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A MATHEMATICAL STUDY OF A HYPERBOLIC METAMATERIAL
IN FREE SPACE

PATRICK CIARLET, JR. * AND MARYNA KACHANOVSKA *

Abstract. Wave propagation in hyperbolic metamaterials is described by the Maxwell equa-
tions with a frequency-dependent tensor of dielectric permittivity, whose eigenvalues are of different
signs. In this case the problem becomes hyperbolic (Klein-Gordon equation) for a certain range
of frequencies. The principal theoretical and numerical difficulty comes from the fact that this hy-
perbolic equation is posed in a free space, without initial conditions provided. The subject of the
work is the theoretical justification of this problem. In particular, this includes the construction of a
radiation condition, a well-posedness result, a limiting absorption principle and regularity estimates
on the solution.
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1 Introduction and problem setting. Metamaterials are novel artificial ma-
terials [30] which exhibit properties that are important for applications, such as neg-
ative refraction and artificial magnetisation. The possibility of their physical real-
ization was predicted in the seminal article by V. Veselago [32]. Typically they are
fabricated as periodic structures of metals immersed into dielectrics, and thus electro-
magnetic wave propagation is modelled with the help of the heterogeneous Maxwell
equations. Because the properties of the metamaterials are often revealed in the
low-frequency regime, when the wavelength is much larger than the characteristic
size of the inclusions, the respective heterogeneous Maxwell equations are further
transformed using the homogenization process into homogeneous Maxwell equations
with frequency-dependent tensors of dielectric permittivity and magnetic permeabil-
ity. Numerous works have been devoted to different aspects of the mathematical and
numerical analysis of isotropic models, when the dielectric permittivity and magnetic
permeability are frequency-dependent scalars [11, 27, 9, 10, 13, 14, 22, 8]. However,
up to our knowledge, there exist very few recent articles dedicated to the mathe-
matical analysis of the anisotropic models, especially in the case when the tensors of
the dielectric permittivity and/or magnetic permeability are no longer sign definite
(so-called hyperbolic metamaterials [29]), with the only exception being the work by
E. Bonnetier and H.-M. Nguyen [12]. Let us remark that real materials are always
dissipative (which mathematically leads to elliptic models). But, first of all, the dis-
sipation can be small (and much effort is dedicated to its minimization [33, 26, 18]),
and, second, the qualitative behaviour of the solutions to the dissipative models ap-
proaches the behaviour in models without dissipation. This is especially important
for the numerical simulations.

The goal of this work is to perform mathematical analysis of frequency domain
wave propagation in the simplest 2D hyperbolic metamaterial, where the frequency-
dependent tensor of the dielectric permittivity is diagonal, with eigenvalues of different
signs for a range of frequencies, and the magnetic permeability is a positive constant.
In this case the respective problem reduces to the Klein-Gordon equation (compare
this to the classical case, when the wave propagation is modelled by the Helmholtz
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2 P. CIARLET, M. KACHANOVSKA

equation). In this work we are interested in the well-posedness of the respective model
in the free space (in particular, existence, uniqueness, limiting absorption principle,
regularity of the solution, especially in view of the further numerical analysis applica-
tions). The underlying operator is a so-called principal type operator. Some regularity
results have been shown by S. Agmon in the classical work [2]. We refine these results
to take into account the propagation of singularities along the characteristics. In the
context of the limiting absorption principle and the radiation condition, the principal
type operators were considered by S. Agmon and L. Hérmander in [4], but, first of all,
in our case, the absorption is in the principal symbol of the operator, and, moreover,
their proposed radiation condition is provided in the implicit form and does not seem
to be suited for the problem we consider.

We present the model under scrutiny in the next section, and provide an outline
of the work in Section 1.2.

1.1 The model. One of the simplest models that incorporates distinctive fea-
tures of the wave propagation phenomena in hyperbolic metamaterials comes from
plasma physics and describes wave propagation in a strongly magnetized cold plasma
[29]. Mathematically, the corresponding model reduces to the Maxwell’s equations
supplemented with ODEs. In the case when the electromagnetic field does not de-
pend on the z-coordinate, the model further decouples into the 2D transverse-electric
and the transverse-magnetic systems. In this work we will concentrate on the latter
system. Its derivation can be found e.g. in [6]; for convenience of the reader, we
present it in Appendix A. In the time domain, it reads

anth — 8sz = O,
(1.1) €00 By + 0, H. +j =0,  0j —ecowo By =0,
poOeH, + 0, Ey — 0yE, =0, (x,t) = (z,y,t) € R? x R.
The vector unknown E = (E,, E,)T is the electric field, the scalar unknown H, is
the magnetic induction, while j plays the role of a current. The coefficients eq, g
are the dielectric permittivity and the magnetic permeability of vacuum, and w,, is
the plasma frequency. In what follows we will perform a change of coordinates and
rescaling of unknowns in (1.1), chosen so that the coefficients £ and po disappear from
the formulation. This, in particular, implies that the speed of light ¢ = (gouo) ™2 is
rescaled to 1. In these new coordinates (1.1) becomes (where we keep the old notation
for simplicity)
O0:Fy —0yH, =0,
(1.2) HEy+0,H.+j=0,  8j—w.E, =0,
O H, + 0,E, — 0,E, =0, (x,t) = (v,y,t) € R* x R.

We denote by (.,.) the L2-scalar hermitian product, and by ||.|| the respective norm:
3
(1, v) = /uﬁdx, ul| = /|u|2dx
R2 R2

Testing the equations of (1.2) by correspondingly E., E,, w, 25 and H,, and then
summing up the result shows that the energy of (1.2) is conserved:

d

€0 =0, E@) =5 (1B + [ By (O + [ H= ()] + w0, [ 5(0)]*)

N =
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A MATHEMATICAL STUDY OF A HYPERBOLIC METAMATERIAL IN FREE SPACE 3

It is thus classical to conclude about the well-posedness and stability of the initial-
value problem for (1.2). However the well-posedness of the problem (1.2) in the
frequency domain is not as trivial. To see this, let us apply the Fourier-Laplace
transform, defined for causal functions of polynomial growth by

(1.3) w(w) = /e“"tu(t)dt, weCT:={zeC: Imz >0},

o (1.2). Re-expressing the current j via Em, we obtain the following system:
(1.4) — iwe(w)E — curlH, =0,
(1.5) —iwH, + curlE = 0,

where we denote curl = (9, —9,)T, curlv = d,v,, — dyv,. The 2-by-2 tensor g(w) =
diag(1,e(w)) is the relative electric permittivity, with e(w) defined by

w2

(1.6) e(w)=1- w—g.
As we see, the above model defines a hyperbolic metamaterial [29], since e(w) < 0 for
0 < w < wp. We will simplify it further, by expressing E via H,, which results in the

following problem for H.:

(1.7) W H, +e(w) 1% H, + 3§IL =0, (z,y) € R
More generally, we consider the following problem: given f, find uy,, s.t.
(1.8) Lo, = f, in D'(R?),

where

(1.9) Lou = wu+e(w) 0% + aju.

The spaces to which u,,, f belong will be specified later.

For 0 < w < wy, the above problems reduce to the (hyperbolic) Klein-Gordon
equation. Because the theory of hyperbolic problems posed in the free space is much
less developed than for elliptic problems, the phenomena of wave propagation governed
by (1.2) is not fully understood from the qualitative and quantitative points of view.
Our goal is thus to fill some gaps in the mathematical justification of (1.2).

Let us first of all introduce some notations. We define, for u € L'(R?), s.t.
@ € L'(R?), its partial and full Fourier transforms:

1 - ’ 1 : ’
Foulle,y) = —— /ezm u(a',y)da',  Fyu(z, &) = —= /e’é?’y u(z,y')dy',
V2 NG
™ A s A

1

Ful§e,&) = 5=

. 1 i
/elﬁ'xu(x,y)d:rdy, Fla(z,y) = ﬂ/eils'xf‘(fz:fy)déf d&y-
R2 R?

At various points of this work, it will be of more convenience to work with weighted
Sobolev spaces. In particular, let us define

12 (R) =2, = f{ve L} R): / (14 92)° Jo(e, y)Pde dy < oo},
R2

This manuscript is for review purposes only.



126

127

138
139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162

4 P. CIARLET, M. KACHANOVSKA

with the norm

ol = ol i= [ (14 5)loe, ) o dy.
R2

The corresponding Sobolev spaces H 5 | are then defined with the help of the Bessel-
like potential

T =F A+ [l + 1€ ") Fo(ée, &), peRT,
namely
HY (R =H, ={ve Ll (R): Juwell (R)}, [vll5=Jull ..

It will be useful to work with the partial z—directed Fourier transforms of functions
on the above spaces. Remark that for any v € L? | (R?), v(.,,y) € L*(R), a.e. in
y € R. Therefore, equivalent norms on Lg) L (R¥),H Sl | (R?) can be rewritten using the
Plancherel theorem in the following form:

(1.10) ol = 1720l = [0+ 1Pl Pacads,
R2
ol = [0+ 0+ @) Fv(ers ) Py
(1.11) R
+ [ )10, Fvle )P deudy
R2

We will use the notation a < b (resp. a 2 b) to indicate that there exists C' > 0 that
may depend on wy, and w, s.t. a < Cb (resp. a > Cb).

1.2 Outline. The rest of the article is organized as follows. Section 2 is dedi-
cated to the well-posedness and regularity results related to the problem (1.7) in the
hyperbolic regime, that is for 0 < w < wp. Section 3 is dedicated to the in-depth
analysis of the regularity of the solution to (1.7). We demonstrate the optimality of
the regularity estimates of Section 2 in the framework of Sobolev spaces, and show
how the respective results can be improved when considering spaces adjusted to the
way singularities propagate in (1.7). Section 4 is dedicated to the proof of the limiting
absorption principle for 0 < w < wy,.

2  Well-posedness of (1.8) in the hyperbolic regime. This section is or-
ganized as follows:
e in Section 2.1 we show that (1.8) is well-posed in L?(R?) when w € C\ R;
e in Section 2.2 we prove the existence of the solution to (1.8) by a limiting
absorption principle;
e in Section 2.4 we derive the radiation condition;
e Section 2.5 is dedicated to the statement of the main result of this section.

REMARK 1. FEvidently, when w € R, it suffices to consider the well-posedness of
the problem for w > 0. We are interested in the case when w € [0,wy], since for
w € R\ [0,wp], the model reduces to the Helmholtz equation. In the limiting case
w = wp, it can be shown that the limiting absorption principle holds for the Mazwell’s
equations (1.4), and the resulting solution vanishes for a sufficiently reqular right-
hand side. On the other hand, for w = 0, the application of the limiting absorption to
(1.4) yields a non-vanishing solution. More details can be found in [21].
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2.1 Well-posedness for complex frequencies. Let us define the sesquilinear
form associated to (1.8):
aw(.,.) : HY(R?) x H*(R?*) — C,
a(u,v) = w?(u,v) — e(W) (O, Opv) — (Byu, Oyv).
It is possible to show that, whenever w € C\ R, the above form is coercive on H'(R?),

thanks to non-vanishing Im(we(w)) # 0. This result is summarized in the following
lemma, which follows from the proof of Proposition 3.12 and Theorem 5.4 of [7].

LEMMA 2.1. For allw € C\ R, w = w, + iw;, wy, w; € R, it holds

|aw (u,v)| < |wl* max(1, w7 ) [[ull g 0] a1

ITm a,, (u, wu)| 2 |w;| min(w?, 1)||ul|%: .
Thus, for all f € H-*(R?), there exists a unique u, € H'(R?) that satisfies (1.8).
Moreover, |Juy || < |wi| ™ max(w; 2, 1)|w] || ]| z-1-
We leave the proof of the above result to the reader. The unique solution to (1.8) is
given by the convolution of the source f with the fundamental solution G,:

(2.1) o = Noof i= G % f = /gw(. — X)) ()X
R2

A derivation of an explicit form of G,, w € C\ R, is given in Appendix B. Before
presenting it, let us make the following remark.

REMARK 2. All over the article, we use the following convention: for a complex
number z € C, \/z denotes the principal branch of the square root, i.e. Re+/z > 0 for
all z € C\ (—o0,0]; respectively, log z = log|z| + i Argz, Argz € (—m, 7).

Then the fundamental solution for (1.8) is given by

H" (wy/2()7® + 42), Rew >0, Imw >0,
Hég)(w\/m)7 Rew >0, Imw <0,

where Hél), Héz) are Hankel functions of the first and second kind.

2.2 Existence of solutions Because the solution to (1.8) is well-defined when
w € C\ R, to prove the existence, for now we will make use of the limiting absorption
principle in a pointwise topology. A justification of the limiting absorption principle
in an H, lloc—topology will be given in Section 4.

We proceed as follows. For w € (0,w,), we define the pointwise limit

(2.3) G (x) = Jim Gurin(x), x € R,

and, correspondingly u} := GF x f, with a sufficiently smooth data f. We then prove
that u] solves (1.8).
Similarly, let G (x) := 6h%1 Gu—is, (it holds that G # G}). The corresponding
—0+

solution wug, also solves (1.8). We will refer to the solution u], as to the outgoing
solution, and wu, as to the incoming one (in analogy with the Helmholtz equation).
We will concentrate on the construction of the outgoing solutions.
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Fic. 1. The domains Cg, Cg, Cp, Ce, with 6, = atan a1l

2.2.1 The outgoing fundamental solution and its properties. Let us fix
w € (0,wp) and introduce the following notation (recall that e(w) < 0)

(2.4) o= (—e(w) "2 > 0.

With this notation, (1.8) becomes

(2.5) w?u — o*Oou+ ou = f in D'(R?),
and the outgoing fundamental solution (2.3) reads

[ B Vo), @) e,

(FS) Gl (w,y) = 1=
Hél)(iw\/or%v2 —4?), (z,y) €C,,
where
Cp = {(x,y) € R2\ {0} : [y| > a~[al},
() { C. = {(x,y) € R2\ {0} : [y| < a~fa]}.

The notations Cp, C. will be clarified later, in Lemma 2.2.

It is well-known that the fundamental solution for the initial-value problems for
hyperbolic operators is causal and vanishes outside of the space-time cone, see e.g.
[20, Chapter XII, Theorems 12.5.4, 12.5.1]. This latter property reflects the finite
velocity of the wave propagation. The fundamental solution G possesses none of
these features. This is one of the corollaries of Lemma 2.2, which we state in polar
coordinates (r,¢): x = rcos¢, y = rsin¢. Let us introduce some auxiliary notations.
Let 74 = tan? ¢ — a~2 € R. With this definition,

Co={(r¢): 76 >0}, Ce={(r,¢): 7 <0}

Let us also define, for all § s.t. 0 < § < a™2,

Cg = {(7’7 (b) e > 6}a Cg = {(7‘, ¢) Y < _5}a
see Figure 1 for illustration. We then have the following result.
LEMMA 2.2 (Asymptotics of G at infinity). Let 0 < § < a=2. Then

e inside Cg, as r — 400,

-
e "1

Gr(rcosg,rsing) = mr*% (v cos? ¢)*%e"‘*”"\/ Tg cOs? b (I1+0(1)).
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FIG. 2. The real (left) and imaginary (right) parts of the fundamental solution G (x), with
wp =10 and w = 7.05 (chosen so that e(w) ~ —1).

e inside CO, as r — +oo0,

g{j(r cos ¢, rsin ¢) = —mr*% (_7¢ cos2 ¢)*%efwr\/ —7g cos? ¢ (14 0(1)).

The error terms in the asymptotic expansions depend on 6.

Proof. The proof is based on the following asymptotic expansion from [28, pp.
266-267]. Let z € Cbes.t. 0 < Argz < 7. Then, as |z| — +o0,

(2:6) Hé”<z>=\/ge”-ii<l+n<z>>, A Sl C>o0.

It remains to apply the above to G (x), with

z = wry/ve cos? ¢, in Cg, and z = iwry/—7y4 cos? ¢, in C.

The only statement that needs to be proven is that 1(z) = o(1), as r — 4o0c. From the
expression for 7 (2.6), this amounts to showing that /vy cos? ¢ (resp. /—74 cos? ¢)
is uniformly bounded from below away from zero when (r, ¢) € Cg (resp. C2).

Let us consider the case Cg . By evenness and periodicity, it suffices to study
the case ¢ € (atanva~2 + 4, Z]. The function ¢ — v, cos? ¢ = sin® ¢ — a2 cos? ¢ is
non-negative and strictly monotonically increasing on (atan ot %] ; hence 7, cos® ¢ >
cs > 0, with ¢; > 0, for all (r,¢) € CJ.

The case C° can be studied similarly. |

The above lemma justifies the notation C,, and C.: inside C,, the fundamental solution
oscillates and decays at best as O(r~2) (thus the index ’p’ stands for "propagative’),
while inside C., it decays exponentially fast (thus ’e’ stands for ’evanescent’).

An illustration to this result is shown in Figure 2.

2.2.2 Existence of classical solutions to (1.8). We start with proving the
existence of classical solutions to (1.8). The results of this section will serve as a basis
to prove the existence of the weak solutions.

THEOREM 2.3 (Existence of classical solutions to (1.8)). Let w € (0,w,) and
f € C3(R?). Then u} =G} x f € C*(R?) and satisfies (1.8) in a strong sense.
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8 P. CIARLET, M. KACHANOVSKA

The proof of this theorem relies on the following auxiliary proposition.

PROPOSITION 2.4. Let 0 < w < w,. Then
1. Guris € LY, .(R?) for all § > 0.

loc
2 Jim Gurin=GF in Ll (R?).

Proof. Proof of the statement 1. To understand the behaviour of G, s, let
us make use of the following expression for Hél) (z) stemming from [1, §9.1.3, §9.1.13]:

HV(2) = Jo(2) + iYp(2),

(27) . ) , 2
Jo(2) =1+gs(27), Yo(z)= ;JO(Z‘) log 5 +gv (27),

where g7, gy are entire’ functions; moreover, g;(0) = 0, ¢’;,(0) # 0.
With z5 = (w +40)?(e(w + id)2? + y?) and (2.7), we get

(28) Guria(x) = G0 () + YT o0

wris (X o where
, elw+ i 2 2 z )
gﬁié:—z¥ 1——1log2+ gs(zs) l—l——logﬂ +igy(zs) ) -
4 T T 2

The fact that G, 1is € L}, .(R?) follows from the above: indeed, as z5 # 0 on R?\ {0},
Guwtis is continuous on R? \ {0}, and its only singularity is the logarithmic (thus,
integrable) singularity in the origin.

Proof of the statement 2. See Appendix D. ]

With the above result, the proof of Theorem 2.3 is almost immediate.

Proof of Theorem 2.5. Let us fix w € (0,wp), 6 > 0. Let uytis = Gutis * f.
Because f € C?(R?), by Proposition 2.4, Statement 1, u,;5 € C?(R?). It satisfies, cf.
Section 2.1, in the strong sense: L1 isUwtis = f- Proving that £,u} = f amounts to
proving that the following holds in the topology of pointwise convergence:

(2.9) |Loristoris — Loul| =0, asd — 0.
The above rewrites as

£w+i5uw+i5 - £qu - £w+i5gw+i5 * f - ﬁwg:;r * f - gw+i§ * £w+i5f - g:}r * »wa

= (gw+i5 - gj;) * £w+i5f - g:,_ * (Ew - £w+i5)f-
Let us assume that supp f C Bg(0), R > 0. Then the above yields

| (Losistiwris — Loud) (X)| < [ LorisfllLe Bro) | (Guris — G5) (x = )21 Br0)
+ 1 Lurisf = Lo fllLo BropllGd (x = )1 Br(0))-

The analyticity of the coefficients of £,,, and Proposition 2.4 yield (2.9). This shows
that u} satisfies (1.8) in a strong sense. The fact that u}, € C?(R?) follows from
G e L} (R?), cf. Proposition 2.4, Statement 2, and f € C3(R?). 0

loc

IThe fact that the series in [1, §9.1.10, §9.1.13] define entire functions can be validated by studying

their radius of convergence
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2.2.3 Existence and regularity of weak solutions. Let us extend the state-
ment of Theorem 2.3 to more general data, as well as quantify the behavior of u} at
infinity. This will be of importance, in particular, when constructing an appropriate
radiation condition. All over this section we assume that 0 < w < wy,.

We start by defining the domain and the range of the solution operator, defined
for f € C§°(R?) as the following Lebesgue integral:

(2.10) NIH) = (G5 * fl(x) = /gi(X')f(X*X’)dX’~
R2

For this we will use an appropriate Sobolev space framework. To do so, let us motivate
the definitions that follow by describing an asymptotic behaviour of N f.

2.2.3.1 Behaviour of NI f at infinity. The asymptotic expansions of Lemma
2.2 yield G& ¢ L?(R?). However, this lack of decay at infinity concerns only one
coordinate direction, namely y; it is possible to show that for fixed y € R, G (=, y)
decays exponentially fast in x, see the result below.

LEMMA 2.5 (Decay in z-direction). For all § > 0, there exists Co 5 > 0, s.t. for
all (z,y) € R? with |z| > aly| + 6, |G (x,y)] < Cpse™ @V 2202,

Proof. See Appendix E. ]
For a fixed x > 0, as y — +00, as seen from Lemma 2.2,
+ ¢ -3
(2.11) |G (2, y)| = +o(lyl~%), C>0.

(47 — %)}

From Lemma 2.5 and (2.11) we can expect that, for f € C§°(R?), NI f(z,y) decays
exponentially fast in the direction 2 and at most as O(|y\_%) in the y-direction.

2.2.3.2  Definition of N_F. The main result of this section provides the extension
by density of the operator NI

PROPOSITION 2.6. Let s,s' > %. The operator NI defined in (2.10) can be ex-
tended by density to a bounded linear operator Nt - L? | — H', |.

Before proving the above proposition, let us recall several useful facts. First, the
partial Fourier transform of G is given by, see Appendix C,

» . ng B ein(£z7w)|y‘
(2.12) (705 (29)) (€a9) = 3

(2.13) k&g, w) = /262 +w? > 0.

In particular, it holds that

with

)

ot (€a,w)ly—y/'|

R

REMARK 3. The motivation to work with the Fourier transform comes from the
following observation: a formal application of F, to (1.8) results in the 1D Helmholtz
equation for almost all Fourier variables &, € R:

(2.15) (w2 + 532:0‘2) Fao(Exy y) + 8§quw(€xvy) = Fof(&ery) n D/(R)-
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Thus, H -bounds for the solution of (1.8) can be obtained by considering the depen-
dence on the frequency of the bounds on the solution to the 1D Helmholtz equation.
In particular, from the definition of k(&;,w) (2.13), it follows that

%(a\izl +w) <K, w) = Va2 +w? <ol ] +w.

Therefore, by (1.10), (1.11), an equivalent norm in H’}’l is given by
(216) o3 |~ In(6e ) FovlZe -+ 10, Fo0l2s

The constants in norm-equivalence inequalities depend on w only.
Proof of Proposition 2.6. Let s, s’ > % be fixed. To prove the statement, it suffices
to show that there exists Cs o > 0, s.t. for any ¢ € C§°(R?),

(2.17) INGSllar, | < Cowllgllzz -

’

We will use the equivalent norm (2.16) in the derivation of the above bound. For this
let us remark that, cf. (2.14) and (2.12),

1

H(gﬁvw)fzjv:rqs(fmay) = 22\/%

/ o (&N | F (¢, y )y
R

Oy FuNT o0&y (€ )ly =yl sign (y — y') Frd(Err y')dy.

*32mze

Therefore, with (2.16), using |ei”(5w’“)|y_y,‘| =1, and defining

(2.18) olEary) = / Fob(Ear) dyf,
R

we have

(2.19) NG SllEn S lollze

To bound the right hand side of (2.19), we start with the following L*°-bound. An
application of the Cauchy-Schwarz inequality yields: for all (¢,,y) € R,

M%wﬁsﬂkw%”W/O+WﬂﬂM@yWW

R R
(2.20) :%/@+WWEM%MWW,%Z/ﬂﬂﬂ*@<w,
R R

where we used s > % The above bound implies, with ¢, defined like above,

ol e [ary | [ IR0 )Py | dyde,
R2 R

(1.10)
= CSCS’H}—IQSHEL = CSCS’H(b”%g L

In the above ¢, is finite because s’ > %. Inserting the above bound into (2.19), cf.
(2.18), yields [N ol 1 S Cosllollzz s ie (217). 0

’
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2.3 On the optimality of Proposition 2.6. The regularity result of Propo-
sition 2.6 is not surprising, and had been shown for the so-called operators of the
principal type (modulo the weights in the weighted spaces) by Agmon in [3, Appen-
dix A]. Let us show that the result of Proposition 2.6 is in some sense optimal. For
this we will need the following observation about the norm in H 5 | space. By the

Plancherel identity, ||v]|3,. can be expressed as follows:
s, L

@21 ol = [0 (Fo (1 6P7) + 17, (617, Foo) ) desdy,
RZ

We then have the following result.

PROPOSITION 2.7. Let s,s' > 2. Then Nf € B (L?)L, Hfg,‘jl) iff o <0.

Proof. By Proposition 2.6, we know already that NI € B (Li,rHiiffJ_) for

o < 0. It thus remains to show that T ¢ B (LiL7 Hj;ffj_) for all o > 0.

Let s, > % be fixed. We will prove the result by showing that for every o > 0,
there exists ¢ € Lil (that depends on o), such that v = N¢ ¢ Hi“j_

Let us take ¢ € L?(R?), s.t. for all z € R, supp ¢(x,.) C [—a, a], for some a > 0.
This in particular guarantees that ¢ € Lil(RQ) for any s. For y < —a, cf. (2.14),

F Ry W r "y’

zV(SQz) = € w T ) .

(€x:9) = 5 2m(£mw)/ ¢(&e,y")dy

Since for all &, € R, supp Foé(&x,.) € [—a,al], the right-hand side of the above
expression is nothing else than the Fourier transform of ¢ (where we used the Fubini
theorem (FyFo¢ = Fo)):

F _ e MY e F
xv(gmay) = m ( y z¢) (gzv"i(gxaw))

je—r(Ez,w)y

(2.22) = Sra)

f¢(£1’7 K/(fz,(«d)), for all Yy < —a.

Let us now bound from below the norm |[v|| 1+ . By (2.21):
—s’, L

o0 o0

ol 2 [ @ra2) [ (@4 1 Fanla)? desdy

— 00 — 00

oo

(2.23) > Cua / 1+ / (W? + a2e2)H | (e, y) | dEady,

—00

for some constant C, , > 0. From (2.22) it follows that for any ¢ > 0, cf. the
definition of k(&;,w) in (2.13), it holds:

22) (@ FalEn ) = 5 + ) IFolE, h(Ee,w))
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Using the above expression in (2.23) yields the lower bound on |[v|| ;1+- in terms of
—s/, L
the right-hand side ¢:

—a o

(2.24) C’w o _ -

oy 2 S5 [ @) [+ @) 1o nln ) desdy

(2.25) = C%w,a,5,a)I,(¢), with C%(w,a, s, a) = Coa / (1+ y2)7sldy >0,
and I(0) i= [ (@ +@*€)7 [Fo(Een w(6or0))

Let us now fix o > 0. Let us show that we can choose ¢ = ¢, € L2 | (R?), s.t.
supp ¢, (z,.) C (—a,a), for which I,(¢,) defined in (2.25) is not finite. The main
idea is to choose ¢, so that F¢, is supported in the vicinity of the line (&, k(&)),
however grows in £, fast enough to ensure that I,(¢,) blows up.

Step 1. Let us define

(2.26) Go(€0:6y) = (W + 22" T 00 e ajes||<wy, With some 0 < 6 <

1\3_\ S|

This function is in L?(R?); to see this we apply the Fubini theorem to compute

oo

190117 = /(w2 +0%62)72 e _aje, | <wy d€adEy = 2w / (w? +a?€2) 727X g,

R2 “oo

which is finite because 6 > 0. Therefore, F~1§, € L?(R?). The function §, has the
following important property:

oo

—1 _ 2 2¢2\0— 125
I, (F"g0) = /(w +a7g) 1{|\/W—além\l<w}dgx
_OO
— [ et i = e,

because 26 < o. Therefore, we could have chosen ¢ as F1g,, had we not imposed
that a.e. in z € R, ¢(x,.) is supported in (—a,a), a > 0.

Step 2. To respect the constraint of the finiteness of the support in one of the
directions, let us define

(2.27) b0 = Liye(—aanF ‘G0 € L*(R?).

Step 3. Let us show that I,(¢,) = co. For this we will examine the behaviour of

Fdo (&, v/w? + a2£2) for large £. First of all,

F¢o(£ma ) = -/.'.yl{ye(—a,a)} * go(fra -); for all gr € R7
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and because Fylyc(—q,q0)(&y) = \/g%‘j@)’

Foulnt) =2 [ U5 6, g0

€y_
2 " dn(ale, - )
(2:26) [ 2 Sy — Sy 2 2¢2y-1-5 g1
\/;K/_ g ae) g,

Next, to estimate I,(¢,), cf. (2.25), let us consider the above expression evaluated

on the curve

namely

(€as K(82)) = (& V w? + 0(263),

alés|+w

Foo(€er hlEa,w)) = \/EW +ater)- o / sina(s(6e) ~6) o

(2.28)

K€z, w) — &

alée|—w

2y s i [ Sin(a(k(Ew) —alil =)
_\[r(” To't) / (o)l & v

—w

The goal is to show that, for sufficiently large ||, thanks to a properly chosen a > 0,
the quantity |Foy (&x, k(e w))| is bounded from below by |€,]7279, so that I(¢y) =
0o. Let us choose a so that the integral in the right-hand side is strictly positive and
bounded from below. For this let us remark the following: there exists a sufficiently
large R > 0 and corresponding hg > 0, s.t. for all || > R,

2\ 2
H(&mw) - O‘|fz| = a|§z| ((1 + fg}062> - 1) € (_thhR)'

The value R in the above depends on w, only, and, evidently, hp = O (R™!).
Therefore, for all § € (—w,w),

Then, if we fix 0 < a <

and so, as x~

1

H(ngw) - 04‘§1| - f;/ € (—w — hr,w+ hR)
72|thR|, we have, for all [{;| > R and ¢, € (~w,w),

T
ja (56 w) — altal = €))] < 5

sin(a(k (e, w) — @l€:| — &) _ 2a

2

3 s
sinz > — on (—5,

o[y

#(&ew) — aféa] = & ™

Combining the above with (2.28), we conclude that there exists ¢ > 0, s.t. for all

S| > R,

f¢0(§.’t7’£(£m,&))) > C|51‘7%*25.
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This implies that
(2.29) o (6o) Z/w +a2e2)7e 171 qg, = +oo,
R

because 20 — 40 > 0, see (2.26).
Summary. For arbitrary o > 0, with the choice of ¢ = ¢,, by (2.25) and (2.29)

yields v = v, = NT ¢, ¢ H fg}’ |, and hence the conclusion. O
In Section 3.4 we refine the above result to show that Nf € B (Lgomp, H!t7) (where
L2,y = {v € L*(R?) : supp v is bounded}) if and only if o < 0.

2.4 Radiation condition for 0 < w < wy. Similarly to the Helmholtz equa-
tion, the solutions to (1.8) are, in general, not unique, see the discussion in the
beginning of Section 2.2. The main idea in the derivation of the radiation condi-
tion to impose the uniqueness of the solution to (1.8) comes from Remark 3: the
partial Fourier transform of w,,, namely F,u,, solves the Helmholtz equation (2.15).
The outgoing solutions to (2.15) are given by (2.14), with the fundamental solution
defined in (2.12). The uniqueness of the outgoing solutions is then assured by the
classical Sommerfeld radiation condition. Hence, it remains to justify the application
of the Fourier transform to (1.8), which enabled us to work with Fyu(,,.) defined
for almost all £, € R. For this it is sufficient that u(.,y) € L*(R) for all y. Combining
all these reasonings, we formulate the following radiation condition.

DEFINITION 2.8 (Outgoing Fourier-domain radiation condition). A function ¢ €
LZZOC(RQ) satisfies an outgoing Fourier-domain radiation condition if

(RC1) a.e. iny €R, ¢(.,y) € L3(R).

(RC2) the partial Fourier transform of ¢ satisfies (recall that av is given by (2.4))

lim [0y Fad(Ensy) — in/a2E2 +w2.7:xq5(§r,y)‘ — 0 ae in €R.

ly|=+o0

Let us remark that this radiation condition resembles the radiation condition provided
by the angular spectrum representation for the rough surface scattering [5]. Next we
show that it indeed ensures the uniqueness of solutions to (2.5).

PROPOSITION 2.9 (Uniqueness). Let 0 < w < w,. Let w, satisfy (1.8) with
f =0 and the outgoing Fourier-domain radiation condition from Definition 2.8. Then
w =0.
Proof. Because of (RC1) from Definition 2.8, F,u (&, y) is defined a.e. in&,, y €
R, and thus F,u, satisfies (2.15) with f =0 a.e. in &, € R:

(2.30) K2 (Eayw) Fot(€ar y) + 0o Fou(éa,y) =0, in D'(R).
From (RC2), which is the radiation condition for the above 1D Helmholtz equation,
it follows that Fou(&,,y) =0 a.e. in &, € R. 0

2.5 Existence and uniqueness of solutions in the hyperbolic regime
0 < w < wp. The principal result of Section 2 is summarized below.

THEOREM 2.10 (Existence and uniqueness). Let 0 < w < w, and s,s" > % For
all f € L? | (R?), there exists a unique solution u,, € Lj, (R?) to (2.5) that satisfies
the radiation condition (RC1), (RC2). Moreover, u, = u} = NI f, u, € H*,, |,
and, with some Cs ¢ (w) > 0,

(2.31) lwwllr, | < Cow @z,
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Proof. The uniqueness of u,, follows from Proposition 2.9.

By Theorem 2.3 and a classical density argument u,, := u}, = NI f solves (2.5);
the stability bound is from Proposition 2.6. It remains to show that u} satisfies the
radiation condition.

Obviously, u; € L2 by the stability bound (2.31). Then, (RC1) follows from
the fact that uff € H',, | . The condition (RC2) follows from (2.14) by direct compu-
tation, using the partial Fourier transform (2.14) and the explicit form of the partial

Fourier transform of the fundamental solution (2.12). Indeed, we have, for y > 0,

o0 .
e“ﬁ(gw;w)lyfyll

— 00

sgn(y — ') Fo f(ury)dy’

o] .
et (€xw)ly—y'|

V2r

Y

= i’f(ngw)}—wui (5:1:7:‘/) - fmf(gm,yl)dy/.

It remains to use the Cauchy-Schwarz inequality to estimate

o0 2 o0 oo
ellEa )yl N ) 12\—s 7./ "2 12\s 7.1
——=F &)y S [ A+yT) 7y [ Ff (& v (T +y7) dy
V2
Y Y y
Sy EHFef (€ 2wy = 0,y — +oo.
A similar computation shows the validity of (RC2) for u], when y — —oc. |

3 Regularity analysis in the hyperbolic regime. This section is dedicated
to finer regularity estimates of the solution in the hyperbolic regime. We first pro-
vide a motivation to the regularity analysis, which takes the form of the numerical
experiments: they indicate that the regularity of the solution depends on a certain
directional regularity of the data. Then we provide a theoretical justification of the
results of those numerical experiments: we demonstrate that if the singularities of the
data f are not ’aligned’ with characteristics, the solution is more regular than in the
case when they are.

Recall that the result of Proposition 2.6 is somehow disappointing: it shows that,
provided an Lg’ | -right hand side data, we cannot expect the solution regularity to
be better than His,’ . To discuss the numerical experiments, we need the following
corollary of Proposition 2.6.

PROPOSITION 3.1. N € B(H} |, H} ), for all x>0, s,8' > 1.

Proof. 1t is straightforward to extend the proof of Proposition 2.6 to show that
NI e B( ;”h,HleL), m € N. The desired result than follows by the standard
interpolation argumént [24, p. 320, Theorem B.2] and the interpolation results for
weighted Sobolev spaces obtained by Lofstrom [23, Theorem 4 and (5.3)]. |

Let us consider the following numerical experiment. We compute? the solution to
the problem (2.5) with a = 1 in the free space R?, using the perfectly matched layer
method of [7] adapted to the frequency domain.> We take two right-hand side data

2For these simulations we used the XLife++ library [25].

3While for the moment we do not have a rigorous proof of the convergence of this perfectly
matched layer method, neither in the frequency nor in time domain, our numerical experiments
indicate that it does indeed converge.
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f =1 =1o,, 5 =1,2, with either

01 = (—a,a) x (—a,a), or 02={|x—y|<\/§a,|az+y|<\/§a}, a=0.5.

1
In both cases, f; € N HZp(R?), j = 1,2, the only difference being that the singu-
e>0
larities of fo (jumps) are aligned with the characteristics of the equation (2.5). In both
cases, according to Proposition 3.1, we expect the corresponding solution u;,j = 1,2,
3_
to belong to N HZ,
s'>3,e>0
smoother than the solution us. It appears that this phenomenon is not only numerical,

i(RQ). Visually, cf. Figure 3, the solution u; seems to be

’
’
4 4
’ ’
> e > .
O, | .-
e F
‘ e
/
x -~y = const L& —y = const
’ ’
4 4
4 7’
x x

1.5e-02

l 0.01

- 0.005
-0

3.0e-02
[ 0.02

0.015

0.01

0005
0

-~ -0.005 o0

2015
[ -0.01 [ 2002
15002 3.00-02

F1G. 3. Top: the open sets O; and one of the characteristic lines passing through their boundary.
Bottom: the imaginary part of the solution to the problem (2.5) with the parameters described in
the beginning of Section 3, restricted to the square (—2,2) X (—2,2). Left: f = f1. Right: f = fa.

but occurs also at the continuous level: indeed, when the singularities of the source
term are aligned with characteristics (we will give a precise mathematical definition
of the ’alignment’ in further sections), the solution is less regular than otherwise.

Another interesting phenomenon illustrated in Figure 3, left, is that unlike in
the elliptic case, the singularities of the solution are no longer concentrated at the
singularities of the data, but propagate along the characteristics, see [19, Theorem
4.4.1 and discussion afterwards] for the elliptic case and [19, Theorem 8.3.1] for the
hyperbolic case.

In order to present the essential difficulties, rather than technicalities, in this
section we examine the behavior of the solution in a particular case when the data
fis sit. suppf = O, for a bounded convex open set O of R? and f € C%(0O).
In other words, the continuation of f outside of @ by zero may have discontinuities
only on 00. We will show that in this case the derivatives of the solution may have

This manuscript is for review purposes only.



560
561
562
563
564

565

A MATHEMATICAL STUDY OF A HYPERBOLIC METAMATERIAL IN FREE SPACE 17

jump and logarithmic singularities, and show how these singularities are related to
the characteristics passing through @. The estimates in the Sobolev spaces, which
are in general better suited for the numerical analysis, are provided in Appendix F.

For convenience, we rewrite (2.5) by performing a rotational change of coordinates
which transforms the characteristics of (1.8) governed by y 4+ a~'x = const into the
lines £ = const and n = const, where

(3.1) E=y+ale, n=y—alz.

An open set O will be denoted by Q in the coordinates (£,7). Given a function
v(z,y), we denote by 0(¢,n) = v (ia(¢ —n),1(£+mn)). It is readily checked that
(2.5) transforms into

(3.2) 402 i, + w?ii, = f in D'(R?).

The solution that satisfies the outgoing Fourier-domain radiation condition, cf. (RC1),
(RC2), is transformed to (with an abuse of notation in the definition of G):

ub = NI =G5 1,

1 { HP (wVE), >0,

(3.3) Gl (& m) =3 HO (iwy/=E), €7 < 0.

REMARK 4. In this section we use the following notation: U := u}, and G .= g}

3.1 Regularity results. In the beginning of this section we will summarize the
regularity results, while most of their proofs will be postponed to the later sections.

We start with the following proposition that states that the singularities of the
solution to (3.2) lie inside the set of characteristics passing through the support of f.
To formulate this result, let us define two regions, given a4 > a_ and by > b_,

Qg = {(6777) a— <£<a+}7 QZ = {(5777) b- <77<b+}
Then the region Qqp = Q5 U Q] contains all the characteristics of (3.2) passing
through the rectangle (a—,ay) x (b—,b,), see also Figure 4, left.

THEOREM 3.2 (Smoothness regions). Let f € L2(R?) s.t. supp f C [a_,a4] x
[b—,by]. Then the functionu =G x f € C°(R?\ Qap)-

The next result shows that, even if fhas jump singularities, the solution has continu-
ous derivatives, if the jumps are not aligned with characteristics. In order to formulate
the desired result, let us introduce the following assumption.

ASSUMPTION 1 (Assumption on the data). Let Q be a bounded convex (thus,
Lipschitz, cf. [17, Corollary 1.2.2.3]) open set of R%. We define

a—:=inf{{: (§,n) € A}, ay :=sup{¢: (§n) € 2},
b_:=inf{n: (&n) € Q}, by :=sup{n: (&n) € O},

so that the smallest rectangle containing Q is given by (a—,a4) x (b—,by). Let

Fai = {(a:tan)v ne R} N an Fbi = {(gvbﬂ:)a § € R} N an
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—r ) Ty,
by =3 Q] by - .
Al | \ N
+| §f..  q Ta,
A0 | |
b b | .
Ly
| |
a_ ay a_ at

Fic. 4. An idllustration to the geometric configuration of Section 3. Left: open sets Qg and
QZ. Right: illustration to the notations of Assumption 1. In particular, in this case A® = Al and

BY =B!.

so that, with some A% < AL, B} < B},
Fai = {(aiﬂ?) : A?t <n< Ali}a Fbi = {(fvbﬁ:) : Bi <¢E< Bi .

Let f be defined as follows:

rs F in Q, . - 0,0 ()
= { 0 otherwise, with F' € C7(Q).
An illustration to the above geometric configuration is given in Figure 4, right. As
a matter of fact, the requirement of the convexity of ) simplifies the presentation of
the results. This condition ensures that the boundary is Lipschitz, and, moreover,
that I',, and I'p, are connected sets (intervals or points). For non-convex sets, the
requirement that € is Lipschitz can be weakened to require that 92 is C%?, for some
B > 0. It appears naturally in the proof of the estimates, and it does not seem that
it can be weakened to C°.
In what follows, we will denote by |I'| the length of the curve T

THEOREM 3.3 (Propagation of singularities). Let f satisfy Assumption 1. Then
the function © = G * f satisfies w € C* (R?\ (094 UOQY)). Moreover,
L. if |Tur| = |Tp.| =0, then u € CY(R?);
2. if |Tq.| =0 (resp. |Tp.| =0), then d¢ii € C°(R?) (resp. O,u € C°(R?));

3. if[Ta,| # 0 (and/or |T,_| #0), O¢u € CO(R?\ Q). Moreover, the following
identities hold true:

Deti(e, ) =
(3.4) cu(€,n) -

_%Aa(f’n)lﬁi(fﬂ']) + g(fv”))

(Fa_log|¢ —a—| — F,, log|¢ —ayl)

where

(a) the constants Fy, are given by:
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(b) the function A, € C° (ﬁi) is defined as

§—ay E—a_
A = — -
a(&m) = —>— . fa_(n) + P—— far (),
where
Faia USAQ):’
L/
fas(n) = § Fax = 2,4‘[ Flag,n)dy', A% <n< AL,
+
_Fai7 77> Ali.

(c) g € C(R?).
Similar expressions hold for 0,u(&,n), which, in general, has a logarithmic
and jump singularities across the lines n = by (resp. 1 =0b_) when |y | # 0
(resp. |Ty_| £0).

REMARK 5. Theorem 3.3 concerns the data that has jump singularities, and shows
the following. If the intersection of the support of the singularity with one of the
characteristics {§ = const} or {§n = const} is of non-zero Lebesgue measure, the
solution has discontinuous derivatives in general, with discontinuities aligned along
the respective characteristics. Otherwise, the solution has continuous derivatives.

The above theorem leads to the following corollary. When the 'mean value’ of the
jump vanishes (i.e. F,, =0, F,, = 0), the singularities no longer propagate along
the characteristics but are concentrated along the jumps of the data lying on the
characteristics, i.e. on I'y, (T'p, ).

COROLLARY 3.4 (Concentration of singularities). Let f satisfy Assumption 1.
Let additionally the following quantities vanish:

Fa. = [ Flasyin =0= [ F(¢\bo)de = Fi..
Pag Doy
Then u € C*(R*\ (T, UT,_ UT,, ULy )).

Proof. We will show the reasoning for d:u only. According to (3.4), the disconti-
nuities of J:u are concentrated along the lines £ = a4. Additionally, it is clear that
Ot — § M4 (€,1)1q¢ is continuous on R?. On the other hand,

Ag(as,n) =0, for n > A} and for n < AY.

Therefore, Aq(§,1)1g¢ (§,7) is continuous on R?2\ (I, UT,_), and so is O¢u. d

REMARK 6. The results of Theorem 3.3 and Corollary 3.4 can of course be im-
proved to show that u € CH*(R? \ (005 U9QY)).

The following sections are dedicated to the proofs of Theorems 3.2, 3.3.

3.2 Proof of Theorem 3.2 Consider the explicit expression for u:

a b+

e = 5 [ UG =€)+ Kol ~ € on— i )FE o)

a— b_

Ky (€,m) = L{én > 0YHS (w/En),  Ka(&m) = 1{&n < OYHY (iwv/—En).
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It is then easy to verify that the function (£,7) — K1(§—¢&',n—n'), provided arbitrary

&, n) €la_,ay] x [b_,by], is C* in the following open set:
{&n):&>ayoré<a_, andn>by orn<b_}=R*\Qup.

In the same way, (£,1) — K2(§ — & ,n—1n') € C* (R*\ Qq,p). The result follows by
the Lebesgue dominated convergence theorem.

3.3 Proof of Theorem 3.3. Before proving Theorem 3.3, we start with the
following observation.

LEMMA 3.5. The fundamental solution can be split as 5 = G~smg + g~reg, where
~ ) ) 1
(3.5) Gsing(§,1) = g log|¢| + o—log [n] — S1{&n < 0},
- i '
(3.6) Greg(&,1) = 2=95(W?En) (log|én| + in1{€n < 0}) + gu (w?én),

8T
with g7, ga being entire functions, g;(0) =0, ¢’;(0) # 0.
Proof. The proof relies on the explicit decomposition of the fundamental solution

(3.3), given by (2.7), (2.8). It remains to rewrite it in a form suggested by the
statement of the lemma. In the notations of (2.7),

)= 5 (132108 5) (14 s +ia ().

We leave the remaining details to the reader. O

We then split accordingly
(37) u= asz’ng + ﬂregv asing = gsing * fa a7"eg = greg * f

The proof of Theorem 3.3 then relies on the simple observation that .., € C*(R?),
while the singularities of the derivatives of wgng can be computed explicitly.

LEMMA 3.6. Let f satisfy Assumption 1. Then Uyey € C1(R?).

Proof. Using the explicit expression of Q}eg (3.6), we introduce

Uboy = go(w?en)log €]« f, U2, = gs(w€n)log |y * f,
Wy = gs (WP ENI{En < O} x f, Tl = gu(w?en) = f,

SO that Upeg = g=(Uhe, + Upey) — FUieg + Urey- Evidently u},, € C*(R?), and the
rest of the functions are continuous in R2, by continuity of the respective convolution
kernels and because f € L>(R?). Let us examine their derivatives.

Step 1. Proof that ﬂieg, ﬂ%eg € C*(R?). By symmetry, it suffices to study only one of
these functions. We first consider

w? ~ ~
deit,, = g"(f”) « T+ w?(ngly(w?€n) og |e]) * T.

Because g; € C*°(R) and vanishes at zero, £ ~1g;(w?¢n) is continuous and thus the
first term in the above expression is continuous in RE. The remaining term is contin-
uous as a convolution of an Lj, (R?) function with f € Lg2, (R?).

Step 2. Proof that u?,, € C*(R?). Again by symmetry, it is sufficient to study 9¢u?,,:

reg reg’
03, = w? (1 g (wEn) 1{&n < 0}) = f,
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b | 71 (&) |
ALl |
A i
- v (©)
a a

Fi1c. 5. An illustration to the notations of the proof of Theorem 3.35.

where we used ¢g;(0) = 0. The above is again continuous as a convolution of an
LL (R?) function with f € L2, (R2). ad

loc
We now have the necessary ingredients to prove Theorem 3.3. Before proving this
result, let us remark the following. Because {2 is convex, the part of the boundary
that lies between the vertical lines ¢ = a4 can be parametrized as follows:

(3.8) aQ\Fai :P+UF_7 I+ = {(5777) 1€ (a*7a+)777:’7i(£)}7
and v* : (a_,ay) — R Lipschitz functions, s.t. 4+ > y~. Moreover, they can be
extended by continuity to [a_,a4], with v (ax) = AL and v~ (ay) = A%. We then
have [Ty, | = 7" (ax) — v~ (ax). This is illustrated in Figure 5

Proof of Theorem 3.3. We start with the decomposition (3.7). By Lemma 3.6, it
suffices to consider only the derivatives of usng. Based on (3.5), we split

com (
P

_ i 1
(39) Using = 8771' (uszng + uszng) - ) szng’
szng IOg |£| ﬂszng log |77| ~§zng 1{577 < 0} f

Let us examine the derivativeb of the above expressions.
Step 1. Derivatives of U’ By symmetry it suffices to study only 65usmg and
Oeu?,, - Evidently,

sing’ szng

(3.10) Dt Zing = 0.

To study O¢ul

sing?

- - )
let us introduce F5(&) := [ f(&,n')dny’ = [ f(&n')dy’ (the no-
R (&)
tation indicates that we integrate in the second variable n). This function has the
following properties:

e when & ¢ [a_,a4], ﬁg(f) =0, because suppr ﬁi;
o« Fy [ ] € C%([a_,a.]), because f € C%*() and v* are Lipschitz.
a— (l+
flog|§ ¢'|Fy(¢)d¢’, and does not depend on 7. We

By definition, usmg &, n)

consider two cases
Step 1.1. D¢tily,, for € ¢ la_,ay]. A straightforward computation yields

¢’ € C=(R2\ 003).

~1 _ a+ﬁ2(‘£l>
(3.11) 55u5ing(§a77) = / E—¢
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Step 1.2. 355;-”9 for € € (a—,ay). An explicit computation gives

&%m@mwﬂﬁvlnmgm>

(3.12)

£
F2 Fy() — Fa(8)
5 5’
(55)

de' + Fy(¢ PV/E ad

:1/P@£v@tfégﬂmms—wu—mgm—aqy

For all ¢, P(,.) € L*((a—,a,)), because Fy € C%*([a_,a]). The first term above

defines a continuous

function on [a—_,a]. Indeed, given h > 0, one has

ay ay—h _ ~
(¢ — F
£-¢
a_ a_—h
and f (E+h, &) — P(£,€))dE" — 0 as h — 0, by the Lebesgue convergence theo-
rem, again using 5 € C%*([a_,a]). Thus, diil;,, € CO(QS).

Step 1.3. Behaviour

when & — ai Let us define

v+ (ax)

(3.13) F,, =

F(ax,n)dy', so that F,, = hm Fy(¢), F, = Eliim Fy(8).

ftay

v-(az)
We claim that (3.12) and (3.11) imply that the following holds true:
(314) GO(&) 77) - 85 sznq(g) + Fa+ IOg |§ - CL+| - Fa7 log |§ - CL_| € CO(Rz)

The continuity of Gy is evident for (¢,7) € R?\ 9%, and it remains to prove it in the
points (a4, n). We consider (a,n). For & > a4, from (3.11) we have

a+ﬁ N )
G0(§777):/2(§)+d5 +( _Fa7)10g|§_a—|'

Since F, € C%([a

£=¢

a_—

a_,ay]), and using (3.13), the same argument as for f P&, &hde

before shows that the first term in the above expression is continuous in f =a4, and

(3.15) 33%@m:/

a4
B(¢) — F,
Lﬁd&’ + (F,,—F, )loglay —a_|.
ay —§

a—

For £ < a4, (3.12) and left continuity of £ — P(£,£’) in ay yield

lim Goe.n) = [

a_—

a+ﬁ2(€') - F

== Y’ 4+ (F,, —F, )1 —a_| = lim Go(&,7).
a —¢ &+ (Fa, _)loglay —a_| Jim o(&,m)
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This shows that Gy is continuous in £ = a; similarly one shows that it is continuous
iné=a_.

Step 2. Derivatives of ﬂging' A straightforward computation yields
oo n
Oing(&,m) = /f(if,n’)dn’ - / f&nan'.
n —o00
Because supp fg Q,
(3.16) 0eti®,,, = 0 in R2\ 0.
With (3.8), we have, for € € [a_,a],
3
| Feanar. <y (@),
7= (8)
() n
(3:17) eidsy,y(€,m) = / F(&,n")dn' — / E(&n)dn', ~~ (&) <n<~(E),
n v~ (&)
()
- / F(&n')dn', n =)
¥ (8)

Because 4= are continuous and F' € C%*(12), the above function is Co(ﬁi). Let
f(l+ (77) = 5111‘21.1;. afazing (57 77), fa_ (77) = {ligi 6fﬂ§zng (57 T’)
In particular, from (3.16), it follows that

lim agazs))zng(fvn) — lim 8§ﬂ§zng(£vn) = fa+ (77)
Etay &lay

Let us introduce the following function:

L S S S

" ap —a_ a_ —ay

A(&,m)

3

so that A(E, 77)152 has the same jumps as 9¢ty;,,,. Therefore, from (3.16) we have

sing

(3.18) G1(&:m) = 0y — A&, m)1ge € CO(RY).

Similar expressions can be obtained for 8,2, ,(¢,7).

Summary of the results. Combining (3.9), (3.10), Steps 1 and 2, we obtain the
desired statement. O

3.4 Revisiting numerical results. Let us consider the problem described in
the beginning of Section 3. We aim to apply Theorem 3.3. The open sets O; (€2, in

the coordinates &, 1) are shown in Figure 6. For ]?1, Ta.| =0, |y, | =0, and therefore
Octiy, Oyuy € C°(R?). This is not the case for fo: as seen from Figure 6, [Ty, | # 0,
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= Qy | T

& = ¢onst £ = const

§ §

1
1

F1G. 6. Open sets 1 and the characteristics touching their boundaries.

b+ ~
Ty, | # 0. Moreover, F,, := [ Fy(as,n)dn = 2v/2a > 0. This shows in particular
b

that across the lines £ = a4, J¢Us has jump and logarithmic singularities (while 0,
stays continuous). This example allows to improve the result of Proposition 2.7.

COROLLARY 3.7. The operator Nf € B(L?,,,,(R?), H,-7(R?)) iff ¢ < 0.

loc

Proof. Assume that N € B(Lgomp(RQ),HH”(RQ)) for some o > 0. Then, since

loc

it is a convolution operator, one deduces that NI € B(H},,,,(R?), H?*'?(R?)). By in-

loc

terpolation, in particular, NI € B(HZ,,,,(R?), Ht“T(R?)), for 6 € (0,1). Consider

loc
the function f3, defined like in the beginning of Section 3, which belongs in particu-
l7 = . . . .

lar, to HZmp(R?). This would mean that uy := N f, € H?(R2), which is impossible
since dyug, Oyus have jump singularities. 0

4 Limiting absorption and limiting amplitude principles. Finally, let us
formulate the limiting absorption principle in a strong operator topology.

THEOREM 4.1. Let s,s' > 3, 0 <w < wy. Let w, € C*, Rew, >0, and w, — w
as n — +oo. Then, for all f € L? |,

Nonf = NI fin HE,, | (R?).

Proof. The proof is quite easy and is based on the explicit representation of the op-
erator N,,. Let us fix s, s’ > 2 and set 1y, := N, f =N f, 5 1= /—e 1wy, E2 + w2.
Using (2.14), we obtain

1 K ’ . ’
(4.1) wFpern(&e,y) = / <emnyy | _ ikly—y > ]'—xf(éz,y')dy’,
21V 2 n
1 T 2 K

1 i —y’ ik|y—y’ :
(42) Oy Fera(Cey) = 5= (e“‘"'y vl — el y') Fof(€ary)sign(y — y')dy'.
R

Recall the norm equivalence (2.16). We will show that lirf |6 Farnll 2 = 0; the
n—-+oo —s/, L

analogous result for 0, F,r, will follow in the same way.
Step 1. A few auziliary bounds. First, remark that, as Imk,, > 0,

<

~

K o ; ) ; ) . o
(4.3) Y otrnly=y'l _ ginly—y eirnly—v'| _ girly—y'l|

Kn

“—1‘+

Rn
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Evidently, we have in particular

(4.4) L girnly=y'l _ girly=y'l| < 1.
K,

A finer bound can be obtained by remarking that the function
w—= k(w) = Vw? —e N (w)&E2

is uniformly Lipschitz on all compact subsets of {z: 0 < Rez < w,}. Let 6 > 0 be
sufficiently small. With By (w) = CT N Bs(w), for all n sufficiently large, it holds
that

0 ) 2z — (e7'(2))E2
|k —kn| S sup j('z) |w — wnl, K(@‘ =|= 2(E (f)) 5302 ’
zEB;(w) dw Ow 24/ 2% — €~ (Z)fm,
Therefore,
(4.5) |k — kn| < max(|€:], 1)|wn — w|.

Similarly, since for |w, —w| —= 0, |kn| 2 || + 1, we conclude from the above that

K—l‘ < lwn — w.
Kn

(4.6)

As for the second term in (4.3), since Im x,, > 0, the same argument as above gives

4.5

elinlv=v'l =yl <y — o] |ky — k| S Jwn — wlly — | max(|&,], 1).

(4.7)

Combining (4.6) and (4.7), and using the fact that all the quantities in the left-hand-
side of (4.3) are bounded uniformly in y, £, and for all w, sufficiently close to w (cf.
(4.4)), we obtain the following bound valid for all n sufficiently large:

(4.8) ]%emnly—y’l - emly—y’l‘ < min(1, jwp — wlly — | max(|&,], 1)).

Step 2. Splitting in high and low frequencies. Next, let us split

fxrn(gacvy) = filf(ngy) + fzf(fmay%
fﬁzf(gmvy) = 1|§,,|<Af'n(£z,y)a fzf(gray) = 1\§I|ZA72n(€z>y)a

where A > 1 will be chosen later. We will estimate these two quantities separately.
Step 2.1. Estimating 717 (¢,,y). We use a uniform bound (4.4) in (4.1), which yields

2

K (€0 )] < / Pty < / (142 | Fulln )Py |
R R

where the last bound follows from the Cauchy-Schwarz inequality and s > % From
the definition of #1/(&,,y) and s’ > 1 it follows that

(49) it 5 [ e iRy Py

[€z]>A R
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Step 2.2. Estimating 71/ (&4,y). To estimate 71/ (£, y), we use the estimate (4.8) for
small |w — wy,| in (4.1) which results in

|57 (€2, )| < Al — o] / Iyl + 19/ )| £ (o)
R

and using the Cauchy-Schwarz inequality (s > %) yields

|67, (€2,9)| < Alwn =l (Jy] + 1) |1 Fe f (€ 2 r)-
Finally, we obtain (s’ > 3)
(4.10) IR N2s S A% - P | fs

Step 2.8. Summary. Combining (4.9), (4.10) yields

Iiiallss, S An — ol IFufBs 4 [ @y IRy Py e
|€z[>A R

For any ¢ > 0, we can choose A := A so that the last term of the above expression
2

does not exceed £2/2; next we choose n so that AZ|w, — w|?||F.f||3. < 5, which

s, L

allows us to conclude that ||x7,]| 2 L, —0,asn— 4o0. d
It is seen in the above proof that to obtain (4.10), it is necessary to have the constraints
on the weights s, s’ > % in the scale of the weighted Sobolev spaces with polynomial
weights. A finer result could be obtained by using Hérmander (Fourier transforms of
Besov) spaces.

Using the classical techniques of Eidus, cf. [15], it is possible to prove the limiting
amplitude principle. The proof of this result can be found in the technical report [21].

THEOREM 4.2. Let s > 2, f € L2(R?), and 0 < w < wy,. Let (E, H.,j) solve

OE, —0,H, =0,
HEy+0,H. +j=0, 8j—wiE, =0,
OH, + 0,E, — 0 E, = fe™",
H.(0) = E»(0) = E,(0) = j(0) = 0.
Then, for all s' > 2, lim ||H.(t,.) — h.(.)e™!||2 =0, where h, = —iwN] f, cf.
t—+o0 —s!
(2.10). In other words, h, € HES,’J_ is the unique solution to

w?h, — a2a§hz + 85/12 = —iwf,

equipped with the radiation condition (RC1), (RC2).

5 Conclusions. In this work we have studied a model for wave propagation in
a hyperbolic metamaterial in the free space, described by the Klein-Gordon equation.
With the help of a suitable radiation condition, we have shown its well-posedness; a
detailed regularity analysis is presented. Our future efforts are directed towards the
study of a more mathematically involved case of propagation in the exterior domains,
as well as the design of numerical methods for this kind of problems.
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Appendix A. Derivation of (1.2). Electromagnetic wave propagation in a
three-dimensional cold collisionless plasma under a background magnetic field By =
(0, By, 0) is described by Maxwell’s equations

(A1) 0D — curl H = 0, OB + curl E = 0.
Here B = poH, and the relation between D and E is given in the frequency domain
by D = e¢p(w)E, where £¢,(w) is the cold plasma dielectric tensor, see [31, (18), (25)]

or [16, Chapter 15.5]. In the simplest case when the plasma is comprised of particles
of a single species with mass m and charge ¢, and whose number density is N = N(x),
this tensor reads

2 2
]. - w;ipwz 0 ) _Zw(:}gf;2)
(A.2) Eep(W) = €0 0 1-22 0 :
2 2
ity O 1- s

Nq?

eo s the plasma frequency and w. = % is the cyclotron frequency.

where w, =
In what follows we will assume that the density NV is uniform in space, i.e. w, = const.

In the strong magnetic field limit (|By| — +00, or |w.| = 400), the cold plasma
dielectric tensor reduces to a diagonal matrix

1 0 0

2
(A.3) cwy=ef0 1-2% o0
0 0 1

In order to rewrite the Maxwell system in the time domain, we first consider the
relation between D, and E,

R w2\ . . R w2 .
(A4) Dy=¢e|1-—2|E, = —iwD, =—iweoFEy +&o (—ipw)Ey’

w

Let us define an auxiliary unknown (a current), so that, in the frequency domain
2

J =eo (fﬁ)EAy, or, in the time domain,

Oj — eows By = 0.
This allows to express

0Dy = 00, Ey + J.
With this notation (A.1) reads (where e, = (0,1,0)7)

€00 E — curl H 4+ je, = 0, 0¢j — aowﬁEy =0,
o0t H + curl E = 0.

In the case when the fields do not depend on the space variable z, the above system
is decoupled into the TE system (with respect to E, E,, H, j) and the TM system
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(with respect to Hy, H,, E.). While the TM system is the same as in the vacuum
(this is left as an easy exercise to the reader), the TE system reads

c0OtE, — 0y H, =0,
(A.5) c00L By + 0, H, + 7 =0, O — eowr By =0,
w00 H, + 0, E, — 0,E, = 0.

Appendix B. Computation of the fundamental solution G,. Recall that
we choose /z as the branch of the square root, with the branch cut along (—oo, 0].
By Argz € (—m,n] we denote the principal argument of z. Before studying the
fundamental solution for the equation (1.8), we first consider the following problem.
Let us assume that Imw # 0, and @ > 0. Consider the fundamental solution for a
scaled Helmholtz equation with the frequency w, i.e. the unique G2 € &' solving

(B.1) w?GY(x) +a 'O2GY (x) + 02GL(x) = 6(x).
It can be verified that the fundamental solution G¢, is defined by

(B.2) 6o () = — VA [ D@y 4 yR), Tmw >0,
) H? (wy/az? + ), Imw <0,

4
where H(()l)(z) (H(()z)(z)) is the Hankel function of the first (second) kind (see [L,
Chapter 9]). It is analytic in C\ R_, where R_ = {z: Im2 =0, Rez < 0}.
Performing a partial Fourier transform of (B.1) in x, we can obtain explicitly
FzG¢ as the fundamental solution of a 1D Helmholtz equation. After a series of
elementary computations, we obtain

(oo}
1 o~V 12wyl

efigxz

dm NG

— 00

(B.3) Gi(z,y) = d¢,,  a>0.

Let us now obtain the fundamental solution for (1.8), i.e. the solution of
(B.4) w2G, (x) + s(w)*laigw(x) + 8§gw(x) = 4(x).

We cannot immediately write G,, using (B.2), because e(w) in the above is complex,
and, in general, a slightly stronger argument is needed. For this we will use (B.3),
which we will rewrite in an appropriate form that will allow to use an analytic con-
tinuation argument.

Performing the partial Fourier transform of (B.4) in z yields

(B.5) B2 (FuGu) — (c(w) €2 — W) FuGy = f}%

By definition, F,G, is the fundamental solution of a 1D Helmholtz equation with
absorption. To see this we remark that

(B.6) (ew)'& —w?) R,
The justification of the above follows by a direct computation. In particular,
Im(e(w) 1€2 — w?) = Ime(w) 1¢2 — Tmw?, and

2

w
(B.7) signIme(w) ™ = —signIm e(w) = signIm —127 = —signIm w?.
w
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975 Therefore, for w = w, + iw;, with w;, w, # 0,

g7 (B.8) sign Tm(e(w) 1¢2 — w?) = —signw;w, # 0,

978 while when w, = 0, e(w)™1¢2 — w? > 0. This shows (B.6). Let us define
440 $(§a,w) = Ve(w) 1 —w?

981 By the above considerations, the function w +— s(&;,w) is analytic for all w € CT.
982 Next, the fundamental solution F,G, is defined as follows:

B .0 1 e VEW T —wyl
983 .9 290 (&, y) = — .
- (B.9) (€2 y) NN R

985 For y # 0, FuGu(.,y) € LY(R); we also have

17 e ze—\/E(w)*lfi—wQIyld
T g

986 (B.10) Gu(z,y) =
987

988 To compute the inverse Fourier transform, we remark the following:

989 o for y # 0, w — Gu(w,y) defined as above is analytic in C*. This follows
990 from the analyticity of w — e;é%j) in CT and uniform boundedness of its
991 derivatives by an L!-function of ¢, on compact subsets of CT.
992 The same can be said about the analyticity of w — G, (x,y) in C~.
993 e for w € iR*, we have e(w) > 0. We thus reduce to the case (B.3), for which
994 the inverse Fourier transform is known and given by
; (1) 2 2

. (B.11) Gu(x) = _iy/e(w) H%Z)(w 6(w)x2 + y2), Imw > 0,
096 4 Hy” (wy/e(w)z? +y?), Imw <O0.
997 e for (z,y) # 0, the function w —Li(w)Hél)(w e(w)z? + y?) is analytic in
998 C*. To verify this, it suffices to check that wy/e(w)z? + y? ¢ R~ (the branch
999 cut of H[()l)(w\ /e(w)x? + y?)). This being obvious for w € iR*, let us consider
1000 the case Rew # 0. Then
1001 Im (w e(w)x? 4+ y2) =ImwRee(w)x? + y? + RewIm y/e(w)z? + y2.
1003 For Imw > 0, the first term above is positive; the second term, cf. (B.7), as
1004 signIm e(w) = sign Im w? = sign Rew is positive as well.
1005 Therefore, w fLZ(w)Hél)(w e(w)xz? + y?) is analytic in C*.
1006 In the same way we check that w +— —LZ(W)HSQ)(w e(w)z? + y?) is analytic
1007 in C™.
1008 Using the analytic continuation argument, (B.10) being equal to (B.11) on iR™, and

)

1009 analyticity of both functions, we conclude that, for |y| # 0, (B.10) coincides with
1010 (B.11). For |y| = 0, the result follows immediately by noticing that F,.G,, € L*(R?).
1011 Thus

1012 (B.12) Go(x) = Zm{ H{Y (w/e@)z? +?), Imw >0,

4 Hég) (wy/e(w)z? +y?), Imw <O0.
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Appendix C. Proof of (2.12). By definition, G} = lim G,.

Imw—0+
Let us assume that Imw > 0. Starting with (B.9), let us consider the case

when w = w, + i€, with 0 < w, < w,, and take ¢ — 0+. In this case, cf. (B.8),

h%lJr e(w)~1€2 — w? = —i\/—e(w,) 1€2 + w2, hence the conclusion.
e—

Appendix D. Proof of Statement 2 in Proposition 2.4. In the proof, we
will extensively use the following. Because for all § > 0, we have

Im ((w + 6)*(e(w + i0)z? +y?)) > 0, and

(D.1) ) 9 )
Im(w +1i6)* >0, Im(e(w+id)z” +y°) >0,

it follows that

(D.2) V(w+130)2(e(w + i6)x2 + 32) = (w + i0)/e(w + i6)x2 + 32,

and

(D.3) log/(w +i6)2(e(w +i0)22 + y2) = log(w + i6) + % log (e(w + i0)x® + y2) .

Let us fix R > 0, and show that G, ;s — G in L*(Bgr(0)). The pointwise convergence
of Gutis — G} being obvious, one would want to apply the Lebesgue dominated con-
vergence theorem. This is however not possible, because the logarithmic term above
cannot be bounded uniformly in § by an L], -function. To see this it suffices to notice
that Im (e(w + i6)2? 4+ y?) = O(6), and in the points where [Ree(w + i6)z?® + y%| < 6
(this set is of non-zero measure) one has |log (e(w + i6)z? + y2)| 2 [log §|.

Let us thus prove the L!-convergence of the two terms in (2.8) separately. Let

(D.4) I5(x) := log(y® + e(w + i6)2?), so that
) 2
(D.5) Guwtis = Mla + G s+ % log(w + id).

A7
Step 1. L;—convergence of l5. The pointwise limit of [5(x) is the function

I(x) defined by (recall that o = (—g(w))?, see (2.4)):

1= { e

2a?), [yl > oY,
“22?) +im, |yl < a7tz
We will study the L'-convergence separately on the following two domains:
D.6) Br(0)=KTUK~, KT :={x¢€Bg(0), |yl >a |z},
K~ = {x € Br(0), |y < a~"Jo}.

Step 1.1. Convergence in K~. Our goal is to show that

lim /|15(x) —I(x)]dx = 0.

6—0+
o

For this we rewrite the above in a more convenient form.
First, we remark that there exists C > 0, s.t.

(D.7) le(w 4 i6) — e(w)| < €6, for all § > 0 sufficiently small.
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Choosing d so that the above holds true and such that a2 — CV§ > 0, we split

K= =K, ;UK. s (with the constant C' as above) defined as follows:
(D.8) K,5={x€Br(0): 0<y’<(a?-CVo)},
. K;ng,é = {X € BR(O> : (a_2 - C\/S)$2 < y2 < 04_2 2}.

The choice v/§ in the above will be motivated later, cf. (D.11), (D.12).
Step 1.1.1. Convergence on K __ 9.5° An explicit computation yields

o o
ls(z,y) — l(z,y) = log (_5(w+z5)x—|—y) i

e(w)z? + y2
=log|—-1- —E(w +i9) = E(w)xg —m
g(w)z? +y?
(D.9) = 15" (x,y) +il5" (2, y),
abs elw+1i) —e(w
I8 (z,y) =log |1 + (yZ—oz—ZxQ()xQ ,
ar e(w+1id) —e(w

(DIO) I(S g(z,y) = Arg (1 — (yg_cz_gx2()x2> — T.

Let us show that the above converges to zero in Ll(KT_eg’é).

Convergence of ||Igbs\|L1(Ku_ D Using the bound (D.7) and the definition of

K., s (D.8), where we have —a 222 < y? — a 222 < —CV/622, we obtain
e(w+1id) —e(w) o N
(D.11) WI < \/S, Vx € Kreg’é.

Therefore, for all § sufficiently small, we have that || I¢*51, - 6||L1(K7) < V4, thus
reg,

(D.12) s, 15 W 1 i, ) = 0-

Convergence of [|I5"]| 1 k- . Let us examine the real and imaginary parts of
Teg,
the argument of Arg in (D.10). With (D.11) we have that

(D.13) Re (-1 - W)_E(“)x?) = 14 O(V9).

Y2 — 232

Using the definition of & ; in (D.8) and the fact that Ime(w +id) > 0 (this follows

by a direct computation), we obtain the following inequality:

e(w+1i6) —e(w) , e(w + i6)x? o
(D14) Im (_1— WZ’ :II'I’Iw_y2 >01n Kreg,é‘

With Ime(w + id) = O(5) and the definition of K 5 in (D.8), we also have

(D.15) Im (-1 _ ‘M)_E“’)x?) — 0(v/3).

y2 — 22
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Combining (D.13), (D.14), (D.15), we conclude that inside K

reg,s0 1t holds that:

lim Ij"(x) =0, Vxe K, g, thus
0—0

reg,d’

. arg _
(D.16) %1_1}(1) 115 ”Ll(K;egy(;) =0.
Summary. Combination of (D.12), (D.16) and (D.9) yields

(D.17) Y lts = Uiz iy, ) =0

sing,d*

Step 1.1.2. Convergence on K We will prove the following:

(D.18) Y [

ing,S) = }II)I%) ||Z||L1(K3_Lng,5) - 0.

The result is obvious for [ € L'(Br(0)), by the Lebesgue’s dominated convergence
theorem. Let us prove it for [5 by a direct computation. First of all, we remark that

(D.19) ||15HL1(K;_" ) < ||Re lé”p(}(;ng’é) + | ImlJHLl(K;"g'a),

9,6

and from (D.4), because |Imls| < 7, with the Lebesgue’s dominated convergence
theorem it follows that

(D.20) }i_l;[}) || Im lé”Ll(K;ng’é) = O.

It remains to prove the result for Rels = log |e(w + id)x? + y?|. We rewrite
e(w+i0)x? +y? = (—a22? +y?) + 22 (e(w + i) — e(w)),

and by definition of K ings (applied to estimate the first term above), as well as

analyticity of €, we conclude that the above quantity is O(\/g), and thus
|[Rels| = |10g le(w + i0)x? + y2|| < |logd|.

By definition of K,

sing,0’

(D.21) IRelsllpne- S / log 8ldx < V8| log 5.

9,5) ~
Kiing.s
This, combined with (D.19), proves (D.18).
Step 1.1.3. Convergence in K~. Combining (D.18), (D.17) and (D.8), we con-
clude that

(D.22) ||l5 — l”Ll(K—) — 0.

Step 1.2. Convergence |[|ls — l||p1(x+) — 0. The proof mimics the proof of the
analogous result for K ~, hence we omit it here.

Step 1.3. Conclusion. Combination of the results of Steps 1.1 and 1.2, together
with (D.8) results in the desired statement

(D.23) lim [lls =l L2 (Br(0) = O-
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Step 2. Proof of convergence of G775 to its pointwise limit in L'(Bg(0)).
To prove the result, we show that the following bound holds for g:?fi sandall § >0
sufficiently small:

(D.24) |gLee

sl e By 1

To show this bound, it suffices to prove two bounds, cf. the explicit expression for
Guw+is in (2.8),

(D.25) sup 19 (251, sup gy (25) S 1,
(z,y,0)€BR(0)%(0,1) (z,y,0)€BR(0)x(0,1)
(D.26) sup lgs(z5)log zs| < 1.

($,y76)EBR(O)X(0,1)
To prove the above we remark that the application
(D.27) Zs: (z,y,0) = zs

maps Bg(0) x (0,1) into a bounded subset C of C*. Then
e (D.25) follows from the analyticity of g;(2), gy (2).
e (D.26) can be obtained using the following argument. The function z —
gJ(z)log z is analytic in C\ (—o0,0). Also,

sup |gs(z5)log zs| = sup |gs(2) log z| = sup |gs(2) log 2],
(x,y,0)€BR(0)x(0,1) zeC zeC
which is bounded because 1) C € CT UR and C is bounded; 2) as g;(0) = 0
and is analytic, the function z — g;(2)logz, z € CT, can be defined by
continuity up to R, and is bounded on compact subsets of C* UR.
With the bound (D.24), and Lebesgue’s dominated convergence theorem, we deduce
that as § — 0, G775 converges to its pointwise limit in L'.
Step 3. Conclusion. Combining the results of Steps 1 and 2, together with the
splitting (2.8), we deduce that G,1,5 — G in L'(Bg(0)), as § — 0.

Appendix E. Proof of Lemma 2.5. For |z| > a|y|, by (FS) on page 6, we
have

(E.1) Gt (z,y) = — H (iwy/a—22% — 2.

da
By [1, formulas 9.6.4, 9.6.23],

2 T -
Hél)(iw fo—222 — y2) S ef““/o‘ z;pz,yzt(t2 _ 1)7%dt

1T
1

) Ooe—w\/a*%?—y?(nﬂ)
i Vv +2 g
0

Because |z| > aly| + 6, /a=222 —y2 > /a2(aly| + §)2 — y2 > o~ 4. Therefore,

3 —wa~ oy
B (/o 77— )| g o [0 gy
‘ 0 J VIV + 2

. —onS =252 _q2
= Cq,5€ 4 ,  Ca,s > 0.
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Combining the above bound with (E.1) results in the desired statement of the lemma.

Appendix F. Sobolev style regularity results. Let us introduce the fol-
lowing norm and function spaces tailored to meet the requirements of Lemma 3.5:

HM%:WW+/MWW# +/ﬁ@m&

H'(R)
2 13 2

n
+%/m¢m’+%/mmw,

H(R)

0

XO(RY) = CE(RY)
X0 (R?):={f € X°R?) :supp f is bounded}.

comp

We then have the following result.
THEOREM F.1. The operator NI € B (X2,,,,(R?), HZ.(R?)).

comp loc
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