2
f ,K′


1/2

.

Under the same hypothesis as above on the data, one can also prove the efficiency of the
residual and flux estimators. The proof is left to a publication in preparation.

4 Numerical results

4.1 Comparison of estimators

In this subsection, we would like to show numerically the improvements of the estimators
proposed in [10] compared to those presented in [1]. The AMR generates a mesh which
contains eventually less elements compared to the results presented in [1].
The estimator defined in [1] is denoted

ηK,0 =

√
η̂2

r,K + η2
f ,K + 5η2

nc,K ,

where
η̂r,K = ‖S f − div ph − Σaφh‖L2(K), ηnc,K = ‖Σ1/2

a (φ̃h − φh)‖L2(K).

In this paper, we use the estimator presented in [10]. The estimator is defined by

ηK,1 =

√
η2

r,K +
∑

K∈N(K)

η2
f ,K .

We perform the checkerboard test case [1, Section 4.1] for the one-group diffusion equa-
tion on the domain of computation R = (0, 100)2. The aim is to compare the AMR process
using the a posteriori error estimates presented in [1] with the AMR process using the ones
introduced in [10].
The diffusion coefficient D is given as in Figure 2(a) with D = 5 in the red region and D = 1
in the blue region. We set νΣ f = 1 and the absorption cross section Σa = Σt − Σs = 1. We
impose Dirichlet boundary condition on the flux. The initial mesh is a 12× 12 uniform mesh.
The SOLVE module is performed by a RTN0 finite element method. We apply the aver-
aging method [1, Section 5.1.1] for the reconstruction. The ESTIMATE module differs on



the choice of the a posteriori error estimator, ηK,0 or ηK,1. The MARK module applies the
direction marker strategy and we fix θ = 0.5.

In order to compare the AMR processes using either ηK,0 or ηK,1, we compare the number
of elements needed to reach a given precision, relatively to a reference keff,ref. The latter is
obtained from a RTN0 computation on a uniform 1000 x 1000 mesh, which gives keff,ref =

0, 995194.
It is observed in Figure 3 that in order to reach a 1 pcm precision relative to keff,ref, the ηK,0-
AMR needs 6 refinements, ending up with a mesh containing 12100 elements. On the other
hand, the ηK,1-AMR generates 6084 elements in 5 refinements. Finally, in order to reach the
same precision with a uniform mesh, one needs more than 30 000 elements. The total AMR
process is presented in Table 1.

Figure 3: Comparison of the estimators
ηK,0 and ηK,1 and a uniform refinement.
The dashed line represents the stopping
criterion for the splitting algorithm.

Iter Number of elements |R|/ min
K∈Thk

|K|

With ηK,0 With ηK,1 With ηK,0 With ηK,1

0 144 144 144 144
1 324 324 829 829
2 676 676 3317 3317
3 1444 1369 3317 13271
4 2916 2916 13271 53084
5 6084 6084 13271 212336
6 12100 - 53084 -

Table 1: Adaptive mesh refinement for the
checkerboard test case.

4.2 DD+L2-jumps method for the source and eigenvalue problem

In this subsection, we would like to assess our AMR strategy on the DD+L2-jumps method
applied to a specific one-group diffusion equation. We study the resolution of the source
problem and the eigenvalue problem.
The test cases are performed on the square R = (0, 100)2 where the diffusion coefficient
D = 10 in the red region and D = 1 in the blue region of the geometry as illustrated in
Figure 2(b). The absorption cross section Σa = 1. The domain decomposition is fixed by
dividing the domain at x = 50, resulting in a configuration containing two subdomains : a
two by two checkerboard for the first subdomain, and a second subdomain where the material
corresponding to the red region is located at the center of the subdomain.

For the reconstruction of the discrete solution of the DD+L2-jumps method, it is necessary
to tackle non conformities at the interface. The method we use here is an extension of the av-
eraging method. Let us describe it in the case of a RTN0 discretization on a two-dimensional
mesh.

First, we create a mesh by projecting the nodes located at the non-conformities of the
interface onto the mesh of the corresponding subdomain. Theses new nodes are represented
by yellow rectangles in Figure 4(b). This defines a new mesh called

∗

T h.



(a) Computational mesh. (b) Reconstruction at interface for the DD+L2-
jumps case.

Figure 4: Computational mesh and reconstruction. The interface is noted Ξ, the two subdo-
mains are R1 and R2, and the border is ∂R.

It is sufficient to define the reconstruction on the nodes of
∗

T h. We use the boundary condition
for the nodes located at the border (the purple circles in Figure 4(b)). We now consider the
inner nodes.
For a given node v of

∗

T h, we call d(v) ∈ N the minimal number of edges between the node
and the interface.
For the nodes v such that d(v) = 0 (the red circles in Figure 4(b)), we take the averaged value
of the Lagrange multipliers corresponding to the edges which contain v. On the nodes v such
that d(v) ≥ 2, the reconstruction is computed in the same way as the monodomain case. For
the Lagrange nodes v ∈

∗

T h such that d(v) = 1, two cases occur :

• the case where the node v is in Th (the blue circles in Figure 4(b)). In this case, the recon-
struction is computed with the averaging method . Let us suppose that all these nodes have
been computed before the second kind of nodes.

• the case where the node v is in
∗

T h, but not in Th (the yellow rectangles in Figure 4(b)). In
this case, the reconstruction is computed by interpolation. Since all circle nodes have been
computed, we use the value of the reconstruction at theses nodes to compute its value at
the retangular nodes.

In general, AMR is applied to increase the accuracy of solution. The AMR stopping
criterion is set at εAMR,rel = 4.3 × 10−3 for both test cases.

4.2.1 Source problem

For the source problem, we consider the simple constant source term S f = 1. In this test,
we would like to emphasize that the DD+L2-jumps method enhances the efficiency of the
AMR when applied to structured meshes. It is also interesting to point out that the non-
conforming grid at the subdomain interface allows local independent refinement on each
subdomain, clearly demonstrated in Figure 5. Hence, the AMR strategy performs much
better with DD+L2-jumps than in the monodomain case. More importantly, one can choose
independently one value for the threshold θ on each subdomain to reduce the total number of
elements on each subdomain as illustrated in Table 2.



(a) Monodomain, θ = 0.5. (b) DD+L2-jumps,
θ1 = θ2 = 0.5.

(c) DD+L2-jumps,
θ1 = 0.35, θ2 = 0.5.

Figure 5: The discrete solution of the AMR on the source problem.

Iter Monodomain, θ = 0.5 DD+L2-jumps, θ1 = θ2 = 0.5 | DD+L2-jumps, θ1 = 0.35, θ2 = 0.5
N max ηK N1 max η1

K N2 max η2
K N1 max η1

K N2 max η2
K

0 144 6.250 72 6.246 72 6.250 72 6.246 72 6.250
1 225 3.523 128 3.251 128 3.519 98 3.523 120 3.519
2 361 2.252 200 2.252 190 2.280 153 2.252 190 2.28
3 576 1.267 338 0.179 299 1.180 231 1.128 231 1.180
4 1024 0.585 630 0.543 493 0.543 364 0.888 493 0.543
5 1936 0.429 1274 0.502 874 0.225 594 0.712 874 0.225
6 3844 0.521 2484 0.225 - - 1032 0.476 - -
7 7395 0.408 - - - - 1705 0.408 - -

Table 2: AMR with the DD+L2-jumps method for the source problem.

4.2.2 Eigenvalue problem

For the eigenvalue problem, we use the same domain, with the same cross section values
and the geometry as in Figure 2(b). We set νΣ f = 1. Figure 6 and Table 3 show the effi-
ciency of AMR with DD+L2-jumps method for the eigenvalue problem. As can be seen, the
conclusions are similar to those of the source problem.

(a) Monodomain, θ = 0.5. (b) DD+L2-jumps,
θ1 = θ2 = 0.5.

(c) DD+L2-jumps,
θ1 = 0.35, θ2 = 0.5.

Figure 6: The discrete solution of the AMR on the eigenvalue problem.



Iter Monodomain, θ = 0.5 DD+L2-jumps, θ1 = θ2 = 0.5 DD+L2-jumps, θ1 = 0.35, θ2 = 0.5
N max ηK N1 max η1

K N2 max η2
K N1 max η1

K N2 max η2
K

0 144 3.335 72 1.929 72 3.335 72 1.929 72 3.335
1 306 2.340 153 1.451 162 2.426 120 1.447 162 2.421
2 648 1.869 325 0.608 338 1.080 200 0.724 338 1.079
3 1326 1.253 684 0.449 722 0.603 351 0.622 722 0.603
4 2688 0.989 - - 1458 0.360 595 0.531 1458 0.360
5 5293 0.637 - - - - - - - -
6 10509 0.431 - - - - - - - -

Table 3: AMR with the DD+L2-jumps method for the eigenvalue problem.

5 Conclusion

In this work, we propose an adaptive mesh refinement strategy for the Domain
Decomposition+L2 jumps method for the neutron diffusion equation, which relies on a pos-
teriori error error estimators for the source problem and a splitting approach to handle the
generalized eigenvalue problem. We have shown numerically that this approach is more ef-
fective than in the monodomain case. Future work will be dedicated to the extension of this
method to the SPN model.
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