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Abstract

In this paper, we study some techniques for solving numerically magne-
tostatic systems. We consider fairly general assumptions on the magnetic
permeability tensor. It is elliptic, but can be nonhermitian. In partic-
ular, we revisit existing classical variational methods and propose new
numerical methods. The numerical approximation is either based on
the classical edge finite elements, or on continuous Lagrange finite ele-
ments. For the first type of discretization, we rely on the design of
a new, mixed variational formulation that is obtained with the help
of T -coercivity. The numerical method can be related to a perturbed
approach for solving mixed problems in electromagnetism. For the second
type of discretization, we rely on an augmented variational formula-
tion obtained with the help of the Weighted Regularization Method.

Keywords: Magnetostatic systems, variational formulations, T -coercivity,
edge finite elements, Lagrange finite elements
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2 Solving magnetostatic systems

1 Introduction

In this paper, we revisit existing classical variational methods for solving
magnetostatic models, and we also propose a new method. The magnetic
permeability tensor µ is assumed to be tensor-valued, and elliptic. We study
the methods from the mathematical and discretization points of view. Unless
otherwise specified, the model is set in a region of R3, that is in a 3D domain,
and we give all definitions assuming this geometrical setting. At some point,
we consider models set in a region of R2, and leave to the reader the straight-
forward adaptation of the mathematical tools.

The outline is as follows. In the next section, we define the mathematical
setting. In section 3, we introduce the model, whose solution is the magnetic
induction, and the mathematical setting. Then, in section 4, we recall how
the magnetic induction can be split into two parts. First, a div- and curl-free
part, that belongs to a finite dimensional vector space. As claimed for instance
in [1], ”it is an easy finite dimensional problem”, so we do not dwell on this
issue. Second, a part that can be recast as the curl of a vector field, the so-
called vector potential. For the sake of comparison, we propose two strategies
to study and discretize the problem of finding the vector potential and the
corresponding magnetic induction. In section 5, we start with a formulation
in H0(curl ; Ω) that is obtained through the use of the so-called T -coercivity
[2, 3], and that can be discretized with the help of the classical edge finite
elements [4, 5]. In section 6, we consider formulations that can be discretized
with continuous vector finite elements. For that, one needs to take into account
a measure of the divergence of the fields: to that aim, we choose the Weighted
Regularization Method (WRM) of Costabel-Dauge [6]. Finally in section 7, we
give some concluding remarks on the relative merits of both approaches.

2 Mathematical setting

We consider function spaces of complex-valued functions. Vector-valued
function spaces are written in boldface character. The index zmv indicates
zero-mean-value fields. Duality brackets between a Banach space X and its
topological dual X ′ are denoted by 〈·, ·, 〉X . Given a non-empty open set O
of R3 with a Lipschitz boundary ∂O, n denotes the unit outward normal
vector field to ∂O. It is assumed that the reader is familiar with function
spaces related to Maxwell’s equations, such as H(curl ; O), H0(curl ; O),
H(div ; O), H0(div ; O) etc. We consider a priori that H(curl ; O) is
endowed with the “natural” norm v 7→ (‖v‖2

L2(O)
+ ‖curlv‖2

L2(O)
)1/2, etc.

We refer to the monographs [5, 7, 8] for details.

The model is set in a domain Ω in R3, i.e. an open, connected and bounded
subset of R3 with a Lipschitz-continuous boundary ∂Ω. The domain Ω can be
simply connected or not [9]. This property is mathematically characterized by
the value of the first Betti number, β1(Ω) : if β1(Ω) = 0, the domain Ω is
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simply connected and, if β1(Ω) > 0, it is non-simply connected. This means
that we assume that one of the two conditions below holds:

• β1(Ω) = 0 ’for all vector fields v ∈ C0(Ω) such that curlv = 0 in Ω, there
exists p ∈ C1(Ω) such that v = ∇p in Ω’ ;

• β1(Ω) > 0 ’there exist I = β1(Ω) non-intersecting, piecewise plane mani-
folds (Σj)j=1,··· ,I , called cuts, with boundaries ∂Σi ⊂ ∂Ω, such that, if one

introduces the connected set Ω̇ = Ω\
⋃I
i=1 Σi, for all vector fields v ∈ C0(Ω)

such that curlv = 0 in Ω, there exists ṗ ∈ C1(Ω̇) such that v = ∇ṗ in Ω̇’.

Given v ∈ L2(Ω̇) (resp. v ∈ L2(Ω̇)), we denote by ṽ (resp. ṽ) its continuation
to L2(Ω) (resp. L2(Ω)).

The boundary ∂Ω is split into K + 1 maximal connected components
(Γk)k=0,K , where K = β2(Ω) is the second Betti number. We denote by Γ0

the boundary of the unbounded component of R3 \ Ω.

Given ξ ∈ (L∞(Ω))3×3, we use the notation ξ+ = ‖ξ‖(L∞(Ω))3×3 , and define

H0(div ξ; Ω) = {v ∈ L2(Ω) such that ξv ∈H0(div ,Ω)}.

Furthermore, we say that ξ ∈ (L2(Ω))3×3 is piecewise smooth if there exists a
partition1 (Ωξp)p=1,P of Ω so that ξ|Ωξp ∈ (W 1,∞(Ωξp))

3×3 for p = 1, P . In this

case, the partition is called compatible (with respect to ξ). Finally, for s > 0,
we introduce

PHs(Ω) = {f ∈ L2(Ω) such that f|Ωξp ∈ H
s(Ωξp), ∀p = 1, P}.

The symbol C is used to denote a generic positive constant which is inde-
pendent of the meshsize, the mesh and the fields of interest ; C may depend
on the geometry, or on the coefficients defining the model. We use the nota-
tion A . B for the inequality A ≤ CB, where A and B are two scalar fields,
and C is a generic constant. If the inequality depends on some parameter s,
we write A .s B.

3 Model and assumptions

We consider a material, characterized by the magnetic permeability tensor µ.
Neglecting the time-variation of the electric displacement, one finds that the
magnetic induction B ∈ L2(Ω) is governed by the so-called magnetostatic
system of equations. We refer to [10, Chapter 6] or [11, Chapter 3] for its

1We recall that a partition of Ω is (Ωp)p=1,P such that

Ωp is a domain, for p = 1, P ; Ωp ∩ Ωq = ∅ for p 6= q ; Ω = ∪p=1,PΩp.
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definition. See also [12–17] and References therein for related models.
Find B ∈ L2(Ω) such that
curl (µ−1B) = J in Ω
divB = 0 in Ω
B · n = 0 on ∂Ω
〈B · n, 1〉H1/2(Σi) = ci, ∀i = 1, I

. (1)

Above, the pair of data (J , (ci)i=1,I) is: J ∈ L2(Ω) the electric current density
in Ω ; the numbers (ci)i=1,I are related to current intensities flowing through
some ad hoc exterior surfaces, see [11, Section 3.6] or section 4.2 below. It
is also possible to use a formulation with the magnetic field H = µ−1B as
the main unknown. Because of the first equation, written J = curlH with
H ∈ H(curl ; Ω), we note that J ∈ H(div ; Ω) with divJ = 0 in Ω. Also,
one may check that 〈J ·n, 1〉H1/2(Γk) = 0, for all k = 1,K, as in Remark 3.4.2
in [8].
In what follows, we therefore consider any pair of data (J , (ci)i=1,I) with

J ∈H(div ; Ω) s.t. divJ = 0 in Ω, 〈J · n, 1〉H1/2(Γk) = 0, k = 1,K. (2)

Mathematically, we assume that the permeability µ is a complex-valued, mea-
surable, bounded, elliptic (see next definition) and smooth or piecewise smooth
tensor field. We observe that, in this case, the magnetic induction and the data
are a priori complex-valued. We recall definitions and properties that can be
found e.g. in [18, 19]. From now on, piecewise smoothness is understood with
respect to a given compatible partition (Ωµp )p=1,P .

Definition 1 The tensor-valued field ξ ∈ (L∞(Ω))3×3 is elliptic if

∃(θξ, ξ−) ∈ R× R>0, a.e. in Ω, ∀z ∈ C3, ξ−|z|2 ≤ <[eiθξξz · z]. (3)

In (3), θξ is called an ellipticity direction. We denote by Θξ the set of admissible
ellipticity directions

Θξ = {θξ ∈ R, (θξ, ξ−) fulfills (3) for some ξ− ∈ R>0}.

Proposition 1 Let ζ ∈ (L∞(Ω))3×3. If ζ is elliptic, one has ζ−1 ∈ (L∞(Ω))3×3

with
(ζ−1)+ ≤ inf

(θξ,ξ−) s.t. (3) with ξ = ζ holds

(
(ζ−)−1

)
.

Moreover, Θζ−1 = {−θζ , θζ ∈ Θζ} and, given any θζ−1 ∈ Θζ−1 , one can choose

(ζ−1)− = ζ−(ζ+)−2 in (3) with ξ = ζ−1, where (−θζ−1 , ζ−) is such that (3) with
ξ = ζ holds.

For conciseness, we assume that 0 ∈ Θµ, so that 0 ∈ Θµ−1 according to the
above (see footnote2 page 10 for the case where 0 /∈ Θµ−1). So, for the possibly
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nonhermitian elliptic tensor field µ, denoting by µ− a value in (3) with ξ = µ
for θµ = 0, one knows that (µ−1)+ ≤ (µ−)−1, and that (µ−1)− = µ−(µ+)−2

is an admissible value in (3) with ξ = µ−1 for θµ−1 = 0. We use those values
throughout the manuscript.

For the ease of exposition and as far as discretization is concerned, we
assume that Ω is a Lipschitz polyhedron. As a matter of fact, if the boundary
is of class C2, using the theory developed e.g. in [20, 21], one ends up with
convergence results that are identical to those we obtain. The polyhedron Ω is
triangulated by a shape regular family of meshes (Th)h, made up of (closed)
simplices K. Further, we assume that the meshes are conforming with the
compatible partition (Ωµp )p=1,P and/or with respect to the cuts. In other

words, for all h, for all K ∈ Th, there exists p ∈ {1, · · · , P} such that K ⊂ Ωp
and int(K) ∩ (∪i=1,IΣi) = ∅. This is a realistic assumption that allows to
simplify the numerical analysis presented here.

4 A reformulation of the problem

By linearity, we see that solving the magnetostatic problem (1) can be done in
two independent steps, by splitting the data: a first solve with the pair (J , 0)
with a solution called BJ , and a second one with the pair (0, (ci)i=1,I), with
a solution called Bc. The total solution is then B = BJ + Bc. This is this
approach that we follow below.

4.1 Introducing the vector potential

The pair of data is equal to (J , 0), with J ∈ L2(Ω). In this case, we note that
the magnetic induction fulfills the conditions

BJ ∈H0(div ; Ω), divBJ = 0 in Ω and 〈BJ · n, 1〉H1/2(Σi) = 0, ∀i = 1, I.

According to e.g. Theorem 3.5.1. in [8], there exists a vector potential A ∈
H0(curl ; Ω) such that BJ = curlA in Ω. Moreover, one may characterize
the vector potential by choosing a divergence-free, flux-free potential A, i.e.
divA = 0 in Ω and 〈A · n, 1〉H1/2(Γk) = 0, for all k = 0,K. Obviously, the
converse assertion is true: such a field A is such that BJ = curlA solves the
above. So we conclude that, with the pair of data (J , 0), the magnetostatic
system is equivalently recast as

Find A ∈H0(curl ; Ω) such that
curl (µ−1curlA) = J in Ω
divA = 0 in Ω
〈A · n, 1〉H1/2(Γk) = 0, ∀k = 1,K

, (4)
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and then one defines BJ = curlA. We explain how to solve the problem with
unknown A, using variational formulations set either in H0(curl ; Ω), or in a
proper subspace of H0(curl ; Ω). More precisely, in section 5, we start with
a formulation in H0(curl ; Ω), discretized with the help of the classical edge
finite elements [4, 5]. Then, in section 6, we consider formulations in

{v ∈H0(curl ; Ω) s.t. div v ∈ Y (Ω)} , (5)

where Y (Ω) is a function space such that L2(Ω) ⊂ Y (Ω) ⊂ H−1(Ω). We
focus on the so-called Weighted Regularization Method (WRM) of Costabel-
Dauge [6], that can be discretized with continuous vector finite elements. To
our knowledge, this is the first method that was designed to approximate
successfully singular fields in 3D domains by such finite elements. For other
methods using the same mathematical framework, we refer to [22–26].

4.2 Finding curl- and div-free fields

The pair of data is now equal to (0, (ci)i=1,I), with (ci)i=1,I ∈ CI . In this second
case, we note that µ−1Bc ∈ H(curl ; Ω) fulfills in particular the condition
curl (µ−1Bc) = 0 in Ω. We let

P (Ω̇) = {q̇ ∈ H1(Ω̇) such that [q̇]Σi ∈ C, ∀i = 1, I}.

One uses the norm q 7→ ‖∇q̇‖L2(Ω̇) in Pzmv(Ω̇). According to theorem 3.2.2

in [8], there exists one, and only one, ṗ ∈ Pzmv(Ω̇) such that µ−1Bc = ∇̃ṗ
in Ω. Hence, with the pair of data (0, (ci)i=1,I), the magnetostatic system is
equivalently recast as

Find ṗ ∈ Pzmv(Ω̇) such that

divµ∇̃ṗ = 0 in Ω

µ∇̃ṗ · n = 0 on ∂Ω

〈µ∇̃ṗ · n, 1〉H1/2(Σi) = ci, ∀i = 1, I

, (6)

and then one defines Bc = µ∇̃ṗ. This is a finite dimensional problem. One
can solve it with unknown ṗ, using either a variational formulation in H1(Ω̇)
discretized with conforming Lagrange finite elements, or a mixed approach,
discretized with Raviart-Thomas finite elements. The latter yields a conform-
ing approximation H0(div ; Ω). We observe that, once ṗ is known, so are the
values ([ṗ]Σi)i=1,P of the jumps across the cuts, which are equal to the current
intensities flowing through the exterior surfaces, cf. [11, Section 3.6].



Springer Nature 2021 LATEX template

Solving magnetostatic systems 7

5 Conforming variational formulations in
H0(curl ; Ω)

Given data J that fulfills assumption (2), we now build a first variational
formulation, that is equivalent to (4). Let us start by simple observations. We
notice that, given u ∈ H0(curl ; Ω), u is such that curl (µ−1curlu) = J in
Ω if, and only if,

∀v ∈H0(curl ; Ω), (µ−1curlu, curlv)L2(Ω) = (J ,v)L2(Ω). (7)

Then, let

H1
∂Ω(Ω) =

{
q ∈ H1(Ω) such that q|Γ0

= 0, q|Γk ∈ C, ∀k = 1,K
}
.

One uses the norm q 7→ ‖∇q‖L2(Ω) in H1
∂Ω(Ω).

One checks easily that, given u ∈ L2(Ω), u is such that divu = 0 in Ω and
〈u · n, 1〉H1/2(Γk) = 0, for k = 1,K if, and only if,

∀q ∈ H1
∂Ω(Ω), (u,∇q)L2(Ω) = 0. (8)

Hence, it is equivalent to solve (4), or the variational formulation
Find A ∈H0(curl ; Ω) such that
∀v ∈H0(curl ; Ω), (µ−1curlA, curlv)L2(Ω) = (J ,v)L2(Ω)

∀q ∈ H1
∂Ω(Ω), (A,∇q)L2(Ω) = 0

. (9)

5.1 A symmetrized formulation with artificial pressure

Classically, we build a second variational formulation, that is symmetrized via
the introduction of an artificial pressure. As a matter of fact, given γ > 0, we
aim at solving the symmetrized, complex-valued saddle-point formulation

Find (A, p) ∈H0(curl ; Ω)×H1
∂Ω(Ω) such that

∀v ∈H0(curl ; Ω), (µ−1curlA, curlv)L2(Ω)

+γ (v,∇p)L2(Ω) = (J ,v)L2(Ω)

∀q ∈ H1
∂Ω(Ω), γ (A,∇q)L2(Ω) = 0

. (10)

Clearly, if A solves (9), then (A, 0) solves (10). And, thanks to the assumption
(2) on J , we have that any solution (A, p) to (10) is such that p = 0. As
a matter of fact, we note that, since p ∈ H1

∂Ω(Ω) it holds that v = ∇p ∈
H0(curl ; Ω). Inserting in (10), we find by integrating by parts that

γ ‖∇p‖2L2(Ω) = (J ,∇p)L2(Ω) = −(divJ , p)L2(Ω) +
∑
k=0,K

〈A · n, p〉H1/2(Γk) = 0.

So, one concludes that
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Theorem 2 Let γ > 0 be given, and let the data J fulfill assumption (2). Then, the
vector potential A solves (4) if, and only if, (A, 0) solves (10).

The next step is to prove that the variational formulation (10) is well-posed.
This is again a classical result. We use below the theory of T -coercivity, that
will help design a new approach to solve the problem, both at the theoretical
level, and numerically.

5.2 Reminders about T -coercivity

We recall here the so-called T -coercivity theory, cf. [2, 3]. Let V and W be two
Hilbert spaces, and consider the variational formulation

Find u ∈ V such that ∀w ∈W, a(u,w) = `(w), (11)

where a is a continuous, sesquilinear form on V ×W , and ` ∈ V ′. Classically, the
variational formulation (11) is well-posed if the form a satisfies the stability (or
inf-sup) condition and the solvability condition of the Banach–Nečas–Babuška
(BNB) Theorem (see for instance [27, Thm. 25.9]).
One may introduce an equivalent condition.

Definition 2 Let V and W be two Hilbert spaces and a be a continuous and
sesquilinear form on V ×W . It is T -coercive if

∃T ∈ L(V,W ) bijective, ∃α > 0, ∀v ∈ V, |a(v, Tv)| ≥ α‖v‖2V . (12)

In other words, the form a(·, T ·) is coercive on V × V . Since T is bijective,
one recovers well-posedness through the use of Lax-Milgram theorem for the
variational formulation

Find u ∈ V such that ∀v ∈ V, a(u, Tv) = `(Tv), (13)

which is equivalent to (11). Whereas the BNB theorem relies on an abstract
inf–sup condition, finding a mapping T allows one the realise explicitly both
the stability (or inf–sup) condition and the solvability condition. Interestingly,
in general one can derive discrete counterparts of the mapping T to obtain a
uniform discrete inf-sup condition, which guarantees convergence.
Among others, this method has been used by the two co-authors and co-
workers for classical models, such as neutron diffusion problems [28–30] and
Stokes problems [31, 32].

5.3 Using T -coercivity

Let us apply the theory of T -coercivity to solve the variational formulation
(10). We refer to the classroom notes [33], or to [31], for details. Let V =
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H0(curl ; Ω)×H1
∂Ω(Ω), endowed with the norm

‖(v, q)‖V = (‖v‖2H(curl ; Ω) + ‖∇q‖2L2(Ω))
1/2.

On can rewrite (10) as{
Find (A, p) ∈ V such that
∀(v, q) ∈ V, a((A, p), (v, q)) = `((v, q)),

(14)

with

a((u, p), (v, q)) = (µ−1curlu, curlv)L2(Ω) + γ (v,∇p)L2(Ω) + γ (u,∇q)L2(Ω)

`((v, q)) = (J ,v)L2(Ω).

Above, a is a continuous, sesquilinear form on V×V, respectively ` an antilinear
continuous form on V. We shall prove that the form a(·, ·) is T -coercive. In
H0(curl ; Ω), let us introduce the orthogonal subspace to the range of the
gradient operator from H1

∂Ω(Ω):

H0(curl ; Ω) = ∇[H1
∂Ω(Ω)]

⊥
⊕K−N (Ω), (15)

where the orthogonality is understood with respect to the ”natural” inner
product (·, ·)H(curl ; Ω). The decomposition (15) is usually called a Helmholtz
decomposition. It is easily checked that

K−N (Ω) =
{
k ∈H0(curl ; Ω) s.t. ∀q ∈ H1

∂Ω(Ω), (k,∇q)L2(Ω) = 0
}
,

=
{
k ∈H0(curl ; Ω) s.t. divk = 0 in Ω, 〈k · n, 1〉H1/2(Γk) = 0, ∀k

}
.

Above, the first line is an instance of the famous double orthogonality prop-
erty in electromagnetism. In our case, it holds with respect to the ”natural”
H(curl ; Ω) and L2(Ω) inner products. This double orthogonality property
is crucial to establish T -coercivity. Before we proceed, we recall a first Weber
inequality [34]. There exists CW > 0 such that, for all v ∈ H0(curl ; Ω) ∩
H(div ; Ω), one has

‖v‖L2(Ω) ≤ CW

‖curlv‖L2(Ω) + ‖div v‖L2(Ω) +
∑
k=1,K

|〈v · n, 1〉H1/2(Γk)|

 .

It follows that, for all k ∈K−N (Ω), one has the bound

‖k‖L2(Ω) ≤ CW ‖curlk‖L2(Ω). (16)

Theorem 3 The form a is T -coercive.
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Proof Let (u, p) ∈ V. Our goal is to find (v?, q?) ∈ V that depends linearly (and
continuously) on (u, p), and such that

|a((u, p), (v?, q?))| ≥ α?‖(u, p)‖2V,
with α? > 0 that is independent of (u, p). In this case, defining T ((u, p)) = (v?, q?)
yields T -coercivity. To that aim, we decompose u into u = ku + ∇φu, with ku ∈
K−N (Ω) and φu ∈ H1

∂Ω(Ω), and we choose v? = ku + ∇p, respectively q? = φu.
In particular, it holds that curlv? = curlku = curlu. We get, using the double
orthogonality properties

a((u, p), (v?, q?)) = (µ−1curlu, curlv?)L2(Ω) + γ (v?,∇p)L2(Ω) + γ (u,∇q?)L2(Ω)

= (µ−1curlku, curlku)L2(Ω) + γ ‖∇p‖2L2(Ω) + γ ‖∇φu‖2L2(Ω).

By assumption, 0 ∈ Θµ−1 , with (µ−1)− = µ−(µ+)−2.2 So one finds that

<
(
a((u, p), (v?, q?))

)
≥ (µ−1)−‖curlku‖2L2(Ω) + γ ‖∇p‖2L2(Ω) + γ ‖∇φu‖2L2(Ω)

≥ (µ−1)−
1 + C2

W

‖ku‖2H(curl ; Ω) + γ ‖∇p‖2L2(Ω) + γ ‖∇φu‖2L2(Ω)

≥ α?
{
‖ku‖2H(curl ; Ω) + ‖∇p‖2L2(Ω) + ‖∇φu‖2L2(Ω)

}
= α?

{
‖ku +∇φu‖2H(curl ; Ω) + ‖∇p‖2L2(Ω)

}
= α? ‖(u, p)‖2V

where α? = min
(

(µ−1)−(1 + C2
W )−1, γ

)
= min

(
µ−(µ+)−2(1 + C2

W )−1, γ
)
> 0.

Let (u, p) ∈ V. Using the above notation, we note that v? = ku+∇p is the orthogonal
decomposition (15) of v? ∈ H0(curl ; Ω) since ku ∈ K−N (Ω) and q? ∈ H1

∂Ω(Ω), so
that T (v?, q?) = (ku + ∇φu, p) = (u, p). Hence, T ◦ T = IV, and T is a bijective
operator. This concludes the proof. �

According to the abstract T -coercivity theory, one has the

Corollary 4 The variational formulation (14) is well-posed.

5.4 A perturbed approach

Let T be defined as in the proof of theorem 3: T (v, q) = (kv +∇q, φv). Since
T is bijective, the variational formulation (14) is equivalent to{

Find (A, p) ∈ V such that
∀(v, q) ∈ V, a((A, p), T (v, q)) = `(T (v, q)).

(17)

2 If 0 6∈ Θµ−1 , one chooses some θ ∈ Θµ−1 to solve (14) with the tilted forms

a((u, p), (v, q)) = e
iθ

(µ
−1

curlu, curlv)L2(Ω) + γ (v,∇p)L2(Ω) + γ (u,∇q)L2(Ω)

`((v, q)) = e
iθ

(J,v)L2(Ω),

and the proof can be carried out similarly. Furthermore, one can check easily that, if 0 6∈ Θµ−1 ,

all proofs given hereafter still hold by considering appropriately tilted forms.
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In the spirit of section 2.3.2 in [3], we note that if (17) can be explicitly
discretized, then one has to solve numerically a ”simpler” discrete problem
than the one that approximates (14).
By design, the form a′ : ((u, p), (v, q)) 7→ a((u, p), T (v, q)) is coercive. Using
T (v, q) = (kv +∇q, φv) one can compute its expression:

a′((u, p), (v, q)) = (µ−1curlu, curlv)L2(Ω)+γ (∇q,∇p)L2(Ω)+γ (∇φu,∇φv)L2(Ω).

Computationally speaking, the first two terms are explicit, while one has to
know the gradient parts of u and v to compute the last term.
Then, we note that, according to (2), the data J is orthogonal to ∇[H1

∂Ω(Ω)]
in L2(Ω). So, the expression of `′ : (v, q) 7→ `(T (v, q)) is

`′((v, q)) = (J ,kv +∇q)L2(Ω)

= (J ,kv +∇q +∇(φv − q))L2(Ω)

= (J ,v)L2(Ω)

= `((v, q)).

Hence one may rewrite (17) as the variational formulation{
Find (A, p) ∈ V such that
∀(v, q) ∈ V, a′((A, p), (v, q)) = `((v, q)).

Splitting the unknowns, it writes
Find (A, p) ∈H0(curl ; Ω)×H1

∂Ω(Ω) such that
∀v ∈H0(curl ; Ω), (µ−1curlA, curlv)L2(Ω)

+γ (∇φu,∇φv)L2(Ω) = (J ,v)L2(Ω)

∀q ∈ H1
∂Ω(Ω), γ (∇p,∇q)L2(Ω) = 0

.

For the part in p, one has obviously p = 0, and we end up with the new
variational formulation{

Find A ∈H0(curl ; Ω) such that
∀v ∈H0(curl ; Ω), c(A,v) = (J ,v)L2(Ω),

(18)

with
c(u,v) = (µ−1curlu, curlv)L2(Ω) + γ (∇φu,∇φv)L2(Ω).

From a computational point of view, we note that, in the original varia-
tional formulation (14), all terms are explicitly computable, but the form a is
not coercive. Moreover, the solution is made up of two parts, a physical part
A and and artificial part p. On the other hand, in the new variational formu-
lation (18), one term is not explicitly known (second term in the expression of
c), while the form c is coercive, and only the physical part A of the solution
remains. At the discrete level, forgetting for a moment the non-explicit term
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in c, the cost of linear solvers should be higher in the discrete version of (14)
than in the discrete version of (18). Below, we propose a perturbed approach,
that allows one to recover explicit terms in the definition of the coercive
sesquilinear form, at the expense of solving an inexact problem with a ”small”
perturbation.

In the new variational formulation (18), there are two options: either one
can evaluate simply the second term in the expression of c, that is evaluate
simply the gradient part in the Helmholtz decomposition (15) of any field in
H0(curl ; Ω). Or, one has to modify this second term. We study next the
second option.

We observe that the solution A is independent of the value of the parameter
γ. So, a natural idea is to choose a ”small” value of γ, and to add a perturbation
in the order of γ. How so? Let us introduce

cγ(u,v) = c(u,v) + γ(ku,kv)L2(Ω).

Using again the orthogonality properties, we find the following expression to
the perturbed sesquilinear form

cγ(u,v) = (µ−1curlu, curlv)L2(Ω) + γ (u,v)L2(Ω).

Remark 1 Since by assumption 0 ∈ Θµ−1 , the form cγ is coercive for all γ > 0. We

note that, for γ smaller than (µ−1)−, the largest coercivity constant is equal to γ,
while the norm remains bounded by (µ−1)+.

Then, we are solving the perturbed variational formulation{
Find Aγ ∈H0(curl ; Ω) such that
∀v ∈H0(curl ; Ω), cγ(Aγ ,v) = (J ,v)L2(Ω).

(19)

We remark that
curl (µ−1curlAγ) + γAγ = J in Ω, (20)

so in general Aγ 6= A.
This perturbed variational formulation corresponds to a model that has been
considered in [35–37], in a simplified geometrical setting, that is in a simply
connected domain, with a connected boundary. Also, the assumptions on the
permeability µ are more restrictive in those Refs, namely it is a real-valued
symmetric tensor field.
Below, we study the difference between the exact solution A and the approxi-
mate solution Aγ . The next proposition is proved in [35, 36] in the ”simpler”
configuration, this is the reason why we provide a sketched proof.
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Proposition 5 For all γ > 0, Aγ ∈K−N (Ω). Furthermore, one has the estimates

‖curl (Aγ −A)‖L2(Ω) ≤ C
′γ ‖J‖L2(Ω) and

‖Aγ −A‖L2(Ω) ≤ C
′CW γ ‖J‖L2(Ω),

(21)

with C′ = (CW )3 (µ+)4(µ−)−2.

Proof Given q ∈ H1
∂Ω(Ω), one can choose the test-field v = ∇q in (19). By assump-

tion on the data, cf. (2), we find (Aγ ,∇q)L2(Ω) = 0. Hence, Aγ ∈K−N (Ω).
In addition, according to the Weber inequality (16), it follows that ‖Aγ‖L2(Ω) ≤
CW ‖curlAγ‖L2(Ω). Thanks to 0 ∈ Θµ−1 , then using the definition of cγ and finally
taking v = Aγ in (19), we find that

µ−(µ+)−2‖curlAγ‖2L2(Ω) ≤ <
(

(µ−1curlAγ , curlAγ)L2(Ω)

)
≤ < (cγ(Aγ ,Aγ))

≤ ‖J‖L2(Ω) ‖Aγ‖L2(Ω)

≤ CW ‖J‖L2(Ω) ‖curlAγ‖L2(Ω).

Using the above, it follows that ‖curlAγ‖L2(Ω) ≤ CW (µ+)2(µ−)−1‖J‖L2(Ω), and

‖Aγ‖L2(Ω) ≤ (CW )2(µ+)2(µ−)−1‖J‖L2(Ω).
Comparing (9a) to (19), we find that

∀v ∈H0(curl ; Ω), (µ−1curl (Aγ −A), curlv)L2(Ω) + γ (Aγ ,v)L2(Ω) = 0.

Using v = (Aγ −A) ∈K−N (Ω) above, we now find

µ−(µ+)−2‖curl (Aγ −A)‖2L2(Ω) ≤ <
(

(µ−1curl (Aγ −A), curl (Aγ −A))L2(Ω)

)
≤ γ ‖Aγ‖L2(Ω) ‖Aγ −A‖L2(Ω)

≤ CW γ ‖Aγ‖L2(Ω) ‖curl (Aγ −A)‖L2(Ω),

so that

‖curl (Aγ −A)‖L2(Ω) ≤ CW (µ+)2(µ−)−1 γ ‖Aγ‖L2(Ω)

≤ (CW )3 (µ+)4(µ−)−2 γ ‖J‖L2(Ω),

i.e. the first inequality in (21). And, according to (16), we conclude that

‖Aγ −A‖L2(Ω) ≤ (CW )4 (µ+)4(µ−)−2 γ ‖J‖L2(Ω),

which is the second inequality in (21). �

5.5 Approximation by edge finite elements

Below, we propose to discretize the perturbed problem (19) using edge finite
elements. The discrete solution will prove to be a suitable approximation of the
vector potential A, under appropriate conditions on the perturbation parame-
ter γ. Recall that we are looking for an approximation of BJ = curlA, so we
focus on finding a suitable approximation, and suitable approximation results,
for curlA. In this respect, compared to [35–37], the process is simplified, since
one is looking for approximation results for both A and curlA in those Refs.
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Denoting by hK the diameter of K, each mesh is indexed by the meshsize
h = maxK hK . We choose the Nédélec’s first family of edge finite elements
[4, 5] to define finite dimensional subspaces (V h)h of H0(curl ,Ω). Below, we
consider first-order finite elements. In principle, the results can be extended to
higher-order finite elements without any difficulty. So, let R1(K) be the vector
space of polynomials on K defined by

R1(K) = {v ∈ P 1(K) : v(x) = a + b× x, a, b ∈ C3}.

For given h, one introduces

V h = {vh ∈H0(curl ,Ω) : vh|K ∈ R1(K), ∀K ∈ Th}.

We introduce Πcurl
h , the classical global Nédélec interpolant in H0(curl ,Ω)

with values in V h [4, 5]. According Lemma 5.1 of [38]

Proposition 6 Assume that v ∈ PHs(Ω) and curlv ∈ PHs′(Ω) for some s > 1/2,
s′ > 0. Then one can define Πcurlh v and, in addition, one has the interpolation result:

‖v −Πcurlh v‖H(curl ; Ω) . h
min(s,s′,1){‖v‖PHs(Ω) + ‖curlv‖PHs′ (Ω)}. (22)

Since we are interested in the approximation of the curl of A, we now
refine (22). We introduce Πdiv

h the classical global Raviart-Thomas interpo-
lation operator in H0(div ; Ω) with values in W h [4, 39], where (W h)h are
designed with the help of H(div ; Ω)-conforming, first-order finite element
spaces. Here,

W h = {wh ∈H0(div ; Ω) : wh|K ∈ D1(K), ∀K ∈ Th}.

with D1(K) the vector space of polynomials on K defined by

D1(K) = {v ∈ P 1(K) : v(x) = a + bx, a ∈ C3, b ∈ C}.

Using the results of Chapter 5 in [5], we recall that

∀v ∈H0(curl ; Ω) s.t. Πcurl
h v exists, Πdiv

h (curlv) = curl (Πcurl
h v).

Then, applying Lemma 3.3 of [40] (interpolation error for Raviart-Thomas
discretization) together with the previous property, we have

Proposition 7 Assume that v ∈ H0(curl ; Ω) and curlv ∈ PHs′(Ω) for some
s′ > 0. Then if one can define Πcurlh v, one has the interpolation result:

‖curl (v −Πcurlh v)‖L2(Ω) . h
min(s′,1) ‖curlv‖PHs′ (Ω). (23)
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Given a perturbation parameter γ > 0 and a meshsize h, the discrete
variational formulation of the perturbed problem (19) is then{

Find Ah
γ ∈ V h such that

∀vh ∈ V h, cγ(Ah
γ ,vh) = (J ,vh)L2(Ω).

(24)

5.6 Numerical analysis

To carry out the numerical analysis, we rely on a variant of the Céa lemma.

Proposition 8 For all γ > 0 and all h, one has the estimate

‖curl (Aγ −Ah
γ)‖L2(Ω) ≤ inf

vh∈V h

{
γ1/2 µ+√

2(µ−)1/2
‖Aγ − vh‖L2(Ω)

+
µ2

+

µ2
−
‖curl (Aγ − vh)‖L2(Ω)

}
. (25)

Proof For any vh ∈ V h and any η > 0 (for Young’s inequality), it holds that

µ−(µ+)−2‖curl (Aγ −Ah
γ)‖2L2(Ω) ≤ <

(
(µ−1curl (Aγ −Ah

γ), curl (Aγ −Ah
γ))L2(Ω)

)
= <

(
cγ(Aγ −Ah

γ ,Aγ −Ah
γ)
)
− γ‖Aγ −Ah

γ‖2L2(Ω)

((19) and (24) with Ah
γ − vh) = <

(
cγ(Aγ −Ah

γ ,Aγ − vh)
)
− γ‖Aγ −Ah

γ‖2L2(Ω)

= <
(
γ(Aγ −Ah

γ ,Aγ − vh)L2(Ω)

)
− γ‖Aγ −Ah

γ‖2L2(Ω)

+<
(

(µ−1curl (Aγ −Ah
γ), curl (Aγ − vh))L2(Ω)

)
(ab ≤ a2 + 1

4 b
2) ≤ γ

4
‖Aγ − vh‖2L2(Ω)

+<
(

(µ−1curl (Aγ −Ah
γ), curl (Aγ − vh))L2(Ω)

)
≤ γ

4
‖Aγ − vh‖2L2(Ω)

+
1

µ−
‖curl (Aγ −Ah

γ)‖L2(Ω)‖curl (Aγ − vh)‖L2(Ω)

(ab ≤ η
2a

2 + 1
2η b

2)) ≤ γ

4
‖Aγ − vh‖2L2(Ω) +

1

µ−

1

2η
‖curl (Aγ − vh)‖2L2(Ω)

+
1

µ−

η

2
‖curl (Aγ −Ah

γ)‖2L2(Ω).

Then, choosing η = (µ−)2(µ+)−2 above yields

‖curl (Aγ −Ah
γ)‖2L2(Ω) ≤ γ

µ2
+

2µ−
‖Aγ − vh‖2L2(Ω) +

µ4
+

µ4
−
‖curl (Aγ − vh)‖2L2(Ω)

≤
(
γ1/2 µ+√

2(µ−)1/2
‖Aγ − vh‖L2(Ω)
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+
µ2

+

µ2
−
‖curl (Aγ − vh)‖L2(Ω)

)2

,

which leads to the bound (25). �

Remark 2 If the permittivity µ is a hermitian tensor field, then cγ defines an inner

product. Denoting ‖ · ‖γ : v 7→ (γ‖v‖2L2(Ω) + (µ−1curlv, curlv)L2(Ω))
1/2 the

associated norm, one has the ”straightforward” estimate for all γ > 0 and all h,

‖Aγ −Ah
γ‖γ ≤ inf

vh∈V h

‖Aγ − vh‖γ , (26)

and it holds that ‖curl (Aγ −Ah
γ)‖L2(Ω) ≤ µ+ infvh∈V h

‖Aγ − vh‖γ .

Using (21) and (25), we find

‖curl (A−Ah
γ)‖L2(Ω) . inf

vh∈V h

{
γ1/2‖Aγ − vh‖L2(Ω)

+‖curl (Aγ − vh)‖L2(Ω)

}
+ γ ‖J‖L2(Ω). (27)

To bound the infimum, we would like to use vh = Πcurl
h Aγ . This is possible if

Aγ is sufficiently smooth, in the sense of proposition 6.

Forgetting for the moment the topic of discretization, let us now recall some
abstract results regarding the a priori smoothness of Aγ . First, a classical shift
theorem in the domain Ω. We call σDir ∈]0, 1] the limit regularity exponent
for the Laplace problem with Dirichlet boundary condition

Find u ∈ H1
0 (Ω) such that −∆u = f in Ω

with data f ∈ L2(Ω). According to [41], we know that u ∈ H3/2(Ω), with
‖u‖H3/2(Ω) . ‖f‖L2(Ω) ; hence σDir ≥ 1/2. In addition, cf. [42, 43]:

• if Ω is convex or if its boundary is of class C2, then u ∈ H2(Ω), with
‖u‖H2(Ω) . ‖f‖L2(Ω), and in this case σDir = 1 ;

• if Ω is a non-convex polyhedron, then there exists σDir ∈]1/2, 1[ such that

– ∀f ∈ L2(Ω), u ∈ H1+σDir (Ω) =
⋂

0≤s<σDir H
1+s(Ω) ;

– ∃f ∈ L2(Ω) such that u 6∈ H1+σDir (Ω) ;
– for each s ∈]0, σDir[, one has ‖u‖H1+s(Ω) .s ‖f‖L2(Ω).

We also recall the Birman-Solomyak decomposition, see theorem 4.1 in [44],
also called the regular-gradient splitting, see lemma 2.4 in [45]. Any element
u ∈H0(curl ; Ω) can be split as

u = ureg +∇qu in Ω, with ureg ∈H1(Ω), qu ∈ H1
0 (Ω), and

‖ureg‖H1(Ω) + ‖qu‖H1(Ω) . ‖u‖H(curl ; Ω).
(28)

Let us now apply those results to our solution Aγ .
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Proposition 9 Let Aγ be the solution to (19). Let s = 1 if σDir = 1, and s ∈
]1/2, σDir[ else. Then, Aγ ∈Hs(Ω), and ‖Aγ‖Hs(Ω) .s ‖J‖L2(Ω).

Proof Since Aγ ∈ K−N (Ω) ⊂ H0(curl ; Ω), with the help of the regular-gradient
splitting (28), we find that

Aγ = Areg +∇qA in Ω, with Areg ∈H1(Ω), qA ∈ H1
0 (Ω), and

‖Areg‖H1(Ω) + ‖qA‖H1(Ω) . ‖Aγ‖H(curl ; Ω).

By construction, ∆qA = −divAreg in Ω, with ‖divAreg‖L2(Ω) ≤
√

3‖Areg‖H1(Ω).
According to the shift theorem, using the definition of the limit regularity expo-
nent σDir, we find that ∇qA ∈ Hs(Ω), with ‖∇qA‖Hs(Ω) .s ‖Areg‖H1(Ω). Hence,

Aγ ∈ Hs(Ω), with the estimate ‖Aγ‖Hs(Ω) .s ‖Aγ‖H(curl ; Ω), and the first
Weber inequality yields ‖Aγ‖Hs(Ω) .s ‖curlAγ‖L2(Ω). Finally, we recall that
‖curlAγ‖L2(Ω) . ‖J‖L2(Ω) (proof of proposition 5), so the conclusion follows.

�

Then, if one changes the Dirichlet boundary condition to a Neumann
boundary condition, one has similar results. The results that we invoke below
now involve the tensor µ (in the Dirichlet case, see above, we considered a
unit tensor). There holds a second Weber inequality (cf. theorem 2.11 in [18]),
namely there exists C ′W > 0 such that, for all v ∈H(curl ; Ω)∩H0(divµ; Ω),
one has

‖v‖L2(Ω) ≤ C ′W

‖curlv‖L2(Ω) + ‖divµv‖L2(Ω) +
∑
i=1,I

|〈µv · n, 1〉H1/2(Σi)|

 .

Next, if one considers that Ω is a polyhedron, one has a second shift theorem,
which we state directly for elements of H(curl ; Ω)∩H0(divµ; Ω), cf. [46, 47].
It is derived thanks to another regular-gradient splitting, which is omitted. Let
v ∈H(curl ; Ω) ∩H0(divµ; Ω). There exists σNeu(µ) ∈]0, 1] such that

H(curl ; Ω)∩H0(divµ; Ω) ⊂ PHσNeu(µ)(Ω) =
⋂

0≤s′<σNeu(µ)

PHs′(Ω), (29)

with continuous imbedding. Applying the two results together, one concludes
that, for every s′ ∈]0, σNeu(µ)[, one has

‖v‖PHs′ (Ω) .s′

‖curlv‖L2(Ω) + ‖divµv‖L2(Ω) +
∑
i=1,I

|〈µv · n, 1〉H1/2(Σi)|

 .

If σNeu(µ) = 1, the result also holds for s′ = 1.
We refer for instance to section 7 in [46], section 4.5 in [48], section 3.5 in
[47] or section 3.3 in [18] and References therein for a detailed discussion, and
possible values of the limit regularity exponent σNeu(µ). In particular, if ∂Ω
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is of class C2 and if µ ∈ (C1(Ω))3×3, then σNeu(µ) = 1.
Regarding the curl of Aγ , we find the results below.

Proposition 10 Let Aγ be the solution to (19). Let s′ = 1 if σNeu(µ) = 1, and

s′ ∈]0, σNeu(µ)[ else. Then, curlAγ ∈ PHs′(Ω), and ‖curlAγ‖PHs′ (Ω) .s′ (1 +

γ) ‖J‖L2(Ω).

Proof The field Hγ = µ−1curlAγ is such that Hγ ∈H(curl ; Ω) with curlHγ =
J − γAγ in Ω according to (20). Also, Hγ ∈ H0(divµ; Ω), with div (µHγ) = 0 in

Ω. Using the second shift theorem for Hγ , we find Hγ ∈ PHs′(Ω). Next, because
µHγ ∈ curl [H0(curl ; Ω)], one has always 〈µHγ · n, 1〉H1/2(Σi)

= 0 for i = 1, I

(cf. remark 3.5.2. in [8]). So we have ‖Hγ‖PHs′ (Ω) .s′ ‖curlHγ‖L2(Ω).

Going back to curlHγ = J − γAγ in Ω, we infer

‖Hγ‖PHs′ (Ω) .s′

{
‖J‖L2(Ω) + γ‖Aγ‖L2(Ω)

}
.

Recall that the partition (Ωµp )p=1,P is chosen so that µ|Ωµp ∈ (W 1,∞(Ωµp ))3×3 for

p = 1, P . Because multiplying by µ|Ωµp is stable in Hs′(Ωµp ) for p = 1, P [49], we find

that curlAγ = µHγ ∈ PHs′(Ω), with

‖curlAγ‖PHs′ (Ω) .s′

{
‖J‖L2(Ω) + γ‖Aγ‖L2(Ω)

}
.

To conclude, we recall that ‖Aγ‖L2(Ω) . ‖J‖L2(Ω) (proof of proposition 5). �

As announced, one may use vh = Πcurl
h Aγ in (27).

Theorem 11 For γ > 0 and h > 0, let Ah
γ be the solution to (24).

Then, for s = 1 if σDir = 1, and s ∈]1/2, σDir[ else, and for s′ = 1 if σNeu(µ) = 1,
and s′ ∈]0, σNeu(µ)[ else, one has the error estimate

‖curl (A−Ah
γ)‖L2(Ω) .s,s′

(
γ + γ1/2(1 + γ)hmin(s,s′) + (1 + γ)hs

′)
‖J‖L2(Ω).

(30)

Proof Let us bound the infimum in (27). Combining the interpolation errors (22)
and (23) with the last two propositions, we find

inf
vh∈V h

{γ1/2‖Aγ − vh‖L2(Ω) + ‖curl (Aγ − vh)‖L2(Ω)}

. γ1/2‖Aγ −Πcurlh Aγ‖L2(Ω) + ‖curl (Aγ −Πcurlh Aγ)‖L2(Ω)

.s,s′ γ
1/2(1 + γ)hmin(s,s′)‖J‖L2(Ω) + (1 + γ)hs

′
‖J‖L2(Ω).

Using (27) leads to the claim. �
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To conclude this part, we now consider that γ is a function of the meshsize
h (with strictly positive values), that is γ = γ(h), and we solve{

Find Ah ∈ V h such that
∀vh ∈ V h, cγ(h)(Ah,vh) = (J ,vh)L2(Ω).

(31)

Corollary 12 Assume that h ∈]0, 1]. Let γ = γ(h) be such that γ(h) . hσNeu(µ).
For s′ = 1 if σNeu(µ) = 1, and s′ ∈]0, σNeu(µ)[ else, one has the error estimate

‖curl (A−Ah)‖L2(Ω) .s′ h
s′ ‖J‖L2(Ω). (32)

Proof Since in theorem 11 one has s > 1/2, it holds hmin(s,s′) ≤ hmin(1/2,s′). Hence
from (30) one gets the bound:

‖curl (A−Ah
γ)‖L2(Ω) .s′

(
γ + γ1/2(1 + γ)hmin(1/2,s′) + (1 + γ)hs

′)
‖J‖L2(Ω).

Let us find the dominant term between the parentheses. If s′ < 1/2,

γ(h) + γ(h)1/2(1 + γ(h))hmin(1/2,s′) . hσNeu(µ) + hσNeu(µ)/2+s′ = O(hs
′
).

If s′ ≥ 1/2, taking into account that σNeu(µ)/2 + 1/2 > σNeu(µ), one has

γ(h) + γ(h)1/2(1 + γ(h))hmin(1/2,s′) . hσNeu(µ) + hσNeu(µ)/2+1/2 = O(hσNeu(µ)).

Since γ(h)hs
′

= o(hs
′
), the dominant term is hs

′
. �

Hence, choosing γ(h) . hσNeu(µ) and going back to the magnetic field BJ ,
it is guaranteed that

‖BJ − curlAh‖H(div ; Ω) .s′ h
s′ ‖J‖L2(Ω).

According to the definition of s′, one concludes that the a priori error is equal
to O(h) if σNeu(µ) = 1, and almost like O(hσNeu(µ)) if σNeu(µ) < 1, since the
result is O(hs

′
) for all s′ < σNeu(µ) in the latter case.

Because the form cγ(h) is coercive, the linear system equivalent to (31) is
expected to be simpler to solve than the one resulting from the discretization
of the saddle-point variational formulation (10) or (14). Morever, according
to remark 1, it is advised to take the ”largest” possible values of γ(h) to
improve the conditioning of the matrix. In other words, one should take
γ(h) h hσNeu(µ), see corollary 12.

One can find a number of numerical experiments in [35–37] to support the
claims, and to show the robustness of the approach.
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6 A conforming variational formulation in a
weighted space

We review here an approach that has been introduced at the turn of the
millenium by Costabel and Dauge, see [6]. It relies on taking the divergence
explicitly into account in the measure of the vector potentials. Below, we
focus on the original version of Costabel and Dauge. See [50–56] for appli-
cations in electromagnetism in a homogeneous material. It it especially of
interest when the domain Ω is a non-convex polyhedron3, so we focus on this
geometrical configuration from now on. This approach is aimed at designing a
mathematical framework that can be efficiently approximated numerically by
continuous vector finite elements.4 In most of the above cited References, the
problem is solved in a simplified geometrical setting, and, the assumptions on
the permeability µ are more restrictive.

6.1 Reminders about the WRM

When Ω is non-convex, following [6], the divergence of the fields is evaluated
in a weighted L2 space. Denote by E the non-empty set of reentrant edges
of ∂Ω. Let d be the distance to E: d(x) = dist(x,∪e∈E ē). Consider wα a
smooth non-negative function of x, that depends on a real parameter α. The
(simplified) weight wα is chosen to behave locally as dα in the neighborhood
of reentrant edges and corners, and is bounded above and below by a strictly
positive constant outside a fixed neighborhood of E. Let:

L2
α(Ω) = {q ∈ L2

loc(Ω) such that wα q ∈ L2(Ω)},

endowed with the natural norm ‖ · ‖L2
α(Ω) : q 7→ ‖wα q‖L2(Ω), and associated

scalar product (·, ·)L2
α(Ω). Then, we introduce a subspace of H0(curl ,Ω):

Xα
N (Ω) = {v ∈H0(curl ,Ω) such that div v ∈ L2

α(Ω)}.

It is endowed with the natural norm

v 7→
(
‖v‖2H(curl ,Ω) + ‖div v‖2L2

α(Ω)

)1/2

.

3Non-convexity always occurs when the boundary ∂Ω is not connected, that is K ≥ 1.
4In a convex polyhedron Ω, one can build a variational formulation in the ”natural” function

space

XN (Ω) =
{
v ∈H0(curl ; Ω) s.t. div v ∈ L2

(Ω)
}

that is equivalent to the magnetostatic system (4), simply by taking the weight wα introduced
afterwards equal to 1 everywhere. It is endowed with the natural norm v 7→ (‖v‖2H(curl ; Ω) +

‖div v‖2
L2(Ω)

)1/2. Then, ”classical” Lagrange finite elements can be used to approximate this

variational formulation. We refer e.g. to Appendix B in [54] for details and elements of numerical
analysis. Convergence stems from the fact that, when Ω is a convex polyhedron, XN (Ω)∩H1(Ω) is
dense in XN (Ω). See also section 8.2.2.B in [6], with another choice of measure of the divergence,
similar but not identical to the one we present here.
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Introducing the value αmin = 1 − σDir ∈]0, 1/2[, one has that for all α ∈
]αmin, 1[, Xα

N (Ω)∩H1(Ω) is dense in Xα
N (Ω) according to theorem 5.1 of [6].

This result is paramount to obtain the basic approximability property for a
conforming finite element method in Xα

N (Ω).5 So, we assume from now on that

α ∈]αmin, 1[.

Among the noticeable properties proven in [6], we observe that H1
0 (Ω) ⊂

L2
−α(Ω) (with dense embedding), see bottom of page 249 of loco citato. For

k = 1,K, let qk be characterized by

Find qk ∈ H1
∂Ω(Ω) such that −∆qk = 0 in Ω, qk|Γm = δkm for m = 1,K.

(33)
By construction, one has the orthogonal decomposition

H1
∂Ω(Ω) = H1

0 (Ω)
⊥
⊕ span`=1,K(q`). (34)

One can check that 1 belongs to L2
−α(Ω) so, for k = 1,K, we also have that

qk ∈ L2
−α(Ω). As a consequence, the fluxes (〈v · n, 1〉H1/2(Γ`))`=1,K are mean-

ingful for all v ∈Xα
N (Ω), and equal to (〈v · n, q`〉H1/2(∂Ω))`=1,K .

Then, following for instance [8, Proof of Theorem 3.4.3] and using the
embedding of L2

α(Ω) in H−1(Ω), one can prove that

‖·‖Xα
N (Ω) : v 7→

‖curlv‖2L2(Ω) + ‖div v‖2L2
α(Ω) +

∑
`=1,K

|〈v · n, 1〉H1/2(Γ`)|
2

1/2

defines a norm, that is equivalent to the natural norm, in Xα
N (Ω). We let

(·, ·)Xα
N (Ω) be the associated scalar product.

Going back to the magnetic system (4), it is obvious that its divergence-free
solution A automatically belongs to Xα

N (Ω). Let v ∈ Xα
N (Ω). Then, adding

the contributions

(µ−1curlA, curlv)L2(Ω) = (curlµ−1curlA,v)L2(Ω) = (J ,v)L2(Ω) ;

(divA,div v)L2
α(Ω) = 0 ;

∑
`=1,K

〈A · n, 1〉H1/2(Γ`)〈v · n, 1〉H1/2(Γ`) = 0 ;

we find that A is governed by the variational formulation
Find A ∈Xα

N (Ω) such that
∀v ∈Xα

N (Ω), (µ−1curlA, curlv)L2(Ω) + (divA,div v)L2
α(Ω)

+
∑

`=1,K〈A · n, 1〉H1/2(Γ`)〈v · n, 1〉H1/2(Γ`) = (J ,v)L2(Ω).
(35)

5On the other hand, when Ω is a non-convex polyhedron, according e.g. to [57], XN (Ω)∩H1(Ω)
is not dense in XN (Ω). Hence, a conforming finite element method in XN (Ω) fails to satisfy the
basic approximability property, so it can not be used to approximate those fields that do not
belong to XN (Ω) ∩H1(Ω).
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In the spirit of [50], this is an augmented variational formulation.
Due to the assumption 0 ∈ Θµ−1 (otherwise, one can proceed similarly to
footnote2 page 10), this variational formulation (35) falls within the framework
of the Lax-Milgram theorem. As a matter of fact, the sesquilinear form

aα(u,v) = (µ−1curlu, curlv)L2(Ω) + (divu,div v)L2
α(Ω)

+
∑
`=1,K

〈u · n, 1〉H1/2(Γ`)〈v · n, 1〉H1/2(Γ`)

is obviously continuous, and coercive, on Xα
N (Ω)×Xα

N (Ω).
On the other hand, starting from the augmented variational formulation (35),
one can prove that its solution A is governed by (4). To start with, we know
that A ∈H0(curl ,Ω). Next, we take appropriate test functions in (35). Below,
we make use of a triple orthogonality property, which allows to deal with the
three terms defining the form aα separately.
Note that vβ =

∑
k=1,K βk∇qk, where (βk)k=1,K ∈ CK and (qk)k=1,K is given

by (33), belongs to Xα
N (Ω). Using it as a test function in (35), we find that∑

`=1,K

〈A · n, 1〉H1/2(Γ`)〈vβ · n, 1〉H1/2(Γ`) = 0

after integrating by parts the right-hand side, thanks to assumption (2). On
the other hand, the mapping

(βk)k=1,K 7→ (〈vβ · n, 1〉H1/2(Γ`))k=1,K

is onto. This classical result stems from the fact that the capacitance matrix,
with entries ((∇q`,∇qk)L2(Ω))1≤k,`≤K , is invertible (see e.g. corollary 3.3.8 in
[8]). As a consequence, the fluxes (〈A · n, 1〉H1/2(Γk))k=1,K all vanish.
Going back to (35), we find that A is such that, for all v ∈Xα

N (Ω),

(µ−1curlA, curlv)L2(Ω) + (divA,div v)L2
α(Ω) = (J ,v)L2(Ω).

By definition, divA ∈ L2
α(Ω) ⊂ H−1(Ω), so there exists a unique qA ∈ H1

0 (Ω)
such that −∆qA = divA. The test function vA = ∇qA can be used above,
which now yields

‖divA‖2L2
α(Ω) = 0,

after integrating by parts the right-hand side, thanks again to assumption (2).
Therefore, A is such that, for all v ∈Xα

N (Ω),

(µ−1curlA, curlv)L2(Ω) = (J ,v)L2(Ω).

Finally, taking v ∈ D(Ω), we conclude that curl (µ−1curlA) = J , and A
solves the magnetic system (4) as claimed.
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Theorem 13 Let the data J fulfill assumption (2). Then, the vector potential A
solves (4) if, and only if, A solves (35).

Note that the exact solution A is recovered exactly for all values of α ∈
]αmin, 1[.

6.2 Approximation by continuous vector finite elements

Among others, the discretization of problem (4) via the solution of the aug-
mented variational formulation (35) was originally studied in [6], together with
the numerical analysis of the resulting method. We report below the main
steps of the analysis which has been carried out there. It starts with the study
of singularities, cf. sections 6 and 7 in loc. cit..

Remark 3 Within the taxonomy of [58, section 6], one can prove that A contains only
singularities of type 1 and type 2, and no singularity of type 3, because J ∈ L2(Ω)
and divA = 0 (see loc. cit., page 259).

A solution A to (4) can be split into regular and gradient parts as follows:

A = Areg +∇φA, with

{
Areg ∈ PH1+σNeu(µ)(Ω) ∩H0(curl ; Ω)
φA ∈ H1+σDir (Ω) ∩H1

∂Ω(Ω)
. (36)

In addition, there exists Cα > 0 (independent of A) such that

‖A‖Xα
N (Ω) ≤ Cα (‖Areg‖H1(Ω) + ‖φA‖V 2

α (Ω)),

where V 2
α (Ω) is a weighted Sobolev space à la Nazarov-Plamenevski (cf. loc.

cit. sections 4 and 5). Next, one uses this regular-gradient splitting (36) to
obtain error estimates ; precisely, the error on Areg in H1(Ω), and the error
on φA in V 2

α (Ω).

Given k ≥ 1, we choose the continuous Lagrange elements of order k to
define finite dimensional subspaces (Xh,k)h of Xα

N (Ω). Given h, one introduces

Xh,k = {vh ∈H1(Ω) ∩H0(curl ; Ω) : vh|K ∈ Pk(K), ∀K ∈ Th}.

The discrete variational formulation of the augmented variational formulation
(35) is then {

Find Ah
α ∈Xh,k such that

∀vh ∈Xh,k, aα(Ah
α,vh) = (J ,vh)L2(Ω)

. (37)

Observe that the discrete solution Ah
α depends on both h and α.
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Classically, (Xh,k)h exhibits approximability properties for the regular
part:

For s′ = 1 if σNeu(µ) = 1, and all s′ ∈]0, σNeu(µ)[ else

∀v ∈ PH1+σNeu(µ)(Ω) ∩H0(curl ; Ω), ∃cv,s′ , ∀h, ∃vh ∈Xh,k,

‖v − vh‖H1(Ω) ≤ cv,s′hs
′
.

(38)

In addition, one must have good approximability properties for the gradient
part: namely, one needs that there exists a family of spaces (Φh)h of scalar
fields such that

∇[Φh] ⊂Xh,k, ∀h, (39)

with6 {
∀ε > 0, ∀φ ∈ H1+σDir (Ω) ∩H1

∂Ω(Ω), ∃cφ,ε, ∀h, ∃φh ∈ Φh,
‖φ− φh‖V 2

α (Ω) ≤ cφ,ε hα−αmin−ε .
(40)

A natural question is to check in which case the assumption (39)-(40) holds.
Below, we report some results in 2D and 3D domains. The issue was first
discussed by Costabel and Dauge in [6]. They observed that, in a 2D polygonal
domain, one can choose Hsieh-Clough-Tocher finite elements [59] to define
the discrete spaces (Φh)h. Indeed, the discrete fields belong to C1(Ω) and are
piecewise P3 on a subdivision of triangles, so their gradients are naturally in
C0(Ω) and are piecewise P2. Moreover, one can choose those fields to vanish
on the boundary, to enforce the condition on the tangential trace. This ensures
that the assumption (39)-(40) holds in a 2D domain at least for k = 2.
Browsing the classical literature, we note that, according to [60, section 46],
there exist similar finite elements in 2D for k ≥ 3, and also in 3D: the former
can be found in [61], and the latter in [62]. More recent results can be found
in [63–65] and Refs. therein, including the case k = 1, and are proved by
considering again appropriate subdivisions of tetrahedra and/or triangles.

6.3 Numerical analysis of the augmented variational
formulation

The numerical analysis is straightforward, because one can apply Céa’s lemma.
Using the approximability properties of section 6.2, we conclude that the error
estimates below hold.

Theorem 14 For α ∈]αmin, 1[, let τα = min(σNeu(µ), σDir + (α− 1)).
For h > 0, let Ah

α be the solution to (37).
Then, for all ε > 0, there exists cA,ε such that for all h:

‖A−Ah
α‖Xα

N (Ω) ≤ cA,εh
τα−ε, (41)

6Recall that αmin = 1 − σDir ∈]0, 1/2[, so the right-hand side of (40) is equal to

cφ,ε h
σDir+(α−1)−ε.
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Going back to the magnetic field BJ , that it is now guaranteed that

‖BJ − curlAh
α‖H(div ; Ω) ≤ cJ,εhτα−ε.

Within the framework of the WRM, we can take any α ∈]αmin, 1[ so, if
one picks α ”close to 1”, the a priori error is almost like O(hτmax), where
τmax = min(σNeu(µ), σDir).

We note that the linear system equivalent to (37) is expected to be easy
to solve because the form aα is coercive. In 2D and 3D domains, one can find
numerical experiments [51, 53, 66, 67] to support the claims, and to show the
robustness of the approach. In particular, in [66, 67], a very coarse approxi-
mation of the weight wα is chosen, namely a discrete weight which is equal
to 0 in simplices located near the reentrant edges, and equal to 1 in all other
simplices.

7 Concluding remarks

Going back to the finite dimensional part of the magnetic induction made of
curl- and div-free fields, we note that, by definition, the solution ṗ of (6) is

such that ∇̃ṗ belongs to H(curl ; Ω) ∩H0(divµ; Ω). Thanks to the a priori
regularity result (29), one gets that the a priori error between the exact and
the discrete solutions is equal to O(h) if σNeu(µ) = 1, and behaves almost
like O(hσNeu(µ)) if σNeu(µ) < 1. And one has the same a priori error for

Bc = µ∇̃ṗ and the corresponding discrete field. More precisely, the plain for-
mulation in Pzmv(Ω̇) for solving numerically (6) is discretized with conforming
scalar Lagrange finite elements, and the error is in L2(Ω)-norm. While if ones
uses a mixed approach, discretized with Raviart-Thomas finite elements, the
error is in H(div ; Ω)-norm.
To study the variational formulations for the vector potential part, we used
a double orthogonality property for the formulation in H0(curl ; Ω), respec-
tively a triple orthogonality property for the formulation in Xα

N (Ω), where
we considered the latter in a non-convex polyhedron Ω. If σNeu(µ) ≤ σDir,
we recover the same orders of convergence. For instance, this is automatically
true in a 2D polygonal domain for smooth µ, since σNeu(µ) = σNeu(1) in that
case, and it always holds that σNeu(1) = σDir in 2D. On the other hand, if
σNeu(µ) > σDir, the expected order of convergence is better for the edge finite
element discretization than for the vector Lagrange finite elements. This can
be explained by the fact that, with the WRM, the norm is sharper as one also
controls the divergence of the vector potential A, which is of no relevance to
compute an approximation of the magnetic field. Finally, in a convex polyhe-
dron, adapting the results of section 8.2.2.B in [6], we observe that, in principle,
the same order of convergence is recovered for both methods, namely almost
like O(hσNeu(µ)).
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[13] Bermúdez, A., López-Rodriguez, B., Rodriguez, R., Salgado, P.: Equiva-
lence between two finite element methods for the eddy current problem.
C. R. Acad. Sci. Paris, Ser. I 348, 769–774 (2010)
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