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Abstract

The limiting amplitude principle states that the response of a scatterer to a harmonic light ex-
citation is asymptotically harmonic with the same pulsation. Depending on the geometry and
nature of the scatterer, there might or might not be an established theoretical proof validating
this principle. In this paper, we investigate a case where the theory is missing: we consider a
two-dimensional dispersive Drude structure with corners. In the non lossy case, it is well known
that looking for harmonic solutions leads to an ill-posed problem for a specific range of critical
pulsations, characterized by the metal’s properties and the aperture of the corners. Ill-posedness
is then due to highly oscillatory resonances at the corners called black-hole waves. However, a
time-domain formulation with a harmonic excitation is always mathematically valid. Based on
this observation, we conjecture that the limiting amplitude principle might not hold for all pul-
sations. Using a time-domain setting, we propose a systematic numerical approach that allows
to give numerical evidences of the latter conjecture, and find clear signature of the critical pulsa-
tions. Furthermore, we connect our results to the underlying physical plasmonic resonances that
occur in the lossy physical metallic case.

Keywords: Limiting amplitude principle, Plasmonics, Black-hole waves

1. Introduction1

Plasmonic structures are commonly made of noble metals (silver, gold, etc.) and dielectrics2

(air, vacuum, glass). At optical frequencies, metals can be dispersive, allowing the propagation of3

localized surface waves at the metal-dielectric interface called surface plasmons [1]. The field of4

plasmonics is very active as surface plasmons offer strong light enhancement, with applications to5

next-generation sensors, antennas, high-resolution imaging, cloaking and other [2, 3, 4, 5, 6, 7].6

Several models are available in the literature to model dispersive materials. In particular, Drude7

model [8] is relevant for classical noble materials: in this approximation, the metal is considered8

as a free electrons gas (with a static lattice of positive ions). Then interactions of these electrons9

with the ion lattice manifest through a collision frequency parameter, representing dissipation10
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in the equations. Over the past decades, new models have been developed, including the so-11

called negative-index metamaterial, and interesting ideal cases (negligible dissipation) have been12

uncovered.13

If the source of incident illumination is monochromatic, one would naturally expect the time14

dependent electromagnetic field to evolve asymptotically (in time) to a harmonic state with the15

corresponding incident frequency. This asymptotic harmonic behavior is called Limiting ampli-16

tude principle and allows to work with the associated frequency-domain boundary value problem.17

The limiting amplitude principle has been investigated for a long time, and is well understood18

for the wave equation and related classical scattering problems [9, 10, 11, 12, 13]. Recently there19

has been a new interest in exploring this principle in the context of emerging plasmonic struc-20

tures [14, 15]. In particular, the specific case of a planar interface with a non lossy Lorentz model21

has been fully investigated in [15]. However for other configurations, the landscape is different:22

this is especially not clear for (non lossy) plasmonic structures with corners.23

The limiting amplitude principle is closely related to well-posedness of the corresponding24

harmonic equation. Although the time-dependent equations system is mathematically well-posed25

(in the usual function spaces), the frequency-domain counterpart has proven to be more challeng-26

ing [16, 17, 18, 19, 20, 21, 22]. A key point lies in the fact that the Fourier transform of a non27

lossy metal’s constitutive law can correspond to a real negative permittivity1. The induced possi-28

ble change of sign of the permittivity at the interface affects the optical response. If the structure29

has corners, the frequency-domain equations system may be mathematically ill-posed for a range30

of critical frequencies (corresponding to a critical range of permittivities). In this range of fre-31

quencies, hypersingular behaviors arise at the interface (especially at corners), requiring specific32

numerical treatments to avoid spurious reflections and inaccurate predictions. Ill-posedness in33

frequency-domain corresponds to an unphysical infinite electromagnetic energy, indicating that34

the limiting amplitude principle should not hold in that case. This conjecture motivates our35

exploration.36

In this paper we provide a systematic approach to numerically assess the latter conjecture37

in non lossy subwavelength plasmonic structures with corners. We base our strategy on a time-38

domain framework. From typical quantities of interest (fields, energy, cross sections, Poynt-39

ing flux, etc.), we manage to identify a signature of the underlying critical interval from the40

frequency-domain, by using time-domain simulations. Our results show a clear change of be-41

havior at critical frequencies. Additionally, we find this signature also when considering physical42

structures (incorporating losses): in other words the limit non lossy case is useful to highlight43

intrinsic resonances in physical plasmonic structures.44

The paper is organized as follows. Section 2 presents the general context, the model problem45

along with relevant quantities of interest. In Section 3, we specify the two-dimensional (or 2D),46

geometrical, physical and numerical framework that we precisely consider to explore the limiting47

amplitude principle. The numerical evidences that assess our conjecture are detailed in Section 4.48

Then, in Section 5, we continue our efforts towards a more physical discussion. Finally Section49

6 presents our concluding remarks.50

2. General context: plasmonics and limiting amplitude principle51

2.1. Drude Model in plasmonics52

As mentioned in the introduction, plasmonic structures are commonly made of noble metals53

1It commonly provides some imaginary part for lossy materials.
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and dielectrics, where surface plasmons arise at the interface at optical frequencies. We present54

below the well-known Drude model and related equations to model the electromagnetic field in55

those structures.56

Metals at optical frequencies are known to be dispersive: each monochromatic wave trav-57

els with different speeds through the metallic material. To accurately model optical properties of58

metallic structures, one has thus to rely on models that take into account the frequency-dependent59

velocity of the wave. This dispersion phenomenon is equivalently explained as a delay effect in60

the reaction of the electrons of the metal to light excitation. In this work, we will use the well-61

known Drude model to account for this dispersion phenomenon. It is based on the kinetic theory62

of gases [8], considering the metal as a static lattice of positive ions immersed in a free electrons63

gas. In the case of scattering by a metallic obstacle, the set of (linearized) equations can be even-64

tually summarized as follows.65

The time-dependent electromagnetic field is computed using time-domain Maxwell’s equations66

with variables (D,E,B,H)2 where dispersive effects are incorporated through the electric consti-67

tutive law. The latter relates the electric displacement D and the electric field E and incorporates68

the possible time history (when dispersive effects are taken into account) via a time convolution69

(denoted ∗t):70

D = ε ∗t E, (1)

where71

ε(t, ·) := δ0(t)ε0εr(·) + χ(t, ·), (2)

is the space-time dielectric permittivity, ε0 the vacuum permittivity, εr the relative permittivity72

and χ is the electric sensitivity. These quantities are defined in R3 and such that causality property73

holds (see e.g. [23] for a nice review). Since we do not take any dispersive effects into account in74

the dielectric, one sets χ = 0 there. However, in the metallic obstacle, χ is non vanishing. If one75

defines the polarization current J as J := −∂t(χ ∗t E), one can rewrite the whole set of Maxwell’s76

equations in terms of (E,H, J) variables only. In particular, J verifies a linear differential equation77

that is linearly coupled to (E,H) through classical Maxwell’s equations. With this approach, we78

do not need the expression of χ explicitly. The reason is that Drude model is entirely determined79

via the variable J (see below). We will see later that χ plays an important role in frequency-80

domain.81

We fix an end time T > 0, and a domain Ω, that is an open and connected subset of R3 with82

Lipschitz boundary. In our model, the domain Ω is the metallic obstacle, and it is immersed in83

a homogeneous dielectric background. For the practical choice of the end time T in numerical84

simulations, we refer to subsection 3.4. In what follows, µ0 denotes the permeability of vacuum,85

εd denotes the dielectric relative permittivity of the dielectric and ε∞ the relative permittivity (at86

infinite frequency) of the metallic obstacle Ω. We now set87

εr(x) :=

εd, for x ∈ R3 \ Ω̄,

ε∞, for x ∈ Ω,
(3)

2respectively electric displacement, electric field, magnetic induction, magnetic field.
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and we will denote ε := ε0εr. Thereafter, Drude model in the time-domain writes on [0,T ] as:88

µ0
∂H
∂t

= −curl E in R3, (4a)

ε0εd
∂E
∂t

= curl H + Jext in R3 \ Ω̄, (4b)

ε0ε∞
∂E
∂t

= curl H − J + Jext in Ω, (4c)

∂J
∂t

= ω2
pε0E − γJ in Ω, (4d)

J = 0, in R3 \ Ω̄, (4e)

where ωp is the plasma angular frequency, and γ the collision frequency (coming from Drude89

model). Here Jext denotes a possible external current that we will use to model volumic source90

excitation in the following.91

Remark 1. Note that the plasma angular frequency characterizes the angular frequency above92

which an incident wave can completely penetrate the metal. On the other hand, the strong93

plasmonic effects induced by surface plasmons are obtained by an illumination, below the plasma94

angular frequency, of subwavelength metallic structures.95

We will call this system time-dependent Maxwell-Drude equations in plasmonic structures.96

Well-posedness. As commonly done, in order to compute the solution, we will artificially trun-97

cate the exterior domain R3 \ Ω̄ and close the system (4) by adding approximate transparent98

boundary conditions (for E and H), transmission conditions at ∂Ω (for E and H) and initial99

conditions (for E, H and J). At the artificial boundary, to approximate transparent boundary100

conditions, we will use classical first order Silver-Müller boundary conditions. In this setting,101

using classical semi-group theory, one can prove that system (4) is well posed3 (see e.g. [24] for102

details).103

Excitation. Several excitations of the scatterer are possible. A physically compliant one consists104

of using an incident illumination that we denote (Einc,Hinc). To take this illumination into ac-105

count in the set of equations, we use the non homogeneous Silver-Müller boundary conditions106

as:107

n × E − n × (
√
µ0

ε0
H × n) = n × ginc, (5)

with ginc = Einc − (
√
µ0

ε0
Hinc × n) and n the outward normal to the exterior artificial boundary.108

Remark 2. As a result, the total electromagnetic field (E,H) can be decomposed into an incident109

contribution (Einc,Hinc) and a scattered one (Esca,Hsca). The scattered field (Esca,Hsca) verifies110

Maxwell’s equations with homogeneous radiation condition and a source term Jext.111

3this result is obtained in the natural space C0([0,T ],H(curl ))×C0([0,T ],H(curl ))×C0([0,T ], L2) with L2 tangential
traces for E and H.
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Electromagnetic energy, Poynting vector. We define the time-dependent total energy of system112

(4) by113

E(t) =
1
2
‖
√
ε0εrE(., t)‖2L2(R3) +

1
2
‖
√
µ0H(., t)‖2L2(R3) +

1
2ε0ω2

p
‖J(., t)‖2L2(R3). (6)

The space-time dependent Poynting vector also plays a central role in the study of the energy’s114

variations, classically defined as115

Π = E ×H. (7)

Recalling that we have div(E×H) = H · curl E−E · curl H, formally we get, using equations (4)116

∂E

∂t
(t) =

ˆ
R3

(div(E(x, t) ×H(x, t)) + Jext(x, t) · E(x, t))dx

+

ˆ
Ω

J(x, t) · E(x, t) − E(x, t) · J(x, t)dx −
γ

ε0ω2
p

ˆ
Ω

J(x, t) · J(x, t)dx,

=

ˆ
R3

div(Π(x, t))dx +

ˆ
R3

Jext(x, t) · E(x, t)dx −
γ

ε0ω2
p

ˆ
Ω

J(x, t) · J(x, t)dx.

(8)

The pointwise version of the equality is the Poynting theorem. From (8), we deduce that if117

Jext ≡ 0, div(Π(x, t)) ≡ 0 and γ = 0, then the energy is preserved. If Jext ≡ 0 and the quantity118

div(Π(x, t)) ≤ 0, then the energy is dissipated. In the rest of the paper, we focus on the limit case119

where there is no physical dissipation, i.e. γ = 0.120

Remark 3. When using first order Silver-Müller boundary conditions, we introduce artificial121

dissipation in the system and as a result div(Π(x, t)) ≤ 0 if the condition is homogeneous.122

Long time asymptotics. If the source is monochromatic, one would naturally expect the solution123

to evolve asymptotically (in time) to a harmonic state with the corresponding incident frequency.124

This asymptotic harmonic behavior is called Limiting amplitude principle. This principle holds125

for standard settings and is closely related to well-posedness of the corresponding harmonic126

equation. This principle is well-understood in classic dielectric materials. However in the non127

lossy case and for objects with corners, the landscape is different and less trodden.128

2.2. Limiting amplitude principle129

The limiting amplitude principle has been studied for a long time (e.g. [9, 10, 11, 12, 13]) and130

states the following. Given a source t 7→ e−iωtF(.), with F ∈ L2(R3) (and support suppF b R3), a131

given pulsation ω > 0, and a problem of the form ∂2
t U +LU = e−iωtF, with L a linear differential132

operator, then after a long time the solution asymptotically behaves as U = e−iωtW with W133

satisfying a problem of the form −ω2W +LW = F.134

This statement indicates that a periodic regime is asymptotically established and therefore it is135

natural to consider the problem in the time-harmonic regime (stationary problem).136

Assume for now we can write the external current Jext(x, t) = <(Jext(x)e−iωt), and (E,H, J)(x, t) =137

<(E(x)e−iωt,H(x)e−iωt, J(x)e−iωt), with Jext,E,H, J denoting complex-valued fields. Then sys-138

tem (4) (with γ = 0) simplifies to139

−iωµ0H = −curl E in R3, (9a)
−iωε0ε̂rE = curl H + Jext in R3, (9b)
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with140

ε̂r(x, ω) :=

εd > 0, for x ∈ R3 \ Ω̄,

εm(ω) =

(
ε∞ −

ω2
p

ω2

)
, for x ∈ Ω

, (10)

and transmission conditions, plus some radiation condition at infinity. Indeed, J is known, and141

equal to i
ω2

pε0

ω
E in Ω, respectively 0 in R3 \ Ω̄. We will also denote ε̂ := ε0ε̂r. Above ε0εm(ω)142

represents the non lossy Drude model permittivity. Let us point out that if 0 < ω <
ωp
√
ε∞

(optical143

frequency range), then εm(ω) < 0. System (9) will be called the frequency-dependent Maxwell-144

Drude equations in plasmonic structures.145

146

Remark 4. We make the abuse of terminology to denote ω by the terms pulsation, frequency, or147

angular frequency. However in numerical experiments, ω will be always given in rad.s−1.148

Well-posedness. Classical theory considers E,H ∈ Hloc(curl ) := {X ∈ L2
loc(R3)| ∀ξ ∈ C∞c (R3), ξX ∈149

H(curl )}, and (9) is equivalent to solve:150

curl ε̂−1
r curl H − k2H = −curl ε̂−1

r Jext in R3, (11a)

−iωε0ε̂rE = curl H + Jext in R3, (11b)

with k = ω
√
ε0µ0. One can also consider the system151

−iωµ0H = −curl E in R3, (12a)
curl curl E − k2ε̂rE = −iωµ0curl Jext in R3. (12b)

Note that, if one chooses Jext so that div(Jext) = 0, then (E,H) ∈ Hloc(curl )2 solution of (12) or152

(11) also belongs to Vloc(ε̂; curl )×Vloc(µ0; curl ), with Vloc(ζ; curl ) := {X ∈ Hloc(curl )| div(ζX) =153

0}.154

Contrary to the time-domain case, due to the change of sign of ε̂r at optical frequencies,155

the problems (11)-(12) can be ill-posed in Vloc(ε̂; curl ) × Vloc(µ0; curl ). With the T-coercivity156

approach it has been shown (e.g. [25, 16, 26, 17, 18, 20, 21]) that there exists two cases depending157

on the contrast κε :=
εm

εd
:158

• for contrasts κε far enough from −1, then the problem is well-posed in Vloc(ε̂; curl ) ×159

Vloc(µ0; curl ).160

• for contrasts κε close to −1, plasmonic hypersingularities arise at the corners of the inter-161

face (if any), and the problems is ill-posed in Vloc(ε̂; curl ) × Vloc(µ0; curl ).162

Those guidelines can be refined for the specific case of Maxwell 2D. In that case the interval163

of contrasts (acceptable or not) is explicitly known. For now, let us denote Ic this interval. We164

will provide explicit bounds if needed for numerical purposes. Let us note that this interval Ic165

corresponds to a critical interval of angular frequencies Iω, and that it holds that166

κε = −1 if, and only if, ω := ωsp :=
ωp

√
εd + ε∞

(13)

with ωsp denoting the surface plasmon angular frequency. The specific case ω = ωsp is very167

peculiar and the problem is strongly-ill posed. In what follows we will exclude this case.168
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To sum up, in the frequency-domain, there is a critical range of angular frequencies for which169

the problem is then ill-posed, whereas in the time-domain the problem is always mathematically170

well-posed. This interesting result questions the validity of the limiting amplitude principle at171

critical angular frequencies, indicating that172

• If ω < Iω: the limiting amplitude principle holds.173

• If ω ∈ Iω: the limiting amplitude should not hold.174

Using this conjecture, the rest of the paper is dedicated to provide several approaches and results175

to find signature of the critical interval Iω in time-domain simulations. To that aim we will need176

to compute quantities of interest in frequency-domain.177

Remark 5. The limiting amplitude principle has been studied for Lorentz metamaterials (both178

permeability and permittivity can change sign in frequency-domain) for planar interfaces. It has179

been shown that this principle doesn’t hold for κε = −1, and that in this case the fields’ amplitude180

increases linearly with respect to time [15].181

Electromagnetic energy, Poynting vector and Cross sections. Time-domain quantities such as182

the electromagnetic energy and the Poynting vector can be compared to frequency-domain ones183

if harmonic behavior is achieved. In the time-domain, we consider a real-valued harmonic ex-184

citation of the form Jext(x, t) = <(Jext(x)e−iωt), with ω > 0 and Jext a complex-valued field.185

If we denote (E,H) the solution of (9) with source term Jext, then if the solution of (4) is har-186

monic, it should write as (E(x, t),H(x, t), J(x, t)) = <(E(x)e−iωt,H(x)e−iωt, J(x)e−iωt). Then to187

relate frequency- and time-domain energy, the adequate quantity to start with is the time average188

energy189

E =
1

T (ω)

ˆ t0+T (ω)

t0
E(t)dt, (14)

where T (ω) is equal to the time period, i.e. T (ω) = 2πω−1, and t0 ≥ 0. Using expression (6), the190

average energy becomes4
191

E =
1

2T (ω)

ˆ t0+T (ω)

t0
‖

√
ε

2
(Ee−iωt + E∗eiωt)‖2L2(R3) + ‖

√
µ0

2
(He−iωt + H∗eiωt)‖2L2(R3)

+
1

ε0ω2
p
‖

1
2

(Je−iωt + J∗eiωt)‖2L2(R3)dt,

=
1
4

‖ √εE‖2L2(R3) + ‖
√
µ0H‖2L2(R3) +

1
ε0ω2

p
‖J‖2L2(R3)

 ,
(15)

with V∗ denoting the complex conjugate of V.192

Remark 6. We here point out a very straightforward fact that will be used later in the computa-193

tions. For the time-domain fields to have a harmonic behavior, the time average of the energy on194

an interval of length T (ω) must not depend on the chosen interval. This simple remark provides195

us with a necessary condition for a signal to be harmonic.196

4Recall that J = 0 in R3 \ Ω̄.
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Similarly, we can compute the time average Poynting vector over the time period T (ω) defined197

as follows:198

Π(ω) =
1

T (ω)

ˆ t0+T (ω)

t0
Π(t)dt =

1
2
<(E ×H∗). (16)

We will omit to write the space dependence using the abuse of notations Π(ω) = Π(·, ω),199

Π(t) = Π(·, t).200

To further exploit information from the Poynting vector, it is natural to introduce physical201

quantities called cross sections. As introduced in Remark 2, we separate the contributions from202

the scattered fields (Esca,Hsca) and the incident fields (Einc,Hinc): we define Πsca = Esca ×Hsca,203

Πsca(ω) =
1

T (ω)

ˆ t0+T (ω)

t0
Πsca(t)dt, and similarly Πinc using the incident electromagnetic fields.204

Note that |Πinc| is independent of the spatial variables.205

To quantify the amount of absorbed energy Pabs and scattered energy Psca at a given pulsation,206

we compute the fluxes of, respectively, the total Poynting vector Π and the scattered Poynting207

vector Πsca on a closed surface S enclosing the scatterer:208

Pabs(ω) =: −
ˆ

S
Π(ω) · ndS , Psca(ω) =: −

ˆ
S

Πsca(ω) · ndS , (17)

where n is the outward normal vector to S . If one denotes by V the bounded volume such that209

S = ∂V , one has obviously Pabs(ω) = −
´

V divΠ(ω)dx. If there is a scatterer in the domain,210

not all the energy entering the volume delimited by S will leave it: some energy is absorbed211

(Pabs(ω) > 0). The cross sections are then defined relative to the power density (per unit area) of212

the incident field:213

Cabs =
Pabs

|Πinc|
, Csca =

Psca

|Πinc|
, (18)

where Cabs denotes the absorption cross section, Csca the scattering cross section5. These frequency-214

domain quantities are widely used to measure the absorption or the scattering features of a given215

scatterer. For some standard structures, it is also possible to have their analytical expression (see216

e.g. [27] and references therein).217

3. The two-dimensional case: theoretical and numerical guidelines218

We focus on the light scattering by a rod structure with transversal section D. We seek219

solutions of system (4) that have an invariance with respect to the direction of the rod’s axis.220

In this setting the tridimensional Maxwell’s equations can be recast in two 2D sets of equations221

defining two transverse modes: TE (Transverse Electric) and TM (Transverse Magnetic).222

In the rest of this paper, we consider that Ω is a metallic rod of bounded section D, Ω := D×R223

and we concentrate on the 2D TM polarization. Then (~E⊥,Hz, ~J⊥), with ~V⊥ := (Vx,Vy)t, is224

solution of the corresponding two-dimensional version of Maxwell’s equations.225

5one can also define Cext , the extinction cross section as Cext = Cabs + Csca. It will not be used in this work.
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3.1. An explicit theoretical critical interval226

As mentioned previously, there exists a critical interval Iω, centered around the surface plas-227

mon frequency ωsp, for which the problem is ill-posed in frequency-domain. In some cases, this228

interval is explicitly known, and hypersingular behaviors have been identified in the ill-posed229

configurations. We will use this framework to assert if the limiting amplitude principle holds.230

According to (11a), in frequency-domain, the problem in Hz becomes231

curl ε̂−1
r curl Hz − k2Hz = −curl ε̂−1

r
~Jext,⊥ in R2,

and similarly for the problem in ~E
⊥

(cf. (12b)). Classical theory considers ~E
⊥
∈ L2

loc(R2) so that232

Hz ∈ H1
loc(R2), and the bounds of the interval Ic depends on the interface’s geometry. Suppose233

that the interface Σ := ∂D is polygonal with 0 < α < 2π the sharpest interior angle in D. We234

define Iα := max
(

α
2π−α ; 2π−α

α

)
> 1, then Ic := [−Iα;−1/Iα] (details about the derivation can be235

found in [16, Theorem 3.3], [28, Theorem 1]). This gives us236

−Iα ≤ κε ≤ −
1
Iα

⇐⇒
ωp

√
Iαεd + ε∞

≤ ω ≤
ωp√
ε∞ +

εd
Iα

,

Iω :=

 ωp
√

Iαεd + ε∞
;

ωp√
ε∞ +

εd
Iα


(19)

Moreover, we have the following result:237

• If ω <
 ωp√

Iαεd + ε∞
; ωp√

ε∞+
εd
Iα

: problem in Hz is well-posed in H1
loc(R2). Mathematical238

well-posedness in this function space guarantees to have a bounded total electromagnetic239

energy.240

• If ω ∈ Iω \ {ωsp}: problem in Hz is ill-posed in H1
loc(R2). There exist black-hole waves241

s < H1
loc(R2) that propagate towards the corners.242

Remark 7. Given a polygonal interface Σ with N corners ci, i = 1, ...,N, and denoting αi,243

i = 1, . . . ,N all the interior angles in D, one can define subintervals244

Ici := [−Iαi ;−1/Iαi ], and Ici ⊆ Ic, i = 1, . . .N, or equivalently Iωi ⊆ Iω, i = 1, . . .N.

This means that, depending on the contrast κε (and therefore depending on the angular frequency245

ω), all black-hole waves, or only some of them, can be excited. This will play a certain role when246

interpreting numerical results.247

Remark 8. Black-hole waves can be characterized as follows. Given a corner c, we denote248

(r, θ) the polar coordinates centered at c, the black-hole wave propagating towards the corner c249

is of the form s(r, θ) = riλΦ(θ), with λ ∈ R∗, and Φ a periodic function. Moreover it has been250

established that (see [20] for details):251

• If ω ∈
[

ωp√
Iαεd + ε∞

, ωsp

)
, the black-hole wave is an odd coupled plasmon. This means252

that the black-hole wave exhibits two localized oscillating behaviors along the interface253

that are skew-symmetric with respect to the angle’s bisector (Φ is an odd function).254
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• If ω ∈
ωsp,

ωp√
ε∞+

εd
Iα

, the black-hole wave is an even coupled plasmon. This means that255

the black-hole wave exhibits two localized oscillating behaviors along the interface that256

are symmetric with respect to the angle’s bisector (Φ is an even function).257

Figure 1 represents the two types of black-hole waves near a corner.258

Figure 1: Representation of black-hole waves near a corner: odd (left), and even (right).

Remark 9. The specific case ω = ωsp is strongly ill-posed, the provided black-hole characteri-259

zation is valid for ω ∈ Iω \ {ωsp}. We refer for example to [15, 19, 29] for more details.260

The two-dimensional case is fully characterized in frequency-domain. It provides the ade-261

quate framework to investigate if the limiting amplitude principle holds in plasmonic structures.262

In particular, we will look for a signature of this critical interval Iω in time-domain.263

3.2. Physical problem264

In order to investigate situations with corners, we choose an isosceles triangle of upper aper-265

ture π
6 , with characteristic size (height of longest bisector) equal to 20nm for the transversal266

section D (see Figure 2) and with area aT ≈ 1.07 × 10−16m2. It is tilted so that the edge ab is267

vertical.268

b = p3

c

a = p1

p2

π

6

D
y

x

Figure 2: Physical domain and notations. 2D section in the (x, y)-plane of the metallic rod.

The exterior domain R2 \ D̄ is filled with vacuum (εd = 1). The section D will either consist269

of270

(i) Dielectric: ε∞ = 3.73, ωp = 0rad.s−1.271

(ii) Gold: ε∞ = 1, ωp = 13.87 × 1015rad.s−1, with values taken from [30].272

(iii) Another Drude material: ε∞ = 3.7362, ωp = 13.87 × 1015rad.s−1.273
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We will illuminate the structure at a range of pulsations [ωmin, ωmax] that includes the critical274

interval Iω associated to both materials6 and that is such that ωmax ≤ ωp. Therefore the smallest275

wavelength is greater than 2πc0
ωp
≈ 135nm, with c0 = 1

√
ε0εdµ0

. In this regard, the metallic structure276

is subwavelength for incident illuminations below the plasma angular frequency ωp.277

Some quantities will be visualized at three selected probe points: p1 situated at the top vertex278

a, p2 is the middle of segment [ab] and p3 situated at the left bottom vertex b. To investigate the279

limiting amplitude principle, we use an incident illumination (~E
⊥,inc,Hz,inc) (added to radiation280

conditions). The latter will be281

(a) a monochromatic plane wave (solution of Maxwell’s in vacuum), or282

(b) a polychromatic gaussian pulse (Gaussian modulated plane wave).283

We choose the vertical direction of propagation −y for the incident plane wave field. By tilting284

the triangle, we break the symmetry, allowing us to excite both odd and even coupled plasmons.285

3.3. Limiting amplitude principle requirements286

The monochromatic case (a) is readily covered by the limiting amplitude principle frame-287

work. Indeed, as already mentioned in Remark 2, the total electromagnetic field can then be288

decomposed into the incident contribution (~Einc,⊥,Hinc,z) and the scattered one (~E sca,⊥,Hsca,z).289

As a result, the scattered field (~E sca,⊥,Hsca,z) verifies Maxwell’s equations with homogeneous290

radiation conditions and source term ~Jext,⊥ with support in D. This source term expresses the fact291

that the incident plane wave (~Einc,⊥,Hinc,z) is solution of Maxwell’s equation in vacuum, but is292

not solution in the scatterer. Since the incident field is monochromatic, so is the source term. In293

other words, our source term is monochromatic, with support b R2 and in L2(R2) which fits in294

the theoretical framework led by [11, 12] to investigate the limiting amplitude principle.295

Same procedure can be applied with the Gaussian modulated plane wave (b). However, in296

this case, the resulting source term ~Jext,⊥ in the scattered field equation is not monochromatic297

anymore. The latter is in addition attenuated. This case does not readily fall into the limiting298

amplitude principle framework. However, such an incident field allows for the excitation of the299

scatterer by a whole range of pulsations using one single excitation. Moreover, using Fourier300

transform, the spectral response of the scatterer is easily attainable once the time-domain fields301

are known. Source (b) provides a practical (but empirical) approach to investigate the problem.302

3.4. Numerical framework and strategy303

In what follows, we will need to compute a numerical approximation of the solution of the304

time-domain equations. To do so, we consider a Discontinuous Galerkin Time Domain (DGTD)305

framework as developed in [31]. This numerical framework is particularly adapted to the chal-306

lenges encountered for scattering problems and has been assessed on several occasions especially307

for plasmonic problems (see e.g. [32, 33] and references therein). In the numerical tests, we use308

a non-dissipative DGTD scheme for the whole system with unknowns (E,H, J). It relies on a309

discontinuous Galerkin finite element space discretization (with Lagrange nodal basis) with cen-310

tered fluxes, and a leap-frog scheme in time. This scheme has the advantage to be explicit; the311

6Here, if ω̃ ∈ Iω, then ω̃ ≤ ωp√
ε∞+

εd
Iα

≤ ωp.

11



price to pay is that one should choose discretization parameters according to a CFL constraint.312

Computations are made on an adimensionalized version of the system, quantities plotted later in313

the paper have been re-dimensionalized.314

We approximate the solution over a sufficiently long physical time T relative to the period315

of the incident signal: T represents 100 to 200 times the period of the monochromatic source316

(a), or the period of the smallest frequency in the pulse of the polychromatic source (b). This317

time has been empirically adjusted so that it does not affect our conclusions with regards to the318

convergence of the computed quantities. We are able to compute all the quantities mentioned319

in Section 2: time evolution of the energy, time evolution of the fields at probe points, and time320

averaged quantities. In particular, we compute the discrete time evolution of the total discrete321

energy (on the whole computational domain) and in a small domain surrounding each corner.322

When considering a polychromatic source (b), we compute cross sections and Poynting fluxes at323

the end of the simulation, using a Fourier transform that is computed "on the fly" (done in one324

simulation run). For illuminations considered in this work, the quantity |Πinc| that appears in (18)325

can be computed analytically.

b
c

a

Γ

S

D

Figure 3: The computational domain is delimited by an artificial boundary Γ. A side of Γ has a length of 60nm. The
cross sections are computed on a line S around the scatterer, which is approximately 20nm away from it. The black-hole
fluxes and energy are computed in small disks centered at each corner.

326

As mentioned previously, the monochromatic source type (a) falls into the exact limiting327

amplitude principle setting, and therefore will be used to find a clear indication of a non-harmonic328

response to the harmonic incident field. The polychromatic source type (b) will allow to obtain329

a spectral response and investigate physical quantities over the whole spectral band of interest,330

and in one single run. The two approaches are thus complementary and are used to thoroughly331

test our approach.332

The scheme has been implemented in a in house 2D Fortran code developed within the Inria333

Atlantis project team (Inria Sophia Antipolis, France) 7. Previous versions of this code have334

7http://www-sop.inria.fr/atlantis/
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been already exploited in the context of [34] and [35]. Discretization parameters have been335

fixed so that we use a discretization fine enough with respect to the incident wavelength and336

fulfill the CFL condition. If ∆t denotes the physical time step, and hmax the space discretization337

parameter, we use ∆t ≈ 10−19s and hmax ≈ 1nm (the mesh is non uniform and is appropriately338

refined at the corners of the domain and close to the interface, where the size of the mesh is339

approximately 1
5 hmax). Unless specified, we use a P2 (polynomials of degree less than or equal to340

2) basis for our finite element space. Finally, in Figure 3 we detail the computational domain and341

geometrical entities that we use to compute the solution and quantities of interest. Numerically,342

one computes Poynting fluxes, called black-hole fluxes for short, around each corner, for ω in the343

range of pulsations of interest:344

Fk(ω) :=
ˆ

Dk

divΠ(ω)dx, k = {a, b, c}, (20)

where (Dk)k={a,b,c} are (small) disks of radius 2nm around each corner a, b, c, respectively. Simi-345

larly, the energies at the vicinity of each corner are computed for k = {a, b, c} and t ∈ [0,T ] using346

347

Ek(t) =
1
2
‖
√
ε0εr ~E⊥(t)‖2L2(Dk) +

1
2
‖
√
µ0Hz(t)‖2L2(Dk) +

1
2ε0ω2

p
‖ ~J⊥(t)‖2L2(Dk). (21)

348

4. Numerical results349

First, we investigate the situation where the limiting amplitude principle (LAP) holds. This350

is the situation where one considers for example a dielectric inclusion (case (i) in Section 3.2).351

We use this simple case as a benchmark to validate our strategy. Then, we consider situations352

where the LAP might not hold (cases (ii) and (iii) in Section 3.2).353

4.1. When the limiting amplitude principle holds354

We consider here case (i), of a dielectric inclusion8.355

4.1.1. Response to monochromatic illumination.356

We consider a monochromatic incident field (a) of pulsationω, withω ∈ [2×1015, 13.8×1015]357

rad.s−1.358

Study of the energy. Figure 4 represents the evolution of the electromagnetic energy E over the359

last 10% of the total physical time i.e. t ∈ [0.9T,T ] , for some incident pulsations ω. Results360

show that the electromagnetic energy stays clearly bounded over time and is periodic. Moreover,361

for each pulsation, we observe that the value of the energy mean E (see Figure 5) varies in the362

range [2.255×10−15, 2.285×10−15]. Thus, it stays of the same order of magnitude over pulsations363

and varies fairly little (relative variation of ≈ 1%).364

In the spirit of Remark 6, at each fixed pulsation ω, we compute the mean value of the energy365

over several time intervals of length T (ω) (these intervals are chosen around the end of the366

physical simulation time). We observe only relative variations of maximum 10−6, that allows us367

to conclude that (for a fixed pulsation) the mean value of the energy is numerically independent368

of the chosen interval: the signal appears to be harmonic at the expected frequency.369

8To be complete, and for a further validation of the benchmark, the very simple case of vacuum has also been tested.
The results are conclusive and as expected. We choose not to reproduce them here, since the situation is completely
straightforward. The results will be only used sometimes for comparison, to support our reasoning.
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Figure 4: Representation of E(t) (computed via (6)) for different incident fields. The incident field is monochromatic, we
vary the pulsation ω and represent the result for ω = 2 × 1015rad.s−1, ω = 6 × 1015rad.s−1, ω = 8 × 1015rad.s−1.

Figure 5: (Left) Mean energy E (computed with (15)) with respect to the incident pulsation. For each value of the
pulsation ω, we compute the mean of the energy on different time intervals of length T (ω) over the simulation time
duration. (Right) Zoom of the energy mean where there is a maximum of variations, scaled by a factor 10. Computations
show relative variations of order 10−6.

Fourier transform. We now compute the Fourier transform (via FFT) of the magnetic field over370

the range of frequencies of interest at chosen probe points (see Section 3.2), and compute the371

relative error between the computed main pulsation and the chosen incident pulsation ω. Figure372

6 (Left) and Table 1 show that we recover harmonic signals centered within less than 0.4%373

of relative error from the incident pulsation. To observe whether these effects are also visible374

globally, we also plot in Figure 6 (right) the L2-norm in space of the Fourier transform (in time)375

of the total electromagnetic field. Here again, we recover a (numerical) harmonic behavior.376

The above observations can be viewed as strong numerical evidences that the limiting amplitude377

principle holds, as expected for dielectric materials.378

4.1.2. Response to polychromatic illumination379

We also investigate the FFT of the magnetic field for a polychromatic illumination. We380

choose here to represent the field Hz since this is the field that naturally compares to frequency-381

domain approach via equation (11a), but we could have also represented the two components of382
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Figure 6: Left: FFT of Hz at first probe points p1. Similar plots are obtained at other probe points and we do not represent
them here to ease the reading. Right: L2-norm of the FFT of the total electromagnetic field on the whole computational
domain. Vertical lines represent the chosen incident ω. All obtained peaks match the incident pulsation.

ω (rad.s−1) Error p1 Error p2 Error p3

2e15 4.61e-3 4.61e-3 4.61e-3
4e15 4.61e-3 4.61e-3 4.61e-3
6e15 4.61e-3 4.61e-3 4.61e-3
8e15 3.23e-3 3.23e-3 3.23e-3
10e15 1.66e-3 1.66e-3 1.66e-3
12e15 6.17e-4 6.17e-4 6.17e-4

Table 1: Relative errors of the computed main pulsations at the chosen probe points (via FFT) with the exact pulsation
ω, with ω ∈ [2 × 1015, 12 × 1015]rad.s−1.

the electric fields (leading to similar conclusions). This allows to: (i) alleviate any discrepancy in383

the Fourier signal that may be sensitive to a single pulsation, (ii) test multiple incident pulsations384

in one single run. Figure 7 represents the FFT of the magnetic field at probe points in the case385

of propagation of a polychromatic pulse (b). Results show that a Gaussian Fourier signal is386

recovered without any discrepancy. Same conclusion holds for the global L2-norm of the Fourier387

transform, that we do not reproduce here.

Figure 7: Modulus of the Fourier transform for various gaussian pulses at probe points p1 (left), p2 (middle), p3 (right)
for several Gaussian pulses. We use several central frequencies (4 × 1015, 7 × 1015 and 10 × 1015rad.s−1).

388
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4.2. Breaking the limiting amplitude principle389

We now consider a metallic scatterer with parameters from case (ii) or (iii). We will follow390

the same strategy as in Section 4.1, but first we make use of results from Section 3.1.391

4.2.1. Explicit critical interval of pulsations392

In this section we specify Iω given in (19) for cases (ii) and (iii). Given the geometry, the393

critical interval is associated to corner a with aperture π
6 (then Iα = 11). Using Remark 7 we394

compute the critical subintervals associated to the other corners b, c to identify when black-hole395

waves may appear.396

• For material (ii) (corresponding to gold) we obtain397

ω ∈ Iω ⇐⇒
ωp
√

12
≤ ω ≤

ωp√
12
11

leading to Iω = [4.0039 × 1015, 13.2795 × 1015]rad.s−1, and the surface plasmon angular398

frequency (13) is equal to399

ωsp :=
ωp
√

2
' 9.8076 × 1015 rad.s−1.

The other two corners b, c of angle 5π
12 , provide Iωb = Iωc = [6.3307 × 1015, 12.3409 ×400

1015]rad.s−1.401

• For material (iii) we obtain402

ω ∈ Iω ⇐⇒
ωp

√
11 + 3.7362

≤ ω ≤
ωp√

3.7362 + 1
11

leading to Iω = [3.6131 × 1015, 7.0899 × 1015]rad.s−1, and the surface plasmon angular403

frequency (13) is equal to404

ωsp :=
ωp

√
1 + 3.7362

' 6.3732 × 1015rad.s−1.

Further we obtain Iωb = Iωc = [5.0524 × 1015, 6.9355 × 1015]rad.s−1.405

Remark 10. In what follows, we will indicate Iω in light red, and the subinterval Iωb in dark red406

in the plots.407

4.2.2. Response to monochromatic illumination408

We consider a monochromatic incident field of pulsation ω, with ω ∈ [2 × 1015, 13.8 ×409

1015]rad.s−1. The covered pulsation range includes the critical interval Iω associated to both410

materials. Contrary to the previous case we expect changes for ω ∈ Iω.411
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Study of the energy. Figure 8 represents the evolution of the energy for several incident pulsation412

values for both cases. Contrary to the previous case, we observe a drastic change of behavior413

of the energy when the pulsation ω of the monochromatic source belongs to Iω: the energy414

drastically increases by several orders of magnitude (10−13 compared to 10−15), and doesn’t415

exhibit a clear periodic behavior. This change is clearly visible when ω "enters" the critical416

interval. Moreover, at lower pulsations, the energy exhibits a periodic behavior. Whenω "leaves"417

the critical interval, the energy drastically decreases. For case (ii) it is not clear that we recover418

a periodic signal at the chosen pulsation (located right outside of the critical interval), however419

for case (iii) the periodic behavior for ω < Iω is more visible. Figure 9 represents the means of

Figure 8: Representation of E(t) (computed via (6)) for different incident fields for case (ii) (top) and for case (iii)
(bottom), with zooms at the long time simulation. The green and blue curves correspond to ω < Iω, whereas the warm
colored curves correspond to ω ∈ Iω.

420

energy E with respect to the monochromatic pulsation. For each incident source, we compute the421

mean of the energy for different time intervals of length T (ω) over the final part of the simulation422

time duration. The light blue shadow indicates the variations between those computations (we423

report the minimal and maximal values), scaled by a factor 10. As observed before, the energy424

is considerably more important at critical pulsations (indicated by the red zones). Additionally425

the computation of the mean E is highly sensitive to the time interval when we choose ω ∈ Iω,426

indicating that a periodic regime may not be established. Note that the energy mean is two orders427

of magnitude stronger than what was observed in Section 4.1. Furthermore, one can observe that428

the strongest variations within the means are obtained when all corners are excited (ω ∈ Iωb ).429

17



Based on the energy observations, one can conclude that there is definitely a change of behavior430

at critical pulsations, indicating that the limiting amplitude principle should not hold.

Figure 9: Mean of energy E (computed with (15)) with respect to the monochromatic pulsation: for case (ii) (left), for
case (iii) (right). The green zones indicate when ω < Iω, the red zones indicate when ω ∈ Iω. The darker red zone
indicates the critical subinterval ω ∈ Iωb .

431

Fourier transform at probe points. Figure 10 represents the Fourier transform of the magnetic432

field over the range of frequencies of interest at probe point p1 (see Section 3.2). Similar plots433

have been obtained for other probe points, we do not present them here. Figure 11 represents the434

L2-norm in space of the Fourier transform (in time) of the whole electromagnetic field (~E⊥,Hz).435

Results show that we still recover harmonic-like signals centered at the incident pulsation,436

however the signal is perturbed for critical pulsations. We can make several observations:437

• at each frequency, one main peak occurs at the pulsation of the incident field. The numer-438

ical relative error to the exact value does not exceed the one obtained in Section 4.1,439

• for some pulsations inside the critical interval, the main peak is wider and/or stronger in440

intensity,441

• for pulsations inside the critical subinterval, secondary peaks do appear.442

The last two items above invalidate the limiting amplitude principle.443

In the next section we compute the Fourier transform when considering a Gaussian pulse,444

where the break of the harmonic signal is significantly more striking.445

4.2.3. Response to polychromatic illumination446

We now investigate the response of the metallic scatterer to a pulse illumination (b). As447

before, we investigate the Fourier transform of the magnetic field.448

Fourier transform. Figure 12 represents the Fourier transform of the magnetic field at the probe449

points p1, p2, p3 for a Gaussian pulse centered at 4 × 1015, 7 × 1015 and 10 × 1015 rad.s−1. One450

clearly observes that the Gaussian signal is recovered for ω < Iω and completely perturbed when451

ω ∈ Iω. These effects are also observable globally. In Figure 13, we plot the L2-norm (in space)452

of the Fourier transform of the whole electromagnetic field (~E⊥,Hz) (we here choose to represent453

only one central frequency 7 × 1015 rad.s−1, the others being similar).454
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Case (ii)

Case (iii)

Figure 10: (Left) FFT of Hz at first probe point p1: for case (ii) (top row), for case (iii) (bottom row). Vertical lines
represent the chosen ω. The green zones indicate when ω < Iω, the red zones indicate when ω ∈ Iω. The darker red zone
indicates the critical subinterval ω ∈ Iωb . (Middle, Right): samples of FFT from the two cases: for ω < Iω (middle), and
for ω ∈ Iω (right). The orange ’−×’ curves correspond to FFT peaks in vacuum (where the response is always harmonic).

4.2.4. Conclusion455

To sum up, through various quantities of interests, we can clearly identify a change of be-456

havior in the spectral response in the critical interval. This provides numerical evidences about457

the proposed limiting amplitude principle conjecture. Moreover, using polychromatic pulse il-458

lumination, one is directly able to find precisely traces of the critical interval. In what follows,459

we continue our investigation and examine the impact of underlying black-hole waves on the460

time-domain simulations.461

5. Black-hole waves resonances462

Results from previous sections clearly highlight the break of the limiting amplitude principle463

for critical pulsations. In this section we investigate its impact on more physical quantities and464

situations.465

5.1. Cross sections and black-hole fluxes466

The amount of light diffracted or absorbed by an illuminated tridimensional structure is mea-467

sured by energy fluxes. The intrinsic capacity of an object to diffract or absorb light is then468

measured relative to the power of the incident light beam excitation. One way to quantify this469

is to measure the diffraction or absorption cross sections (defined in (18)). As a matter of fact,470

these provide the equivalent area of the incident beam that would have to be used to obtain the471

same energy than that provided by the illuminated object. Thus when a scatterer absorbs or scat-472

ters light on a much larger area compared to its physical size, it transpires in the absorption and473
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Figure 11: L2-norm of FFT of the whole electromagnetic field (left) comparison with vacuum results (right): for case (ii)
(top row), for case (iii) (bottom row). The orange ‘−×’ curves correspond to FFT peaks in vacuum and the computations
have been performed on same meshes for both cases. Vertical lines represent the chosen ω. The green zones indicate
when ω < Iω, the red zones indicate when ω ∈ Iω. The darker red zone indicates the critical subinterval ω ∈ Iωb .

scattering cross sections as intense peaks, and their location indicates the associated resonance474

frequency. Cross sections are by nature positive and in the 2D setting that we consider, cross sec-475

tions have the dimension of a length and provide an equivalent perimeter. We now investigate476

how they vary for cases (ii) and (iii), in the context of a polychromatic illumination.477

Remark 11. We choose a polychromatic source that illuminates the range of interest [1 ×478

1015, 14 × 1015] rad.s−1. With these chosen parameters, the range of frequencies at which we479

illuminate the structure lies in the visible-near UV range. Furthermore, as mentioned in Section480

3.2, the structure used is subwavelength.481

Cross sections. Figure 14 represents the scattering and absorption cross sections obtained with482

an incident Gaussian pulse for both Drude materials. It must be emphasized that our interest483

lies more in finding a clear trace of the critical interval than in extracting a precise position of484

resonances. Indeed, results show a clear trace of the critical interval: strong resonances do appear485

for ω ∈ Iω. While Csca remains positive, Cabs presents quite significant unphysical oscillations486

and negative values. We observe that the latter is also sensitive to mesh discretization and the487

chosen degree of interpolation (even for a refined mesh).488

These observations can be explained. Scattering cross section Csca tracks the far-field’s re-489

sponse whereas absorption cross section Cabs is linked to the near-field’s response of the scat-490
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Figure 12: FFT of |Hz | at probe points p1 (left), p2 (middle), p3 (right) for several Gaussian pulses centered at 4 × 1015,
7×1015 or 10×1015 rad.s−1 and two widths: for case (ii) (top row), for case (iii) (bottom row). The green zones indicate
when ω < Iω, the red zones indicate when ω ∈ Iω. The darker red zone indicates the critical subinterval ω ∈ Iωb .

Figure 13: L2-norm in space of the time FFT of the whole electromagnetic field for a Gaussian pulse centered at 7× 1015

rad.s−1: for case (ii) (left), for case (iii) (right). The green zones indicate when ω < Iω, the red zones indicate when
ω ∈ Iω. The darker red zone indicates the critical subinterval ω ∈ Iωb .

terer. The more erratic behavior of Cabs can thus be explained by the difficulties to accurately491

capture black-hole waves close to the corners, where discretization has to be fine enough to avoid492

spurious reflections. This phenomenon has been well characterized in frequency-domain [20],493

where an efficient modified finite element method (FEM) approximation with corner treatments494

has been developed. Results may indicate that, even for time-domain formulations for which495

the problem is mathematically well-posed, the discretization fails to approximate those highly-496

oscillatory behaviors and would benefit from a similar specific corner treatment. This will be497

part of future investigations. As mentioned before, while the polychromatic illumination doesn’t498

fit the theoretical LAP framework, it allows to highlight the predicted phenomena in a single499
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Figure 14: (Left): Scattering cross sections Csca (computed with (18)) when considering a Gaussian pulse: for case (ii)
(top row), for case (iii) (bottom row). (Right): Absorption cross sections Cabs when considering a Gaussian pulse: for
case (ii) (top row), for case (iii) (bottom row).

run. This strongly suggests a systematic strategy to numerically identify signatures of a critical500

interval on a given structure, even when the theory is not known.501

Poynting fluxes. Figure 15 compares the total Poynting flux to the black-hole fluxes around each502

corner of the triangle scatterer. The black-hole fluxes (Fk)k={a,b,c} are computed in a disk centred503

at the corner and of radius 2nm, see (20) and Figure 3 for details. Results show that:504

(i) all black-hole fluxes are (almost) equal to zero when ω < Iω (no black-hole waves are505

excited) ;506

(ii) black-hole fluxes remain small when ω ∈ Iω \ Iωb , that is when only the black-hole singu-507

larities located at the corner a can be excited ;508

(iii) all black-hole fluxes are significant when ω ∈ Iωb (corresponding to all black-hole singu-509

larities being excited) ; in this situation, we also observe that almost all the contributions510

to the Poynting flux are due to the corners.511

All those observations are in accordance with theory from frequency-domain detailed in [20]:512

this is closely related to black-hole excitation.513
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Figure 15: Poynting fluxes when considering a Gaussian pulse illumination, for case (ii) (top row) and for case (iii)
(bottom row). We compute the total Poynting flux (left column), the black-hole fluxes (middle column), and compare the
total Poynting flux to the sum of the black-hole fluxes (right column).

All results above illustrate that strong responses arise when illuminating a polygonal metal-514

lic obstacle with a source swiping critical pulsations ω, and those strong behaviors are directly515

connected to the black-hole waves that are known to exist in frequency-domain. Here we con-516

sidered an ideal case without dissipation. In what follows we compare results with and without517

dissipation: this allows to identify whether the above observations are degenerate behaviors (i.e.518

they only occur in the absence of dissipation), or intrinsic behaviors (i.e. they are observable also519

with dissipation), of the physical structure.520

5.2. Back to physics: the role of dissipation521

Metals are always lossy, meaning that in practice one considers γ , 0 in equation (4d). In522

this section we study the impact of introducing dissipation (γ , 0) in our computations. Note523

that adding dissipation changes the asymptotics of the solution since the solution will be damped524

(up to vanishing). Moreover, problem (9) in frequency-domain is always mathematically well-525

posed in presence of dissipation. This implies that there are actually no critical pulsations to526

consider. We explore the question of finding a signature of the limit problem (and consequently527

limit behaviors) in lossy cases.528

Figures 16 and 17 present comparisons between previous cross sections and Poynting fluxes,529

and the ones obtained when we add dissipation: we now consider models (ii) and (iii) with the530

physical value γ = 4.515 × 1013rad.s−1. Obtained cross sections for lossy cases remain posi-531

tive (which is more physically relevant) and less sensitive to the mesh discretization. However532

in both configurations (non lossy, lossy), cross sections present similar behaviors: strong reso-533

nances arise at "critical" pulsations. Those resonances have less intensity with dissipation, and534

dissipation prevents strong spurious resonances mentioned above in the non lossy case (assuming535

the mesh is sufficiently refined at the corners). The fact that intense resonance peaks remain can536
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be explained via the frequency-domain framework [36, 20]. By adding dissipation, the frequency537

problem becomes well-posed, however strong oscillations at the corners remain. Dissipation al-538

lows to attenuate the black-hole waves, s < H1
loc(R2) being replaced by sγ ∈ H1

loc(R2), and selects539

the outgoing ones (limiting absorption principle), where the outgoing wave is the one traveling540

towards the corners (as reference to their names). Observed peaks then correspond to attenu-541

ated black-hole waves going towards the corners. Similarly, Poynting fluxes get smoothed out

Figure 16: Comparison of cross sections for cases (ii) (top row) - (iii) (bottom row) with and without dissipation:
scattering Csca (left), absorption Cabs (right).

542

by dissipation, and most of the energy fluxes come from the corners at critical pulsations: this543

corresponds to attenuated black-hole resonances contributions.544

Remark 12. As explained in Section 3.1, the frequency theory also allows to characterize the545

singularities as odd or even coupled plasmons depending on the surface plasmon frequency. Due546

to the chosen non symmetric configuration, we expect that the excitation of odd plasmons will be547

favoured under the surface plasmon frequency, whereas the excitation of even plasmons will be548

favoured above the surface plasmon frequency. One can identify a change of behavior in Csca,549

where the scattering cross section vanishes for ω = ωsp.550

To sum up, studying the limit non lossy models allows to explain underlying resonances from551

physical lossy configurations.552
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Figure 17: Left: comparison of Poynting fluxes with and without dissipation: case (ii) (top row), case (iii) (bottom row).
Right: comparison of total Poynting fluxes and the sum of the Poynting fluxes at the corners: case (ii) with dissipation
(top row), case (iii) with dissipation (bottom row).

5.3. Corner effects553

It is well known via Mie theory that dissipative subwavelength cylindrical scatterers exhibit554

one resonance located at the surface plasmons frequency ωsp. This resonance is called a dipole555

resonance. This result is in accordance with the fact that the critical interval reduces to exactly556

{ωsp} for smooth interfaces. We simply provide below illustrations of the above statement, using557

the same material properties and for D a disk with same perimeter as the considered triangle.558

Figure 18 shows that only one resonance at ωsp is observed. This also allows to additionally559

validate our approach by recovering a known result.560

On the other hand, from Section 5.2 we identify multiple resonances at critical pulsations,561

and those resonances are related to specific surface plasmons (called in the limit case black-hole562

waves). In other words, this single subwavelength structure with corners allows to produce mul-563

tipolar resonances (quadripolar, octopolar, etc...). Furthermore, the level of intensity of these564

multiple resonances is equivalent to the level of the dipolar resonance that could be obtained565

with a cylinder with equivalent section perimeter (see Figure 19). The resonance obtained with566

a cylinder is however broader. Thus, it is possible to use triangular scatterers rather than circular567

ones to obtain: (i) multiple resonances with one single structure, (ii) sharper resonances of equiv-568

alent intensity than the single dipolar resonance of a cylindrical structure of equivalent perimeter.569

Polygonal interfaces then offer a larger range of possible light enhancements.570
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Figure 18: Scattering cross sections for a disk made of a Drude material (ii) and (iii) (no dissipation). The 2D section
of the cylinder (a disk) has the same perimeter as the triangle section used in this work. The maximum is achieved at
ω = 9.74 × 1015rad.s−1 for case (ii) (0.6% relative error to ωsp) and ω = 6.34 × 1015rad.s−1 for case (iii) (0.5% relative
error to ωsp).

Figure 19: Comparison of scattering cross sections for a disk made of a Drude material (ii) with dissipation using the
triangular section and a disk section with same perimeter as the triangle section.

6. Conclusion571

In this paper we provided a systematic numerical approach to identify if the limiting ampli-572

tude principle holds in ideal plasmonic structures that is, non lossy plasmonic structures with573

corners, and identified the underlying causes when it does not. Moreover, a study of cross sec-574

tions and Poynting fluxes revealed that the underlying resonances appearing at critical pulsations575

are related to localized surface plasmons at the corners called black-hole waves. We found that576

those characterized behaviors are intrinsic to the problem, as being captured with or without577

dissipation. Overall, this first work provides an interesting framework to investigate unexplored578

models and configurations, where no theory is available. One can for example now investigate579

the fully three-dimensional case, where the associated critical interval is not explicitly known580

in general, and test other plasmonic models such as Drude-Lorentz or more generalized models581

(such as those in [31]). In particular, future work will include the study of non-local effects.582
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