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ANALYSIS OF VARIATIONAL FORMULATIONS AND
LOW-REGULARITY SOLUTIONS FOR TIME-HARMONIC
ELECTROMAGNETIC PROBLEMS IN COMPLEX ANISOTROPIC
MEDIA*

DAMIEN CHICAUD', PATRICK CIARLET, JR.T, AND AXEL MODAVET

Abstract. We consider the time-harmonic Maxwell’s equations with physical parameters,
namely, the electric permittivity and the magnetic permeability, that are complex, possibly non-
Hermitian, tensor fields. Both tensor fields verify a general ellipticity condition. In this work, the
well-posedness of formulations for the Dirichlet and Neumann problems, i.e., with a boundary con-
dition on the electric field or its curl, respectively) is proven using well-suited functional spaces and
Helmholtz decompositions. For both problems, the a priori regularity of the solution and the so-
lution’s curl is analyzed. The regularity results are obtained by splitting the fields and using shift
theorems for second-order divergence elliptic operators. Finally, the discretization of the formulations
with a H (curl)-conforming approximation based on edge finite elements is considered. An a priori
error estimate is derived and verified thanks to numerical results with an elementary benchmark.
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1. Introduction. The study of linear differential models for time-harmonic elec-
tromagnetic wave propagation is a popular field. The mathematical analysis of these
models has been performed for isotropic materials and certain classes of anisotropic
materials. In particular, the well-posedness of boundary value problems and the
regularity of their solutions have been studied with strong assumptions on the elec-
tric permittivity tensor field € and the magnetic permeability tensor field p (e.g.,
real-valued isotropic tensors [13] and symmetric positive definite tensors [21, 8, 10]).
The mathematical analysis of electromagnetic fields in anisotropic media has received
some attention in recent years. The well-posedness of variational formulations with
non-Hermitian material tensors has been studied, e.g., in [3] for complex symmetric
tensors, in [6] for particular anisotropic media coming from plasma theory, and in [27]
for material tensors with an elliptic real part. Regularity results have been obtained
for a general class of non-Hermitian material tensors with low-regularity assumptions
in [2, 1, 26]. In these works, the time-harmonic Maxwell’s equations are supplemented
with a Dirichlet boundary condition.

The main aim of this work is to provide a detailed analysis of time-harmonic
electromagnetic boundary value problems with low-regularity solutions for a general
class of material tensors: The electric permittivity and the magnetic permeability
are assumed to be complex tensor fields, possibly non-Hermitian, that fulfill a general
ellipticity condition. We consider variational formulations with the electric field as un-
known, with a boundary condition on the field itself or on its curl, which correspond to
the so-called Dirichlet and Neumann cases, respectively. The well-posedness and the
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a priori regularity of the solution and the solution’s curl are studied for both cases. In
our framework, the regularity estimates depend crucially on the regularity of the data.

The numerical solution of electromagnetic problems is naturally performed with
edge finite element methods, which lead to H/(curl)-conforming approximations.
While the comprehensive numerical analysis of the approximate problems is out of
the scope of this paper, a preliminary analysis is proposed. In the coercive case, an
a priori error estimate is derived by leveraging the regularity results obtained for the
exact problems. A numerical illustration with a simple manufactured benchmark is
presented as well.

This paper is organized as follows. In section 2, we extend classical results of
functional analysis required for the analyses. In sections 3 and 4, we propose the
analysis of the problems supplemented by Dirichlet or Neumann boundary conditions,
respectively. In section 5, we address the discretization with edge finite elements. A
conclusion and extensions are proposed in section 6.

Notation and hypotheses. Vector fields are written in boldface characters,
and tensor fields are written in underlined bold characters. Given a nonempty open
set O of R? we use the notation (-|-)o.0 (resp., || - [lo,0) for the L?(O) and the
L?(0) := (L*(0))? scalar products (resp., norms). More generally, (-|-)s.0 and |- ||s.0
(resp., ||s,0) denote the scalar product and the norm (resp., seminorm) of the Sobolev
spaces H*(O) and H®(O) := (H*(0))? for s € R (resp., for s > 0). We use the
notation (u,v)gs(e) for the duality product of v € (H*(0))" and v € H*(0O). The
space HZ, . (O) is the subspace of H*(O) with zero-mean-value fields. It is assumed
that the reader is familiar with the function spaces related to Maxwell’s equations,
such as H(curl; O), Hy(curl; O), H(div; O), and H(div; O). A priori, H(curl; O)
is endowed with the “natural” norm v — ||| g (curr;0) = ([v]I§ 0 + || curlv\\370)1/2.
We refer the reader to the monographs of Monk [24], Kirsch and Hettlich [23], and
Assous, Ciarlet, and Labrunie [5] for further details.

The symbol C' is used to denote a generic positive constant which is independent
of the mesh and the fields of interest; C' may depend on the geometry, or on the
coefficients defining the model. We use the notation A < B for the inequality A < CB,
where A and B are two scalar fields and C is a generic constant.

In this work, € is assumed to be an open, connected, bounded domain of R3, with
a Lipschitz-continuous boundary 0€2. In addition, the boundary is assumed to be of
class C? in the sections dedicated to the regularity analysis (in subsections 3.2, 3.3,
4.2, and 4.3). The unit outward normal vector field to 9 is denoted n. We recall
the classical integration by parts formula (see equation (35) in [9]),

(1) (u] curlw)g g — (curlulv)gq = (v (u), 77 (v))r Yu,v € H(curl;Q),

where 77 : u — (u x n)jpq denotes the tangential trace operator, v = nx

(v X m)pn denotes the tangential components trace operator, and - (y" (w), 77 (v))~
expresses duality between the ad hoc trace spaces. We denote {I'y }1<k<x the maximal
connected components of d{2. Topologically speaking, the domain € can be trivial
or nontrivial [17] under assumptions given in Appendix A. Whenever this knowledge
is needed, we use the notation (Top);, with I = 0 for a topologically trivial domain
and I > 0 for a topologically nontrivial domain.

2. Model and extended functional framework. In this work, we consider
the time-harmonic Maxwell’s equation, posed in {2,

curl(p™ ! curl E) — w’eE = f,
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where our unknown is the electric field E, which we assume a priori to belong to
H(curl; Q); € and p are, respectively, the electric permittivity tensor and the mag-
netic permeability tensor; w > 0 is the angular frequency; and f is a volume data.
The problem shall be supplemented by appropriate boundary conditions on 0f).

In this work, the material tensors € and p are assumed to satisfy an ellipticity
condition. This condition is defined in the following subsection, and useful technical
properties are given. The remainder of the section is dedicated to the introduction
of the framework that derives from the ellipticity condition and the extension of
classical results (i.e., for elliptic, Hermitian tensor fields) given in [5]: Helmholtz
decompositions, Weber inequalities, and compact embedding results.

2.1. Ellipticity condition.

DEFINITION 2.1. We say that a complex-valued tensor field & € L™ () is elliptic
if and only if

(2) 3 eR, I >0Vz e C3 & |2|> < R[e™ - 2"€2]  almost everywhere in Q.

In addition, we will use the notation &, = [|§||L~ ()= sup; ; [|§ijllL= (), where (&;)
are the components of §.

This condition means that, almost everywhere in €2, the eigenvalues of {(x) are
contained in a fixed open half-plane of C3; in other words, there exists a “coercivity
direction” for £ in the complex plane. This condition is slightly more general than
the one proposed, e.g., by [27], varying only by a phase factor. This allows us to cover
a more general class of material properties, such as material tensors coming from
plasma theory (e.g., in [6]), which do not satisfy the standard ellipticity condition
used in [27] but which are elliptic for well-suited phase factors according to Definition
2.1. Because £ can be non-Hermitian, the mapping (v, w) — (§v|w)o o is, in general,
not a scalar product in LQ(Q); orthogonality properties are lateralized in the sense
that (€v|w)o o = 0 is not equivalent to (Ew|v)g q = 0.

Assumption. In the remainder of section 2, the tensor & belongs to L°°(Q) and
satisfies the ellipticity condition. B

PROPOSITION 2.2. One has €' € L™(Q) with (£~ )+ < (€)', Moreover, !
satisfies the ellipticity condition with 0¢—1 = —0¢ and (~ D_i=¢ (60)72

PROPOSITION 2.3. For any v € L*(Q), one has the following inequalities:

3) E-olfa < R [ (g0lv), o] < |(EVIv) 0| < &0l

Then the ellipticity condition implies that the inverse of the second-order di-
vergence elliptic operators, with Dirichlet or Neumann boundary condition, is well-
defined. Equivalently, this implies the well-posedness of the problems below, called
either the Dirichlet problem or the Neumann problem from now on.

THEOREM 2.4. Under assumption (2), the Dirichlet problem

) { Find p € HE () such that

(£VpIVa), o = La) Yq € H5(Q)
is well-posed for all £ in H=1(Q) = (Hg (Q))/, that is,

30 > 0 VL € (HY (), solution to (4), with |[p]l1.a < C 1€l a1y -
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Similarly, under assumption (2), the Neumann problem

Find p € H},,(Q) such that
) {

(&VPIVa), o = Ua) Yq € Hpp(Q)

zmv

is well-posed for all £ in (Hl (Q))/, that 1s,

3C > 0Vl € (H (), 3p solution to (5), with |pllia < C 1€ ms._)-

Proof. One uses Lax—Milgram’s theorem. All assumptions are fulfilled, and in
particular, coercivity of the sesquilinear form follows from relations (3) and Poincaré
(resp., Poincaré-Wirtinger) inequalities. O

2.2. Helmholtz decompositions.

DEFINITION 2.5. We introduce the function spaces

H(divg; Q) == {v € L*(Q), v € H(div; )},
H(divg; Q) == {v € L*(Q), &v € Ho(div; Q)},
H(div£0;9Q) := {v € H(div§;Q), divév =0},
H(div£0;Q) := Hy(div §; Q) N H(div £0;Q)
as well as
Xn(&:9Q) := Hy(curl; Q) N H(div§; Q),
X7(£Q) := H(curl; Q) N Hy(div§;Q),
Ky (& Q) := Ho(curl; Q) N H(div£0; ),
K1(§Q) := H(curl; Q) N Hy(div £0; Q).

The function spaces X n(&;92), X1(&:Q), Kn(§:Q), and K1(&;Q) are endowed with
the graph norm v (H’UH%I(curl;Q) + ||§v|\%1(div;m)1/2. When € is equal to the identity
tensor I3, we choose the simpler notation X n(Q) instead of X n(I3; ) ete.

As a first noticeable consequence of (2), one can prove the Helmholtz decomposi-
tions below.

THEOREM 2.6. Under assumption (2), one has the first-kind Helmholtz decompo-
sitions:
(6) L*(Q) = VH}(Q) & H(div £0; Q),
(7) H(curl; Q) = VH;(Q) & K n (£ Q).

In addition, these sums are continuous.

Proof. Let v € L*(Q2). The Dirichlet problem

Find p € H(2) such that
(&VrIVa), o = (§vIVa), o Ya € Hi(Q)

is well-posed by Theorem 2.4. Let vy = v — Vp € L*(Q). Then div{vr = divéw —
divgVp =0, i.e., vy € H(div £0; ).
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Additionally, the sum is direct: Indeed, let v € VHg(Q2) N H(div£0;€). Then
v = Vp for some p € H}(Q) and div &§Vp = 0. Since the Dirichlet problem is well-
posed, p = 0.

Finally, thanks to Theorem 2.4, Vp depends continuously on v, [|Vpllo.a S [|v]oa-
It is also the case for vy by the triangle inequality: ||vr|lo.o < |[Vpllo.a + lv]oa <
[v]lo.0-

The second proof is similar, with bounds in [| - || g (cur1;0)-norm. d

THEOREM 2.7. Under assumption (2), one has the second-kind Helmholtz decom-
positions:

(8) L*(Q) = VHyn (Q) © Ho(div €05 Q),

(9) H(curl; Q) = VH,,,,(Q) & K1(£ Q).

In addition, these sums are continuous.
Proof. Let v € L*(R2). The Neumann problem

Find p € H}, () such that
(EVPIVa) o = (€vIVa) o Vg € Hppy(Q)

is well-posed by Theorem 2.4. We pose vy = v — Vp € L*(Q). Noting that the
formulation is still valid for all ¢ € H(Q) and taking ¢ € H}(Q2), there holds
(div&vr, @) pa) = — (§1JT|Vq)07Q = 0. Hence, div&vr = 0 and vy € H(div£0;Q).
Moreover, Vg € H'(Q), (§vr - n,q)g1/2(00) = (§vT|Vq)O7Q + (div§vT|q)0,Q = 0.
Hence, vy € H(div £0; Q).

Additionally, the sum is direct: Indeed, let v € VH} ()N Ho(div£0; ). Then
v = Vp for some p € H},,(Q) and fulfills divEVp = 0 and £Vp - njpq = 0. As the
Neumann problem is well-posed, p = 0. The fact that the sum is continuous is derived
as previously.

The second proof is similar. 0

Remark 2.8. We recall that the notion of orthogonality no longer applies, as
the mapping (€ - |-)o,o is not automatically a scalar product. For instance, for

v € H(divE0;Q),q € H}(Q), it always holds that (§v|Vq)OQ = 0 by integration
by parts. On the other hand, (éVq\v)o o may not vanish.

2.3. The function space X n(§;2). Let us begin with an extension of the
first Weber inequality; cf. Theorem 6.1.6 in [5].

THEOREM 2.9. Under assumption (2), one has the Weber inequality

ICw >0 Vy € XN (&),

10 .
B0yl < Cw (lleurlyloo + 1 diveyllon + e (€9 - m o, |)-

Proof. We proceed by contradiction. Let us assume there exists (y,,) a se-
quence of X n(§; ) such that, Vm, ||ly,, [0, = 1 and || curly,,[lo,o + || div £y, [l0.0 +

Sk Ym0 Ve, < i1
Step 1. Consider the solution to the Dirichlet problem

(1) { Find ¢, € H}(Q) such that

(EVanIVa), o = (EymlVa), o Ya € HY(Q).
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By Theorem 2.4, this problem is well-posed. Moreover, taking ¢ = ¢%,, one gets

(V45 1V68) g | = | (= div Ewnlath) o | < 1l div €wallo.clla o

Using the relation (3) on the left-hand side and the Poincaré inequality on the right-
hand side, one gets qu9n||g,9 < diV;ymHO’QHVq?n”O’Q, S0

(12) Vgy,

lo.2 S 1divEy,,llo.o-

One gets that ||[Vq2, [lo.o — 0.

Step 2. Let @, == y,,,—Vq?, € K n(&;Q) (this is the Helmholtz decomposition (7)
of y,,). Consider the finite-dimensional space Qn(&;9) := {q € HY(Q) | divéVg =
0in Q,qr, =0, qr, = csty, 1 <k < K}, where csty is a constant field on Ty, and
the solution to the problem

(13) { Find ¢&, € Qn(&;Q) such that

(6Van|Va), o = (€xnlVa), , Ya € Qn(&Q).

This problem is also well-posed, following the proof of theorem 2.4 with the Poincaré
inequality in {g € H'(Q), qir, = 0}. Taking ¢ = ¢}, and integrating by parts, one
has

‘@Vqrran;)oﬂ’ = ’<§f’3m '”7QEI>H1/2(3Q)‘

Z (Ezm - n7q71—7\z>H1/2(1‘k)

1<k<K

Z T 1y (€% m - 1, 1) sz,
1<k<K

As Qn(&:9) is a finite-dimensional vector space, all the norms are equivalent, and
among them, ||V - [jo,o and maxy | -jp, |. Then, using additionally the relation (3),
there holds

lah B < (lanllove o |€@mmDmam,|)-
B 1<k<K

In addition, (£ - 1, 1) gi/2ry) = €Y - 1 D iz, — €V, -1, 1) sz, and,
using the continuity of the normal trace and recalling that div §Vq21 = div&y,, as
well as relation (12), one obtains

’<§V(J?n 'n, 1>H1/2(Fk)| S ||§VQ9n : n||—1/2,rk N ||vq(7)n||H(div§;Q) S diVﬁym”o,Q-

Hence,

(14) ||qfn||QN<g>s( T 1<sym-n,1>Hm<pk>|+divsymno,g),
1<k<K

and one gets that ||Vqy,[loo — 0. Observe that Vg, x njpgq = 0, so Vg, €
H(curl; Q).

Step 3. Let 2z, :=y,, — V¢%, — Vg, Tt belongs to X y(&,), and, additionally,
curlz,, = curly,,, div€z, =0, and (§zm -1, 1) g1/2r,) = 0. Indeed, introducing
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qx the unique element of Qx(&;€) such that gx|r, = dx,; for 1 < k < K, one has by
integration by parts

<§Zm "N, 1>H1/2(Fk) = <§Zm 'n7Qk>H1/2(6Q) = (§zm|qu)07Q + (diV§zm|Qk)07Q~

However, (§ZM|V%)0 o= (éa:m|qu)O o0~ (éVq,Fn|qu)0 o = 0 by definition of q

and div €z, = 0. It follows that ({z., - m,1) g1/2(p,) = 0. With the help of the vector
potential Theorem 3.4.1 [5], there exists w,, € H'(Q) such that £z, = curlw,, and
[wmllie S €2mlloe < [lzmlloo-

Furthermore, we have by integration by parts (zm |§zm)0,ﬂ = (2| curl 'wm)QQ =
(curl z,,|wp ), o = (curly,,[wn), o Using again relation (3), there holds

lzmll§ o < I eurly,, o.ollwnloo < llcurly,,llo.alzmlloq.

and 50 ||z lo.o < [ curly,,[lo.o. One gets that ||z, (oo — 0.
Finally, as y,,, = zm + ngl + qul;w we have ||ly,,llo.o — 0, which contradicts
HymHo,Q =1 for all m. 0

One can also extend the compact embedding result of Theorem 7.5.1 in [5]. Let
us note that a similar result has been proven by Alonso and Valli [3] for a different
class of anisotropic materials.

THEOREM 2.10. Under assumption (2), the embedding of X n(&;Q) into L*(Q)
18 compact.

Proof. Let (y,,) be a bounded sequence of X n(&§;€2). As in the previous proof
(Steps 1-3), we introduce ¢, € H} (), ¢5, € Qn(§9Q), and w,, € H'(Q) such that
Yy, =& teurlw,, + V¢, + Vqb . Additionally, there holds (see previous proof)

Vgp,

0.0 5 1divEy,,llo.a,

IV,

00 S [ ldivéyloa+ D [(EUm . Dmeeyl |
1<k<K

[wmllLo S | curly,, o,

Let us begin with (¢%): It is a bounded sequence of the finite-dimensional vector
space Qn(&;Q), so it admits a subsequence which converges (in particular in the
I l1.0-norm).

In addition, (¢%,) and (w,,) are bounded sequences of H'(Q) (resp., H*(Q)).
Then, by Rellich’s theorem, they admit susbsequences (still denoted with the same
indices) which converge in L?(Q) (resp., L*(Q)). It remains to prove that both sub-
sequences (Vq9,) and (curlw,,) converge in L*(f).

By definition of ¢2,, for any ¢ in H(Q), there holds by integration by parts

(EVamlVa) o = (EymlVa) o = — (divEy,la), -
Using the notation v, := v,, — v, and taking q = ¢°,,,, one has
(9650 1V %) g 0| < 1141V €Y 00 % o
Then, by relation (3),

IVamnllt.c < 2sup (Il div €y, llo.e) lgmnllo.s-
m

Thus, (V¢?,) is a Cauchy sequence of L?(2) and hence converges in this Hilbert space.
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We recall that curl(& curlw,,) = curly,, and £ Ycurlw,, € Xn( Q)
(cf. Step 3 of previous proof). Then, still with the same notations and by integration
by parts,

(§_1 curlw,,,|curl w’””)o,a = (curl(.ﬁ curlw,,,) |wmn)0 o

= (Curl ymn|wm’ﬂ)0,ﬂ .

As §_1 also satisfies the ellipticity condition (proposition 2.2), we get

leurlw,n|[§ o < | eurly,,,/lo.cllwmnllo.o < 2sup (|| curly,,[lo.) [wmnllo.o,
m

which proves that (curlw,,) is a Cauchy and hence converging sequence of L?(Q).
Asy,, = §_1 curlw,, + V¢ + Vql,, we conclude that the subsequence (y,,)

converges in L*(Q). |
2.4. The function space Xr(&;). Let us begin with an extension of the

second Weber inequality; cf. Theorem 6.2.5 in [5]. Some knowledge on the topology
of the domain {2 is required; see Appendix A for details and notations.

THEOREM 2.11. Assume that (Top); holds. Under assumption (2), one has the
Weber inequality

30, > 0 VX (£:9Q),
(15) w > 7(£§9)

it €y Dags),

where {¥;}1<i<r are the cuts of Q if I > 0 (see Appendiz A).
Proof. The proof follows a similar structure as in Theorem 2.9. By contradiction,
we assume there exists (y,,) a sequence of X (&; ) such that, Vm, [|y,,[lo.o = 1 and

S <i< ‘<§ym'nal>H1/2(Ei)| Sﬁ
Step 1. Consider the solution to the Neumann problem

zmv

(16) Find q € H} (Q) such that

The problem is well-posed by Theorem 2.4. Taking ¢ = ¢¥, and integrating by parts,
one gets, as y,, € Ho(div;Q),

|(€96IV40) g 0| = | (= div&ynlath) o] < I1div Eynllo.cllafilloe:

Using the relation (3) on the left-hand side as well as the Poincaré-Wirtinger inequal-
ity on the right-hand side leads to

(17)

so [[Vg2 |lo.o — 0.
Step 2. With the help of the second-kind Helmholtz decomposition (9) of y,,,, we
define @, := y,, — Vgb, € K7(&Q). Note that V¢, € Ho(div&; Q). Consider the

finite-dimensional space

Qr(&Q) == {4 € H., ()| divEVj =0 in Q, £Vg- njogo =0, [d]s, = cst;, 1 <i < I},
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where cst; is a constant field on ¥;. Let us introduce the problem

(18) { Find ¢3 € Qr(£; Q) such that

(EVQnIVa), e, = (E2m|Vd) ¢ Vi€ Qr(&Q).

This problem is well-posed, adapting the proof of Theorem 2.4 and using the Poincaré—
Wirtinger inequality in H} (€2). Taking ¢ = ¢> and using the integration by parts
formula (65), one has, as div{x,, = 0,

(évq |vq'm) = Z <§wm.n’ [q’i]Ei>H1/2(gi)

1<i<I

> [a5ls, (€xm 1, 1) o -

1<i<I

As Qr(&: Q) is a finite-dimensional vector space, all the norms are equivalent, and

among them, ||€||079 and max; |[/]s,|. Then, using additionally relation (3), there
holds

121 g % (12, g0 3 1€0m - m1)ipem| ).
1<i<T
In additiOIl, <§iL’m -n, 1>H1/2(Z7:) = (§ym -n, 1>H1/2(E <£qu . >H1/2(E ) For
1 < i < I, let ¢; be the unique element of Qr(§; Q) such that [ lils, = 0;; for
1 < j < I. If one recalls that Vg, € Ho(divg;Q), then there holds, using the
integration by parts formula (65),

|<£qu >Hl/2 )P )‘ =

> €V, - ldidls, ) mes,)

1<5<1

— [(6Van Vi), + (diveVanla) |

S IVamllo ol Vailloo + | divEVap, llg olldillo
S HVQ?nHH(divé;Q)

S 1div €y,y llo,o;

the latter because of (17) and div£V¢Y, = div£y,, in Q. Hence,

19 iElaren < ( 5 1ewn mlimem| + | dveunlon ).

1<:i<TI

which implies that ||§(\]§

Step 3. Let z,, :==y,,— V¢’ — 65; € X1(§ Q). There holds curl z,,, = curly,,,
div€z,, = 0, and additionally (§2,, - 1, 1) g1/2(s,) = 0 for 1 <4 < [. First, one has,
by using the integration by parts formula (65),

(€2m m Dpiay = D (E2m o ldils, ) e,
1<5<I

= (§Zm|vql-)07§.2 + (divgzmmi)m.
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Then (§zm|vqi)07ﬁ = (§mm|vq'i)0,9 — (§vq§L|vqi)07Q = 0 by definition of ¢2, while
div £z, = 0 by definition of z,,.

“One has also z,, € Ho(div £0;Q), so, according to the vector potential Theorem
3.5.1 [5], there exists wm € XNi(Q) such that £z,, = curl wm and divw,, =0 in O

and [[wm || m(curt) S [1€2mllo.q; in particular, [[wo, || g(curte) S [[2mllo.-
We have by integration by parts

(zm\ézm)o o = (Zmlcurlwy,), o = (curl zp|wm), o = (curly,, |wn)y g -
Using again the relation (3), we find

lzmll§ o < I eurly,,o.olwnloo < llcurly,,llo.alznlloq.

so that ||zm o0 S chrlymHOQ It follows that ||z |00 — 0.

ASY,, = Zm +vqm+VQma we conclude that ||y,,|lo.o — 0, but that contradicts
1Y llo.0 =1 for all m. 0

One can also extend the compact embedding result of Theorem 7.5.3 in [5].

THEOREM 2.12. Assume that (Top); holds. Under assumption (2), the embed-
ding of X1(&;Q) into L?*(Q) is compact.
Proof. Let (y,,) be a bounded sequence of X7(£;€2). As in the previous proof
(Steps 1-3), roduce ¢°, € Hzlmv(Q) i € Qr(& Q), and w,, € Xx(Q) such that
m = §_1 curlw,, + Vg, + qu. Additionally, there holds (see previous proof)

n, 1) s, )|> 5

Let us begin with (¢2): Tt is a bounded sequence of the finite-dimensional vector
space Qr(&;9), so it admits a converging subsequence (in particular in the | - ||1.q-
norm).

In addition, (¢%,) is a bounded sequence of H'(f2), so, by Rellich’s theorem, it
admits a converging susbsequence (denoted with the same index) in L?(£2). Similarly,
w,, is a bounded sequence of X n(2), so by Theorem 2.10, it admits a converging sub-
sequence in L*(Q). It remains to prove that the subsequences (V¢9,) and (curlw,y,)
converge in L?(Q).

By definition of ¢2,, for any ¢ in H(Q), there holds by integration by parts

(EVannlV)y o = (€Ymnl V) o = = (divEYmAla) g -

IVamllo.e < 1l divEy,,flo.0,

IV@Elloe < (

”wm”H(curl Q) S ||curly7n||0Q

Taking ¢ = ¢2,,,, one gets by property (2)

2) llgmnllo.o-

IVamnlls.o <

Thus, (Vg9,) is a Cauchy sequence of L?*(Q) and hence converges in this Hilbert space.
By integration by parts (recall that w.,,, € X n(Q)),
(gfl curl w,,,|curl wmn)o,g = (curl(§ curlw,,,) |wmn)O o

= (curly,,, |wmn)o7Q .
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As §_1 satisfies the ellipticity condition (Proposition 2.2), we find

leurlwm,§ o < | eurly,,, llogllwmn,

0,0 < 2sup (|| curly,,[lo.0) [[wWmnllo.o;
m

which proves that (curlw,,) is also a Cauchy and hence converging sequence of L*(£2).

—_—

Asy,, = ¢ ' curlw,, + V¢’ +ViZ, the subsequence (y,,) converges in L*(€2). O

m?

3. Analysis of the Dirichlet problem. In this section, we supplement the
time-harmonic Maxwell’s equation by a Dirichlet boundary condition on 952,

Find E € H(curl; Q) such that
(20) curl(p~! curl E) — w?eE = f in Q,
E xn =g on 0,

where g is a boundary data.

We assume that the tensors g, u € L*(Q) are elliptic. The corresponding coer-
civity directions (or, equivalently, the parameters 6, and 6,, in Definition 2.1) may be
different. We also assume that the volume data f belongs to L?(2) and that the sur-
face data g is the tangential trace of a field E4 € H(curl;Q), that is, g = Eq X nsq.
Further assumptions will be made to obtain the extraregularity results.

3.1. Variational formulation and well-posedness. Let us derive the varia-
tional formulation of problem (20). In order to deal with a problem with homogeneous
boundary condition, we introduce the new unknown Eq := E — E,. It belongs to
H(curl; Q) and, additionally, satisfies

curl(p™ ! curl Ey) — w?’eEg = f — curl(p ' curl E;) + w’eEy  in Q.
By standard techniques, we get the equivalent variational formulation for E,

o1 Find Eq € Hy(curl; Q) such that
(21) (bt curl Bo|curl F) | —w? (eEo|F)y o = {p,o(F) VF € Ho(curl;Q),

with lpo : F — (f +w2§Ed|F)OQ — (! curl E4| curl F) which belongs to

(Ho(curl; Q). In addition, we observe that

0,0’

(22) WD,0||(HD(cur1;Q))' S flloo + ||Ed||H(cur1;Q)'
Remark 3.1. In terms of the total field E, the variational formulation to be solved
is
Find E € H(curl;Q?) such that
(23) (p~! curl E| curl F) w? (eE|F)y o ={p(F) VF € Ho(curl; ),
E xn =g on 09,

0,0

where (p : F — (f|F), q belongs to (Ho(curl; Q))". This formulation can be used
to solve the nonhomogeneous Dirichlet problem numerically; see section 5.

To study the well-posedness of the formulation (21), it is useful to introduce
an equivalent problem with the help of the previously derived first-kind Helmholtz
decomposition (7).
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~ LEMMA 3.2. The formulation (21) can be equivalently recast as follows: Set Eq =
E + Vp, with p € H}(Q) and E € K y(g;Q), respectively, governed by

(24) { F'inde € H () s1ich that X
—w? (eVp|Vq) o = p,0(Va)o.o Vg € Hy(C2),
and
Find E € K y(g;Q) such that
(25) (H_l curl E| curl F)o 0~ w? (gE\F)O’Q

)

= w? (ng\F)O o +lpo(F) VF € Kn(g;Q).

Proof. Direct. Let us introduce the first-kind Helmholtz decomposition (7) of
Ey: Ey = E + Vp, with p € H}(Q) and E € Ky(g;Q). Taking F = Vq for any
q € Hi(Q) in (21), we get

—w? (g(E’ + Vp)|Vq)0 0= ’p,0(Vq),

and, since E € K y(g;Q), it holds that, Vg € Hy(Q), (eE|Vq)o.q = 0, so p is governed
by (24). 5
On the other hand, for E = Eg — Vp, one has

-1 ;. o2 F _ 2
(H curlE|curlF)O’Q w (gE\F)O’Q w” (eVp|F)q g+ ¢p,o(F)

for any F' € H(curl;Q); hence, in particular, for any FeKy (g;9), E is governed
by (25). 3
Reverse. By summation, one has, Vg € H}(Q) VF € Ky(g;Q),

1 = = 2o 7 2
1B lF) - ( EF) — W (eVp|V
(H curl E|cur 0.0 w (eE| 0.0 w” (eVp|Va)y o

= w? (§VP|F>0,Q +0p,o(F) + €po(Vq).

One can add the vanishing terms (pu~!curl Vp| curl F)o o, —w?(eE|Vq)oq, and

(pt curl(E + Vp)| curl Vq)o o to the left-hand side. Introducing Ey := E + Vp €
H(curl; Q2), one gets, after simple rearrangements,

(E_l curl Eg| curl(F + Vq))o 0~ w? (gEO\F + Vq)o 0= Ipo(F + Vq).

Finally, as F and q span, respectively, K y(g;2) and H}(Q), the sum F+ Vg spans
the whole H(curl; Q) thanks to (7): Ey is governed by (21). 0

Remark 3.3. The term w?(eVp|F)o.q in formulation (25) vanishes automatically
only if € is a Hermitian tensor field.

Then we have the following results.

LEMMA 3.4. The formulation (24) is well-posed. Moreover, one has the bound
Iplle S 1flloo+ [ Eallog-
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Proof. Well-posedness is an immediate consequence of Theorem 2.4. Since {pg €
(H(curl; Q) and V is a continuous mapping from H}(2) to Ho(curl; (), one has
lpooV € (H()). The bound on [|p|j1,q is a straightforward consequence of the
expression /p 0(Vq) = (f + w?eE4|Vq)o.a- O

Recall that K y(g;) is equipped with the norm || - || g(cur;0)- Thanks to the
compact embedding of K y(g; Q) into L*(Q2) (see Theorem 2.10), the formulation (25)
enters Fredholm’s alternative (see, e.g., [5]).

LEMMA 3.5. The formulation (25) enters Fredholm’s alternative:
e [ither the problem (25) admits a unique solution E in K n(g;), which de-
pends continuously on the data f and Eg,

”E”H(curl;ﬂ) 5 H.f

00+ ”Ed”H(curl;Q) ,

e or the problem (25) has solutions if and only if f and E4 satisfy a finite
number of compatibility conditions; in this case, the space of solutions is an
affine space of finite dimension. Additionally, the component of the solution
which is orthogonal (in the sense of the Hy(curl; Q) scalar product) to the
corresponding linear vector space depends continuously on the data f and E4.

Proof. Let us split the left-hand side of (25) in two terms. Let a > 0, recalling that
H_l satisfies assumption (2), and using the notations of Proposition 2.2, we introduce
two sesquilinear forms, namely, a : (u,v) — (! curlu| curl v)o,sz + elfn (ufv)yq
and b : (u,v) — (g'ulv), o with €’ := —w?e — ael%*1 € L*(Q).

We claim that the form a is coercive on K n(g;2). Indeed,

la(v,v)| = | ("' curlv| curlv) + ae (v]v)oq |

0,
>R {efie“ (p~ " curlv| curl'v)O o ta(vlv) Q}
> ()= | eurlw|§ o + allvlf

Z ||’U||%-I(cur1;ﬂ)‘

In addition, |b(u,v)| < ||€'||lL> () llullo.allv]lo. < lulloallvl iy en), so the form b is
continuous on L?(Q) x K y(g; Q).

The embedding of K y(g;Q) into L*(Q) is compact by Theorem 2.10. Hence,
problem (25) enters the coercive 4+ compact framework and then Fredholm’s alterna-
tive.

Regarding finally the bound, one uses simply the bounds on ||p||1,o (see Lemma 3.4)
and on [[€p,o|| (o (curt,0)) (see (22)). 0

We are now in a position to solve formulation (21) by regrouping the previous
results.

THEOREM 3.6. The formulation (21) with unknown Eqy enters Fredholm’s alter-
native:
e Fither the problem (21) admits a unique solution Eq in Ho(curl;QY), which
depends continuously on the data f and Eg4,

(26) I Eoll e (curti) S [1Fllo.o + 1 Edll H(curto) »

e or the problem (21) has solutions if and only if f and E4 satisfy a finite
number of compatibility conditions; in this case, the space of solutions is an
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affine space of finite dimension. Additionally, the component of the solution

which is orthogonal (in the sense of the Hy(curl; Q) scalar product) to the

corresponding linear vector space depends continuously on the data f and E4.
Moreover, each alternative occurs simultaneously for formulations (25) and (21).

Assumption. In the rest of the manuscript, we assume the problem (25) has
a unique solution such that the problem (21) is well-posed and, in particular, the
estimate (26) holds.

3.2. Extraregularity of the solution. The next two subsections aim at deter-
mining the extraregularity of the solution and the solution’s curl, depending on the
extraregularity of the data. We make the following extraregularity assumptions for the
next two subsections. We assume that 9§ is of class C? and that p,e € C'(Q). Re-
garding the extraregularity of f and Eg4, we assume div f € H*~1(Q) = (Héfs(ﬂ))/,
E; € H(Q), and curl E; € Hr/(Q) for given s,r,r’ in [0, 1]\{%}

Let us recall a result on the continuous splitting of fields of Hy(curl;Q); cf.
Lemma 2.4 in [21] or Theorem 3.6.7 in [5].

THEOREM 3.7. Let Q be a domain. For all u in Hy(curl;Q), there exist u™® in
H'(Q) and ¢ in HL(Q) such that

u=u"%+ Vo in Q, with Hureng,ﬂ + ||¢H1,Q < ”u”H(curl;Q)'

With Theorem 3.7 at hand, we introduce the splitting of FEy:

(27) { Ey = E™8 + V¢, with E™¢ ¢ H'(Q), ¢p € H}(Q), and

IE** L0+ I¢elie S 1 BollB(eurta)-

Taking F = Vq in (21) for any ¢ € Hg(Q), it holds that —w* (eEo|Vq),, =
(f + wngd|Vq)0 o As a consequence, ¢ is governed by the Dirichlet problem

5 Find ¢r € H}(2) such that
(28) ¢ o2 (eV9E|IVa)gq = (div f +w?diveEy + w? diveE™®|q), , Yq € Hj(Q).

Let us recall the fundamental regularity result for solutions of the Dirichlet problem;
see Theorem 3.4.5 in [14].

THEOREM 3.8 (shift theorem). Let Q be a bounded domain of boundary OS2, ¢
n (H& (Q))/, and p governed by

(29) { Find p € H§(Q) such that

(&VrIVa), o = Ua) Yq € Hy(Q).

If the tensor coefficient & fulfills the ellipticity condition, then the problem (29) is
well-posed; if additionally & € C*(Q) and 0% is of class C2, then, Yo € [0,1]\{1},

(30) te (HF7(Q) = pe H™M(Q);
additionally,

. /
(31) 3C, > 00 e (Hy () Ipllosro < Colll] ey

Consequently, we have the following regularity result for E.
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THEOREM 3.9. Let E, governed by (20), be split as E = Ey + Eq with Ey €
Hy(curl; Q). If 9Q is of class C?, if e € CY(Q), if f € L*(Q) is such that div f €
H==1(Q) with s in [0,1\{3}, and if Eq € H*(Q) with T in [0,1]\{3}, then

E ¢ H™E9(Q) and

32 .
B2 Elmmesa < [Floe + 1div flacr + [ Edles + | curl Eglog.

Remark 3.10. No regularity assumption on g is required here.

Proof. We split Eq as in (27), and we apply Theorem 3.8 to the problem (28)
governing ¢p. Let us introduce the right-hand side of (28), ¢ € (Hg(£2))’, and defined
by

£ qg— (divf +w?diveEg + w? dingreg|q)O o

Consider each term: One has div f € H*~}(Q) = (H&_S(Q))/; as e € Wh™(Q), there
holds e E™*¢ € H'(Q2) and diveE™® € L?*(Q); similarly, eEq € H*(Q2), so diveE, €
HYQ) = (H&fr(Q))/ as soon as r # 3. It follows that ¢ € H™nED-1(Q) =
(HY ™™= (Q)). In addition, one has the bound

”gHmin(s,r)fl,Q fs ” div.f”s—LQ + ” dngErchQQ + ” dngEdHr—LQ
Sdiv flls—1,0 + [[E*® 1,0 + [[Edllr0
S div flls—1.0 + |1 Eoll g (curto) + | Edllz0,

where we used (27) to reach the third line. We conclude by the shift Theorem 3.8 that
¢E € HIIlln(s7r)+1(Q) and ||¢E||min(s,r)+1,$2 5 || le f”sfl,ﬂ + ||E0HH(cur1;Q) + HEd r,Q-
Hence, E = E™® + V¢g + E4 belongs to H™"®7)(Q), with the bound

| Ellmin(s.r).0 S 1E*¥]l1,0 + [[VOElminsr).0 + [ Edllr,0
S IEol g (curt;) + IVOE|Imings,r),0 + | Edllr
S 1Boll Hcurro) + [ div flls—1,0 + [[Edllr,0
S fllo,e + [ curl Egllo.o + || div flls—1,0 + || Edllx,0;

where we used successively (27), the bound on ||¢g||min(sr)+1,0, and finally (26) to
conclude. 0

COROLLARY 3.11. Let the assumptions of Theorem 3.9 hold. If f € H(div;(),
there holds E € H*(Q) and || Ellr,0 S | fllmive) + | Edllr.o + || curl Eqllo,o.

3.3. Extraregularity of the solution’s curl. We proceed similarly with the
solution’s curl, with the same assumptions as in subsection 3.2. One has a theorem
analogous to Theorem 3.7, on the continuous splitting of fields of H(curl;); cf.
Theorem 3.6.7 in [5] (see also Lemma 2.4 in [21] for a similar result).

THEOREM 3.12. Let Q be a domain of the A-type (see Definition A.2). For all u
in H(curl; Q), there exist u*¢ in H'(Q) and ¢ in HL () such that u™s - njgo =0
and

w= w4 Vo in Q, with w10+ ]|

1,Q 5 ||u||H(Cur1;Q)~

Let C := p~'curl E € L*(Q), and one has curl C = f + w?cE € L*(Q); hence,

C € H(curl; Q) with the bound

(33) IC| z(curt:) S Bl H(curt:0) + | Fllo.0
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according to Proposition 2.2. Observing that E = Ey + E; with Ey € Hy(curl;Q),
for any ¢ in H),,(©), it holds that (HC|V‘1)0 o = (curl E|Vq), o = (curl E4|Vq), q.
Next, we introduce the splitting of C' by Theorem 3.12:

(34)
{ C = C™® + V¢c, with C™¢ € H'(Q), ¢c € H}, (Q), C™¥ -njpq =0, and
Hcreg”LQ + H¢C”17Q S ||C||H(Curl;Q)~

Thus, ¢¢ is governed by the Neumann problem

(35) { Find ¢¢ € H},(Q) such that

(kVoc|Va), o = (curl Eq — pC™|Vq) ., Vg € H,, (Q).

Hence, one may use a regularity result for solutions of the Neumann problem (see
Theorem 3.4.5 in [14]) to estimate the regularity of ¢¢, the regularity of C, and
finally the regularity of curl E.

THEOREM 3.13 (shift theorem). Let Q be a bounded domain of boundary 92, ¢
in (HJ} (Q))/, and p governed by

zmv

(36) { Find p € H}, . (Q) such that

(&VPIVa) = Ula) Yq € Hyy,o ().

If the tensor coefficient & fulfills the ellipticity condition, then the problem (36) is
well-posed; assume in addition that § € C'(Q) and 99 is of class C2.
(i) Then, Yo € |0, %[,

(37) te (B (Q) = pe HOTH(Q)
and
(38) 3C; >0V € (Hn? (D), Iplosre < Colltl pae 0y -

(ii) If there exists o € |1 1] such that ¢ writes {(q) = (flD)o.q + (9: @) 17250
with f € L*(Q) and g € H°~'/2(0Q), then p € H*(Q). Moreover,

(39)
3C, > 0 Y(f.g9) € L*(Q) x H*2(0Q), [|pllo+1,0 < Co(||f||0,9 + ||9||a—1/2,asz)-

Remark 3.14. In case (i), the theorem can be understood in a variational manner,
just as in Theorem 3.8 for the Dirichlet problem. On the other hand, in case (ii), the
proof relies on local analysis arguments; see [14] for details.

Applying this result to problem (35), one finds the regularity of ¢¢, then of
curl E.

THEOREM 3.15. Let E, governed by (20), be split as E = Eg + E4 with Eg €
Ho(curl; Q). If 9Q is of class C?, if p € C'(Q), and if curl By € Hr/(Q) with ¥’ in
[0,1\{3}, then

curlE € Hr/(Q) and

40
(40) lcurl Bl o < [ Floo + [ Edlos + | curl Ballo.
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Remark 3.16. No regularity assumption on g (other than € € L>(Q)) is required
here. As € is a domain with boundary of class C2, it is automatically of the 2-type.

Proof. We would like to apply Theorem 3.13 to the problem (35) governing ¢¢.
Let us introduce the right-hand side of (35), £ € (H},,(R2)), and defined by

zmv

{: g (curl By —ECmg\Vq)O 0

To determine the regularity of ¢¢, one wants to determine whether the form ¢ belongs
to (HAne () for o € [0,1]\] as large as possible. If r' < L, then H™ (Q) identifies

zmv

with HB/(Q), the dual space of H * (). Hence, the product (curl Eq|Vq),q is

meaningful as soon as ¢ € HA.T () because Vg € H™™ (©) in this case; the same

holds for the term (HCreg|Vq)O - This means that ¢ belongs to (HL-'(Q)), and

zmv

the shift Theorem 3.13(i), with o = r’, ensures that ¢ € H't*'(Q), with the bound
leclive o S [leurl Bglle o +[|[RC™ L0 S || curl Eqller o + [C™ |10

On the other hand, if ' > 1, then HBI(Q) does not identify with Hrl(Q), and,
as soon as curl E; - njpq # 0, the product (curl Ed|Vq)07Q can be meaningless if
3
in H*'~1/2(99), and, as pC™® - ngq = 0, £(q) rewrites by integrations by parts
U(q) = (divHCreg|q)0)Q + (curl Eq - n,q) /2 (p0)- As divpC™® € L?(Q), € satisfies
the assumptions of the shift Theorem 3.13(ii) with o =r’, and we conclude that
dc € H*' (Q), with the bound

one has only ¢ € H.-T'(Q). However, since r' >

e curl E; - njpq makes sense

[¢clhi+r .o S leurl Eq - nlly 172 00 + || div pC*%|lo,0
S |lcurl Egllyr—1 /2,00 + || div pC™ |0 0
S [leurl Eglly o + [|C™®[|1 0.

So, pc € H''(Q) in all cases (with the same upper bound), so that C = C™ +
Voo € H” (),

[Cllz 0 S IC™8 (10 + [[Voc| .o
SIC™8 10 + [ curl Eqflr o
(See (34)) S.» ||C||H(curl;Q) + H curl Ed”r’,Q~

Ascurl E = pC and p € W (), it finally holds that curl E € Hr,(Q), with the
bound || curl E||; o S ||C|ly.q. Finally, with the help of (33) and Theorem 3.6, one
concludes that

|curl Efly .0 S [[CllH(curto) + || curl Eqlly o
S Elz(euro) + [[flloo + [[curl Eqflw o
S Eo|lf(cur) + [ Eallo,o + [ fllo,o + || curl E4llr o
S [Eallo,e + 1 fllo,e + [ curl Eqfly 0. 0

The last theorem sums up the regularity results of this section.

THEOREM 3.17. Let E, governed by (20), be split as E = Eq¢ + Eq with Eq €
Hy(curl; Q). If 0Q is of class C?, if g1 € CY(Q), if f € L*(Q) and is such that
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div f € H~1(Q) with s in [0,1\{%}, and if Eq € H*(Q) and is such that curl E; €
H™ (Q) with r,7’ in [0,1]\{}}, then

Ec Hmin(s,r) (Q)’ curl E € Hl‘/(Q), and
(41) HEIImin(s,r),Q Sflloe + 11div Flls—1,0 + | Edllr,o + || curl E4ljo.q,
[curl E| o S | fllo.a + | Eallo,o + || curl Eqlly .

4. Analysis of the Neumann problem. In this section, the time-harmonic
Maxwell’s equation is supplemented by a Neumann boundary condition,

Find E € H(curl; ) such that
(42) curl(p~ ! curl E) — w?eE = f in Q,
pteurl E x n = j on 09,

where j is a boundary data which can be interpreted as a surface current.

We assume that the tensors g, u € L>(Q) are elliptic. The corresponding coer-
civity directions (or, equivalently, the parameters 6, and 6,, in Definition 2.1) may be
different. We also assume that f € L? (©2) and that j is the tangential trace of a field
B, defined on Q, i.e., j = Bq X njpq, with B; € H(curl, Q).

4.1. Variational formulation and well-posedness. The equivalent varia-
tional formulation of the problem is obtained by the integration by parts formula
(1). Tt writes

Find E € H(curl; Q) such that
(43) (! curl E| curl F)O . w? (eE|F)qq = In(F) VF € H(curl; Q),

where Ix 1 F = (f|F)q o + (7, 7T F), belongs to (H (curl; Q)" and

(44) 1On1l (e curt)y S N Fllo.o + 131y S N Fllo.e + [ Ball e eurtio)-

The analysis follows the same reasoning as in section 3. For this reason, some proofs
are just outlined. For the Neumann problem, our analysis relies on a second-kind
Helmholtz decomposition (see Theorem 2.7).

_ Lemma 4.1. The formulation (43) can be equivalently recast as follows: Set E =
E + Vp, with p € HL,,(Q) and E € K1(g;9Q), respectively, governed by

{ Find p € HL,,(Q) such that

(45) —w? (eVp|Vq)y o = In(Vq) Vg € H,,\ ()

and

Find E € Kp(g;Q) such that
—1 T T 2 il 7
(46) (H curl E| curl F)O L (§E|F)

)

0,0

= w? (ng\F) +IN(F) VF € Kr(e;Q).
0,0

Proof. Direct. Let us introduce the second-kind Helmholtz decomposition (9) of
E: E=E + Vp, with p € H. ,(Q) and E € Kr(g;Q). Taking F = Vq in (43) for
any ¢ € H}_ () yields

zmv

—w? (g(E + Vp)|Vq>(LQ =In(Vy).

Hence, as E belongs to H(dive0;Q), p is governed by (45).
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On the other hand, there holds

~1 i _ 2 (-F _ .2
(H curl E| curl F)o,sz w (§E|F>079 w” (eVp|F)y o + In(F)
for any F € H(curl; Q); hence, for any F € Kr(g;Q), E is governed by (46).
Reverse. Summing (45) and (46) and introducing E := E + Vp € H(curl;Q),
one gets, after rearrangements,

(H_l curl E| curl(F + Vq))o 0" w? (§E|(ﬁ1 + Vq))o 0= In(F + V).

1 (9) and K1(g;Q), we know that the sum F+ Vg
spans the whole H (curl; Q) thanks to (9); hence, E is governed by (43). ad

Here, K1(g; () is equipped with the norm || - || gr(curi;0)- The rest of the analysis
proceeds as for the Dirichlet problem.

As g and F span, respectively, H.

THEOREM 4.2. The formulation (43) enters Fredholm’s alternative:
o FEither the problem (43) admits a unique solution E in H (curl;Q), which
depends continuously on the data f and By,

(47) ||E||H(Curl;ﬂ) 5 Hf

0,0+ ||Bd||H(curl;Q) ,

e or the problem (43) has solutions if and only if f and B, satisfy a finite
number of compatibility conditions; in this case, the space of solutions is an
affine space of finite dimension. Additionally, the component of the solution
which is orthogonal (in the sense of the H(curl;Q)) scalar product) to the
corresponding linear vector space depends continuously on the data f and
By.

Proof. The Neumann problem (45) is well-posed according to Theorem 2.4. In
fact, the form fy is continuous on H (curl; §2), and the mapping V is continuous from
H} .(Q) to H(curl;Q), so one has ¢y oV € (HL,,(€2))’, with the bound ||p|l1.o <
[£llo.e + [ Ball E(eurt0)-

In addition, the formulation (46) fits the coercive 4+ compact framework. Indeed,
as in the proof of Lemma 3.5, one can split the left-hand side of (46) in two terms.
Let @ > 0, and the term (p~'curl E|curl F)g o + ae?s(E|F)oq is coercive on
H (curl; Q) (therefore on Kr(g;)), as p~! satisfies the ellipticity condition (see
Proposition 2.2). The remaining term —wz(gﬁ\ﬁ’)oﬂ—aew” (E‘F)O,Q is continuous on
L?(Q) x K1(g;Q), and the embedding of K(g; Q) into L*(£2) is compact by Theorem
2.12. Hence, formulation (46) enters the coercive + compact framework, and so does
formulation (43). The bound || E| gcurio) S [IVpllo + [[Flloe + [[Ball H(curtio)

follows from (44), and the bound on || E|| g (cur;0) is @ consequence of the triangle
inequality. O

Assumption. In the rest of the manuscript, we assume that the problem (43) is
well-posed and, in particular, that (47) holds.

4.2. Extraregularity of the solution’s curl. As previously, we are now willing
to estimate the regularity of the solution and its curl in the Neumann case, depending
on the extraregularity of the data. We make the following extraregularity assumptions
for the next two subsections. We assume that 99 is of class C? and that € € W">°(Q)
and p € C'(Q). Regarding the extraregularity of f and By, we assume that f €
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H (curl; Q)NH?®(2) for agiven s € [0,1] and that B, € Hr/(Q) and curl B; € H*(Q)
for given r’,r € [0,1]\{3}. We begin with the estimation on the curl. The analysis
relies on the same arguments as in subsection 3.2.

Let us introduce B := p~' curl E € L*(Q). There holds curl B = f 4+ w?cE €
L? (€2); hence, B € H(curl;Q), with the bound ||B||g(cur;0) S | E|H(curto) +
I fllo,@, according to Proposition 2.2. Moreover, B x n = By x n on 0f). Letting
By := B — B, € Hy(curl;Q2), we introduce the splitting of By by Theorem 3.7:

{ By = B™8 + V¢p, with B ¢ H'(Q2), ¢p € H}(Q), and
1B™ |10+ ¢8ll.0 S 1BollH(curto)-
As divuB = 0, ¢ is governed by the Dirichlet problem

(49) { Find ¢ € H}(Q) such that

(EV¢B|VQ)O’Q = (divpBg + divHBreg\q)OVQ Vq € H}(Q).

(48)

As in subsection 3.2, one can apply the shift Theorem 3.8 to get the regularity estimate
on ¢p and curl E.

THEOREM 4.3. Let E be governed by (42) and B = H_l curl E be split as B =
By + By with By € Hy(curl; Q). If 02 is of class C?, if p € C'(Q), and if By €
H™ (Q) with ¥’ € [0,1]\{1}, then
curl E Hr’(Q) and

50
(50) leurl By g < | flog + || curl Ballog + | Ballvo-

Remark 4.4. No regularity assumption on € (other than € € L°°(Q)) is required
here.

Proof. The proof proceeds as in Theorem 3.9. We apply the shift Theorem 3.8
to the Dirichlet problem (49) governing ¢p. Let us introduce the right-hand side of
(49), £ € (HL(2))', and defined by

¢ : g (divpBgy+divpB™q) -
We observe that there holds, as p € W!1>(Q), that div pB™® € L?(Q) and div B, €
H™ Q) (as soon as r' # 1 for the latter). Then ¢ € HY1(Q) = (Héfr/(ﬂ))’.

Hence, by the shift Theorem 3.8, we have that ¢ € H'* (). Moreover, thanks to
(47), we have the bound

loBlliier.a S IF

So, B = B™® 4 V¢p + By € H' (Q), and we conclude that (50) holds because
peWhHe(Q). 0

0.0+ [[curl Byllo.o + || Ballr -

4.3. Extraregularity of the solution. To estimate the regularity of the so-
lution itself, we follow the same approach as in subsection 3.3, with the same as-
sumptions as in subsection 4.2. To that end, let us introduce G := curlB =
f+w eE € L*(Q). Ase € W"®(Q) and f € H(curl;), one finds that curl G =
curl f+w? curle E € L?(Q); hence, G € H(curl; Q), with the bound |Gl (curt0) S
| Ellt(curt;) + | F | (cur;0)- By Theorem 3.12, one can introduce the splitting of G:

(51)
{ G = G™® + V¢g, with G™¢ € H'(Q), ¢¢ € H},\ (Q), G™¥ -njpg =0, and
1G™®([1,0 + [[9cllie S Gl H(curto)-
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zmv

as the part with By € Ho(curl;Q) vanishes by integration by parts. Then ¢¢ is
governed by the Neumann problem

Therefore, for any ¢ € H,,, (), (G|Vq)yq = (curl B|Vq), o = (curl B4|Vq), o,

(52) Find ¢g € H},(92) such that
(Voc|Va)g g = (curl By — G™|Vq) o Vg € Hypo ().

As in subsection 3.3, the regularity of ¢ and E is then given by the shift Theorem
3.13.

THEOREM 4.5. Let E be governed by (42) and B = E_l curl E be split as B =
By + By with By € Ho(curl; Q). If 9Q is of class C?, if e € WH>®(Q), if f €
H (curl; Q)N H?®(Q) with s € [0,1], and if carl By € H* () withr € [0,1]\{1}, then

E € H™™2)(Q) and

53
B3 Bllomea < llcurl

0.0+ [ flls.o + [[Ballo.o + || curl Byl o

Remark 4.6. No regularity assumption on p is required here.

Proof. The proof is as in Theorem 3.15: We want to apply the shift Theorem
3.13 to the problem (52) governing ¢¢. Let us introduce the right-hand side of (52),
(e (HL,,(Q)), and defined by

¢ g (curl By — G™|Vq), q -

To determine the regularity of ¢¢, one wants to determine whether the form ¢ belongs
to (Hzlrgg(Q))/ for o € [0,1]\1 as large as possible. If r < 3, then H™(Q) identifies
with H{(2), the dual space of H ™ *(Q2). Hence, the product (curl B; — G™8|Vq) is
meaningful as soon as ¢ € H}.(2) because Vg € H () in this case. This means

zmv

that ¢ belongs to (HI_I(Q))/, and the shift Theorem 3.13(i), with o = r, ensures that

zmv

bc € H'T*(Q), with the bound

oG li4r.0 S I FllH(euro) + || curl Byllr o + | Ballo,o-

On the other hand, if r > %7 the previous argument is not valid anymore. However,
curl B; - njgq makes sense in H*1/2(0Q), and, as G™* - njpo = 0, £(q) rewrites by
integrations by parts £(g) = (div G™®|q) o + (curl By - n, q) g1/2(90)- As divG™ €
L?(Q), ¢ satisfies the assumptions of the shift Theorem 3.13(ii), with o = r, and we
conclude that ¢g € H'T5(Q), with the same bound as above.

Finally, ¢ € H'T*(Q) in all cases and G = G**® + Ve € H*(Q2). In passing, we
note that e+ € W (Q) because e~ € L*°(Q) (Proposition 2.2) and ¢ € W ().
Recalling that E = w2~ }(G — f), with f € H*(Q2), we conclude that (53) holds. O

To conclude, we sum up the regularity results of this section.
THEOREM 4.7. Let E be governed by problem (42) and B = p~"' curl E be split
as B = By + By with By € Hy(curl; Q). If 99 is of class C?, if p € Ql(ﬁ), if

e € Wh™(Q), if f € H(curl; Q)N H*(Q) with s in [0,1], and if By € Hr/(Q) and
is such that curl By € H* () with ', in [0,1]\3, then

E € H""9)(Q), curlE € HY (Q), and
(54) |Elluine 002 S [ Flls + [ curl fllo + [ Ballo.o + || curl Byllc 0.
|curl E|y.o < || fllo.o + | Baller.a + || curl Byllo.o.
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5. H(curl)-conforming finite element discretization. Edge finite element
methods are natural candidates for the numerical solution of electromagnetic prob-
lems. Since these methods lead to H (curl)-conforming approximations, some features
of the numerical solutions can be rather easily studied by leveraging the results ob-
tained for the exact problems. While the comprehensive numerical analysis of the
approximate problems is out of the scope of this paper, this section aims at giving a
few numerical results for the considered problems. After introducing a standard edge
finite element discretization and basic results, we derive an a priori error estimate,
which is obtained by using the regularity estimates. Elementary numerical results are
then proposed to illustrate the expected convergence rate of the method.

5.1. Discretization and a priori error estimate. We consider a shape regu-
lar family of meshes (7},)p, for the domain Q. For the sake of simplicity, we assume that
the domain 2 is a Lipschitz polyhedron. Each mesh 7; is made up of closed nonover-
lapping tetrahedra, generically denoted by K, and is indexed by h := max g hx, where
hy is the diameter of K.

Denoting by px the diameter of the largest ball inscribed in K, we assume that
there exists a shape regularity parameter ¢ > 0 such that for all h, for all K € Ty, it
holds that hx < spx.

Finite-dimensional subspaces (V) of H(curl; Q) are defined by using the so-
called Nédélec’s first family of edge finite elements. Elements of degree 1 are consid-
ered. One has

Vi i={vy € H(curl; Q), v, x € Ri(K) VK € Tp},
where R (K) is the six-dimensional vector space of polynomials on K
RiUK) ={ve P (K) : v(z)=a+bxzx, a,bcR3}.
The subspaces verify the approximability property (see, e.g., Lemma 7.10 in [24])

(55) ’lllg%) (vhig‘f/h |lv — /UhHH(curl;Q)> =0 Vv € H(curl; Q).
We also introduce the closed subspaces (V%) with V9 := V', 0 Hy(curl; Q), which
also verify the approximability property in H(curl; ().

Using the standard Galerkin approach, the variational formulation of the approx-
imate problem is obtained by seeking the solution in V', with test functions in V?L
or V), for the Dirichlet and Neumann cases, respectively. Therefore, the discrete
Dirichlet problem reads

Find E}, € V), such that
(56) a(Ey, Fy) = p(Fy) VF), € VY,
Ey, xn =g, on 09,

and the discrete Neumann problem reads

(57) { Find E;, € V, such that

a(Ey, Fr) = IN(Fp) VF € Vi,
with the sesquilinear form

(58) a: (u,v) — (p~ " curlu|curlv)y o — w?(eulv)oo
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defined on H(curl; ). The linear forms ¢p and ¢y are defined in sections 3.1 and
4.1, respectively. The right-hand-side term g, is the projection of g onto ¥Z'V,. For
simplicity, in the remaining, we assume that the integrals are computed exactly.

As a first result, we derive a sharp error estimate for the interpolation of the
solutions of both problems onto the finite element space. Let 7, denote the classical
interpolation operator from Hy(curl; Q) onto V', resp., from H (curl; Q) onto V.
One has the following interpolation error estimate [7].

THEOREM 5.1. Lett € (1/2,1] andt’ € (0,1]. Forallv € {v € H*(Q), curlv €
Ht/(Q)}, it holds that

(59) [ — Tl (eurty S RPEEE) ([|o

w0+ | curlvlly o).

In this result, t > 1/2 is assumed for simplicity. A similar result can be obtained
for t € (0,1] with the help of the combined interpolation operator (see section 4.2 in
[10]), but this result is more involved. Indeed, the norm of the gradient part of the
decomposition of v (given in Theorem 3.7 or 3.12) then appears in the right-hand
side of (59), in addition to both terms already there. Nevertheless, since the gradient
part is bounded by the norm of the data (see again Theorem 3.7 or 3.12), the same
conclusion stands in this general case. Then observe that one can replace the field v
with E in (59). Using Theorems 3.17 and 4.7, the norms ||E||; o and | curl By o
are bounded by the norms on the data, and the exponents become t = min(s, r) and
t/ = r/, where s,r,r’ are the extraregularity exponents for the data. Injecting the
regularity estimates in (59) then gives

(60) 1B = 7Bl o curn) S h™E),

where the bounds on the exponents are defined in Theorems 3.17 and 4.7 for the
Dirichlet and Neumann cases, respectively.

In order to derive an a priori error estimate for both problems, one has to bound
the error between the numerical solution and the exact solution with the interpolation
error. For a problem with a coercive sesquilinear form, it is known that an a priori
error estimate for the numerical solution is obtained thanks to Céa’s lemma.

THEOREM 5.2. When the sesquilinear form a(-,-) is coercive, it holds that

(61) 3C >0 th ||E - Eh”H(curl;Q) <C w;h;f‘./'h HE - wh”H(curl;Q) .

Using wy, = mp E and the estimates (60) and (61), one has that
(62) HE _ Eh”H(curl;Q) ,S hmin(s,r,r’)’

where the exponents depend only on the regularity of the data.

Let us highlight that the regularity results have been obtained for a boundary of
class C2, while the interpolation error estimates are for Lipschitz polyhedral domains.
The error resulting from this geometric approximation can be studied thanks to the
framework introduced by Dello Russo and Alonso [15]. Following section 8 there, one
obtains additional terms in the right-hand side of (61), which are asymptotically all
in the order of O(h).

On the other hand, to obtain a similar estimate for a problem with a noncoercive
sesquilinear form, one has to prove a uniform discrete inf-sup condition and to combine
it with a generalized Céa’s lemma. In our case, when a(-,-) is not coercive, deriving a
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uniform discrete inf-sup condition requires tedious developments. We refer the reader
to [18] and [11] for analyses in slightly different contexts. Provided that such a result
is available, the estimate (62) holds.

5.2. Numerical results with a manufactured benchmark. To illustrate the
expected convergence rate with a numerical case, we consider a simple benchmark with
a manufactured solution. Let a spherical domain of unit radius centered at the origin,
Q = {z € R3,||z|| < 1}, the angular frequency w = 1, and the material tensors

(63) p=diag(1,1,1), e=diag(1+107",1+ 107", -2+ 10""4),

which fulfill assumption (2). According to Lemma 2.3 in [25], the sesquilinear form
a is coercive for these material tensors. A nonhomogeneous Dirichlet or Neumann
boundary condition is prescribed on the boundary of the domain. We consider the
manufactured solution

1
]T exp(irk - ), with k=— [3, 2, I]T.

V14

The volume source term is chosen accordingly, i.e., f = curlcurl E o — w?eE,cs, as
well as the right-hand-side term of the boundary conditions.

Numerical simulations are performed with FreeFem [20] using six unstructured
meshes made of tetrahedra and first-degree edge finite elements. Because the bound-
ary of the meshes (which are polyhedral) does not exactly match the curved border of
the spherical domain, the boundary data used in the numerical simulation are evalu-
ated on the sphere and then projected on the surface mesh. It has been proven that
this geometric approximation introduces a geometric error of the order O(h) [15].

The relative numerical error in H (curl)-norm is plotted as a function of the mesh
size h in Figure 1 for both Dirichlet and Neumann cases. As a reference, the relative
error corresponding to the projection of the reference solution on the discrete solution
space, which corresponds to the best approximation error according to Céa’s lemma,
is plotted as well. As the solution E,. is smooth, it belongs to H 1(Q) as well as its
curl, and one has t = t' = 1 in (62). Therefore, one expects the error to evolve linearly
with the mesh size h. The results reported in Figure 1 show that the convergence
behaves effectively like O(h) for both problems.

(64) Eref: [_ 17 17 1

6. Conclusion and extensions. We have addressed the mathematical analysis
of time-harmonic electromagnetic boundary value problems in complex anisotropic
material tensors, which fulfill a general ellipticity condition. After having developed
a functional framework suited to these complex material tensors (i.e., functional spa-
ces, Helmholtz decompositions, Weber inequalities, and compact embedding results),
we have analyzed the well-posedness of the Dirichlet and Neumann problems (see
Theorems 3.6 and 4.2, respectively), as well as the regularity of the solution (i.e.,
the electric field) and the solution’s curl. The regularity results are summarized in
Theorems 3.17 and 4.7. A preliminary numerical analysis with a H (curl)-conforming
finite element discretization has been proposed.

Among possible extensions, one could consider a domain €2 with a nonsmooth
boundary (e.g., polyhedral), possibly nonconvex. The shift theorems then have to be
revisited. To our knowledge, results are available for piecewise smooth, Hermitian
and elliptic material tensors (see, e.g., [13, 19, 8, 12] for shift theorems in settings
with a nonsmooth boundary and Hermitian tensors). The theory developed in this
work could be extended thanks to these results. One could also consider settings with
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Fic. 1. Relative error in H(curl)-norm obtained with siz meshes for the manufactured bench-
mark with Dirichlet and Neumann boundary conditions. The relative projection error in H (curl)-
norm is plotted in both cases. The dashed lines correspond to the linear scale O(h).

mixed boundary conditions, i.e., when a Dirichlet condition is prescribed on one part
of the boundary and a Neumann condition is prescribed on the rest of the boundary.
To carry out the theory and fit the problem within the coercive + compact framework,
we refer the reader to [16]. For shift theorems, we refer the reader to the works of
Jochmann [22]. Finally, one could consider variational formulations with the magnetic
field as the unknown, which poses no extra difficulty.

Appendix A. Additional definitions.

DEFINITION A.1. From a topological point of view, a domain 2 verifies the hy-
pothesis (Top)r if one of the following conditions holds:
1. For all curl-free vector field v € C'(Q), there exists p € C°(Q) such that
v=Vpin Q.
2. There exist I > 0 nonintersecting, piecewise plane manifolds, (3;)j=1,. 1,

with boundaries 8%; C 0N, such that, if we let Q@ = Q \ Ule 3, for all
curl-free vector field v, there exists p € CO(Q) such that v = Vp in Q
If the first condition holds, € is topologically trivial, and we set I =0 and Q = Q. If

the second condition holds, §) is topologically nontrivial. See [17] for further details.

The set  has pseudo-Lipschitz boundary in the sense of [4]. The extension
operator from L?(Q) to L?(Q) is denoted by ~, whereas the jump across %; is denoted
by []g, for i = 1,...,I. The definition of the jump depends on the (fixed) orientation
of the normal vector field to X;. One has the integration by parts formula [4]

(65) (v|Vd)g ¢ + (divold)y o = Z (v, [dls) mes;)

1<5<I

Yo € Ho(div; Q) V4 € HY(S).

For the sake of completeness, we recall Definition 3.6.3 of [5].

DEFINITION A.2. A domain  is said of the A-type if, for any x € I, there
exists a neighborhood V of x in R® and a C* diffeomorphism that transforms 2NV
into one of the following types, where (x1,x2,23) denote the Cartesian coordinates
and (p,w) € R x S? the spherical coordinates in R3:

1. [x1 > 0]; i.e., x is a regular point.
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(8]
[9]

[10]

(11]

[12]

w
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[x1 > 0,29 > 0]; i.e., @ is a point on a salient (outward) edge.

R3\[z1 > 0,29 > 0]; i.e., T is a point on a reentrant (inward) edge.
[p>0,we Q], where Q C $? is a topologically trivial domain. In particular,
if OQ is smooth, x is a conical vertez; if O is made of arcs of great circles,
x is a polyhedral vertez.
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