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Abstract. Wave propagation in hyperbolic metamaterials is described by the Maxwell equa-4
tions with a frequency-dependent tensor of dielectric permittivity, whose eigenvalues are of different5
signs. In this case the problem becomes hyperbolic (Klein-Gordon equation) for a certain range6
of frequencies. The principal theoretical and numerical difficulty comes from the fact that this hy-7
perbolic equation is posed in a free space, without initial conditions provided. The subject of the8
work is the theoretical justification of this problem. In particular, this includes the construction of a9
radiation condition, a well-posedness result, a limiting absorption principle and regularity estimates10
on the solution.11
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1 Introduction and problem setting. Metamaterials are novel artificial ma-15

terials [30] which exhibit properties that are important for applications, such as neg-16

ative refraction and artificial magnetisation. The possibility of their physical real-17

ization was predicted in the seminal article by V. Veselago [32]. Typically they are18

fabricated as periodic structures of metals immersed into dielectrics, and thus electro-19

magnetic wave propagation is modelled with the help of the heterogeneous Maxwell20

equations. Because the properties of the metamaterials are often revealed in the21

low-frequency regime, when the wavelength is much larger than the characteristic22

size of the inclusions, the respective heterogeneous Maxwell equations are further23

transformed using the homogenization process into homogeneous Maxwell equations24

with frequency-dependent tensors of dielectric permittivity and magnetic permeabil-25

ity. Numerous works have been devoted to different aspects of the mathematical and26

numerical analysis of isotropic models, when the dielectric permittivity and magnetic27

permeability are frequency-dependent scalars [11, 27, 9, 10, 13, 14, 22, 8]. However,28

up to our knowledge, there exist very few recent articles dedicated to the mathe-29

matical analysis of the anisotropic models, especially in the case when the tensors of30

the dielectric permittivity and/or magnetic permeability are no longer sign definite31

(so-called hyperbolic metamaterials [29]), with the only exception being the work by32

E. Bonnetier and H.-M. Nguyen [12]. Let us remark that real materials are always33

dissipative (which mathematically leads to elliptic models). But, first of all, the dis-34

sipation can be small (and much effort is dedicated to its minimization [33, 26, 18]),35

and, second, the qualitative behaviour of the solutions to the dissipative models ap-36

proaches the behaviour in models without dissipation. This is especially important37

for the numerical simulations.38

The goal of this work is to perform mathematical analysis of frequency domain39

wave propagation in the simplest 2D hyperbolic metamaterial, where the frequency-40

dependent tensor of the dielectric permittivity is diagonal, with eigenvalues of different41

signs for a range of frequencies, and the magnetic permeability is a positive constant.42

In this case the respective problem reduces to the Klein-Gordon equation (compare43

this to the classical case, when the wave propagation is modelled by the Helmholtz44
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2 P. CIARLET, M. KACHANOVSKA

equation). In this work we are interested in the well-posedness of the respective model45

in the free space (in particular, existence, uniqueness, limiting absorption principle,46

regularity of the solution, especially in view of the further numerical analysis applica-47

tions). The underlying operator is a so-called principal type operator. Some regularity48

results have been shown by S. Agmon in the classical work [2]. We refine these results49

to take into account the propagation of singularities along the characteristics. In the50

context of the limiting absorption principle and the radiation condition, the principal51

type operators were considered by S. Agmon and L. Hörmander in [4], but, first of all,52

in our case, the absorption is in the principal symbol of the operator, and, moreover,53

their proposed radiation condition is provided in the implicit form and does not seem54

to be suited for the problem we consider.55

We present the model under scrutiny in the next section, and provide an outline56

of the work in Section 1.2.57

1.1 The model. One of the simplest models that incorporates distinctive fea-58

tures of the wave propagation phenomena in hyperbolic metamaterials comes from59

plasma physics and describes wave propagation in a strongly magnetized cold plasma60

[29]. Mathematically, the corresponding model reduces to the Maxwell’s equations61

supplemented with ODEs. In the case when the electromagnetic field does not de-62

pend on the z-coordinate, the model further decouples into the 2D transverse-electric63

and the transverse-magnetic systems. In this work we will concentrate on the latter64

system. Its derivation can be found e.g. in [6]; for convenience of the reader, we65

present it in Appendix A. In the time domain, it reads66

ε0∂tEx − ∂yHz = 0,

ε0∂tEy + ∂xHz + j = 0, ∂tj − ε0ω
2
pEy = 0,

µ0∂tHz + ∂xEy − ∂yEx = 0, (x, t) ≡ (x, y, t) ∈ R2 × R.

(1.1)67

68

The vector unknown E = (Ex, Ey)T is the electric field, the scalar unknown Hz is69

the magnetic induction, while j plays the role of a current. The coefficients ε0, µ070

are the dielectric permittivity and the magnetic permeability of vacuum, and ωp is71

the plasma frequency. In what follows we will perform a change of coordinates and72

rescaling of unknowns in (1.1), chosen so that the coefficients ε0 and µ0 disappear from73

the formulation. This, in particular, implies that the speed of light c = (ε0µ0)−
1
2 is74

rescaled to 1. In these new coordinates (1.1) becomes (where we keep the old notation75

for simplicity)76

∂tEx − ∂yHz = 0,

∂tEy + ∂xHz + j = 0, ∂tj − ω2
pEy = 0,

∂tHz + ∂xEy − ∂yEx = 0, (x, t) ≡ (x, y, t) ∈ R2 × R.

(1.2)77

78

We denote by (., .) the L2-scalar hermitian product, and by ‖.‖ the respective norm:79

(u, v) =

∫
R2

uvdx, ‖u‖ =

∫
R2

|u|2dx

 1
2

.80

81

Testing the equations of (1.2) by correspondingly Ex, Ey, ω−2
p j and Hz, and then82

summing up the result shows that the energy of (1.2) is conserved:83

d

dt
E(t) = 0, E(t) :=

1

2

(
‖Ex(t)‖2 + ‖Ey(t)‖2 + ‖Hz(t)‖2 + ω−2

p ‖j(t)‖2
)
.84

85
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It is thus classical to conclude about the well-posedness and stability of the initial-86

value problem for (1.2). However the well-posedness of the problem (1.2) in the87

frequency domain is not as trivial. To see this, let us apply the Fourier-Laplace88

transform, defined for causal functions of polynomial growth by89

û(ω) =

∞∫
0

eiωtu(t)dt, ω ∈ C+ := {z ∈ C : Im z > 0},(1.3)90

91

to (1.2). Re-expressing the current ĵ via Êx, we obtain the following system:92

− iωε(ω)Ê− curlĤz = 0,(1.4)93

− iωĤz + curl Ê = 0,(1.5)9495

where we denote curl = (∂y,−∂x)T , curlv = ∂xvy − ∂yvx. The 2-by-2 tensor ε(ω) =96

diag(1, ε(ω)) is the relative electric permittivity, with ε(ω) defined by97

ε(ω) = 1−
ω2
p

ω2
.(1.6)98

99

As we see, the above model defines a hyperbolic metamaterial [29], since ε(ω) < 0 for100

0 < ω < ωp. We will simplify it further, by expressing Ê via Ĥz, which results in the101

following problem for Ĥz:102

ω2Ĥz + ε(ω)−1∂2
xĤz + ∂2

yĤz = 0, (x, y) ∈ R2.(1.7)103104

More generally, we consider the following problem: given f , find uω, s.t.105

Lωuω = f, in D′(R2),(1.8)106107

where108

Lωu := ω2u+ ε(ω)−1∂2
xu+ ∂2

yu.(1.9)109110

The spaces to which uω, f belong will be specified later.111

For 0 < ω < ωp, the above problems reduce to the (hyperbolic) Klein-Gordon112

equation. Because the theory of hyperbolic problems posed in the free space is much113

less developed than for elliptic problems, the phenomena of wave propagation governed114

by (1.2) is not fully understood from the qualitative and quantitative points of view.115

Our goal is thus to fill some gaps in the mathematical justification of (1.2).116

Let us first of all introduce some notations. We define, for u ∈ L1(R2), s.t.117

û ∈ L1(R2), its partial and full Fourier transforms:118

Fxu(ξx, y) =
1√
2π

∫
R

eiξxx
′
u(x′, y)dx′, Fyu(x, ξy) =

1√
2π

∫
R

eiξyy
′
u(x, y′)dy′,119

Fu(ξx, ξy) =
1

2π

∫
R2

eiξ·xu(x, y)dxdy, F−1û(x, y) =
1

2π

∫
R2

e−iξ·xû(ξx, ξy)dξx dξy.120

121

At various points of this work, it will be of more convenience to work with weighted122

Sobolev spaces. In particular, let us define123

L2
s,⊥(R2) ≡ L2

s,⊥ := {v ∈ L2
loc(R

2) :

∫
R2

(1 + y2)s|v(x, y)|2dx dy <∞},124

125
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with the norm126

‖v‖2L2
s,⊥
≡ ‖v‖2s,⊥ :=

∫
R2

(1 + y2)s|v(x, y)|2dx dy.127

128

The corresponding Sobolev spaces Hµ
s,⊥ are then defined with the help of the Bessel-

like potential

Jµv = F−1 ((1 + |ξx|µ + |ξy|µ)Fv(ξx, ξy)) , µ ∈ R+,

namely129

Hµ
s,⊥(R2) ≡ Hµ

s,⊥ := {v ∈ L2
s,⊥(R2) : Jµv ∈ L2

s,⊥(R2)}, ‖v‖2s,⊥ = ‖Jµv‖2s,⊥.130
131

It will be useful to work with the partial x−directed Fourier transforms of functions132

on the above spaces. Remark that for any v ∈ L2
s,⊥(R2), v(., y) ∈ L2(R), a.e. in133

y ∈ R. Therefore, equivalent norms on L2
s,⊥(R2), H1

s,⊥(R2) can be rewritten using the134

Plancherel theorem in the following form:135

‖v‖2s,⊥ = ‖Fxv‖2s,⊥ =

∫
R2

(1 + y2)s|Fxv(ξx, y)|2dξxdy,(1.10)136

‖v‖2H1
s,⊥

=

∫
R2

(1 + y2)s(1 + ξ2
x)|Fxv(ξx, y)|2dξxdy

+

∫
R2

(1 + y2)s|∂yFxv(ξx, y)|2dξxdy.
(1.11)137

138

We will use the notation a . b (resp. a & b) to indicate that there exists C > 0 that139

may depend on ωp and ω, s.t. a ≤ Cb (resp. a ≥ Cb).140

1.2 Outline. The rest of the article is organized as follows. Section 2 is dedi-141

cated to the well-posedness and regularity results related to the problem (1.7) in the142

hyperbolic regime, that is for 0 < ω < ωp. Section 3 is dedicated to the in-depth143

analysis of the regularity of the solution to (1.7). We demonstrate the optimality of144

the regularity estimates of Section 2 in the framework of Sobolev spaces, and show145

how the respective results can be improved when considering spaces adjusted to the146

way singularities propagate in (1.7). Section 4 is dedicated to the proof of the limiting147

absorption principle for 0 < ω < ωp.148

2 Well-posedness of (1.8) in the hyperbolic regime. This section is or-149

ganized as follows:150

• in Section 2.1 we show that (1.8) is well-posed in L2(R2) when ω ∈ C \ R;151

• in Section 2.2 we prove the existence of the solution to (1.8) by a limiting152

absorption principle;153

• in Section 2.4 we derive the radiation condition;154

• Section 2.5 is dedicated to the statement of the main result of this section.155

Remark 1. Evidently, when ω ∈ R, it suffices to consider the well-posedness of156

the problem for ω ≥ 0. We are interested in the case when ω ∈ [0, ωp], since for157

ω ∈ R \ [0, ωp], the model reduces to the Helmholtz equation. In the limiting case158

ω = ωp, it can be shown that the limiting absorption principle holds for the Maxwell’s159

equations (1.4), and the resulting solution vanishes for a sufficiently regular right-160

hand side. On the other hand, for ω = 0, the application of the limiting absorption to161

(1.4) yields a non-vanishing solution. More details can be found in [21].162
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2.1 Well-posedness for complex frequencies. Let us define the sesquilinear163

form associated to (1.8):164

aω(., .) : H1(R2)×H1(R2)→ C,165

aω(u, v) = ω2(u, v)− ε(ω)−1(∂xu, ∂xv)− (∂yu, ∂yv).166167

It is possible to show that, whenever ω ∈ C\R, the above form is coercive on H1(R2),168

thanks to non-vanishing Im(ωε(ω)) 6= 0. This result is summarized in the following169

lemma, which follows from the proof of Proposition 3.12 and Theorem 5.4 of [7].170

Lemma 2.1. For all ω ∈ C \ R, ω = ωr + iωi, ωr, ωi ∈ R, it holds171

|aω(u, v)| . |ω|2 max(1, ω−2
i )‖u‖H1‖v‖H1 ,172

|Im aω(u, ωu)| & |ωi|min(ω2
i , 1)‖u‖2H1 .173174

Thus, for all f ∈ H−1(R2), there exists a unique uω ∈ H1(R2) that satisfies (1.8).175

Moreover, ‖uω‖H1 . |ωi|−1 max(ω−2
i , 1)|ω|‖f‖H−1 .176

We leave the proof of the above result to the reader. The unique solution to (1.8) is177

given by the convolution of the source f with the fundamental solution Gω:178

uω = Nωf := Gω ∗ f =

∫
R2

Gω(· − x′)f(x′)dx′.(2.1)179

180

A derivation of an explicit form of Gω, ω ∈ C \ R, is given in Appendix B. Before181

presenting it, let us make the following remark.182

Remark 2. All over the article, we use the following convention: for a complex183

number z ∈ C,
√
z denotes the principal branch of the square root, i.e. Re

√
z > 0 for184

all z ∈ C \ (−∞, 0]; respectively, log z = log |z|+ iArg z, Arg z ∈ (−π, π).185

Then the fundamental solution for (1.8) is given by186

Gω(x) =
−i
√
ε(ω)

4


H

(1)
0 (ω

√
ε(ω)x2 + y2), Reω > 0, Imω > 0,

H
(2)
0 (ω

√
ε(ω)x2 + y2), Reω > 0, Imω < 0,

(2.2)187

188

where H
(1)
0 , H

(2)
0 are Hankel functions of the first and second kind.189

2.2 Existence of solutions Because the solution to (1.8) is well-defined when190

ω ∈ C \R, to prove the existence, for now we will make use of the limiting absorption191

principle in a pointwise topology. A justification of the limiting absorption principle192

in an H1
loc-topology will be given in Section 4.193

We proceed as follows. For ω ∈ (0, ωp), we define the pointwise limit194

G+
ω (x) := lim

δ→0+
Gω+iδ(x), x ∈ R2,(2.3)195

196

and, correspondingly u+
ω := G+

ω ∗ f , with a sufficiently smooth data f . We then prove197

that u+
ω solves (1.8).198

Similarly, let G−ω (x) := lim
δ→0+

Gω−iδ, (it holds that G−ω 6= G+
ω ). The corresponding199

solution u−ω also solves (1.8). We will refer to the solution u+
ω as to the outgoing200

solution, and u−ω as to the incoming one (in analogy with the Helmholtz equation).201

We will concentrate on the construction of the outgoing solutions.202
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θα
Cp
Cδp
Ce
Cδe

Fig. 1. The domains Cδp, Cδe , Cp, Ce, with θα = atanα−1.

2.2.1 The outgoing fundamental solution and its properties. Let us fix203

ω ∈ (0, ωp) and introduce the following notation (recall that ε(ω) < 0)204

α := (−ε(ω))
− 1

2 > 0.(2.4)205206

With this notation, (1.8) becomes207

ω2u− α2∂2
xu+ ∂2

yu = f in D′(R2),(2.5)208209

and the outgoing fundamental solution (2.3) reads210

G+
ω (x, y) =

1

4α


H

(1)
0 (ω

√
y2 − α−2x2), (x, y) ∈ Cp,

H
(1)
0 (iω

√
α−2x2 − y2), (x, y) ∈ Ce,

(FS)211

212

where213 {
Cp = {(x, y) ∈ R2 \ {0} : |y| > α−1|x|},
Ce = {(x, y) ∈ R2 \ {0} : |y| < α−1|x|}.(C)214

215

The notations Cp, Ce will be clarified later, in Lemma 2.2.216

It is well-known that the fundamental solution for the initial-value problems for217

hyperbolic operators is causal and vanishes outside of the space-time cone, see e.g.218

[20, Chapter XII, Theorems 12.5.4, 12.5.1]. This latter property reflects the finite219

velocity of the wave propagation. The fundamental solution G+
ω possesses none of220

these features. This is one of the corollaries of Lemma 2.2, which we state in polar221

coordinates (r, φ): x = r cosφ, y = r sinφ. Let us introduce some auxiliary notations.222

Let γφ = tan2 φ− α−2 ∈ R. With this definition,223

Cp = {(r, φ) : γφ > 0}, Ce = {(r, φ) : γφ < 0}.224225

Let us also define, for all δ s.t. 0 < δ < α−2,226

Cδp = {(r, φ) : γφ > δ}, Cδe = {(r, φ) : γφ < −δ},227228

see Figure 1 for illustration. We then have the following result.229

Lemma 2.2 (Asymptotics of G+
ω at infinity). Let 0 < δ < α−2. Then230

• inside Cδp, as r → +∞,231

G+
ω (r cosφ, r sinφ) =

e−i
π
4

2α
√

2πω
r−

1
2 (γφ cos2 φ)−

1
4 eiωr

√
γφ cos2 φ (1 + o(1)) .232

233
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Fig. 2. The real (left) and imaginary (right) parts of the fundamental solution G+ω (x), with
ωp = 10 and ω = 7.05 (chosen so that ε(ω) ≈ −1).

• inside Cδe , as r → +∞,234

G+
ω (r cosφ, r sinφ) = − i

2α
√

2πω
r−

1
2 (−γφ cos2 φ)−

1
4 e−ωr

√
−γφ cos2 φ (1 + o(1)) .235

236

The error terms in the asymptotic expansions depend on δ.237

Proof. The proof is based on the following asymptotic expansion from [28, pp.238

266-267]. Let z ∈ C be s.t. 0 ≤ Arg z ≤ π
2 . Then, as |z| → +∞,239

H
(1)
0 (z) =

√
2

πz
eiz−i

π
4 (1 + η(z)) , |η(z)| . |z|−1, C > 0.(2.6)240

241

It remains to apply the above to G+
ω (x), with

z = ωr
√
γφ cos2 φ, in Cδp , and z = iωr

√
−γφ cos2 φ, in Cδe .

The only statement that needs to be proven is that η(z) = o(1), as r → +∞. From the242

expression for η (2.6), this amounts to showing that
√
γφ cos2 φ (resp.

√
−γφ cos2 φ)243

is uniformly bounded from below away from zero when (r, φ) ∈ Cδp (resp. Cδe ).244

Let us consider the case Cδp . By evenness and periodicity, it suffices to study245

the case φ ∈
(
atan

√
α−2 + δ, π2

]
. The function φ 7→ γφ cos2 φ ≡ sin2 φ− α−2 cos2 φ is246

non-negative and strictly monotonically increasing on
(
atanα−1, π2

]
; hence γφ cos2 φ ≥247

cδ > 0, with cδ > 0, for all (r, φ) ∈ Cδp .248

The case Cδe can be studied similarly.249

The above lemma justifies the notation Cp and Ce: inside Cp, the fundamental solution250

oscillates and decays at best as O(r−
1
2 ) (thus the index ’p’ stands for ’propagative’),251

while inside Ce, it decays exponentially fast (thus ’e’ stands for ’evanescent’).252

An illustration to this result is shown in Figure 2.253

2.2.2 Existence of classical solutions to (1.8). We start with proving the254

existence of classical solutions to (1.8). The results of this section will serve as a basis255

to prove the existence of the weak solutions.256

Theorem 2.3 (Existence of classical solutions to (1.8)). Let ω ∈ (0, ωp) and257

f ∈ C2
0 (R2). Then u+

ω = G+
ω ∗ f ∈ C2(R2) and satisfies (1.8) in a strong sense.258
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The proof of this theorem relies on the following auxiliary proposition.259

Proposition 2.4. Let 0 < ω < ωp. Then260

1. Gω+iδ ∈ L1
loc(R

2) for all δ > 0.261

2. lim
δ→0+

Gω+iδ = G+
ω in L1

loc(R
2).262

Proof. Proof of the statement 1. To understand the behaviour of Gω+iδ, let263

us make use of the following expression for H
(1)
0 (z) stemming from [1, §9.1.3, §9.1.13]:264

H
(1)
0 (z) = J0(z) + iY0(z),

J0(z) = 1 + gJ(z2), Y0(z) =
2

π
J0(z) log

z

2
+ gY (z2),

(2.7)265

266

where gJ , gY are entire1 functions; moreover, gJ(0) = 0, g′J(0) 6= 0.267

With zδ = (ω + iδ)2(ε(ω + iδ)x2 + y2) and (2.7), we get268

Gω+iδ(x) = Gregω+iδ(x) +

√
ε(ω + iδ)

2π
log
√
zδ, where(2.8)269

Gregω+iδ = −i
√
ε(ω + iδ)

4

(
1− 2i

π
log 2 + gJ(zδ)

(
1 +

2i

π
log

√
zδ
2

)
+ igY (zδ)

)
.270

271

The fact that Gω+iδ ∈ L1
loc(R

2) follows from the above: indeed, as zδ 6= 0 on R2 \ {0},272

Gω+iδ is continuous on R2 \ {0}, and its only singularity is the logarithmic (thus,273

integrable) singularity in the origin.274

Proof of the statement 2. See Appendix D.275

With the above result, the proof of Theorem 2.3 is almost immediate.276

Proof of Theorem 2.3. Let us fix ω ∈ (0, ωp), δ > 0. Let uω+iδ = Gω+iδ ∗ f .277

Because f ∈ C2(R2), by Proposition 2.4, Statement 1, uω+iδ ∈ C2(R2). It satisfies, cf.278

Section 2.1, in the strong sense: Lω+iδuω+iδ = f. Proving that Lωu+
ω = f amounts to279

proving that the following holds in the topology of pointwise convergence:280

|Lω+iδuω+iδ − Lωu+
ω | → 0, as δ → 0.(2.9)281282

The above rewrites as283

Lω+iδuω+iδ − Lωu+
ω = Lω+iδGω+iδ ∗ f − LωG+

ω ∗ f = Gω+iδ ∗ Lω+iδf − G+
ω ∗ Lωf284

= (Gω+iδ − G+
ω ) ∗ Lω+iδf − G+

ω ∗ (Lω − Lω+iδ)f.285286

Let us assume that supp f ⊂ BR(0), R > 0. Then the above yields287

|
(
Lω+iδuω+iδ − Lωu+

ω

)
(x)| ≤ ‖Lω+iδf‖L∞(BR(0))‖

(
Gω+iδ − G+

ω

)
(x− .)‖L1(BR(0))288

+ ‖Lω+iδf − Lωf‖L∞(BR(0))‖G+
ω (x− .)‖L1(BR(0)).289290

The analyticity of the coefficients of Lω, and Proposition 2.4 yield (2.9). This shows291

that u+
ω satisfies (1.8) in a strong sense. The fact that u+

ω ∈ C2(R2) follows from292

G+
ω ∈ L1

loc(R
2), cf. Proposition 2.4, Statement 2, and f ∈ C2

0 (R2).293

1The fact that the series in [1, §9.1.10, §9.1.13] define entire functions can be validated by studying
their radius of convergence
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2.2.3 Existence and regularity of weak solutions. Let us extend the state-294

ment of Theorem 2.3 to more general data, as well as quantify the behavior of u+
ω at295

infinity. This will be of importance, in particular, when constructing an appropriate296

radiation condition. All over this section we assume that 0 < ω < ωp.297

We start by defining the domain and the range of the solution operator, defined298

for f ∈ C∞0 (R2) as the following Lebesgue integral:299

(N+
ω f)(x) := (G+

ω ∗ f)(x) =

∫
R2

G+
ω (x′)f(x− x′)dx′.(2.10)300

301

For this we will use an appropriate Sobolev space framework. To do so, let us motivate302

the definitions that follow by describing an asymptotic behaviour of N+
ω f .303

2.2.3.1 Behaviour of N+
ω f at infinity. The asymptotic expansions of Lemma304

2.2 yield G+
ω /∈ L2(R2). However, this lack of decay at infinity concerns only one305

coordinate direction, namely y; it is possible to show that for fixed y ∈ R, G+
ω (x, y)306

decays exponentially fast in x, see the result below.307

Lemma 2.5 (Decay in x-direction). For all δ > 0, there exists Cα,δ > 0, s.t. for308

all (x, y) ∈ R2 with |x| > α|y|+ δ, |G+
ω (x, y)| ≤ Cα,δe−ω

√
α−2x2−y2 .309

Proof. See Appendix E.310

For a fixed x > 0, as y → +∞, as seen from Lemma 2.2,311 ∣∣G+
ω (x, y)

∣∣ =
C

(y2 − α2x2)
1
4

+ o(|y|− 1
2 ), C > 0.(2.11)312

313

From Lemma 2.5 and (2.11) we can expect that, for f ∈ C∞0 (R2), N+
ω f(x, y) decays314

exponentially fast in the direction x and at most as O(|y|− 1
2 ) in the y-direction.315

2.2.3.2 Definition of N+
ω . The main result of this section provides the extension316

by density of the operator N+
ω .317

Proposition 2.6. Let s, s′ > 1
2 . The operator N+

ω defined in (2.10) can be ex-318

tended by density to a bounded linear operator N+
ω : L2

s,⊥ → H1
−s′,⊥.319

Before proving the above proposition, let us recall several useful facts. First, the320

partial Fourier transform of G+
ω is given by, see Appendix C,321

(
FxG+

ω (x, y)
)

(ξx, y) =
eiκ(ξx,ω)|y|

2i
√

2πκ(ξx, ω)
, with(2.12)322

κ(ξx, ω) =
√
α2ξ2

x + ω2 > 0.(2.13)323324

In particular, it holds that325

Fxu+
ω = Fx

(
N+
ω f
)

(ξx, y) =

∫
R

eiκ(ξx,ω)|y−y′|

2i
√

2πκ(ξx, ω)
Fxf(ξx, y

′)dy′.(2.14)326

327

328

Remark 3. The motivation to work with the Fourier transform comes from the329

following observation: a formal application of Fx to (1.8) results in the 1D Helmholtz330

equation for almost all Fourier variables ξx ∈ R:331 (
ω2 + ξ2

xα
2
)
Fxuω(ξx, y) + ∂2

yFxuω(ξx, y) = Fxf(ξx, y) in D′(R).(2.15)332333

This manuscript is for review purposes only.



10 P. CIARLET, M. KACHANOVSKA

Thus, H`-bounds for the solution of (1.8) can be obtained by considering the depen-334

dence on the frequency of the bounds on the solution to the 1D Helmholtz equation.335

In particular, from the definition of κ(ξx, ω) (2.13), it follows that

1

2
(α|ξx|+ ω) ≤ κ(ξx, ω) =

√
α2ξ2

x + ω2 ≤ α|ξx|+ ω.

Therefore, by (1.10), (1.11), an equivalent norm in H1
p,⊥ is given by336

‖v‖2H1
p,⊥
∼ ‖κ(ξx, ω)Fxv‖2L2

p,⊥
+ ‖∂yFxv‖2L2

p,⊥
.(2.16)337

338

The constants in norm-equivalence inequalities depend on ω only.339

Proof of Proposition 2.6. Let s, s′ > 1
2 be fixed. To prove the statement, it suffices340

to show that there exists Cs,s′ > 0, s.t. for any φ ∈ C∞0 (R2),341

‖N+
ω φ‖H1

−s′,⊥
≤ Cs,s′‖φ‖L2

s,⊥
.(2.17)342

343

We will use the equivalent norm (2.16) in the derivation of the above bound. For this344

let us remark that, cf. (2.14) and (2.12),345

κ(ξx, ω)FxN+
ω φ(ξx, y) =

1

2i
√

2π

∫
R

eiκ(ξx,ω)|y−y′|Fxφ(ξx, y
′)dy′,346

∂yFxN+
ω φ(ξx, y) =

1

2
√

2π

∫
R

eiκ(ξx,ω)|y−y′| sign(y − y′)Fxφ(ξx, y
′)dy′.347

348

Therefore, with (2.16), using |eiκ(ξx,ω)|y−y′|| = 1, and defining349

v(ξx, y) :=

∫
R

|Fxφ(ξx, y
′)| dy′,(2.18)350

351

we have352

‖N+
ω φ‖2H1

−s′,⊥
. ‖v‖2L2

−s′,⊥
.(2.19)353

354

To bound the right hand side of (2.19), we start with the following L∞-bound. An355

application of the Cauchy-Schwarz inequality yields: for all (ξx, y) ∈ R2,356

|v(ξx, y)| 2 ≤
∫
R

(1 + y′2)−sdy′
∫
R

(1 + y′2)s|Fxφ(ξx, y
′)|2dy′357

= cs

∫
R

(1 + y′2)s|Fxφ(ξx, y
′)|2dy′, cs =

∫
R

(1 + y′2)−sdy′ <∞,(2.20)358

359

where we used s > 1
2 . The above bound implies, with cs′ defined like above,360

‖v‖2L2
−s′,⊥

≤ cs
∫
R2

(1 + y2)−s
′

∫
R

(1 + y′2)s|Fxφ(ξx, y
′)|2dy′

 dydξx361

= cscs′‖Fxφ‖2L2
s,⊥

(1.10)
= cscs′‖φ‖2L2

s,⊥
.362

363

In the above cs′ is finite because s′ > 1
2 . Inserting the above bound into (2.19), cf.364

(2.18), yields ‖N+
ω φ‖H1

−s′,⊥
≤ Cs,s′‖φ‖L2

s,⊥
, i.e. (2.17).365
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2.3 On the optimality of Proposition 2.6. The regularity result of Propo-366

sition 2.6 is not surprising, and had been shown for the so-called operators of the367

principal type (modulo the weights in the weighted spaces) by Agmon in [3, Appen-368

dix A]. Let us show that the result of Proposition 2.6 is in some sense optimal. For369

this we will need the following observation about the norm in Hµ
s,⊥ space. By the370

Plancherel identity, ‖v‖2
Hµs,⊥

can be expressed as follows:371

‖v‖2Hµs,⊥ =

∫
R2

(1 + y2)s
(
|Fxv|2

(
1 + |ξx|2µ

)
+ |F−1

y (|ξy|µFyFxv) |2
)
dξxdy.(2.21)372

373

We then have the following result.374

Proposition 2.7. Let s, s′ > 1
2 . Then N+

ω ∈ B
(
L2
s,⊥, H

1+σ
−s′,⊥

)
iff σ ≤ 0.375

Proof. By Proposition 2.6, we know already that N+
ω ∈ B

(
L2
s,⊥, H

1+σ
−s′,⊥

)
for376

σ ≤ 0. It thus remains to show that N+
ω /∈ B

(
L2
s,⊥, H

1+σ
−s′,⊥

)
for all σ > 0.377

Let s, s′ > 1
2 be fixed. We will prove the result by showing that for every σ > 0,378

there exists φ ∈ L2
s,⊥ (that depends on σ), such that v = N+

ω φ /∈ H1+σ
−s,⊥.379

Let us take φ ∈ L2(R2), s.t. for all x ∈ R, suppφ(x, .) ⊆ [−a, a], for some a > 0.380

This in particular guarantees that φ ∈ L2
s,⊥(R2) for any s. For y < −a, cf. (2.14),381

Fxv(ξx, y) =
ie−iκ(ξx,ω)y

2
√

2πκ(ξx, ω)

a∫
−a

eiκ(ξx,ω)y′Fxφ(ξx, y
′)dy′.382

383

Since for all ξx ∈ R, suppFxφ(ξx, .) ⊆ [−a, a], the right-hand side of the above384

expression is nothing else than the Fourier transform of φ (where we used the Fubini385

theorem (FyFxφ = Fφ)):386

Fxv(ξx, y) =
ie−iκ(ξx,ω)y

2
√

2πκ(ξx, ω)
(FyFxφ) (ξx, κ(ξx, ω))387

=
ie−iκ(ξx,ω)y

2κ(ξx, ω)
Fφ(ξx, κ(ξx, ω)), for all y < −a.(2.22)388

389

Let us now bound from below the norm ‖v‖H1+σ

−s′,⊥
. By (2.21):390

‖v‖2
H1+σ

−s′,⊥
&

∞∫
−∞

(1 + y2)−s
′
∞∫
−∞

(1 + ξ2
x)1+σ |Fxv(ξx, y)|2 dξxdy391

≥ Cω,α

−a∫
−∞

(1 + y2)−s
′
∞∫
−∞

(ω2 + α2ξ2
x)1+σ |Fxv(ξx, y)|2 dξxdy,(2.23)392

393

for some constant Cω,α > 0. From (2.22) it follows that for any σ ≥ 0, cf. the394

definition of κ(ξx, ω) in (2.13), it holds:395

(ω2 + α2ξ2
x)1+σ |Fxv(ξx, y)|2 =

1

2
(ω2 + α2ξ2

x)σ |Fφ(ξx, κ(ξx, ω))|2 .(2.24)396
397
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Using the above expression in (2.23) yields the lower bound on ‖v‖H1+σ

−s′,⊥
in terms of398

the right-hand side φ:399

‖v‖2
H1+σ

−s′,⊥

(2.24)

≥ Cω,α
2

−a∫
−∞

(1 + y2)−s
′
∞∫
−∞

(ω2 + α2ξ2
x)σ |Fφ(ξx, κ(ξx, ω))|2 dξxdy400

= C0(ω, α, s′, a)Iσ(φ), with C0(ω, α, s′, a) = Cω,α

−a∫
−∞

(1 + y2)−s
′
dy > 0,(2.25)401

and Iσ(φ) :=

∞∫
−∞

(ω2 + α2ξ2
x)σ |Fφ(ξx, κ(ξx, ω))|2 dξx.402

403

Let us now fix σ > 0. Let us show that we can choose φ = φσ ∈ L2
s,⊥(R2), s.t.404

suppφσ(x, .) ⊂ (−a, a), for which Iσ(φσ) defined in (2.25) is not finite. The main405

idea is to choose φσ, so that Fφσ is supported in the vicinity of the line (ξx, κ(ξx)),406

however grows in ξx fast enough to ensure that Iσ(φσ) blows up.407

Step 1. Let us define408

ĝσ(ξx, ξy) := (ω2 + α2ξ2
x)−

1
4−δ1{|ξy−α|ξx||<ω}, with some 0 < δ ≤ σ

2
.(2.26)409

410

This function is in L2(R2); to see this we apply the Fubini theorem to compute411

‖ĝσ‖2 =

∫
R2

(ω2 + α2ξ2
x)−

1
2−2δ1{|ξy−α|ξx||<ω}dξxdξy = 2ω

∞∫
−∞

(ω2 + α2ξ2
x)−

1
2−2δdξx,412

413

which is finite because δ > 0. Therefore, F−1ĝσ ∈ L2(R2). The function ĝσ has the414

following important property:415

Iσ(F−1ĝσ) =

∞∫
−∞

(ω2 + α2ξ2
x)σ−

1
2−2δ1{|

√
ω2+α2ξ2x−α|ξx||<ω}

dξx416

=

∞∫
−∞

(ω2 + α2ξ2
x)σ−

1
2−2δdξx = +∞,417

418

because 2δ ≤ σ. Therefore, we could have chosen φ as F−1gσ, had we not imposed419

that a.e. in x ∈ R, φ(x, .) is supported in (−a, a), a > 0.420

Step 2. To respect the constraint of the finiteness of the support in one of the421

directions, let us define422

φσ := 1{y∈(−a,a)}F−1ĝσ ∈ L2(R2).(2.27)423424

Step 3. Let us show that Iσ(φσ) =∞. For this we will examine the behaviour of425

Fφσ(ξ,
√
ω2 + α2ξ2) for large ξ. First of all,426

Fφσ(ξx, .) = Fy1{y∈(−a,a)} ∗ ĝσ(ξx, .), for all ξx ∈ R,427428
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and because Fy1y∈(−a,a)(ξy) =
√

2
π

sin(aξy)
ξy

,429

Fφσ(ξx, ξy) =

√
2

π

∞∫
−∞

sin(a(ξy − ξ′y))

ξy − ξ′y
ĝσ(ξx, ξ

′
y)dξ′y430

(2.26)
=

√
2

π

α|ξx|+ω∫
α|ξx|−ω

sin(a(ξy − ξ′y))

ξy − ξ′y
(ω2 + α2ξ2

x)−
1
4−δdξ′y.431

432

Next, to estimate Iσ(φσ), cf. (2.25), let us consider the above expression evaluated
on the curve

(ξx, κ(ξx)) = (ξx,
√
ω2 + α2ξ2

x),

namely433

Fφσ(ξx, κ(ξx, ω)) =

√
2

π
(ω2 + α2ξ2

x)−
1
4−δ

α|ξx|+ω∫
α|ξx|−ω

sin(a(κ(ξx, ω)− ξ′y))

κ(ξx, ω)− ξ′y
dξ′y434

=

√
2

π
(ω2 + α2ξ2

x)−
1
4−δ

ω∫
−ω

sin(a(κ(ξx, ω)− α|ξx| − ξ′y))

κ(ξx, ω)− α|ξx| − ξ′y
dξ′y.(2.28)435

436

The goal is to show that, for sufficiently large |ξx|, thanks to a properly chosen a > 0,437

the quantity |Fφσ(ξx, κ(ξx, ω))| is bounded from below by |ξx|−
1
2−δ, so that I(φσ) =438

∞. Let us choose a so that the integral in the right-hand side is strictly positive and439

bounded from below. For this let us remark the following: there exists a sufficiently440

large R > 0 and corresponding hR > 0, s.t. for all |ξx| > R,441

κ(ξx, ω)− α|ξx| = α|ξx|

((
1 +

ω2

ξ2
xα

2

) 1
2

− 1

)
∈ (−hR, hR).442

443

The value R in the above depends on ω, α only, and, evidently, hR = O
(
R−1

)
.444

Therefore, for all ξ′y ∈ (−ω, ω),445

κ(ξx, ω)− α|ξx| − ξ′y ∈ (−ω − hR, ω + hR).446447

Then, if we fix 0 < a < π
2|ω+hR| , we have, for all |ξx| > R and ξ′y ∈ (−ω, ω),448 ∣∣a (κ(ξx, ω)− α|ξx| − ξ′y

)∣∣ < π

2
,449

450

and so, as x−1 sinx > 2
π on

(
−π2 ,

π
2

)
,451

sin(a(κ(ξx, ω)− α|ξx| − ξ′y))

κ(ξx, ω)− α|ξx| − ξ′y
>

2a

π
.452

453

Combining the above with (2.28), we conclude that there exists c > 0, s.t. for all454

|ξx| > R,455

Fφσ(ξx, κ(ξx, ω)) > c|ξx|−
1
2−2δ.456457
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This implies that458

Iσ (φσ) ≥
∞∫
R

(ω2 + α2ξ2
x)σξ−1−4δ

x dξx = +∞,(2.29)459

460

because 2σ − 4δ ≥ 0, see (2.26).461

Summary. For arbitrary σ > 0, with the choice of φ = φσ, by (2.25) and (2.29)462

yields v = vσ = N+
ω φσ /∈ H1+σ

−s′,⊥, and hence the conclusion.463

In Section 3.4 we refine the above result to show that N+
ω ∈ B

(
L2
comp, H

1+σ
loc

)
(where464

L2
comp = {v ∈ L2(R2) : supp v is bounded}) if and only if σ ≤ 0.465

2.4 Radiation condition for 0 < ω < ωp. Similarly to the Helmholtz equa-466

tion, the solutions to (1.8) are, in general, not unique, see the discussion in the467

beginning of Section 2.2. The main idea in the derivation of the radiation condi-468

tion to impose the uniqueness of the solution to (1.8) comes from Remark 3: the469

partial Fourier transform of uω, namely Fxuω, solves the Helmholtz equation (2.15).470

The outgoing solutions to (2.15) are given by (2.14), with the fundamental solution471

defined in (2.12). The uniqueness of the outgoing solutions is then assured by the472

classical Sommerfeld radiation condition. Hence, it remains to justify the application473

of the Fourier transform to (1.8), which enabled us to work with Fxu(ξx, .) defined474

for almost all ξx ∈ R. For this it is sufficient that u(., y) ∈ L2(R) for all y. Combining475

all these reasonings, we formulate the following radiation condition.476

Definition 2.8 (Outgoing Fourier-domain radiation condition). A function φ ∈477

L2
loc(R

2) satisfies an outgoing Fourier-domain radiation condition if478

(RC1) a.e. in y ∈ R, φ(., y) ∈ L2(R).479

(RC2) the partial Fourier transform of φ satisfies (recall that α is given by (2.4))480

lim
|y|→+∞

∣∣∣∂|y|Fxφ(ξx, y)− i
√
α2ξ2

x + ω2Fxφ(ξx, y)
∣∣∣ = 0 a.e. in ξx ∈ R.481

482

Let us remark that this radiation condition resembles the radiation condition provided483

by the angular spectrum representation for the rough surface scattering [5]. Next we484

show that it indeed ensures the uniqueness of solutions to (2.5).485

Proposition 2.9 (Uniqueness). Let 0 < ω < ωp. Let uω satisfy (1.8) with486

f = 0 and the outgoing Fourier-domain radiation condition from Definition 2.8. Then487

uω = 0.488

Proof. Because of (RC1) from Definition 2.8, Fxuω(ξx, y) is defined a.e. in ξx, y ∈489

R, and thus Fxuω satisfies (2.15) with f = 0 a.e. in ξx ∈ R:490

κ2(ξx, ω)Fxu(ξx, y) + ∂2
yFxu(ξx, y) = 0, in D′(R).(2.30)491492

From (RC2), which is the radiation condition for the above 1D Helmholtz equation,493

it follows that Fxu(ξx, y) = 0 a.e. in ξx ∈ R.494

2.5 Existence and uniqueness of solutions in the hyperbolic regime495

0 < ω < ωp. The principal result of Section 2 is summarized below.496

Theorem 2.10 (Existence and uniqueness). Let 0 < ω < ωp and s, s′ > 1
2 . For497

all f ∈ L2
s,⊥(R2), there exists a unique solution uω ∈ L2

loc(R
2) to (2.5) that satisfies498

the radiation condition (RC1), (RC2). Moreover, uω = u+
ω = N+

ω f , uω ∈ H1
−s′,⊥,499

and, with some Cs,s′(ω) > 0,500

‖uω‖H1
−s′,⊥

≤ Cs,s′(ω)‖f‖L2
s,⊥
.(2.31)501

502
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Proof. The uniqueness of uω follows from Proposition 2.9.503

By Theorem 2.3 and a classical density argument uω := u+
ω = N+

ω f solves (2.5);504

the stability bound is from Proposition 2.6. It remains to show that u+
ω satisfies the505

radiation condition.506

Obviously, u+
ω ∈ L2

loc by the stability bound (2.31). Then, (RC1) follows from507

the fact that u+
ω ∈ H1

−s′,⊥. The condition (RC2) follows from (2.14) by direct compu-508

tation, using the partial Fourier transform (2.14) and the explicit form of the partial509

Fourier transform of the fundamental solution (2.12). Indeed, we have, for y > 0,510

∂yFxu+
ω (ξx, y) =

∞∫
−∞

eiκ(ξx,ω)|y−y′|

2
√

2π
sgn(y − y′)Fxf(ξx, y

′)dy′511

= iκ(ξx, ω)Fxu+
ω (ξx, y)−

+∞∫
y

eiκ(ξx,ω)|y−y′|
√

2π
Fxf(ξx, y

′)dy′.512

513

It remains to use the Cauchy-Schwarz inequality to estimate514 ∣∣∣∣∣∣
+∞∫
y

eiκ(ξx,ω)|y−y′|
√

2π
Fxf(ξx, y

′)dy′

∣∣∣∣∣∣
2

.

+∞∫
y

(1 + y′2)−sdy′
∞∫
y

|Fxf(ξx, y
′)|2 (1 + y′2)sdy′515

. y−2s+1‖Fxf(ξx, .)‖2L2
s(R) → 0, y → +∞.516

517

A similar computation shows the validity of (RC2) for u+
ω when y → −∞.518

3 Regularity analysis in the hyperbolic regime. This section is dedicated519

to finer regularity estimates of the solution in the hyperbolic regime. We first pro-520

vide a motivation to the regularity analysis, which takes the form of the numerical521

experiments: they indicate that the regularity of the solution depends on a certain522

directional regularity of the data. Then we provide a theoretical justification of the523

results of those numerical experiments: we demonstrate that if the singularities of the524

data f are not ’aligned’ with characteristics, the solution is more regular than in the525

case when they are.526

Recall that the result of Proposition 2.6 is somehow disappointing: it shows that,527

provided an L2
s,⊥-right hand side data, we cannot expect the solution regularity to528

be better than H1
−s′,⊥. To discuss the numerical experiments, we need the following529

corollary of Proposition 2.6.530

Proposition 3.1. N+
ω ∈ B(Hλ

s,⊥, H
1+λ
−s′,⊥), for all λ ≥ 0, s, s′ > 1

2 .531

Proof. It is straightforward to extend the proof of Proposition 2.6 to show that532

N+
ω ∈ B(Hm

s,⊥, H
m+1
−s′,⊥), m ∈ N. The desired result than follows by the standard533

interpolation argument [24, p. 320, Theorem B.2] and the interpolation results for534

weighted Sobolev spaces obtained by Löfström [23, Theorem 4 and (5.3)].535

Let us consider the following numerical experiment. We compute2 the solution to536

the problem (2.5) with α = 1 in the free space R2, using the perfectly matched layer537

method of [7] adapted to the frequency domain.3 We take two right-hand side data538

2For these simulations we used the XLife++ library [25].
3While for the moment we do not have a rigorous proof of the convergence of this perfectly

matched layer method, neither in the frequency nor in time domain, our numerical experiments
indicate that it does indeed converge.
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f = fj = 1Oj , j = 1, 2, with either539

O1 = (−a, a)× (−a, a), or O2 =
{
|x− y| <

√
2a, |x+ y| <

√
2a
}
, a = 0.5.540

541

In both cases, fj ∈
⋂
ε>0

H
1
2−ε
comp(R2), j = 1, 2, the only difference being that the singu-542

larities of f2 (jumps) are aligned with the characteristics of the equation (2.5). In both543

cases, according to Proposition 3.1, we expect the corresponding solution uj , j = 1, 2,544

to belong to
⋂

s′> 1
2 ,ε>0

H
3
2−ε
−s′,⊥(R2). Visually, cf. Figure 3, the solution u1 seems to be545

smoother than the solution u2. It appears that this phenomenon is not only numerical,

O1

x− y = const

x

y

Γ
O2

x− y = const

x

y

Fig. 3. Top: the open sets Oj and one of the characteristic lines passing through their boundary.
Bottom: the imaginary part of the solution to the problem (2.5) with the parameters described in
the beginning of Section 3, restricted to the square (−2, 2)× (−2, 2). Left: f = f1. Right: f = f2.

546

but occurs also at the continuous level: indeed, when the singularities of the source547

term are aligned with characteristics (we will give a precise mathematical definition548

of the ’alignment’ in further sections), the solution is less regular than otherwise.549

Another interesting phenomenon illustrated in Figure 3, left, is that unlike in550

the elliptic case, the singularities of the solution are no longer concentrated at the551

singularities of the data, but propagate along the characteristics, see [19, Theorem552

4.4.1 and discussion afterwards] for the elliptic case and [19, Theorem 8.3.1] for the553

hyperbolic case.554

In order to present the essential difficulties, rather than technicalities, in this555

section we examine the behavior of the solution in a particular case when the data556

f is s.t. supp f = O, for a bounded convex open set O of R2, and f ∈ C0,α(O).557

In other words, the continuation of f outside of O by zero may have discontinuities558

only on ∂O. We will show that in this case the derivatives of the solution may have559
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jump and logarithmic singularities, and show how these singularities are related to560

the characteristics passing through O. The estimates in the Sobolev spaces, which561

are in general better suited for the numerical analysis, are provided in Appendix F.562

For convenience, we rewrite (2.5) by performing a rotational change of coordinates563

which transforms the characteristics of (1.8) governed by y ± α−1x = const into the564

lines ξ = const and η = const, where565

ξ = y + α−1x, η = y − α−1x.(3.1)566567

An open set O will be denoted by Ω in the coordinates (ξ, η). Given a function568

v(x, y), we denote by ṽ(ξ, η) := v
(

1
2α(ξ − η), 1

2 (ξ + η)
)
. It is readily checked that569

(2.5) transforms into570

4∂2
ξηũω + ω2ũω = f̃ in D′(R2).(3.2)571572

The solution that satisfies the outgoing Fourier-domain radiation condition, cf. (RC1),573

(RC2), is transformed to (with an abuse of notation in the definition of G̃+
ω ):574

ũ+
ω = Ñ+

ω f̃ = G̃+
ω ∗ f̃ ,575

G̃+
ω (ξ, η) :=

1

8

{
H

(1)
0 (ω

√
ξη), ξη > 0,

H
(1)
0 (iω

√
−ξη), ξη < 0.

(3.3)576

577

578

Remark 4. In this section we use the following notation: ũ := ũ+
ω and G̃ := G̃+

ω .579

3.1 Regularity results. In the beginning of this section we will summarize the580

regularity results, while most of their proofs will be postponed to the later sections.581

We start with the following proposition that states that the singularities of the582

solution to (3.2) lie inside the set of characteristics passing through the support of f̃ .583

To formulate this result, let us define two regions, given a+ > a− and b+ > b−,584

Ωξa := {(ξ, η) : a− < ξ < a+}, Ωηb := {(ξ, η) : b− < η < b+}.585586

Then the region Ωa,b := Ωξa ∪ Ωηb contains all the characteristics of (3.2) passing587

through the rectangle (a−, a+)× (b−, b+), see also Figure 4, left.588

Theorem 3.2 (Smoothness regions). Let f̃ ∈ L2(R2) s.t. supp f̃ ⊆ [a−, a+] ×589

[b−, b+]. Then the function ũ = G̃ ∗ f̃ ∈ C∞(R2 \ Ωa,b).590

The next result shows that, even if f̃ has jump singularities, the solution has continu-591

ous derivatives, if the jumps are not aligned with characteristics. In order to formulate592

the desired result, let us introduce the following assumption.593

Assumption 1 (Assumption on the data). Let Ω be a bounded convex (thus,594

Lipschitz, cf. [17, Corollary 1.2.2.3]) open set of R2. We define595

a− := inf{ξ : (ξ, η) ∈ Ω}, a+ := sup{ξ : (ξ, η) ∈ Ω},596

b− := inf{η : (ξ, η) ∈ Ω}, b+ := sup{η : (ξ, η) ∈ Ω},597598

so that the smallest rectangle containing Ω is given by (a−, a+)× (b−, b+). Let599

Γa± := {(a±, η), η ∈ R} ∩ ∂Ω, Γb± := {(ξ, b±), ξ ∈ R} ∩ ∂Ω,600601
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a− a+

b−

b+

Ω

Ωξa
Ωηb

a− a+

b−
A0

+

A1
+

b+
Γb+

Γa+ΩΓa−

Γb−

Fig. 4. An illustration to the geometric configuration of Section 3. Left: open sets Ωξa and
Ωηb. Right: illustration to the notations of Assumption 1. In particular, in this case A0

− = A1
− and

B0
− = B1

−.

so that, with some A0
± ≤ A1

±, B0
± ≤ B1

±,602

Γa± = {(a±, η) : A0
± ≤ η ≤ A1

±}, Γb± = {(ξ, b±) : B0
± ≤ ξ ≤ B1

±}.603604

Let f̃ be defined as follows:605

f̃ =

{
F̃ in Ω,
0 otherwise,

with F̃ ∈ C0,α(Ω).606

607

An illustration to the above geometric configuration is given in Figure 4, right. As608

a matter of fact, the requirement of the convexity of Ω simplifies the presentation of609

the results. This condition ensures that the boundary is Lipschitz, and, moreover,610

that Γa± and Γb± are connected sets (intervals or points). For non-convex sets, the611

requirement that Ω is Lipschitz can be weakened to require that ∂Ω is C0,β , for some612

β > 0. It appears naturally in the proof of the estimates, and it does not seem that613

it can be weakened to C0.614

In what follows, we will denote by |Γ| the length of the curve Γ.615

Theorem 3.3 (Propagation of singularities). Let f̃ satisfy Assumption 1. Then616

the function ũ = G̃ ∗ f̃ satisfies ũ ∈ C1
(
R2 \ (∂Ωξa ∪ ∂Ωηb)

)
. Moreover,617

618

1. if |Γa± | = |Γb± | = 0, then ũ ∈ C1(R2);619
620

2. if |Γa± | = 0 (resp. |Γb± | = 0), then ∂ξũ ∈ C0(R2) (resp. ∂ηũ ∈ C0(R2));621
622

3. if |Γa+ | 6= 0 (and/or |Γa− | 6= 0), ∂ξũ ∈ C0(R2\∂Ωξa). Moreover, the following623

identities hold true:624

∂ξũ(ξ, η) =
i

8π

(
Fa− log |ξ − a−| − Fa+ log |ξ − a+|

)
−1

8
Λa(ξ, η)1

Ω
ξ
a
(ξ, η) + g(ξ, η),

(3.4)625

626

where627628

(a) the constants Fa± are given by:629

Fa± :=

∫
Γa±

F̃ (a±, η
′)dη′,630

631
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(b) the function Λa ∈ C0
(
Ω
ξ

a

)
is defined as632

Λa(ξ, η) =
ξ − a+

a− − a+
fa−(η) +

ξ − a−
a+ − a−

fa+(η),633
634

where635

fa±(η) =


Fa± , η ≤ A0

±,

Fa± − 2
η∫

A0
±

F̃ (a±, η
′)dη′, A0

± < η < A1
±,

−Fa± , η > A1
±.

636

637

(c) g ∈ C0(R2).638639

Similar expressions hold for ∂ηũ(ξ, η), which, in general, has a logarithmic640

and jump singularities across the lines η = b+ (resp. η = b−) when |Γb+ | 6= 0641

(resp. |Γb− | 6= 0).642

Remark 5. Theorem 3.3 concerns the data that has jump singularities, and shows643

the following. If the intersection of the support of the singularity with one of the644

characteristics {ξ = const} or {η = const} is of non-zero Lebesgue measure, the645

solution has discontinuous derivatives in general, with discontinuities aligned along646

the respective characteristics. Otherwise, the solution has continuous derivatives.647

The above theorem leads to the following corollary. When the ’mean value’ of the648

jump vanishes (i.e. Fa± = 0, Fb± = 0), the singularities no longer propagate along649

the characteristics but are concentrated along the jumps of the data lying on the650

characteristics, i.e. on Γa± (Γb±).651

Corollary 3.4 (Concentration of singularities). Let f̃ satisfy Assumption 1.652

Let additionally the following quantities vanish:653

Fa± =

∫
Γa±

F̃ (a±, η
′)dη′ = 0 =

∫
Γb±

F̃ (ξ′, b±)dξ′ = Fb± .654

655

Then ũ ∈ C1(R2 \ (Γa+ ∪ Γa− ∪ Γb+ ∪ Γb−)).656

Proof. We will show the reasoning for ∂ξũ only. According to (3.4), the disconti-657

nuities of ∂ξũ are concentrated along the lines ξ = a±. Additionally, it is clear that658

∂ξũ− 1
8Λa(ξ, η)1

Ω
ξ
a

is continuous on R2. On the other hand,659

Λa(a±, η) = 0, for η > A1
± and for η < A0

±.660661

Therefore, Λa(ξ, η)1Ω̄ξa
(ξ, η) is continuous on R2 \ (Γa+ ∪ Γa−), and so is ∂ξũ.662

Remark 6. The results of Theorem 3.3 and Corollary 3.4 can of course be im-663

proved to show that ũ ∈ C1,α(R2 \ (∂Ωξa ∪ ∂Ωηb)).664

The following sections are dedicated to the proofs of Theorems 3.2, 3.3.665

3.2 Proof of Theorem 3.2 Consider the explicit expression for ũ:666

ũ(ξ, η) =
1

8

a+∫
a−

b+∫
b−

(K1(ξ − ξ′, η − η′) +K2(ξ − ξ′, η − η′))f̃(ξ′, η′)dξ′ dη′,667

K1(ξ, η) := 1{ξη > 0}H(1)
0 (ω

√
ξη), K2(ξ, η) := 1{ξη < 0}H(1)

0 (iω
√
−ξη).668669

This manuscript is for review purposes only.



20 P. CIARLET, M. KACHANOVSKA

It is then easy to verify that the function (ξ, η) 7→ K1(ξ−ξ′, η−η′), provided arbitrary670

(ξ′, η′) ∈ [a−, a+]× [b−, b+], is C∞ in the following open set:671

{(ξ, η) : ξ > a+ or ξ < a−, and η > b+ or η < b−} = R2 \ Ωa,b.672673

In the same way, (ξ, η) 7→ K2(ξ − ξ′, η − η′) ∈ C∞
(
R2 \ Ωa,b

)
. The result follows by674

the Lebesgue dominated convergence theorem.675

3.3 Proof of Theorem 3.3. Before proving Theorem 3.3, we start with the676

following observation.677

Lemma 3.5. The fundamental solution can be split as G̃ = G̃sing + G̃reg, where678

G̃sing(ξ, η) =
i

8π
log |ξ|+ i

8π
log |η| − 1

8
1{ξη < 0},(3.5)679

G̃reg(ξ, η) =
i

8π
gJ(ω2ξη) (log |ξη|+ iπ1{ξη < 0}) + gH(ω2ξη),(3.6)680

681

with gJ , gH being entire functions, gJ(0) = 0, g′J(0) 6= 0.682

Proof. The proof relies on the explicit decomposition of the fundamental solution683

(3.3), given by (2.7), (2.8). It remains to rewrite it in a form suggested by the684

statement of the lemma. In the notations of (2.7),685

gH(z) :=
1

8

((
1 + i

2

π
log

ω

2

)
(1 + gJ(z)) + igY (z)

)
.686

687

We leave the remaining details to the reader.688

We then split accordingly689

ũ = ũsing + ũreg, ũsing = G̃sing ∗ f̃ , ũreg = G̃reg ∗ f̃ .(3.7)690691

The proof of Theorem 3.3 then relies on the simple observation that ũreg ∈ C1(R2),692

while the singularities of the derivatives of ũsing can be computed explicitly.693

Lemma 3.6. Let f̃ satisfy Assumption 1. Then ũreg ∈ C1(R2).694

Proof. Using the explicit expression of G̃reg (3.6), we introduce695

ũ1
reg := gJ(ω2ξη) log |ξ| ∗ f̃ , ũ2

reg := gJ(ω2ξη) log |η| ∗ f̃ ,696

ũ3
reg := gJ(ω2ξη)1{ξη < 0} ∗ f̃ , ũ4

reg := gH(ω2ξη) ∗ f̃ ,697698

so that ũreg = i
8π (ũ1

reg + ũ2
reg) − 1

8 ũ
3
reg + ũ4

reg. Evidently ũ4
reg ∈ C∞(R2), and the699

rest of the functions are continuous in R2, by continuity of the respective convolution700

kernels and because f̃ ∈ L∞(R2). Let us examine their derivatives.701

Step 1. Proof that ũ1
reg, ũ

2
reg ∈ C1(R2). By symmetry, it suffices to study only one of702

these functions. We first consider703

∂ξũ
1
reg =

gJ(ω2ξη)

ξ
∗ f̃ + ω2(ηg′J(ω2ξη) log |ξ|) ∗ f̃ .704

705

Because gJ ∈ C∞(R) and vanishes at zero, ξ−1gJ(ω2ξη) is continuous and thus the706

first term in the above expression is continuous in R2. The remaining term is contin-707

uous as a convolution of an L1
loc(R

2) function with f̃ ∈ L∞comp(R2).708

Step 2. Proof that ũ3
reg ∈ C1(R2). Again by symmetry, it is sufficient to study ∂ξũ

3
reg:709

∂ξũ
3
reg = ω2 (η g′J(ω2ξη) 1{ξη < 0}) ∗ f̃ ,710711
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a− a+

b−
A0

+

A1
+

b+
γ+(ξ)

Γa+ΩΓa−

γ−(ξ)

Fig. 5. An illustration to the notations of the proof of Theorem 3.3.

where we used gJ(0) = 0. The above is again continuous as a convolution of an712

L1
loc(R

2) function with f̃ ∈ L∞comp(R2).713

We now have the necessary ingredients to prove Theorem 3.3. Before proving this714

result, let us remark the following. Because Ω is convex, the part of the boundary715

that lies between the vertical lines ξ = a± can be parametrized as follows:716

∂Ω \ Γa± = Γ+ ∪ Γ−, Γ± = {(ξ, η) : ξ ∈ (a−, a+), η = γ±(ξ)},(3.8)717718

and γ± : (a−, a+) → R Lipschitz functions, s.t. γ+ > γ−. Moreover, they can be719

extended by continuity to [a−, a+], with γ+(a±) = A1
± and γ−(a±) = A0

±. We then720

have |Γa± | = γ+(a±)− γ−(a±). This is illustrated in Figure 5.721

Proof of Theorem 3.3. We start with the decomposition (3.7). By Lemma 3.6, it722

suffices to consider only the derivatives of ũsing. Based on (3.5), we split723

ũsing =
i

8π

(
ũ1
sing + ũ2

sing

)
− 1

8
ũ3
sing,(3.9)724

ũ1
sing = log |ξ| ∗ f̃ , ũ2

sing = log |η| ∗ f̃ , ũ3
sing = 1{ξη < 0} ∗ f̃ .725726

Let us examine the derivatives of the above expressions.727

Step 1. Derivatives of ũ1
sing, ũ2

sing. By symmetry it suffices to study only ∂ξũ
1
sing and728

∂ξũ
2
sing. Evidently,729

∂ξũ
2
sing = 0.(3.10)730731

To study ∂ξũ
1
sing, let us introduce F̃2(ξ) :=

∫
R
f̃(ξ, η′)dη′ =

γ+(ξ)∫
γ−(ξ)

f̃(ξ, η′)dη′ (the no-732

tation indicates that we integrate in the second variable η). This function has the733

following properties:734
735

• when ξ /∈ [a−, a+], F̃2(ξ) = 0, because supp f̃ ⊂ Ω
ξ

a;736
737

• F̃2

∣∣∣
[a−,a+]

∈ C0,α([a−, a+]), because f̃ ∈ C0,α(Ω) and γ± are Lipschitz.738
739

By definition, ũ1
sing(ξ, η) =

∫
R

log |ξ − ξ′|F̃2(ξ′)dξ′, and does not depend on η. We740

consider two cases.741

Step 1.1. ∂ξũ
1
sing for ξ /∈ [a−, a+]. A straightforward computation yields742

∂ξũ
1
sing(ξ, η) =

a+∫
a−

F̃2(ξ′)

ξ − ξ′
dξ′ ∈ C∞(R2 \ Ω

ξ

a).(3.11)743

744
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Step 1.2. ∂ξũ
1
sing for ξ ∈ (a−, a+). An explicit computation gives745

∂ξũ
1
sing(ξ, η) = (P.V.

1

ξ
∗ F̃2)(ξ, η)746

=

a+∫
a−

F̃2(ξ′)− F̃2(ξ)

ξ − ξ′︸ ︷︷ ︸
P (ξ,ξ′)

dξ′ + F̃2(ξ)P.V.

a+∫
a−

1

ξ − ξ′
dξ′747

=

a+∫
a−

P (ξ, ξ′)dξ′ − F̃2(ξ) (log |ξ − a+| − log |ξ − a−|) .(3.12)748

749

For all ξ, P (ξ, .) ∈ L1((a−, a+)), because F̃2 ∈ C0,α([a−, a+]). The first term above
defines a continuous function on [a−, a+]. Indeed, given h > 0, one has

a+∫
a−

P (ξ + h, ξ′)dξ′ =

a+−h∫
a−−h

F̃2(ξ′ + h)− F̃2(ξ + h)

ξ − ξ′
dξ′,

and
a+∫
a−

(P (ξ + h, ξ′)− P (ξ, ξ′)) dξ′ → 0 as h→ 0, by the Lebesgue convergence theo-750

rem, again using F̃2 ∈ C0,α([a−, a+]). Thus, ∂ξũ
1
sing ∈ C0(Ωξa).751

Step 1.3. Behaviour when ξ → a±. Let us define752

Fa± =

γ+(a±)∫
γ−(a±)

F̃ (a±, η
′)dη′, so that Fa+ = lim

ξ↑a+
F̃2(ξ), Fa− = lim

ξ↓a−
F̃2(ξ).(3.13)753

754

We claim that (3.12) and (3.11) imply that the following holds true:755

G0(ξ, η) := ∂ξũ
1
sing(ξ) + Fa+ log |ξ − a+| − Fa− log |ξ − a−| ∈ C0(R2).(3.14)756757

The continuity of G0 is evident for (ξ, η) ∈ R2 \∂Ωξa, and it remains to prove it in the758

points (a±, η). We consider (a+, η). For ξ > a+, from (3.11) we have759

G0(ξ, η) =

a+∫
a−

F̃2(ξ′)− Fa+
ξ − ξ′

dξ′ +
(
Fa+ − Fa−

)
log |ξ − a−|.760

761

Since F̃2 ∈ C0,α([a−, a+]), and using (3.13), the same argument as for
a+∫
a−

P (ξ, ξ′)dξ′762

before shows that the first term in the above expression is continuous in ξ = a+, and763

lim
ξ↓a+

G0(ξ, η) =

a+∫
a−

F̃2(ξ′)− Fa+
a+ − ξ′

dξ′ +
(
Fa+−Fa−

)
log |a+ − a−|.(3.15)764

765

For ξ < a+, (3.12) and left continuity of ξ 7→ P (ξ, ξ′) in a+ yield766

lim
ξ↑a+

G0(ξ, η) =

a+∫
a−

F̃2(ξ′)− Fa+
a+ − ξ′

dξ′ +
(
Fa+ − Fa−

)
log |a+ − a−| = lim

ξ↓a+
G0(ξ, η).767

768
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This shows that G0 is continuous in ξ = a+; similarly one shows that it is continuous769

in ξ = a−.770

Step 2. Derivatives of ũ3
sing. A straightforward computation yields771

∂ξũ
3
sing(ξ, η) =

∞∫
η

f̃(ξ, η′)dη′ −
η∫

−∞

f̃(ξ, η′)dη′.772

773

Because supp f̃ ⊆ Ω,774

∂ξũ
3
sing = 0 in R2 \ Ω

ξ

a.(3.16)775776

With (3.8), we have, for ξ ∈ [a−, a+],777

∂ξũ
3
sing(ξ, η) =



γ+(ξ)∫
γ−(ξ)

F̃ (ξ, η′)dη′, η ≤ γ−(ξ),

γ+(ξ)∫
η

F̃ (ξ, η′)dη′ −
η∫

γ−(ξ)

F̃ (ξ, η′)dη′, γ−(ξ) < η < γ+(ξ),

−
γ+(ξ)∫
γ−(ξ)

F̃ (ξ, η′)dη′, η ≥ γ+(ξ).

(3.17)778

779

Because γ± are continuous and F̃ ∈ C0,α(Ω), the above function is C0(Ω
ξ

a). Let780

fa+(η) := lim
ξ↑a+

∂ξũ
3
sing(ξ, η), fa−(η) := lim

ξ↓a−
∂ξũ

3
sing(ξ, η).781

782

In particular, from (3.16), it follows that783

lim
ξ↑a+

∂ξũ
3
sing(ξ, η)− lim

ξ↓a+
∂ξũ

3
sing(ξ, η) = fa+(η).784

785

Let us introduce the following function:786

Λ(ξ, η) :=
ξ − a−
a+ − a−

fa+(η) +
ξ − a+

a− − a+
fa−(η),787

788

so that Λ(ξ, η)1
Ω
ξ
a

has the same jumps as ∂ξũ
3
sing. Therefore, from (3.16) we have789

G1(ξ, η) := ∂ξũ
3
sing − Λ(ξ, η)1

Ω
ξ
a
∈ C0(R2).(3.18)790

791

Similar expressions can be obtained for ∂ηũ
3
sing(ξ, η).792

Summary of the results. Combining (3.9), (3.10), Steps 1 and 2, we obtain the793

desired statement.794

3.4 Revisiting numerical results. Let us consider the problem described in795

the beginning of Section 3. We aim to apply Theorem 3.3. The open sets Oj (Ωj in796

the coordinates ξ, η) are shown in Figure 6. For f̃1, |Γa± | = 0, |Γb± | = 0, and therefore797

∂ξũ1, ∂ηũ1 ∈ C0(R2). This is not the case for f̃2: as seen from Figure 6, |Γa± | 6= 0,798
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Ω1

ξ = const

ξ

η Ω2 Γ

ξ = const

ξ

η
Fig. 6. Open sets Ωj and the characteristics touching their boundaries.

|Γb± | 6= 0. Moreover, Fa± :=
b+∫
b−

F̃2(a±, η)dη = 2
√

2a > 0. This shows in particular799

that across the lines ξ = a±, ∂ξũ2 has jump and logarithmic singularities (while ∂ηũ2800

stays continuous). This example allows to improve the result of Proposition 2.7.801

Corollary 3.7. The operator N+
ω ∈ B(L2

comp(R
2), H1+σ

loc (R2)) iff σ ≤ 0.802

Proof. Assume that N+
ω ∈ B(L2

comp(R
2), H1+σ

loc (R2)) for some σ > 0. Then, since803

it is a convolution operator, one deduces that N+
ω ∈ B(H1

comp(R
2), H2+σ

loc (R2)). By in-804

terpolation, in particular, N+
ω ∈ B(Hδ

comp(R
2), H1+σ+δ

loc (R2)), for δ ∈ (0, 1). Consider805

the function f2, defined like in the beginning of Section 3, which belongs in particu-806

lar, to H
1
2−σ
comp(R2). This would mean that u2 := N+

ω f2 ∈ H
3
2 (R2), which is impossible807

since ∂xu2, ∂yu2 have jump singularities.808

4 Limiting absorption and limiting amplitude principles. Finally, let us809

formulate the limiting absorption principle in a strong operator topology.810

Theorem 4.1. Let s, s′ > 3
2 , 0 < ω < ωp. Let ωn ∈ C+, Reωn > 0, and ωn → ω811

as n→ +∞. Then, for all f ∈ L2
s,⊥,812

Nωnf → N+
ω f in H1

−s′,⊥(R2).813814

Proof. The proof is quite easy and is based on the explicit representation of the op-815

erator Nω. Let us fix s, s′ > 3
2 and set rn := Nωnf−N+

ω f , κn :=
√
−ε−1(ωn)ξ2

x + ω2
n.816

Using (2.14), we obtain817

κFxrn(ξx, y) =
1

2i
√

2π

∫
R

(
κ

κn
eiκn|y−y

′| − eiκ|y−y
′|
)
Fxf(ξx, y

′)dy′,(4.1)818

∂yFxrn(ξx, y) =
1

2
√

2π

∫
R

(
eiκn|y−y

′| − eiκ|y−y
′|
)
Fxf(ξx, y

′)sign(y − y′)dy′.(4.2)819

820

Recall the norm equivalence (2.16). We will show that lim
n→+∞

‖κFxrn‖L2
−s′,⊥

= 0; the821

analogous result for ∂yFxrn will follow in the same way.822

Step 1. A few auxiliary bounds. First, remark that, as Imκn ≥ 0,823 ∣∣∣∣ κκn eiκn|y−y
′| − eiκ|y−y

′|
∣∣∣∣ . ∣∣∣∣ κκn − 1

∣∣∣∣+
∣∣∣eiκn|y−y′| − eiκ|y−y

′|
∣∣∣ .(4.3)824

825
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Evidently, we have in particular826 ∣∣∣∣ κκn eiκn|y−y
′| − eiκ|y−y

′|
∣∣∣∣ . 1.(4.4)827

828

A finer bound can be obtained by remarking that the function

ω → κ(ω) :=
√
ω2 − ε−1(ω)ξ2

x

is uniformly Lipschitz on all compact subsets of {z : 0 < Re z < ωp}. Let δ > 0 be829

sufficiently small. With B+
δ (ω) = C+ ∩ Bδ(ω), for all n sufficiently large, it holds830

that831

|κ− κn| . sup
z∈B+

δ (ω)

∣∣∣∣ ∂κ∂ω (z)

∣∣∣∣ |ω − ωn|, ∣∣∣∣ ∂κ∂ω (z)

∣∣∣∣ =

∣∣∣∣∣ 2z − (ε−1(z))′ξ2
x

2
√
z2 − ε−1(z)ξ2

x

∣∣∣∣∣ .832

833

Therefore,834

|κ− κn| . max(|ξx|, 1)|ωn − ω|.(4.5)835836

Similarly, since for |ωn − ω| → 0, |κn| & |ξx|+ 1, we conclude from the above that837 ∣∣∣∣ κκn − 1

∣∣∣∣ . |ωn − ω|.(4.6)838
839

As for the second term in (4.3), since Imκn > 0, the same argument as above gives840 ∣∣∣eiκn|y−y′| − eiκ|y−y
′|
∣∣∣ . |y − y′||κn − κ| (4.5)

. |ωn − ω||y − y′|max(|ξx|, 1).(4.7)841
842

Combining (4.6) and (4.7), and using the fact that all the quantities in the left-hand-843

side of (4.3) are bounded uniformly in y, ξx and for all ωn sufficiently close to ω (cf.844

(4.4)), we obtain the following bound valid for all n sufficiently large:845 ∣∣∣κn
κ

eiκn|y−y
′| − eiκ|y−y

′|
∣∣∣ . min(1, |ωn − ω||y − y′|max(|ξx|, 1)).(4.8)846

847

Step 2. Splitting in high and low frequencies. Next, let us split848

Fxrn(ξx, y) = r̂lfn (ξx, y) + r̂hfn (ξx, y),849

r̂lfn (ξx, y) = 1|ξx|<Ar̂n(ξx, y), r̂hfn (ξx, y) = 1|ξx|≥Ar̂n(ξx, y),850851

where A > 1 will be chosen later. We will estimate these two quantities separately.852

Step 2.1. Estimating r̂hfn (ξx, y). We use a uniform bound (4.4) in (4.1), which yields853

|κr̂hfn (ξx, y)| .
∫
R

|Fx(ξx, y
′)|dy′ .

∫
R

(1 + y′2)s|Fx(ξx, y
′)|2dy′

 1
2

,854

855

where the last bound follows from the Cauchy-Schwarz inequality and s > 1
2 . From856

the definition of r̂hfn (ξx, y) and s′ > 1
2 it follows that857

‖κr̂hfn ‖2L2
−s′,⊥

.
∫

|ξx|>A

∫
R

(1 + y′2)s|Fx(ξx, y
′)|2dy′dξx.(4.9)858

859
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Step 2.2. Estimating r̂lfn (ξx, y). To estimate r̂lfn (ξx, y), we use the estimate (4.8) for860

small |ω − ωn| in (4.1) which results in861 ∣∣κr̂lfn (ξx, y)
∣∣ . A|ωn − ω|

∫
R

(|y|+ |y′|)|Fxf(ξx, y
′)|dy′,862

863

and using the Cauchy-Schwarz inequality (s > 3
2 ) yields864 ∣∣κr̂lfn (ξx, y)

∣∣ . A|ωn − ω| (|y|+ 1) ‖Fxf(ξx, .)‖L2
s(R).865866

Finally, we obtain (s′ > 3
2 )867

‖κr̂lfn ‖2L2
−s′,⊥

. A2|ωn − ω|2‖Fxf‖2L2
s,⊥
.(4.10)868

869

Step 2.3. Summary. Combining (4.9), (4.10) yields870

‖κr̂n‖2L2
−s′,⊥

. A2|ωn − ω|2‖Fxf‖2L2
s,⊥

+

∫
|ξx|>A

∫
R

(1 + y′2)s|Fx(ξx, y
′)|2dy′dξx.871

872

For any ε > 0, we can choose A := Aε so that the last term of the above expression873

does not exceed ε2/2; next we choose n so that A2
ε|ωn − ω|2‖Fxf‖2L2

s,⊥
< ε2

2 , which874

allows us to conclude that ‖κr̂n‖L2
−s′,⊥

→ 0, as n→ +∞.875

It is seen in the above proof that to obtain (4.10), it is necessary to have the constraints876

on the weights s, s′ > 3
2 in the scale of the weighted Sobolev spaces with polynomial877

weights. A finer result could be obtained by using Hörmander (Fourier transforms of878

Besov) spaces.879

Using the classical techniques of Eidus, cf. [15], it is possible to prove the limiting880

amplitude principle. The proof of this result can be found in the technical report [21].881

Theorem 4.2. Let s > 3
2 , f ∈ L2

s(R
2), and 0 < ω < ωp. Let (E, Hz, j) solve882

∂tEx − ∂yHz = 0,883

∂tEy + ∂xHz + j = 0, ∂tj − ω2
pEy = 0,884

∂tHz + ∂xEy − ∂yEx = feiωt,885

Hz(0) = Ex(0) = Ey(0) = j(0) = 0.886887

Then, for all s′ > 3
2 , lim

t→+∞
‖Hz(t, .) − hz(.)eiωt‖L2

−s′
= 0, where hz = −iωN+

ω f , cf.888

(2.10). In other words, hz ∈ H1
−s′,⊥ is the unique solution to889

ω2hz − α2∂2
xhz + ∂2

yhz = −iωf,890891

equipped with the radiation condition (RC1), (RC2).892

5 Conclusions. In this work we have studied a model for wave propagation in893

a hyperbolic metamaterial in the free space, described by the Klein-Gordon equation.894

With the help of a suitable radiation condition, we have shown its well-posedness; a895

detailed regularity analysis is presented. Our future efforts are directed towards the896

study of a more mathematically involved case of propagation in the exterior domains,897

as well as the design of numerical methods for this kind of problems.898
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Appendix A. Derivation of (1.2). Electromagnetic wave propagation in a899

three-dimensional cold collisionless plasma under a background magnetic field B0 =900

(0, B0, 0) is described by Maxwell’s equations901

∂tD− curlH = 0, ∂tB + curlE = 0.(A.1)902903

Here B = µ0H, and the relation between D and E is given in the frequency domain904

by D̂ = εcp(ω)Ê, where εcp(ω) is the cold plasma dielectric tensor, see [31, (18), (25)]905

or [16, Chapter 15.5]. In the simplest case when the plasma is comprised of particles906

of a single species with mass m and charge q, and whose number density is N = N(x),907

this tensor reads908

εcp(ω) = ε0


1− ω2

p

ω2−ω2
c

0 −i ω2
pωc

ω(ω2−ω2
c)

0 1− ω2
p

ω2 0

i
ω2
pωc

ω(ω2−ω2
c) 0 1− ω2

p

ω2−ω2
c

 ,(A.2)909

910

where ωp =
√

Nq2

mε0
is the plasma frequency and ωc = qB0

m is the cyclotron frequency.911

In what follows we will assume that the density N is uniform in space, i.e. ωp = const.912

In the strong magnetic field limit (|B0| → +∞, or |ωc| → +∞), the cold plasma913

dielectric tensor reduces to a diagonal matrix914

ε(ω) = ε0

1 0 0

0 1− ω2
p

ω2 0
0 0 1

 .(A.3)915

916

In order to rewrite the Maxwell system in the time domain, we first consider the917

relation between Dy and Ey918

D̂y = ε0

(
1−

ω2
p

ω2

)
Êy =⇒ −iωD̂y = −iωε0Êy + ε0

ω2
p

(−iω)
Êy.(A.4)919

920

Let us define an auxiliary unknown (a current), so that, in the frequency domain921

ĵ = ε0
ω2
p

(−iω) Êy, or, in the time domain,922

∂tj − ε0ω
2
pEy = 0.923924

This allows to express925

∂tDy = ε0∂tEy + j.926927

With this notation (A.1) reads (where ey = (0, 1, 0)T )928

ε0∂tE− curlH + jey = 0, ∂tj − ε0ω
2
pEy = 0,929

µ0∂tH + curlE = 0.930931

In the case when the fields do not depend on the space variable z, the above system932

is decoupled into the TE system (with respect to Ex, Ey, Hz, j) and the TM system933
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(with respect to Hx, Hy, Ez). While the TM system is the same as in the vacuum934

(this is left as an easy exercise to the reader), the TE system reads935

ε0∂tEx − ∂yHz = 0,

ε0∂tEy + ∂xHz + j = 0, ∂tj − ε0ω
2
pEy = 0,

µ0∂tHz + ∂xEy − ∂yEx = 0.

(A.5)936

937
938

Appendix B. Computation of the fundamental solution Gω. Recall that939

we choose
√
z as the branch of the square root, with the branch cut along (−∞, 0].940

By Arg z ∈ (−π, π] we denote the principal argument of z. Before studying the941

fundamental solution for the equation (1.8), we first consider the following problem.942

Let us assume that Imω 6= 0, and a > 0. Consider the fundamental solution for a943

scaled Helmholtz equation with the frequency ω, i.e. the unique Gaω ∈ S ′ solving944

ω2Gaω(x) + a−1∂2
xG

a
ω(x) + ∂2

yG
a
ω(x) = δ(x).(B.1)945946

It can be verified that the fundamental solution Gaω is defined by947

Gaω(x) = − i
√
a

4

{
H

(1)
0 (ω

√
ax2 + y2), Imω > 0,

H
(2)
0 (ω

√
ax2 + y2), Imω < 0,

(B.2)948

949

where H
(1)
0 (z) (H

(2)
0 (z)) is the Hankel function of the first (second) kind (see [1,950

Chapter 9]). It is analytic in C \ R−, where R− = {z : Im z = 0, Re z ≤ 0}.951

Performing a partial Fourier transform of (B.1) in x, we can obtain explicitly952

FxGaω as the fundamental solution of a 1D Helmholtz equation. After a series of953

elementary computations, we obtain954

Gaω(x, y) = − 1

4π

∞∫
−∞

e−iξxx
e−
√
a−1ξ2x−ω2|y|√
a−1ξ2

x − ω2
dξx, a > 0.(B.3)955

956

Let us now obtain the fundamental solution for (1.8), i.e. the solution of957

ω2Gω(x) + ε(ω)−1∂2
xGω(x) + ∂2

yGω(x) = δ(x).(B.4)958959

We cannot immediately write Gω using (B.2), because ε(ω) in the above is complex,960

and, in general, a slightly stronger argument is needed. For this we will use (B.3),961

which we will rewrite in an appropriate form that will allow to use an analytic con-962

tinuation argument.963

Performing the partial Fourier transform of (B.4) in x yields964

∂2
y (FxGω)− (ε(ω)−1ξ2

x − ω2)FxGω =
δ(y)√

2π
.(B.5)965

966

By definition, FxGω is the fundamental solution of a 1D Helmholtz equation with967

absorption. To see this we remark that968

(ε(ω)−1ξ2
x − ω2) /∈ R−.(B.6)969970

The justification of the above follows by a direct computation. In particular,971

Im(ε(ω)−1ξ2
x − ω2) = Im ε(ω)−1ξ2

x − Imω2, and972

sign Im ε(ω)−1 = − sign Im ε(ω) = sign Im
ω2
p

ω2
= − sign Imω2.(B.7)973

974
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Therefore, for ω = ωr + iωi, with ωi, ωr 6= 0,975

sign Im(ε(ω)−1ξ2
x − ω2) = − signωiωr 6= 0,(B.8)976977

while when ωr = 0, ε(ω)−1ξ2
x − ω2 > 0. This shows (B.6). Let us define978

s(ξx, ω) =
√
ε(ω)−1ξ2

x − ω2.979980

By the above considerations, the function ω 7→ s(ξx, ω) is analytic for all ω ∈ C+.981

Next, the fundamental solution FxGω is defined as follows:982

FxGω(ξx, y) = − 1

2
√

2π

e−
√
ε(ω)−1ξ2x−ω2|y|√

ε(ω)−1ξ2
x − ω2

.(B.9)983

984

For y 6= 0, FxGω(., y) ∈ L1(R); we also have985

Gω(x, y) = − 1

4π

∞∫
−∞

e−iξxx
e−
√
ε(ω)−1ξ2x−ω2|y|√

ε(ω)−1ξ2
x − ω2

dξx.(B.10)986

987

To compute the inverse Fourier transform, we remark the following:988

• for y 6= 0, ω 7→ Gω(x, y) defined as above is analytic in C+. This follows989

from the analyticity of ω 7→ e−s(ξx,ω)

s(ξx,ω) in C+ and uniform boundedness of its990

derivatives by an L1-function of ξx on compact subsets of C+.991

The same can be said about the analyticity of ω 7→ Gω(x, y) in C−.992

• for ω ∈ iR∗, we have ε(ω) > 0. We thus reduce to the case (B.3), for which993

the inverse Fourier transform is known and given by994

Gω(x) = −
i
√
ε(ω)

4

{
H

(1)
0 (ω

√
ε(ω)x2 + y2), Imω > 0,

H
(2)
0 (ω

√
ε(ω)x2 + y2), Imω < 0.

(B.11)995

996

• for (x, y) 6= 0, the function ω 7→ − i
√
ε(ω)

4 H
(1)
0 (ω

√
ε(ω)x2 + y2) is analytic in997

C+. To verify this, it suffices to check that ω
√
ε(ω)x2 + y2 /∈ R− (the branch998

cut of H
(1)
0 (ω

√
ε(ω)x2 + y2)). This being obvious for ω ∈ iR∗, let us consider999

the case Reω 6= 0. Then1000

Im
(
ω
√
ε(ω)x2 + y2

)
= ImωRe

√
ε(ω)x2 + y2 + Reω Im

√
ε(ω)x2 + y2.1001

1002

For Imω > 0, the first term above is positive; the second term, cf. (B.7), as1003

sign Im ε(ω) = sign Imω2 = sign Reω is positive as well.1004

Therefore, ω 7→ − i
√
ε(ω)

4 H
(1)
0 (ω

√
ε(ω)x2 + y2) is analytic in C+.1005

In the same way we check that ω 7→ − i
√
ε(ω)

4 H
(2)
0 (ω

√
ε(ω)x2 + y2) is analytic1006

in C−.1007

Using the analytic continuation argument, (B.10) being equal to (B.11) on iR+, and1008

analyticity of both functions, we conclude that, for |y| 6= 0, (B.10) coincides with1009

(B.11). For |y| = 0, the result follows immediately by noticing that FxGω ∈ L2(R2).1010

Thus1011

Gω(x) = −
i
√
ε(ω)

4

{
H

(1)
0 (ω

√
ε(ω)x2 + y2), Imω > 0,

H
(2)
0 (ω

√
ε(ω)x2 + y2), Imω < 0.

(B.12)1012

1013
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Appendix C. Proof of (2.12). By definition, G+
ω = lim

Imω→0+
Gω.1014

Let us assume that Imω > 0. Starting with (B.9), let us consider the case1015

when ω = ωr + iε, with 0 < ωr < ωp, and take ε → 0+. In this case, cf. (B.8),1016

lim
ε→0+

√
ε(ω)−1ξ2

x − ω2 = −i
√
−ε(ωr)−1ξ2

x + ω2, hence the conclusion.1017

Appendix D. Proof of Statement 2 in Proposition 2.4. In the proof, we1018

will extensively use the following. Because for all δ > 0, we have1019

Im
(
(ω + iδ)2(ε(ω + iδ)x2 + y2)

)
> 0, and

Im(ω + iδ)2 > 0, Im(ε(ω + iδ)x2 + y2) > 0,
(D.1)1020

1021

it follows that1022 √
(ω + iδ)2(ε(ω + iδ)x2 + y2) = (ω + iδ)

√
ε(ω + iδ)x2 + y2,(D.2)10231024

and1025

log
√

(ω + iδ)2(ε(ω + iδ)x2 + y2) = log(ω + iδ) +
1

2
log
(
ε(ω + iδ)x2 + y2

)
.(D.3)1026

1027

Let us fix R > 0, and show that Gω+iδ → G+
ω in L1(BR(0)). The pointwise convergence1028

of Gω+iδ → G+
ω being obvious, one would want to apply the Lebesgue dominated con-1029

vergence theorem. This is however not possible, because the logarithmic term above1030

cannot be bounded uniformly in δ by an L1
loc-function. To see this it suffices to notice1031

that Im
(
ε(ω + iδ)x2 + y2

)
= O(δ), and in the points where

∣∣Re ε(ω + iδ)x2 + y2
∣∣ ≤ δ1032

(this set is of non-zero measure) one has
∣∣log

(
ε(ω + iδ)x2 + y2

)∣∣ & |log δ|.1033

Let us thus prove the L1-convergence of the two terms in (2.8) separately. Let1034

lδ(x) := log(y2 + ε(ω + iδ)x2), so that(D.4)1035

Gω+iδ =

√
ε(ω + iδ)

4π
lδ + Gregω+iδ +

√
ε(ω + iδ)

2π
log(ω + iδ).(D.5)1036

1037

Step 1. L1−convergence of lδ. The pointwise limit of lδ(x) is the function1038

l(x) defined by (recall that α = (−ε(ω))
1
2 , see (2.4)):1039

l(x) :=

{
log (y2 − α−2x2), |y| > α−1|x|,
log(−y2 − α−2x2) + iπ, |y| < α−1|x|.1040

1041

We will study the L1-convergence separately on the following two domains:1042

BR(0) = K+ ∪K−, K+ := {x ∈ BR(0), |y| ≥ α−1|x|},
K− := {x ∈ BR(0), |y| < α−1|x|}.

(D.6)1043

1044

Step 1.1. Convergence in K−. Our goal is to show that1045

lim
δ→0+

∫
K−

|lδ(x)− l(x)| dx = 0.1046

1047

For this we rewrite the above in a more convenient form.1048

First, we remark that there exists C > 0, s.t.1049

|ε(ω + iδ)− ε(ω)| ≤ Cδ, for all δ > 0 sufficiently small.(D.7)10501051
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Choosing δ so that the above holds true and such that α−2 − C
√
δ > 0, we split1052

K− = K−sing,δ ∪K
−
reg,δ (with the constant C as above) defined as follows:1053

K−reg,δ = {x ∈ BR(0) : 0 < y2 ≤ (α−2 − C
√
δ)x2},

K−sing,δ = {x ∈ BR(0) : (α−2 − C
√
δ)x2 < y2 < α−2x2}.

(D.8)1054

1055

The choice
√
δ in the above will be motivated later, cf. (D.11), (D.12).1056

Step 1.1.1. Convergence on K−reg,δ. An explicit computation yields1057

lδ(x, y)− l(x, y) = log

(
−ε(ω + iδ)x2 + y2

ε(ω)x2 + y2

)
− iπ1058

= log

(
−1− ε(ω + iδ)− ε(ω)

ε(ω)x2 + y2
x2

)
− iπ1059

= Iabsδ (x, y) + iIargδ (x, y),(D.9)1060

Iabsδ (x, y) = log

∣∣∣∣1 +
ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

∣∣∣∣ ,1061

Iargδ (x, y) = Arg

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
− π.(D.10)1062

1063

Let us show that the above converges to zero in L1(K−reg,δ).1064

Convergence of ‖Iabsδ ‖L1(K−reg,δ)
. Using the bound (D.7) and the definition of1065

K−reg,δ (D.8), where we have −α−2x2 < y2 − α−2x2 ≤ −C
√
δx2, we obtain1066 ∣∣∣∣ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

∣∣∣∣ ≤ √δ, ∀x ∈ K−reg,δ.(D.11)1067
1068

Therefore, for all δ sufficiently small, we have that ‖Iabsδ 1K−reg,δ‖L1(K−) .
√
δ, thus1069

lim
δ→0+

‖Iabsδ ‖L1(K−reg,δ)
= 0.(D.12)1070

1071

Convergence of ‖Iargδ ‖L1(K−reg,δ)
. Let us examine the real and imaginary parts of1072

the argument of Arg in (D.10). With (D.11) we have that1073

Re

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
= −1 +O(

√
δ).(D.13)1074

1075

Using the definition of K−reg,δ in (D.8) and the fact that Im ε(ω+ iδ) > 0 (this follows1076

by a direct computation), we obtain the following inequality:1077

Im

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
= Im

ε(ω + iδ)x2

α−2x2 − y2
> 0 in K−reg,δ.(D.14)1078

1079

With Im ε(ω + iδ) = O(δ) and the definition of K−reg,δ in (D.8), we also have1080

Im

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
= O(

√
δ).(D.15)1081

1082
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Combining (D.13), (D.14), (D.15), we conclude that inside K−reg,δ, it holds that:1083

lim
δ→0

Iargδ (x) = 0, ∀x ∈ K−reg,δ, thus1084

lim
δ→0
‖Iargδ ‖L1(K−reg,δ)

= 0.(D.16)1085
1086

Summary. Combination of (D.12), (D.16) and (D.9) yields1087

lim
δ→0
‖lδ − l‖L1(K−reg,δ)

= 0.(D.17)1088
1089

Step 1.1.2. Convergence on K−sing,δ. We will prove the following:1090

lim
δ→0
‖lδ‖L1(K−sing,δ)

= lim
δ→0
‖l‖L1(K−sing,δ)

= 0.(D.18)1091
1092

The result is obvious for l ∈ L1(BR(0)), by the Lebesgue’s dominated convergence1093

theorem. Let us prove it for lδ by a direct computation. First of all, we remark that1094

‖lδ‖L1(K−sing,δ)
≤ ‖Re lδ‖L1(K−sing,δ)

+ ‖ Im lδ‖L1(K−sing,δ)
,(D.19)1095

1096

and from (D.4), because | Im lδ| ≤ π, with the Lebesgue’s dominated convergence1097

theorem it follows that1098

lim
δ→0
‖ Im lδ‖L1(K−sing,δ)

= 0.(D.20)1099
1100

It remains to prove the result for Re lδ = log |ε(ω + iδ)x2 + y2|. We rewrite1101

ε(ω + iδ)x2 + y2 = (−α−2x2 + y2) + x2 (ε(ω + iδ)− ε(ω)) ,11021103

and by definition of K−sing,δ (applied to estimate the first term above), as well as1104

analyticity of ε, we conclude that the above quantity is O(
√
δ), and thus1105

|Re lδ| =
∣∣log |ε(ω + iδ)x2 + y2|

∣∣ . | log δ|.11061107

By definition of K−sing,δ,1108

‖Re lδ‖L1(K−sing,δ)
.

∫
K−sing,δ

| log δ|dx .
√
δ| log δ|.(D.21)1109

1110

This, combined with (D.19), proves (D.18).1111

Step 1.1.3. Convergence in K−. Combining (D.18), (D.17) and (D.8), we con-1112

clude that1113

‖lδ − l‖L1(K−) → 0.(D.22)11141115

Step 1.2. Convergence ‖lδ − l‖L1(K+) → 0. The proof mimics the proof of the1116

analogous result for K−, hence we omit it here.1117

Step 1.3. Conclusion. Combination of the results of Steps 1.1 and 1.2, together1118

with (D.8) results in the desired statement1119

lim
δ→0
‖lδ − l‖L1(BR(0)) = 0.(D.23)1120

1121
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Step 2. Proof of convergence of Gregω+iδ to its pointwise limit in L1(BR(0)).1122

To prove the result, we show that the following bound holds for Gregω+iδ and all δ > 01123

sufficiently small:1124 ∥∥Gregω+iδ

∥∥
L∞(BR(0))

. 1.(D.24)1125
1126

To show this bound, it suffices to prove two bounds, cf. the explicit expression for1127

Gω+iδ in (2.8),1128

sup
(x,y,δ)∈BR(0)×(0,1)

|gJ(zδ)|, sup
(x,y,δ)∈BR(0)×(0,1)

|gY (zδ)| . 1,(D.25)1129

sup
(x,y,δ)∈BR(0)×(0,1)

|gJ(zδ) log zδ| . 1.(D.26)1130

1131

To prove the above we remark that the application1132

Zδ : (x, y, δ)→ zδ(D.27)11331134

maps BR(0)× (0, 1) into a bounded subset C of C+. Then1135

• (D.25) follows from the analyticity of gJ(z), gY (z).1136

• (D.26) can be obtained using the following argument. The function z →1137

gJ(z) log z is analytic in C \ (−∞, 0). Also,1138

sup
(x,y,δ)∈BR(0)×(0,1)

|gJ(zδ) log zδ| = sup
z∈C
|gJ(z) log z| = sup

z∈C̄
|gJ(z) log z|,1139

1140

which is bounded because 1) C̄ ⊂ C+ ∪ R and C̄ is bounded; 2) as gJ(0) = 01141

and is analytic, the function z → gJ(z) log z, z ∈ C+, can be defined by1142

continuity up to R, and is bounded on compact subsets of C+ ∪ R.1143

With the bound (D.24), and Lebesgue’s dominated convergence theorem, we deduce1144

that as δ → 0, Gregω+iδ converges to its pointwise limit in L1.1145

Step 3. Conclusion. Combining the results of Steps 1 and 2, together with the1146

splitting (2.8), we deduce that Gω+iδ → G+
ω in L1(BR(0)), as δ → 0.1147

Appendix E. Proof of Lemma 2.5. For |x| > α|y|, by (FS) on page 6, we1148

have1149

G+
ω (x, y) =

1

4α
H

(1)
0 (iω

√
α−2x2 − y2).(E.1)1150

1151

By [1, formulas 9.6.4, 9.6.23],1152

H
(1)
0 (iω

√
α−2x2 − y2) =

2

iπ

∞∫
1

e−ω
√
α−2x2−y2t(t2 − 1)−

1
2 dt1153

=
2

iπ

∞∫
0

e−ω
√
α−2x2−y2(η+1)

√
η
√
η + 2

dη.1154

1155

Because |x| > α|y|+ δ,
√
α−2x2 − y2 >

√
α−2(α|y|+ δ)2 − y2 ≥ α−1δ. Therefore,1156

∣∣∣H(1)
0 (iω

√
α−2x2 − y2)

∣∣∣ . e−ω
√
α−2x2−y2

∞∫
0

e−ωα
−1δη

√
η
√
η + 2

dη1157

= cα,δe
−ω
√
α−2x2−y2 , cα,δ > 0.11581159
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Combining the above bound with (E.1) results in the desired statement of the lemma.1160

1161

Appendix F. Sobolev style regularity results. Let us introduce the fol-1162

lowing norm and function spaces tailored to meet the requirements of Lemma 3.5:1163

‖φ‖2X0 := ‖φ‖2 +

∥∥∥∥∥∥
∞∫
−∞

φ(., η′)dη′

∥∥∥∥∥∥
2

H1(R)

+

∥∥∥∥∥∥
∞∫
−∞

φ(ξ′, .)dξ′

∥∥∥∥∥∥
2

H1(R)

1164

+

∥∥∥∥∥∥∂ξ
η∫

−∞

φ(ξ, η′)dη′

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∂η
ξ∫

−∞

φ(ξ′, η)dξ′

∥∥∥∥∥∥
2

,1165

X0(R2) := C∞0 (R2)
X0

,1166

X0
comp(R

2) := {f ∈ X0(R2) : supp f is bounded}.11671168

We then have the following result.1169

Theorem F.1. The operator N+
ω ∈ B

(
X0
comp(R

2), H2
loc(R

2)
)
.1170
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