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Abstract We study the numerical approximation by edge finite elements of
fields whose divergence and curl, or divergence and curl-curl, are prescribed
in a bounded set Ω of R3, together with a boundary condition. Special at-
tention is paid to solutions with low-regularity, in terms of the Sobolev scale
(Hs(Ω))s>0. Among others, we consider an electromagnetic-like model in-
cluding an interface between a classical medium and a metamaterial. In this
setting the electric permittivity, and possibly the magnetic permeability, ex-
hibit a sign-change at the interface. With the help of T-coercivity, we address
the case of a model with one sign-changing coefficient, both for the model
itself, and for its discrete version. Optimal error estimates are derived.

Introduction

We study the numerical approximation by finite elements of fields whose di-
vergence and curl, or divergence and curl-curl, are prescribed in a bounded set
of R3, together with a boundary condition on the tangential trace. Typically,
one is looking for a field u such that curlu = f or curl ζ curlu = f , together
with div ξu = g, in the bounded set, and u has a vanishing tangential trace on
its boundary. This kind of model can be viewed as the fundamental building
block for solving problems in electromagnetism, see for instance Chapter 6 in
[3].
In a classical setting, that is if the medium is a classical dielectric, this model
has been thoroughly explored, both from the theoretical an the numerical
points of view. Among others, we refer to [38,1,2] for the well-posedness of
the problem, to [51,52] for finite volume discretization, to [22,21,29] for finite
element discretization, to [46,4] for the virtual element (previously known as
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mimetic finite difference) discretization, and to [17,5,45] for least-squares dis-
cretization, and to references therein.
On the other hand, there seems to be little knowledge regarding the case of a
model including an interface between a classical medium and a metamaterial.
In this setting the electric permittivity, and possibly the magnetic permeabil-
ity, exhibit a sign-change at the interface. To the author’s knowledge, the first
attempt to address this situation theoretically is [13,12]. However, little is
known regarding the numerical approximation of the model. More precisely,
in [12], the authors address the case of the time-harmonic Maxwell’s equations.
In the present paper, we propose the first step to solve this problem numeri-
cally, by studying the div-curl and div-curlcurl problems with a sign-changing
coefficient.
For the numerical part, we focus on (low-order) edge finite elements. We use
some recent results [28] to interpolate low-regularity solutions that can occur
both in a classical setting, and in the presence of an interface between a clas-
sical medium and a metamaterial.
The outline is as follows. We begin by introducing some notations, together
with a precise definition of the mathematical framework considered hereafter
to solve the div-curl problem. Before investigating the solution of this prob-
lem, we propose some comments in section 2 to help identify the difficulties
to be addressed. For that, we rely on some well-known facts regarding the
classical setting, that we shall apply to the new model. We introduce the
companion scalar problem and tools, such as the T-coercivity to realize the
inf-sup condition. Then in section 3, we solve the problem theoretically, re-
cast as an equivalent variational formulation. Next, in section 4, we recall the
numerical approximation via edge finite elements, and in particular how one
can interpolate the solution of the div-curl problems, which can (possibly) be
of low-regularity. To prove the results regarding convergence of the numerical
method, we use some results regarding practical discrete T-coercivity for the
companion scalar problem. These are recalled in the appendix A. As a matter
of fact, these results allow us to prove the uniform discrete inf-sup condition
for the div-curl problem: this is the object of sections 5-6. Finally in section 7
we show how one can solve theoretically and numerically the div-curlcurl prob-
lem, before giving some concluding remarks in the last section.
The main novelties are contained in theorem 2 and its corollary (end of section
3) for the theoretical part, in propositions 8, 9 and 10 for the properties of the
interpolation operator, and in sections 5 and 6 for the numerical analysis of
the discrete problems. In passing, we note that we can also study the problem
in the classical setting, in unusual configurations (see theorem 3).

1 Setting of the problem

As in [28], we denote constant fields by the symbol cst. Vector-valued (re-
spectively tensor-valued) function spaces are written in boldface character
(resp. blackboard bold characters). Given a non-empty open set O of R3,
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we use the notation (·|·)0,O (respectively ‖ · ‖0,O) for the L2(O) and the
L2(O) := (L2(O))3 inner products (resp. norms). More generally, (·|·)s,O and
‖ · ‖s,O (respectively | · |s,O) denote the inner product and the norm (resp.
semi-norm) of the Sobolev spaces Hs(O) and Hs(O) := (Hs(O))3 for s ∈ R
(resp. for s > 0). The index zmv indicates zero-mean-value fields. If more-
over the boundary ∂O is Lipschitz, n denotes the unit outward normal vector
field to ∂O. It is assumed that the reader is familiar with function spaces re-
lated to Maxwell’s equations, such as H(curl;O), H0(curl;O), H(div;O),
H0(div;O) etc. A priori, H(curl;O) is endowed with the “natural” norm
v 7→ (‖v‖2

0,O+ ‖ curlv‖2
0,O)1/2, etc. We refer to the monographs of Monk [47]

and Assous et al [3] for details.
The symbol C is used to denote a generic positive constant which is indepen-
dent of the meshsize, the mesh and the fields of interest ; C may depend on
the geometry, or on the coefficients defining the model. We use the notation
A . B for the inequality A ≤ CB, where A and B are two scalar fields, and
C is a generic constant.

Let Ω be a domain in R3, ie. an open, connected and bounded subset of R3

with a Lipschitz-continuous boundary ∂Ω. The domain Ω can be topologically
trivial or non-trivial [39]. To simplify the computations (without restricting
the scope of the study), we assume that the boundary ∂Ω is connected.

Given a domain Ω, the definition of the div-curl model we choose to inves-
tigate, is to find the vector-valued field u governed by:

Find u ∈ L2(Ω) such that
curlu = f in Ω,
div ξu = g in Ω,
u× n = 0 on ∂Ω.

(1)

A priori, the real-valued (volume) source terms are f and g, respectively cho-
sen in L2(Ω) and in H−1(Ω).
Remark 1 Note that one may also consider the div-curlcurl problem, with the
curl equation curlu = f in Ω replaced by curl ζ curlu = f in Ω. The results
are completely similar. This is explained in Sect. 7 below.
Then, the real-valued coefficient ξ fulfills one of the two sets of conditions
below, which we refer to as the classical case and the interface case hereafter.
Classical case:{

ξ is a real-valued, symmetric, measurable tensor field on Ω,
∃ξ−, ξ+ > 0,∀z ∈ R3, ξ−|z|2 ≤ ξz · z ≤ ξ+|z|2 a.e. in Ω.

(2)

Interface case: Ω is partitioned into the non-trivial partition P := (Ωp)p=+,−,
where Ω± are domains, and δξ fulfills (2), with δ = +1 in Ω+ and δ = −1 in
Ω−.
Remark 2 The study of the interface case is relevant for some problems in elec-
tromagnetism, such as an interface between a dielectric and a metamaterial,
see [20] or §8.4 in [3].
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2 Some comments

To measure elements of H1
0 (Ω), we choose the norm q 7→ ‖q‖H1

0 (Ω) := ‖∇q‖0,Ω .
Note that if f = 0, then the solution u may be written as u = ∇pu for some
pu ∈ H1

0 (Ω) (cf. Theorem 3.3.9 in [3], as ∂Ω is connected). Moreover, pu is
such that div ξ∇pu = g in H−1(Ω). So to ensure well-posedness of the div-curl
model, one must make an assumption on the companion scalar problem:{

Find s ∈ H1
0 (Ω) such that

(ξ∇s|∇q)0,Ω = 〈g, q〉H1
0 (Ω), ∀q ∈ H1

0 (Ω), (3)

namely, that this scalar problem is well-posed. In other words,

∃C? > 0, ∀g ∈ H−1(Ω), ∃!s solution to (3), with ‖s‖H1
0 (Ω) ≤ C? ‖g‖−1,Ω . (4)

For the classical case, ie. under (2), the well-posedness of the scalar problem
is automatically true. This is a straightforward consequence of the fact that
(q, q′) 7→ (ξ∇q|∇q′)0,Ω defines an inner product on H1

0 (Ω), whose associated
norm is equivalent to the ‖ · ‖H1

0 (Ω)-norm.

On the other hand, for the interface case, this is an additional assumption,
which is addressed with the help of T-coercivity [15,11]. We recall the abstract
framework below, see [27,25] for details. Let V be a Hilbert space with norm
‖ · ‖V , and a(·, ·) a symmetric, continuous bilinear form on V × V . Then, the
well-posedness of the problem

Find u ∈ V such that a(u, v) = 〈f, v〉V , ∀v ∈ V, (5)

which reads

∃C > 0, ∀f ∈ V ′, ∃!u solution to (5), with ‖u‖V ≤ C ‖f‖V ′ , (6)

can be addresssed as follows. One has to prove that the form a is T -coercive,
cf. Theorem 1 and Remark 2 of [25]:

∃α > 0, ∃T ∈ L(V ), ∀v ∈ V, a(v, Tv) ≥ α ‖v‖2
V . (7)

In other words, the operator T realizes the classical inf-sup condition (see eg.
[8]) explicitly.

Hence, for the scalar problem (3), and because ξ is a symmetric tensor
field, well-posedness is equivalent to (q, q′) 7→ (ξ∇q|∇q′)0,Ω fulfilling an inf-
sup condition:

∃γ0 > 0, ∀q ∈ H1
0 (Ω), sup

q′∈H1
0 (Ω)\{0}

(ξ∇q|∇q′)0,Ω

‖q′‖H1
0 (Ω)

≥ γ0 ‖q‖H1
0 (Ω). (8)

Or, as noted above, this is also equivalent to

∃α0 > 0, ∃T0 ∈ L(H1
0 (Ω)),

∀q ∈ H1
0 (Ω), (ξ∇q|∇(T0q))0,Ω ≥ α0 ‖∇q‖2

0,Ω .
(9)

To recapitulate, we assume that:
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– the coefficient ξ is either as in the classical case, or as in the interface
case ;

– assumption (8)-(9) holds.

Remark 3 Observe that it is possible to fit the classical case within the inter-
face case, by choosing T0 = IH1

0 (Ω) and α0 = ξ− in (9). In most instances, we
will provide proofs below, that cover both the classical and the interface cases
at once.

In the classical case, to characterize orthogonality, we introduce the weighted
inner product on H0(curl;Ω):

(v,v′)class 7→ (ξv|v′)0,Ω + (curlv| curlv′)0,Ω .

Note that in the interface case, (·, ·)class does not define an inner product.

When we study the discrete div-curl problems and in order to obtain explicit
convergence rates between the exact and approximate solution to the div-curl
problem, we shall make two additional assumptions:

– the coefficient ξ is piecewise smooth: there exists a partition {Ωp}p=1,··· ,P
of Ω, made of disjoint domains (Ωp)p=1,··· ,P , with Ω = ∪Pp=1Ωp, and such
that ξ|Ωp ∈ W 1,∞(Ωp) for p = 1, · · · , P . In relation to the partition and
for s ≥ 0, we define

PHs(Ω) := {v ∈ L2(Ω) : v|Ωp ∈ H
s(Ωp), 1 ≤ p ≤ P}, (10)

endowed with the “natural” norm ‖v‖PHs(Ω) :=
( ∑

1≤p≤P
‖vp‖2

s,Ωp

)1/2
.

– the data (f , g) has extra-regularity, in the sense that

f ∈ PHτ1(Ω), g ∈ H−1+τ2(Ω), with τ1, τ2 > 0 given. (11)

For further analysis, let us introduce the scalar problem with modified right-
hand side{

Find s ∈ H1
0 (Ω) such that

(ξ∇s|∇q)0,Ω = 〈g, q〉H1
0 (Ω) + (ξg,∇q)0,Ω , ∀q ∈ H1

0 (Ω). (12)

In the classical case [30,49,34,43,40,9,33], one can prove a shift theorem for
the problem (12) when the data (g, g) has extra-regularity like

g ∈ H−1+τ2(Ω), g ∈H1(Ω), with τ2 ∈ (0, 1] given.

In the interface case, there exist similar results in this direction. We refer to [31,
16,24,23,14] for a piecewise constant coefficient ξ. So we introduce τDir ∈ (0, 1]
depending only on the geometry and on ξ such that

∀s ∈ [0, τDir) \ {1/2}, ∀(g, g) ∈ H−1+s(Ω)×H1(Ω),
the solution s to (12) is such that s ∈ PH1+s(Ω), and
‖s‖PH1+s(Ω) . (‖g‖−1+s,Ω + ‖g‖1,Ω).
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Above, the constant hidden in . may depend on s, but not on g nor on g. By
a slight abuse of vocabulary, we call this result the shift theorem, respectively
τDir the limit regularity exponent, and we assume that this result holds both
in the classical and interface cases.

3 Basic mathematics

Recall that the domain Ω can be topologically trivial (tt) or non-trivial (tnt).
This means that we assume that one of the two conditions below holds:
– (tt) ’for all curl-free vector field v ∈ C1(Ω), there exists p ∈ C0(Ω) such

that v = ∇p in Ω’ ;
– (tnt) ’there exist I non-intersecting, piecewise plane manifolds, (Σj)j=1,··· ,I ,

with boundaries ∂Σi ⊂ ∂Ω, such that, if we let Ω̇ = Ω \
⋃I
i=1 Σi, for all

curl-free vector field v, there exists ṗ ∈ C0(Ω̇) such that v = ∇ṗ in Ω̇’.
If Ω is topologically trivial, we set I = 0.

We note that, thanks to the a priori regularity of f and the boundary
condition, the solution to (1) is such that u ∈H0(curl;Ω). Let us introduce

HΣ
0 (div 0;Ω) := {f ′ ∈H0(div;Ω) : div f ′ = 0 in Ω, 〈f ′·n, 1〉Σi = 0, 1 ≤ i ≤ I}.

In the classical case, according to Theorem 6.1.4 in [3] (recall that ∂Ω is
connected):

v 7→ (curlv,div ξv)
is a bijective mapping from H0(curl;Ω) to HΣ

0 (div 0;Ω)×H−1(Ω).
Hence, to ensure well-posedness of the div-curl model in the classical case, the
source terms must be chosen such that

f ∈HΣ
0 (div 0;Ω), g ∈ H−1(Ω). (13)

This is the choice we make from now on. We will check that this choice is also
valid for the div-curl model in the interface case under assumption (9). To that
aim, we use an equivalent variational formulation to the div-curl problem. Let
us introduce

Find (u, p) ∈H0(curl;Ω)×H1
0 (Ω) such that

(curlu| curlv)0,Ω + (ξu|∇q)0,Ω + (ξv|∇p)0,Ω
= (f | curlv)0,Ω − 〈g, q〉H1

0 (Ω), ∀(v, q) ∈H0(curl;Ω)×H1
0 (Ω).

(14)

In (14), the left-hand side defines a continuous bilinear form on H0(curl;Ω)×
H1

0 (Ω), and the right-hand side defines a continuous linear form on the same
function space. The norm of the right-hand side is bounded from above by
‖f‖0,Ω + ‖g‖−1,Ω .
We begin by an elementary, yet fundamental, result.

Lemma 1 Let f ∈HΣ
0 (div 0;Ω) and g ∈ H−1(Ω) be given. Then if (u, p) is

a solution to the variational formulation (14), it holds that p = 0.
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Proof Choose the test function (∇(T0p), 0) in (14). This yields:

(ξ∇(T0p)|∇p)0,Ω = 0.

Recall that ξ is a symmetric tensor field, so one has α0‖∇p‖2
0,Ω = 0 according

to (9), and it follows that p = 0. ut

Proposition 1 Let f ∈ HΣ
0 (div 0;Ω) and g ∈ H−1(Ω) be given. Then it

holds that u is a solution to the div-curl problem (1) if, and only if, (u, 0) is
a solution to the variational formulation (14).

Proof If u solves (1), then by definition u ∈H0(curl;Ω).
Also it is obvious by integration on Ω together with the definition of duality
〈div ξu, q〉H1

0 (Ω) = −(ξu, |∇q)0,Ω that (u, 0) is a solution to the variational
formulation (14). Indeed, given (v, q) ∈H0(curl;Ω)×H1

0 (Ω), one has

(curlu| curlv)0,Ω + (ξu|∇q)0,Ω = (f | curlv)0,Ω − 〈g, q〉H1
0 (Ω).

On the other hand, let (u, p) be a solution to (14). We already know from
lemma 1 that p = 0, and that by definition u ∈ H0(curl;Ω). Next, choose
(0, q) as a test function in (14):

(ξu|∇q)0,Ω = −〈g, q〉H1
0 (Ω), ∀q ∈ H1

0 (Ω),

so that div ξu = g in H−1(Ω).
Since f ∈HΣ

0 (div 0;Ω), we know from Theorem 3.5.1 in [3] that there exists
w ∈ H0(curl;Ω) such that f = curlw in Ω. So, using (u −w, 0) as a test
function in (14) now yields:

(curlu| curl(u−w))0,Ω = (curlw| curl(u−w))0,Ω ,

or ‖ curl(u−w)‖2
0,Ω = 0, ie. curlu = f in L2(Ω).

In other words, u is a solution to the div-curl problem (1). ut

We next recall a result on the splitting of fields in H0(curl;Ω). To that end,
define

KN (Ω, ξ) := {v ∈H0(curl;Ω) : div ξv = 0}.

An equivalent (variational) definition is

KN (Ω, ξ) := {v ∈H0(curl;Ω) : (ξv|∇q)0,Ω = 0, ∀q ∈ H1
0 (Ω)}.

Proposition 2 One has the continuous, direct sum

H0(curl;Ω) = ∇[H1
0 (Ω)]⊕KN (Ω, ξ). (15)

In the classical case, the sum is orthogonal with respect to the inner product
(·, ·)class.



8 P. Ciarlet Jr.

Proof Obviously, ∇[H1
0 (Ω)] +KN (Ω, ξ) is a subset of H0(curl;Ω). Let v ∈

H0(curl;Ω). According to (4), there exists pv ∈ H1
0 (Ω) such that

(ξ∇pv|∇q)0,Ω = (ξv|∇q)0,Ω , ∀q ∈ H1
0 (Ω). (16)

Now, let kv = v − ∇pv, one has kv ∈ KN (Ω, ξ) by construction. It follows
that H0(curl;Ω) = ∇[H1

0 (Ω)] +KN (Ω, ξ).
Next, let z ∈ ∇[H1

0 (Ω)] ∩KN (Ω, ξ) be given. There exists s ∈ H1
0 (Ω) such

that z = ∇s and, by definition of KN (Ω, ξ), s is governed by (3) with zero
right-hand side. By uniqueness of the solution, one has s = 0 and so z = 0:
the sum is direct.
Finally, by definition (16) of pv and according to (9), one has α0 ‖∇pv‖2

0,Ω ≤
(ξ∇pv|∇(T0pv))0,Ω = (ξv|∇(T0pv))0,Ω ≤ ‖ξv‖0,Ω‖∇(T0pv)‖0,Ω , so that

‖∇pv‖H(curl;Ω) = ‖∇pv‖0,Ω ≤ α−1
0 ‖ξ‖∞,Ω‖T0‖L(H1

0 (Ω))‖v‖0,Ω ,

and ‖kv‖H(curl;Ω) ≤ (1 + α−1
0 ‖ξ‖∞,Ω‖T0‖L(H1

0 (Ω)))‖v‖H(curl;Ω).

So the sum is continuous.
Additionally, in the classical case, let q ∈ H1

0 (Ω) and k ∈KN (Ω, ξ):

(∇q,k)class = (ξ∇q|k)0,Ω = (ξk|∇q)0,Ω = 0,

where we use successively the properties: ∇q is curl-free; ξ is a symmetric
tensor field; ξk is divergence-free. ut

In other words, we may introduce the operators of L(H0(curl;Ω), H1
0 (Ω)),

resp. of L(H0(curl;Ω))

π1 :
{
H0(curl;Ω)→ H1

0 (Ω)
v 7→ pv

, π2 :
{
H0(curl;Ω)→KN (Ω, ξ)
v 7→ kv

and write, for all v ∈H0(curl;Ω), v = ∇(π1v) +π2v. Note that (π2)2 = π2.

We then recall an important result on the measure of elements ofKN (Ω, ξ).
For its proof, we refer the reader to Corollary 5.2 of [12].

Theorem 1 Elements of KN (Ω, ξ) can be measured with the ‖ curl ·‖0,Ω-
norm:

∃CW > 0, ∀k ∈KN (Ω, ξ), ‖k‖0,Ω ≤ CW ‖ curlk‖0,Ω , (17)
∃C ′W > 0, ∀k ∈KN (Ω, ξ), ‖k‖H(curl;Ω) ≤ C ′W ‖ curlk‖0,Ω . (18)

Before proving the main result of this section, let us introduce the notations:

V := H0(curl;Ω)×H1
0 (Ω) endowed with ‖(v, q)‖V := (‖v‖2

H(curl;Ω) + ‖q‖2
H1

0 (Ω))
1/2 ;

a((u, p), (v, q)) := (curlu| curlv)0,Ω + (ξu|∇q)0,Ω + (ξv|∇p)0,Ω , ∀(u, p), (v, q) ∈ V.
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Observe that the form a is bilinear and symmetric on V× V.
The variational formulation (14) writes{

Find (u, p) ∈ V such that
a((u, p), (v, q)) = (f | curlv)0,Ω − 〈g, q〉H1

0 (Ω), ∀(v, q) ∈ V. (19)

We show next that it is well-posed. We already noted that, for all f ∈
HΣ

0 (div 0;Ω) and g ∈ H−1(Ω), the right-hand side of (19) defines a con-
tinuous form on V, with norm bounded from above by ‖f‖0,Ω + ‖g‖−1,Ω .

Theorem 2 The form a is T-coercive.

Remark 4 In the spirit of the T-coercivity theory [27,25], we provide a con-
structive proof. Namely, given (u, p), we build some ad hoc test-field (v?, q?)
to realize the condition (7) via the design of an operator T ∈ L(V), by set-
ting T((u, p)) = (v?, q?). Regarding the companion scalar problem, we cover
both the classical and the interface cases at once by choosing T0 = IH1

0 (Ω) and
α0 = ξ− in the classical case.

Proof Let (u, p) ∈ V be given. Let us decompose u using (15): u = ∇pu + ku

with (pu,ku) := (π1u,π2u) ∈ H1
0 (Ω)×KN (Ω, ξ).

(i) Assume first that u = 0. Then a((0, p), (v, q)) = (ξv|∇p)0,Ω . One chooses
in this case (v?, q?) = (∇(T0p), 0). Indeed, because ξ is a symmetric tensor
that fulfills (9), it holds that

a((0, p), (v?, q?)) = (ξ∇(T0p)|∇p)0,Ω ≥ α0 ‖∇p‖2
0,Ω = α0 ‖(0, p)‖2

V.

(ii) Consider next that p = 0. Then a((u, 0), (v, q)) = (curlu| curlv)0,Ω +
(ξu|∇q)0,Ω . Because ku ∈KN (Ω, ξ) with curlku = curlu, one has now

a((u, 0), (v, q)) = (curlku| curlv)0,Ω + (ξ∇pu|∇q)0,Ω .

One chooses in this case (v?, q?) = (ku, T0pu). Indeed with the help of (9) and
(18)

a((u, 0), (v?, q?)) = ‖ curlku‖2
0,Ω + (ξ∇pu|∇(T0pu))0,Ω

≥ (C ′W )−2‖ku‖2
H(curl;Ω) + α0 ‖∇pu‖2

0,Ω

≥ min((C ′W )−2, α0)
(
‖ku‖2

H(curl;Ω) + ‖∇pu‖2
0,Ω

)
≥ γ ‖u‖2

H(curl;Ω) = γ ‖(u, 0)‖2
V,

where γ := 1
2 min((C ′W )−2, α0) > 0.

(iii) In the general case, let us consider a linear combination of the above, ie.
(v?, q?) = (β1∇(T0p)+β2ku, β2T0pu), for β1, β2 ∈ R. Then using the property
ku ∈KN (Ω, ξ) with curlku = curlu, one finds

a((u, p), (v?, q?)) = β2‖ curlku‖2
0,Ω+β2(ξ∇pu|∇(T0pu))0,Ω+β1(ξ∇(T0p)|∇p)0,Ω .
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Let γ be as above. Choosing β1 = β2 = β > 0 leads to

a((u, p), (v?, q?)) ≥ β
(

(C ′W )−2‖ku‖2
H(curl;Ω) + α0 ‖∇pu‖2

0,Ω + α0 ‖∇p‖2
0,Ω

)
≥ β

(
γ ‖u‖2

H(curl;Ω) + α0 ‖∇p‖2
0,Ω

)
≥ β γ ‖(u, p)‖2

V,

because γ < α0. To conclude the proof, remark that the operator

T : (u, p) 7→ (∇(T0p) + π2u, T0(π1u))

belongs to L(V). ut

The conclusions are summarized below.

Corollary 1 Let f ∈ HΣ
0 (div 0;Ω) and g ∈ H−1(Ω) be given. Then there

exists one, and only one, solution to (u, p) to (14). In addition, it holds that
p = 0 and ‖u‖H(curl;Ω) . ‖f‖0,Ω + ‖g‖−1,Ω.

4 Approximation by Nédélec’s finite elements

For the ease of exposition1, we assume that Ω and {Ωp}p=1,··· ,P are Lipschitz
polyhedra. We consider a family of simplicial meshes of Ω, and we choose
the Nédélec’s first family of edge finite elements [48,47] to define finite di-
mensional subspaces (V h)h of H0(curl;Ω). So Ω is triangulated by a shape
regular family of meshes (Th)h, made up of (closed) simplices, generically de-
noted by K. Each mesh is indexed by h := maxK hK (the meshsize), where
hK is the diameter of K. And meshes are conforming with respect to the
partition {Ωp}p=1,··· ,P induced by the coefficient ξ: namely, for all h and all
K ∈ Th, there exists p ∈ {1, · · · , P} such that K ⊂ Ωp. Nédélec’s H(curl;Ω)-
conforming (first family, first-order) finite element spaces are then defined by

V h := {vh ∈H0(curl;Ω) : vh|K ∈ R1(K), ∀K ∈ Th},

where R1(K) is the vector space of polynomials on K defined by

R1(K) := {v ∈ P 1(K) : v(x) = a+ b× x, a, b ∈ R3}.

To approximate the div-curl problem, we need to define a suitable approxi-
mation of elements of H1

0 (Ω). So we introduce finite dimensional subspaces
(Mh)h of H1

0 (Ω). Lagrange’s first-order finite element spaces are defined by

Mh := {qh ∈ H1
0 (Ω) : qh|K ∈ P1(K), ∀K ∈ Th}.

1 The results obtained in this paper carry over to curved polyhedra, that is domains with
piecewise smooth boundaries (see eg. p. 81 in [3] for a precise definition). When dealing
with the discretization by first-order edge finite elements in H0(curl;Ω), one may use [32].
Respectively, when dealing with the discretization by Lagrange’s first-order finite elements
in H1

0 (Ω), one may use [37]. In particular, it is proven there that optimal interpolation
properties hold, ie. one may recover up to O(h) accuracy, provided the field to be interpolated
is sufficiently smooth.
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The discrete companion scalar problems are{
Find sh ∈Mh such that
(ξ∇sh|∇qh)0,Ω = 〈g, qh〉H1

0 (Ω), ∀qh ∈Mh.
(20)

For approximation purposes, one can use the Lagrange interpolation operator
ΠL
h , or the Scott-Zhang interpolation operator ΠSZ

h . The latter allows one
to interpolate any element of H1

0 (Ω), with values in Mh, at the expense of
local interpolation operators that are not localized to each tetraedron, but are
localized to the union of the tetrahedron and its neighbouring tetrahedra. We
refer to [35] for details. Unless otherwise specified, we choose Πgrad

h = ΠSZ
h .

Then, for all h, we introduce the finite dimensional subspaces Vh := V h×Mh

of V. For h given, the discrete variational formulation of the div-curl problem
is{

Find (uh, ph) ∈ Vh such that
a((uh, ph), (vh, qh)) = (f | curlvh)0,Ω − 〈g, qh〉H1

0 (Ω), ∀(vh, qh) ∈ Vh.
(21)

To obtain explicit error estimates for the div-curl problem, we shall use the in-
terpolation of its solution u. Let Πcurl

h be the classical global Raviart-Thomas-
Nédélec interpolant in H0(curl;Ω) with values in V h [48]. We then denote
by Πdiv

h the classical global Raviart-Thomas-Nédélec interpolation operator
in H0(div;Ω) with values in W h [53,48], where (W h)h are designed with the
help of H(div;Ω)-conforming, first-order finite element spaces:

W h := {wh ∈H0(div;Ω) : wh|K ∈ D1(K), ∀K ∈ Th},

where D1(K) is the vector space of polynomials on K defined by

D1(K) := {v ∈ P 1(K) : v(x) = a+ bx, a ∈ R3, b ∈ R}.

Let us recall a few useful properties (see Chapter 5 in [47]). To start with,

Proposition 3 For all h, it holds that

∇[Mh] ⊂ V h ; (22)
∀vh ∈ V h, Πcurl

h vh = vh ; (23)
curl[V h] ⊂W h ; (24)
∀wh ∈W h, Πdiv

h wh = wh ; (25)
∀v ∈H0(curl;Ω) s.t. Πcurl

h v exists, Πdiv
h (curlv) = curl(Πcurl

h v).(26)

There are useful additional properties regarding Πcurl
h listed below. Below,

when we refer to piecewise-Hs fields, the partition is understood as in (10).

Proposition 4 (discrete exact sequence [48]) Let h be given, and let
v ∈ H0(curl;Ω) that can be written as v = ∇q in Ω, for some q ∈ H1

0 (Ω).
Then if Πcurl

h v is well-defined, there exists qh ∈ Mh such that Πcurl
h v = ∇qh

in Ω.
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Proposition 5 (classical interpolation results) Assume that v ∈ PHs(Ω)
and curlv ∈ PHs′

(Ω) for some s > 1/2, s′ > 0. Then one can define Πcurl
h v

and, in addition, one has the approximation result [7]:

‖v −Πcurl
h v‖H(curl;Ω) . hmin(s,s′,1){‖v‖P Hs(Ω) + ‖ curlv‖P Hs′ (Ω)}. (27)

Furthermore, if curlv is piecewise constant on Th, one has the improved ap-
proximation result (cf. Theorem 5.41 in [47]):

‖v −Πcurl
h v‖H(curl;Ω) . hmin(s,1){‖v‖P Hs(Ω) + ‖ curlv‖0,Ω}.

Remark 5 When Ω2 is a domain of R2, note that one can define the Raviart-
Thomas-Nédélec interpolant of a field v ∈H(curl;Ω2) as soon as v ∈ PHs(Ω2)
for some s > 0 (there is no requirement on the regularity of curl v). This re-
sult is proven in [6] for fields in H(div;Ω2), and it obviously carries over to
fields in H(curl;Ω2) by appropriate coordinates transform. Further, one has
the approximation result:

‖v −Πcurl
h v‖H(curl;Ω2) . hmin(s,1){‖v‖P Hs(Ω2) + ‖ curl v‖0,Ω2}.

We recall that, according to (11), curlu ∈ PHτ1(Ω) for τ1 > 0. Hence, to
guarantee that Πcurl

h can be applied to the solution u of the div-curl problem,
one must have u ∈ PHs(Ω) for some s > 1/2. To evaluate the exponent s a
priori, we use the following decomposition (see Lemma 2.4 of [41]).
Proposition 6 There exist operators

P ∈ L(H0(curl;Ω),H1(Ω)), Q ∈ L(H0(curl;Ω), H1
0 (Ω)),

such that
∀v ∈H0(curl;Ω), v = Pv +∇(Qv). (28)

This yields some useful results for elements of KN (Ω, ξ).
Corollary 2 The a priori regularity of elements of KN (Ω, ξ) is governed by
the imbedding:

KN (Ω, ξ) ⊂ ∩s∈[0,τDir)PH
s(Ω).

Moreover, for all s ∈ [0, τDir),

∀k ∈KN (Ω, ξ), ‖k‖P Hs(Ω) . ‖ curlk‖0,Ω . (29)

Proof Let k ∈ KN (Ω, ξ). According to proposition 6, one can write k =
k? +∇sk with k? ∈ H1(Ω), resp. sk ∈ H1

0 (Ω), and it holds that ‖k?‖1,Ω +
‖sk‖H1

0 (Ω) . ‖k‖H(curl;Ω). In particular, div(ξ∇sk) = −div ξk? in Ω, so sk

solves the modified scalar problem (12) with data (0,k?). Thanks to the shift
theorem, we know that, for all s ∈ [0, τDir), sk belongs to PH1+s(Ω), with
the bound ‖sk‖PH1+s(Ω) . ‖k?‖1,Ω . Using the triangle inequality, we conclude
that

∀s ∈ [0, τDir), k ∈ PHs(Ω), and ‖k‖P Hs(Ω) . ‖k‖H(curl;Ω).

This proves the first part of the corollary. Using finally theorem 1 on the
equivalence of norms in KN (Ω, ξ), we conclude that (29) holds. ut
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One has the first interpolation result below.

Proposition 7 (classical interpolation of u) Let u be the solution to the
div-curl problem. Let the extra-regularity of the data (f , g) be as in (11) with
τ1, τ2 > 0 given. If τ2 > 1/2, and if the limit regularity exponent τDir > 1/2,
one can define Πcurl

h u, and moreover one has the approximation result, for all
s ∈ (1/2,min(τ2, τDir)),

‖u−Πcurl
h u‖H(curl;Ω) . hmin(s,τ1){‖g‖−1+s,Ω + ‖f‖P Hτ1 (Ω)}.

Proof Let s ∈ (1/2,min(τ2, τDir)). Let us write u = u? +∇su with u? = Pu,
resp. su = Qu. It holds that ‖u?‖1,Ω + ‖su‖H1

0 (Ω) . ‖u‖H(curl;Ω).
By definition, su solves the modified scalar problem (12) with data (g,u?).
Thanks to the shift theorem, su ∈ PH1+s(Ω), with the bound

‖su‖PH1+s(Ω) . ‖g‖−1+s,Ω + ‖u?‖1,Ω .

Using the triangle inequality, the bound on ‖u?‖1,Ω and finally corollary 1
leads to

‖u‖P Hs(Ω) ≤ ‖u?‖P Hs(Ω) + ‖su‖PH1+s(Ω) . ‖u?‖1,Ω + ‖g‖−1+s,Ω

. ‖u‖H(curl;Ω) + ‖g‖−1+s,Ω . ‖g‖−1+s,Ω + ‖f‖0,Ω .

By definition, s < 1, and so the claim follows with the help of (27). ut

In practice however, it may happen that the field to be interpolated, eg. the
solution u, does not belong to ∪s>1/2PH

s(Ω). In the classical case, the oc-
curence of such a situation is explained in Section 7 of [30]. In the interface
case, this can be inferred from the results obtained in [11,14].
On the other hand, to interpolate such a low regularity field, one may still
choose the quasi-interpolation operator of [36], or the combined interpolation
operator of [28]. We choose the latter, and follow Section 4.2 in [28]. To get
a definition for the combined interpolation operator, denoted by Πcomb

h , one
needs to be able to split low regularity fields defined on Ω. To that end, we
apply proposition 6.

Definition 1 (combined interpolation operator) Let v ∈ H0(curl;Ω),
with curlv ∈Hs′

(Ω) for some s′ > 0. We define

Πcomb
h v := Πcurl

h (Pv) +∇(Πgrad
h (Qv)).

Remark 6 To interpolate low regularity fields (of H0(curl;Ω)) via the com-
bined interpolation approach, one has to provide a decomposition like in propo-
sition 6. In proposition 6, the decomposition is independent of ξ. In this sense,
it is less involved than the ξ-dependent decomposition that is used in Propo-
sition 4 of [28]. However, both decompositions yield identical approximation
results.

Then, the approximation results for the combined interpolation are a straight-
forward consequence of the available results for Πcurl

h and Πgrad
h .
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Proposition 8 (combined interpolation results) Let v ∈ H0(curl;Ω),
with Qv ∈ PH1+s(Ω) and curlv ∈ PHs′

(Ω) for some s ≥ 0, s′ > 0. One
has the approximation result:

‖v −Πcomb
h v‖H(curl;Ω) . hmin(s,s′,1){‖v‖H(curl;Ω) (30)

+‖Qv‖PH1+s(Ω) + ‖ curlv‖P Hs′ (Ω)}.

Furthermore, if curlv is piecewise constant on Th, one has the improved ap-
proximation result:

‖v −Πcomb
h v‖H(curl;Ω) . hmin(s,1){‖v‖H(curl;Ω) + ‖Qv‖PH1+s(Ω)}.

Together with this definition of the combined interpolation operator, we have
the results below, to be compared with the well-known results (23) and (26),
and to proposition 7, for the classical interpolation operator.

Proposition 9 For all h, it holds that

∀vh ∈ V h,∃qh ∈Mh, Πcomb
h vh = vh +∇qh ; (31)

∀v ∈H0(curl;Ω) s.t. curlv ∈Hs′
(Ω) for some s′ > 0, (32)

Πdiv
h (curlv) = curl(Πcomb

h v).

Proof Let vh ∈ V h. We note that because vh is piecewise smooth on Th, one
has vh, curlvh ∈ PHt(Ω) for all t ∈ [0, 1/2). Hence Πcomb

h vh is well-defined
according to definition 1. If we write vh = (vh)? +∇svh , with (vh)? = Pvh,
resp. svh = Qvh, we have Πcomb

h vh := Πcurl
h (vh)? +∇(Πgrad

h svh).
On the other hand, ∇svh = vh−(vh)?. Since Πcurl

h (vh−(vh)?) is well-defined,
so is Πcurl

h (∇svh) and, according to proposition 4, there exists q′h ∈ Mh such
that Πcurl

h (∇svh) = ∇q′h. Applying now Πcurl
h to (vh)? = vh−∇svh , it follows

that
Πcurl
h (vh)? = Πcurl

h vh −∇q′h = vh −∇q′h,

where the second equality now follows from (23). One concludes that

Πcomb
h vh := vh +∇(Πgrad

h svh − q′h),

which is precisely (31) with qh = Πgrad
h svh − q′h.

To check (32), let v be split as v = Pv+∇(Qv). Since curl(Pv) ∈Hs′
(Ω), ac-

cording to proposition 5 one may apply (26) to Pv, leading toΠdiv
h (curl(Pv)) =

curl(Πcurl
h (Pv)). On the other hand, because of the definition 1 of Πcomb

h v =
Πcurl
h (Pv) +∇(Πgrad

h (Qv)) one has

curl(Πcurl
h (Pv)) = curl(Πcomb

h v −∇(Πgrad
h (Qv))) = curl(Πcomb

h v).

Using finally the equality curlv = curl(Pv) leads to the claim. ut
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Proposition 10 (combined interpolation of u) Let u be the solution to
the div-curl problem. Let the extra-regularity of the data (f , g) be as in (11)
with τ1, τ2 > 0 given. One can define Πcomb

h u, and moreover one has the
approximation result, for all s ∈ [0,min(τ2, τDir)),

‖u−Πcomb
h u‖H(curl;Ω) . hmin(s,τ1){‖g‖−1+s,Ω + ‖f‖P Hτ1 (Ω)}.

Proof Let s ∈ [0,min(τ2, τDir)) ; because τDir ≤ 1, one has s < 1.
According to proposition 6, we may write u = u? +∇su with u? ∈ H1(Ω),
su ∈ H1

0 (Ω), and ‖u?‖1,Ω + ‖su‖H1
0 (Ω) . ‖u‖H(curl;Ω). By construction, su

solves the modified scalar problem (12) with data (g,u?). But s < min(τ2, τDir)
so, thanks to the shift theorem, su ∈ PH1+s(Ω), with the bound ‖su‖PH1+s(Ω) .
‖g‖−1+s,Ω+‖u?‖1,Ω . As before, using corollary 1 for the last inequality below,
we find

‖su‖PH1+s(Ω) . ‖g‖−1+s,Ω + ‖u‖H(curl;Ω) . ‖g‖−1+s,Ω + ‖f‖0,Ω .

Since curlu = f ∈ PHτ1(Ω), one can define Πcomb
h u. Using (30) and corol-

lary 1 once more, one finds now

‖u−Πcomb
h u‖H(curl;Ω) . hmin(s,τ1){‖u‖H(curl;Ω) + ‖su‖PH1+s(Ω) + ‖ curlu‖P Hτ1 (Ω)}

. hmin(s,τ1){‖g‖−1+s,Ω + ‖f‖P Hτ1 (Ω)},

which is the desired estimate. ut

In particular, we conclude that even when the solution u to the div-curl prob-
lem does not belong to ∪s>1/2PH

s(Ω), one may still use the combined inter-
polation operator and still obtain “best” interpolation error.

5 Case of a ”full” T-coercivity operator

We assume in this section that we have at hand a ”full” T-coercivity involu-
tion operator T0 to solve the companion scalar problem (3) (see section A.1),
and that the meshes are T-conform, such that (59)-(60) are fulfilled, with
consequences listed in section A.2.

Remark 7 Properties (59) are always true in the classical case (T0 = IH1
0 (Ω)).

Define, for any h,

Kh(ξ) := {vh ∈ V h : (ξvh|∇qh)0,Ω = 0, ∀qh ∈Mh}. (33)

Proposition 11 Assume that (59) holds. For all h, one has the direct sum

V h = ∇[Mh]⊕Kh(ξ). (34)

In the classical case, the sum is orthogonal with respect to the inner product
(·, ·)class.
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Proof Let h be given. Thanks to (22), we know that ∇[Mh] + Kh(ξ) is a
subset of V h. Then for vh ∈ V h and because the discrete scalar problem (20)
is well-posed, there exists one, and only one, pvh ∈Mh such that

(ξ∇pvh |∇qh)0,Ω = (ξvh|∇qh)0,Ω , ∀qh ∈Mh. (35)

And one has
kvh = vh −∇pvh ∈Kh(ξ), (36)

so V h = ∇[Mh] +Kh(ξ). Using (59), the fact that the sum is direct is derived
exactly as in the continuous case (see the proof of proposition 2).
In the classical case, let qh ∈Mh, kh ∈Kh(ξ): (∇qh,kh)class = (ξ∇qh|kh)0,Ω =
0, because ∇qh is curl-free, and ξ is a symmetric tensor field. ut

For all h, we can use the splitting (34) and the explicit definitions (35)-(36)
to define the operators

π1h :
{
V h →Mh

vh 7→ pvh
, π2h :

{
V h →Kh(ξ)
vh 7→ kvh

. (37)

In other words, one may write, for all h, for all vh ∈ V h, vh = ∇(π1hvh) +
π2hvh. Also, one has for all h, (π2h)2 = π2h.

Proposition 12 Assume that (59) holds. The continuity moduli of the oper-
ators (π1h)h, (π2h)h are bounded independently of h.

Proof This is obvious in the classical case, because the sum is orthogonal with
respect to the inner product (·, ·)class.
In the interface case, given h and vh ∈ V h, one has according to (59) and (35)

α′0 ‖∇(π1huh)‖2
0,Ω ≤ (ξ∇(π1huh)|∇(T0(π1huh)))0,Ω = (ξuh|∇(T0(π1huh)))0,Ω

≤ ‖ξuh‖0,Ω‖∇(T0(π1huh))‖0,Ω ,

so that

‖∇(π1huh)‖H(curl;Ω) ≤ (α′0)−1‖ξ‖∞,Ω‖T0‖L(H1
0 (Ω))‖uh‖0,Ω .

And then

‖π2huh‖H(curl;Ω) ≤ (1 + (α′0)−1‖ξ‖∞,Ω‖T0‖L(H1
0 (Ω)))‖uh‖H(curl;Ω),

so the claim follows. ut

Let us now establish a uniform discrete inf-sup condition for the discrete div-
curl problems by applying the T-coercivity approach. Namely, we design ex-
plicit (discrete) operators Th that yield T-coercivity for the discrete problems
(21). The first step is as follows.
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Proposition 13 Assume that (59) holds. For all h, let Th ∈ L(Vh) be defined
as

Th : (uh, ph) 7→ (∇(T0ph) + π2huh, T0(π1huh)).

Then it holds

∀h, ∀(uh, ph) ∈ Vh, a((uh, ph),Th(uh, ph)) ≥
min(1, α′0)

(
‖ curl(π2huh)‖2

0,Ω + ‖∇(π1huh)‖2
0,Ω + ‖∇ph‖2

0,Ω
)
. (38)

Moreover, the continuity modulus of (Th)h is bounded independently of h.

Proof Using the definition of Kh(ξ) and the fact that ξ is a symmetric tensor
field, one computes

a((uh, ph),Th(uh, ph))
= a((∇(π1huh) + π2huh, ph), (∇(T0ph) + π2huh, T0(π1huh)))
= ‖ curl(π2huh)‖2

0,Ω + (ξ∇(π1huh)|∇(T0(π1huh)))0,Ω + (ξ∇(T0ph)|∇ph)0,Ω

≥ ‖ curl(π2huh)‖2
0,Ω + α′0

(
‖∇(π1huh)‖2

0,Ω + ‖∇ph‖2
0,Ω
)
,

which proves (38).
The uniform bound on the continuity modulus of (Th)h is a straightforward
consequence of proposition 12. ut

To obtain a lower bound with ‖(uh, ph)‖2
V in the right-hand side of (38), one

has to check that kh 7→ ‖ curlkh‖0,Ω defines a norm on Kh(ξ). And, if the
answer is positive, whether this norm of uniformly equivalent in h (ie. with
constants that are independent of h) to the ‖ · ‖H(curl;Ω)-norm on Kh(ξ).
So the second step is the ...

Proposition 14 Assume that (59) holds. For all h, kh 7→ ‖ curlkh‖0,Ω de-
fines a norm on Kh(ξ).

Proof Let kh ∈Kh(ξ) be such that curlkh = 0 in Ω. Since the boundary ∂Ω
is connected, we get from Theorem 3.3.9 of [3] that there exists q ∈ H1

0 (Ω) such
that kh = ∇q in Ω. Since Πcurl

h kh is well-defined (and equal to kh), we know
from proposition 4 that there exists qh ∈Mh such that Πcurl

h kh = ∇qh in Ω. In
other words, kh = Πcurl

h kh = ∇qh ∈ ∇[Mh]. So one has kh ∈ ∇[Mh] ∩Kh(ξ)
which reduces to {0} according to proposition 11, and this proves the result.

ut

Remark 8 Propositions 13 and 14 already yield incomplete, yet promising
results. As a matter of fact, it follows from the above that, for all h, the
discrete problem (21) is well-posed. Also, its solution (uh, ph) is such that
ph = 0: indeed, using (∇(T0ph), 0) as a test function in (21), one finds that
(ξ∇(T0ph)|∇ph)0,Ω = 0, so ph = 0 (cf. (59) plus symmetry of ξ).

Theorem 3 Assume that (59) holds. Then

∃C?W > 0, ∀h, ∀kh ∈Kh(ξ), ‖kh‖0,Ω ≤ C?W ‖ curlkh‖0,Ω . (39)
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Remark 9 The proof is split into three parts. The first part is well-known, see
eg. chapter 7 in [47]. To the author’s knowledge, the other two parts are new.

Proof We consider three cases:

(i) classical case with use of Πcurl
h ;

(ii) classical case with use of Πcomb
h ;

(iii) interface case.

Let kh ∈Kh(ξ) be given. We know from corollary 1 that there exists one, and
only one, solution to the div-curl problem with data (f , g) = (curlkh, 0), as
curlkh ∈ HΣ

0 (div 0;Ω) (cf. Theorem 6.1.4 in [3]). We denote its solution by
k. By definition, k ∈KN (Ω, ξ). We observe that

‖kh‖0,Ω ≤ ‖kh − k‖0,Ω + ‖k‖0,Ω

≤ ‖kh − k‖0,Ω + CW ‖ curlk‖0,Ω

= ‖kh − k‖0,Ω + CW ‖ curlkh‖0,Ω (40)

thanks to the triangle inequality, (17) and the definition of k. To obtain (39),
one has now to bound ‖kh − k‖0,Ω by ‖ curlkh‖0,Ω , uniformly with respect
to h.

(i) In the classical case, and assuming one can apply the classical interpo-
lation operator Πcurl

h to k ; that is, if one assumes that τDir ∈ (1/2, 1] (see
corollary 2 and proposition 5). The classic proof (see eg. chapter 7 in [47])
allows to bound uniformly ‖k−kh‖0,Ω by ‖k−Πcurl

h k‖0,Ω as follows. Thanks
to the assumption (2) on ξ,

ξ− ‖k − kh‖2
0,Ω ≤ (ξ(k − kh)|k − kh)0,Ω

= (ξ(k − kh)|k −Πcurl
h k)0,Ω

+(ξ(k − kh)|Πcurl
h k − kh)0,Ω . (41)

Let us study Πcurl
h k − kh.

First, we remark that curl(Πcurl
h k) = Πdiv

h (curlk) according to (26). Next,
we express Πdiv

h (curlk) in terms of curlkh. By definition of k, it holds that
Πdiv
h (curlk) = Πdiv

h (curlkh), so using (24)-(25), we get that Πdiv
h (curlk) =

curlkh. In other words, curl(Πcurl
h k − kh) = 0 in Ω. According to Theorem

3.3.9. in [3], there exists q ∈ H1
0 (Ω) such that Πcurl

h k − kh = ∇q in Ω.
Moreover, Πcurl

h (Πcurl
h k − kh) is well-defined (and equal to Πcurl

h k − kh), so
we conclude from proposition 4 that there exists qh ∈ Mh such that ∇qh

(
=

Πcurl
h (Πcurl

h k − kh)
)

= Πcurl
h k − kh.

Hence the last term in (41) is equal to (ξ(k−kh)|∇qh)0,Ω : it vanishes, because
k ∈KN (Ω, ξ), resp. kh ∈Kh(ξ). Using Cauchy-Schwarz inequality, (41) now
yields

‖k − kh‖0,Ω ≤
ξ+

ξ−
‖k −Πcurl

h k‖0,Ω .

Finally, using proposition 5, the bound (29), (18) and the definition of k, we
find that, for any s ∈ (1/2, τDir) it holds ‖k−Πcurl

h k‖0,Ω . hs ‖ curlkh‖0,Ω .
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Since h . diam(Ω), using (40) we conclude that the uniform bound (39) holds.
(ii) In the classical case, and if τDir ∈ (0, 1/2], one can still use the combined

interpolation operator Πcomb
h on k (see proposition 8). One finds now

ξ− ‖k − kh‖2
0,Ω ≤ (ξ(k − kh)|k −Πcomb

h k)0,Ω

+(ξ(k − kh)|Πcomb
h k − kh)0,Ω . (42)

According to property (32) for the combined interpolation operator, we know
that curl(Πcomb

h k) = Πdiv
h (curlk). Proceeding as before (cf. the proof for

case (i)), we find now that Πcomb
h k−kh belongs to ∇[Mh], so the last term in

(42) vanishes too. Using Cauchy-Schwarz inequality, it yields

‖k − kh‖0,Ω ≤
ξ+

ξ−
‖k −Πcomb

h k‖0,Ω .

Thanks to proposition 8, for any s ∈ (0, τDir) it holds that

‖k −Πcomb
h k‖0,Ω . hs{‖k‖H(curl;Ω) + ‖Qk‖PH1+s(Ω)}.

On the other hand, we know that ‖Qk‖PH1+s(Ω) . ‖k‖H(curl;Ω) (see the proof
of corollary 2), so using (18) and the definition of k, for any s ∈ (0, τDir), it
actually holds that ‖k − Πcomb

h k‖0,Ω . hs ‖ curlkh‖0,Ω . We conclude as in
case (i).

(iii) In the interface case, we cannot proceed like in the classical case, indeed
the mapping (v,w) 7→ (ξv|w)0,Ω is not an inner product on L2(Ω) anymore.
On the other hand, we know that curl(k − kh) = 0 in Ω by definition of
k, so according to Theorem 3.3.9. in [3], there exists q ∈ H1

0 (Ω) such that
k − kh = ∇q in Ω. Thus, using (9), we have the bound

α0 ‖k − kh‖2
0,Ω = α0 ‖∇q‖2

0,Ω ≤ (ξ∇q|∇(T0q))0,Ω = (ξ(k − kh)|∇(T0q))0,Ω .

As in cases (i)-(ii), we note that (ξ(k − kh)|∇q′h)0,Ω = 0, for all q′h ∈ Mh.
Or equivalently, if we recall (59) and its consequence T0[Mh] = Mh: (ξ(k −
kh)|∇(T0qh))0,Ω = 0, for all qh ∈Mh. Hence, it holds that, for all qh ∈Mh:

α0 ‖k − kh‖2
0,Ω ≤ (ξ(k − kh)|∇(T0(q − qh)))0,Ω

≤ ξ+ ‖k − kh‖0,Ω ‖∇(T0(q − qh))‖0,Ω

≤ ξ+ ‖T0‖L(H1
0 (Ω)) ‖k − kh‖0,Ω ‖∇(q − qh)‖0,Ω .

This implies that

‖k − kh‖0,Ω ≤
ξ+

α0
‖T0‖L(H1

0 (Ω)) inf
qh∈Mh

‖∇(q − qh)‖0,Ω .

There remains to choose some ad hoc qh ∈ Mh. We know that Πcomb
h k − kh

belongs to ∇[Mh] (same as in case (ii)) or, in other words, that there exists
q0
h ∈Mh such that Πcomb

h k − kh = ∇q0
h. But

∇(q − q0
h) = (k − kh)− (Πcomb

h k − kh) = k −Πcomb
h k,
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so choosing qh = q0
h yields

‖k − kh‖0,Ω ≤
ξ+

α0
‖T0‖L(H1

0 (Ω)) ‖k −Πcomb
h k‖0,Ω .

We can conclude as in case (ii). ut

We can now state the error estimates for the div-curl problem.

Corollary 3 Assume that (59) holds. Then, for all h, the discrete problem
(21) is well-posed. In addition, its solution (uh, ph) is such that ph = 0. With-
out further assumption on the regularity of the data (f , g), one has

lim
h→0
‖u− uh‖H(curl;Ω) = 0. (43)

Let the extra-regularity of the data (f , g) be as in (11) with τ1, τ2 > 0 given,
then one has the error estimate, for all s ∈ [0,min(τ2, τDir)),

‖u− uh‖H(curl;Ω) . hmin(s,τ1){‖g‖−1+s,Ω + ‖f‖P Hτ1 (Ω)}. (44)

Proof We observed in remark 8 that the discrete problems are well-posed,
with ph = 0. In addition, we can now prove that the form a fulfills a uniform
discrete inf-sup condition. This result is an obvious consequence of (38), be-
cause (39) allows one to bound uniformly ‖ curl(π2huh)‖2

0,Ω from below by
‖π2huh‖2

H(curl;Ω). Indeed, we get

∀h, ∀(uh, ph) ∈ Vh,

a((uh, ph),Th(uh, ph)) &
(
‖ curl(π2huh)‖2

0,Ω + ‖∇(π1huh)‖2
0,Ω + ‖∇ph‖2

0,Ω
)

&
(
‖π2huh‖2

H(curl;Ω) + ‖∇(π1huh)‖2
H(curl;Ω) + ‖∇ph‖2

0,Ω

)
,

&
(
‖uh‖2

H(curl;Ω) + ‖∇ph‖2
0,Ω

)
,

where we used successively (38), (39) and finally the triangle inequality

‖uh‖H(curl;Ω) ≤ ‖∇(π1huh)‖H(curl;Ω) + ‖π2huh‖H(curl;Ω).

Hence it holds that

∃α, ∀h, ∀(uh, ph) ∈ Vh, a((uh, ph),Th(uh, ph)) ≥ α ‖(uh, ph)‖2
V. (45)

We recall that the continuity modulus of (Th)h is bounded independently of
h (see proposition 13). Using Theorem 2 in [25], we conclude that the form
a fulfills a uniform discrete inf-sup condition, and so that the classical error
estimate holds (recall that p = ph = 0)

‖u− uh‖H(curl;Ω) . inf
vh∈V h

‖u− vh‖H(curl;Ω).

In the absence of extra-regularity of the data, according to the basic approx-
imability property of (V h)h in H(curl;Ω), one finds (43). On the other hand,
in the case of extra-regularity of the data, we then recover (44) by choosing
vh = Πcomb

h u (see proposition 10). ut



div-curl and div-curlcurl problems with a sign-changing coefficient 21

6 Case of a ”weak” T-coercivity operator

As usual we assume in this section that the companion scalar problem (3) is
well-posed. But that we only have at hand a ”weak” explicit T-coercivity in-
volution operator T , cf. (58) in section A.1. This situation may occur only
in the interface case. At the discrete level, one can build ”weak” discrete
T-coercivity operators provided the meshes are locally T-conform (see sec-
tion A.2). This yields uniformly bounded discrete operators (Th)h≤h0 , where
h0 > 0 is a threshold value, such that (61)-(62) are fulfilled, with consequences
listed in section A.2. Then, introducing Kh(ξ) as before (see (33)), one has
the...
Proposition 15 In the ”weak” T-coercivity framework, for all h ≤ h0, one
has the direct sum

V h = ∇[Mh]⊕Kh(ξ). (46)
In addition, kh 7→ ‖ curlkh‖0,Ω defines a norm on Kh(ξ).
Finally, the operators (π1h)h≤h0 and (π2h)h≤h0 introduced in (37) are well-
defined, and their continuity moduli are bounded independently of h ≤ h0.
As a consequence,

||| · |||V : (uh, ph) 7→
(
‖ curl(π2huh)‖2

0,Ω + ‖∇(π1huh)‖2
0,Ω + ‖∇ph‖2

0,Ω
)1/2

defines a norm on V for all h ≤ h0. We now prove a uniform discrete inf-sup
condition in ||| · |||V-norm.
Proposition 16 In the ”weak” T-coercivity framework, for h small enough,
the form a fulfills a uniform discrete inf-sup condition in ||| · |||V-norm:

∃C, h1 > 0, ∀h ≤ h1, ∀(uh, ph) ∈ Vh,

sup
(vh,qh)∈Vh\{0}

a((uh, ph), (vh, qh))
|||(vh, qh)|||V

≥ C |||(uh, ph)|||V. (47)

Proof We argue by contradiction. Namely, we assume that
∀k ∈ N \ {0}, ∃hk ≤ k−1, ∃(uhk , phk) ∈ Vhk ,
|||(uhk , phk)|||V = 1, and

sup
(vhk ,qhk )∈Vhk\{0}

|a((uhk , phk), (vhk , qhk))|
|||(vhk , qhk)|||V

≤ k−1.
(48)

In particular, limk→∞ hk = 0, so it holds that hk < h0 for k large enough,
where h0 is defined by (62). So from now on, we consider that hk < h0.
Compute

a((uhk , phk), (∇(Thkphk) + π2hkuhk , Thk(π1hkuhk)))
= ‖ curl(π2hkuhk)‖2

0,Ω + (ξ∇(π1hkuhk)|∇(Thk(π1hkuhk)))0,Ω

+(ξ∇(Thkphk)|∇phk)0,Ω

≥ ‖ curl(π2hkuhk)‖2
0,Ω + α ‖∇(π1hkuhk)‖2

0,Ω + α ‖∇phk‖2
0,Ω

−β ‖π1hkuhk‖2
0,Ω − β ‖phk‖2

0,Ω

≥ min(1, α) |||(uhk , phk)|||2V − β ‖π1hkuhk‖2
0,Ω − β ‖phk‖2

0,Ω .
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Above, we used the definition of Khk(ξ), the fact that ξ is a symmetric tensor
field, the ”weak” discrete T-coercivity property (61), and finally the definition
of |||(uhk , phk)|||V.
By assumption (48), |||(uhk , phk)|||V = 1, so (π1hkuhk)k and (phk)k are bounded
in H1

0 (Ω), and moreover it holds that

a((uhk , phk), (∇(Thkphk) + π2hkuhk , Thk(π1hkuhk))) (49)
≥ min(1, α)− β ‖π1hkuhk‖2

0,Ω − β ‖phk‖2
0,Ω .

Let ⇀ denote weak convergence. Thanks to Rellich’s Theorem (cf. Theorem
9.6 in [18]), there exists p̃u, p̃ ∈ H1

0 (Ω) such that

limk→∞ ‖π1hkuhk − p̃u‖0,Ω = 0, π1hkuhk ⇀ p̃u in H1
0 (Ω) ;

limk→∞ ‖phk − p̃‖0,Ω = 0, phk ⇀ p̃ in H1
0 (Ω).

We prove that p̃u = p̃ = 0.
We start with p̃: let q ∈ H1

0 (Ω), it holds that (cf. Proposition 3.5 in [18])

(ξ∇q|∇phk)0,Ω → (ξ∇q|∇p̃)0,Ω .

Now, according to the basic approximability property of (Mh)h in H1
0 (Ω),

there exists (qhk)k such that, for all k ≥ 1, qhk ∈Mhk , and moreover limk→∞ ‖qhk−
q‖H1

0 (Ω) = 0. Recall that a((uhk , phk), (∇qhk , 0)) = (ξ∇qhk |∇phk)0,Ω , so one
has

|(ξ∇q|∇phk)0,Ω | ≤ |(ξ∇(q − qhk)|∇phk)0,Ω |+ |(ξ∇qhk |∇phk)0,Ω |
≤ ξ+ ‖∇(q − qhk)‖0,Ω‖∇phk‖0,Ω + |a((uhk , phk), (∇qhk , 0))|
≤ ξ+ ‖∇(q − qhk)‖0,Ω‖∇phk‖0,Ω + k−1‖∇qhk‖0,Ω .

Above, the last inequality is a consequence of assumption (48). Passing to
the limit, one concludes that (ξ∇q|∇p̃)0,Ω = 0. This result holds holds for all
q ∈ H1

0 (Ω). Because ξ is a symmetric tensor field and the scalar problem (3)
is well-posed, it follows that p̃ = 0.
Let us carry on with p̃u: let again q ∈ H1

0 (Ω), it now holds that

(ξ∇q|∇(π1hkuhk))0,Ω → (ξ∇q|∇p̃u)0,Ω .

Take (qhk)k as before and recall that a((uhk , phk), (0, qhk)) = (ξ∇(π1hkuhk)|∇qhk)0,Ω ,
so one has

|(ξ∇q|∇(π1hkuhk))0,Ω | ≤ |(ξ∇(q − qhk)|∇(π1hkuhk))0,Ω |+ |(ξ∇qhk |∇(π1hkuhk))0,Ω |
≤ ξ+ ‖∇(q − qhk)‖0,Ω‖∇(π1hkuhk)‖0,Ω + |a((uhk , phk), (0, qhk))|
≤ ξ+ ‖∇(q − qhk)‖0,Ω‖∇(π1hkuhk)‖0,Ω + k−1‖∇qhk‖0,Ω .

Above, the last inequality is again a consequence of assumption (48). Proceed-
ing as before, we find now that p̃u = 0.
Hence, going back to (49), we have that the lower bound goes to

lim
k→∞

(
min(1, α)− β ‖π1hkuhk‖2

0,Ω − β ‖phk‖2
0,Ω
)

= min(1, α) > 0.
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On the other hand, according to the assumption (48)

|a((uhk , phk), (∇(Thkphk) + π2hkuhk , Thk(π1hkuhk))|
≤ k−1 ‖(∇(Thkphk) + π2hkuhk , Thk(π1hkuhk))‖V.

Then, π2hk(∇(Thkphk)+π2hkuhk) = π2hkuhk and π1hk(∇(Thkphk)+π2hkuhk) =
Thkphk , so:

‖(∇(Thkphk) + π2hkuhk , Thk(π1hkuhk))‖2
V =

‖ curl(π2hkuhk)‖2
0,Ω + ‖∇(Thkphk)‖2

0,Ω + ‖∇(Thk(π1hkuhk))‖2
0,Ω .

It follows that

‖(∇(Thkphk) + π2hkuhk , Thk(π1hkuhk))‖V . max
(

1, sup
k
‖Thk‖L(Mhk

)

)
,

and one finds that the upper bounds goes to

lim
k→∞

(
k−1 ‖(∇(Thkphk) + π2hkuhk , Thk(π1hkuhk)‖V

)
= 0,

ie. a contradiction. ut

Remark 10 As already observed in remark 8, it follows from the above that,
for h small enough, the discrete problem (21) is well-posed. And its solution
(uh, ph) is such that ph = 0.

To conclude the study, we now prove the results below.

Theorem 4 In the ”weak” T-coercivity framework, for h small enough, the
‖ curl ·‖0,Ω-norm defines a norm that is uniformly equivalent to the ‖·‖H(curl;Ω)-
norm on Kh(ξ):

∃C?W , h2 > 0, ∀h ≤ h2, ∀kh ∈Kh(ξ), ‖kh‖0,Ω ≤ C?W ‖ curlkh‖0,Ω . (50)

Proof It follows closely the proof of theorem 3, case (iii). Let kh ∈ Kh(ξ) be
given, and let k be the solution to the div-curl problem with data (f , g) =
(curlkh, 0). As before, we find that there exists q ∈ H1

0 (Ω) such that k−kh =
∇q in Ω.
Let h ≤ h0, where h0 appears in the uniform discrete inf-sup condition (62).
Then, for any q̄h ∈Mh, we write the triangle inequality

‖k − kh‖0,Ω = ‖∇q‖0,Ω ≤ ‖∇(q − q̄h)‖0,Ω + ‖∇q̄h‖0,Ω .

According to (62), there exists q′h ∈Mh \ {0} such that

‖∇q̄h‖0,Ω ≤ (γ0)−1 (ξ∇q̄h|∇q′h)0,Ω

‖∇q′h‖0,Ω
.

Since k ∈ KN (Ω, ξ) and kh ∈ Kh(ξ), one has (ξ(k − kh)|∇q′h)0,Ω = 0 or, in
other words, (ξ∇q|∇q′h)0,Ω = 0. Hence,

‖∇q̄h‖0,Ω ≤ (γ0)−1 (ξ∇(q̄h − q)|∇q′h)0,Ω

‖∇q′h‖0,Ω
≤ ξ+

γ0
‖∇(q − q̄h)‖0,Ω .



24 P. Ciarlet Jr.

We find that ‖k−kh‖0,Ω ≤ (1 + ξ+/γ0)‖∇(q− q̄h)‖0,Ω . Since the result holds
for any q̄h ∈Mh, we have actually proved that

‖k − kh‖0,Ω . inf
qh∈Mh

‖∇(q − q̄h)‖0,Ω .

We conclude the proof as before (theorem 3, case (iii)), by choosing qh ∈ Mh

such that Πcomb
h k − kh = ∇qh. ut

We can finally state the error estimates for the div-curl problem in the ”weak”
T-coercivity framework. The proof is similar to the proof of corollary 3.

Corollary 4 In the ”weak” T-coercivity framework, for h small enough, the
discrete problem (21) is well-posed. In addition, its solution (uh, ph) is such
that ph = 0. Without further assumption on the regularity of the data (f , g),
one has

lim
h→0
‖u− uh‖H(curl;Ω) = 0. (51)

Let the extra-regularity of the data (f , g) be as in (11) with τ1, τ2 > 0 given,
then one has the error estimate, for all s ∈ [0,min(τ2, τDir)),

‖u− uh‖H(curl;Ω) . hmin(s,τ1){‖g‖−1+s,Ω + ‖f‖P Hτ1 (Ω)}. (52)

7 The div-curlcurl problem

The div-curlcurl problem writes:
Find u ∈H0(curl;Ω) such that
curl ζ curlu = f in Ω,
div ξu = g in Ω.

(53)

Above, we assume that the new coefficient2 ζ fulfills (2) (classical case), whereas
ξ is as before (classical case or interface case). Introducing H(div 0;Ω) :=
{f ′ ∈H(div;Ω) : div f ′ = 0 in Ω}, the assumptions on the source terms are
as follows

f ∈H(div 0;Ω), g ∈ H−1(Ω). (54)

Indeed, let us prove existence and uniqueness of the solution u to the div-
curlcurl problem (see also proposition 17 below).
Uniqueness. Assume first that (f , g) = (0, 0). Then f = ζ curlu ∈H(curl;Ω)
is such that curlf = 0. Because u ∈ H0(curl;Ω), one has ζ−1f = curlu ∈
H0(div;Ω), with div ζ−1f = 0 in Ω. Finally, 〈ζ−1f ·n, 1〉Σi = 0 for 1 ≤ i ≤ I
(cf. Remark 3.5.2 in [3]). Since ζ−1 is as in the classical case, we thus conclude
that f = 0 according to Proposition 6.2.1 in [3]. Hence, u solves the div-curl
problem (coefficient ξ) with vanishing data: u = 0.

2 Note that ζ−1 fulfills (2) automatically.
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Existence. Let f ∈H(div 0;Ω). As ∂Ω is connected, according now to Theo-
rem 6.2.5 in [3], there exists w in

XT (Ω, ζ−1) := {v ∈H(curl;Ω) : ζ−1v ∈H0(div;Ω)}

such that curlw = f and div ζ−1w = 0 in Ω, and 〈ζ−1w · n, 1〉Σi = 0 for
1 ≤ i ≤ I. In particular, ζ−1w belongs to HΣ

0 (div 0;Ω) (see definition of
this function space at the beginning of section 3). Hence there exists u ∈
H0(curl;Ω) such that curlu = ζ−1w and div ξu = g in Ω because the div-
curl problem (coefficient ξ) is well-posed. Obviously, u solves the div-curlcurl
problem (53) with data (f , g).
Next, define the continuous bilinear form on V:

aζ((u, p), (v, q)) := (ζ curlu| curlv)0,Ω + (ξu|∇q)0,Ω + (ξv|∇p)0,Ω .

For such source terms as in (54), we introduce the variational formulation{
Find (u, p) ∈ V such that
aζ((u, p), (v, q)) = (f |v)0,Ω − 〈g, q〉H1

0 (Ω), ∀(v, q) ∈ V. (55)

The right-hand side defines a continuous linear form on V, with norm bounded
from above by ‖f‖0,Ω + ‖g‖−1,Ω . Observe that, since ζ is as in the classical
case, the bilinear form aζ is similar to the form a for the div-curl problem, so
one recovers easily results that correspond to lemma 1 and proposition 1.

Lemma 2 Let f ∈H(div 0;Ω) and g ∈ H−1(Ω) be given. Then if (u, p) is a
solution to the variational formulation (55), it holds that p = 0.

Proof Choose (v, q) = (∇(T0p), 0) in (55). This yields:

(ξ∇(T0p)|∇p)0,Ω = 0.

Since ξ is symmetric, one has α0‖∇p‖2
0,Ω = 0 according to (9), so p = 0. ut

Proposition 17 Let f ∈H(div 0;Ω) and g ∈ H−1(Ω) be given. Then it holds
that u is a solution to the div-curlcurl problem (53) if, and only if, (u, 0) is a
solution to the variational formulation (55).

Proof Let u solve (53), then u ∈H0(curl;Ω).
Also, for (v, q) ∈ V, one has by integration on Ω, and integration by parts
(resp. definition of duality):

(ζ curlu| curlv)0,Ω = (f |v)0,Ω , resp.
(ξu|∇q)0,Ω = −〈g, q〉H1

0 (Ω).

So it follows that

(ζ curlu| curlv)0,Ω + (ξu|∇q)0,Ω = (f |v)0,Ω − 〈g, q〉H1
0 (Ω).

Hence, (u, 0) solves (55).
Conversely, let (u, p) solve (55). By definition u ∈H0(curl;Ω) and, according
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to lemma 2, p = 0. Choosing (0, q) as a test function in (55), one finds next
that div ξu = g in H−1(Ω). Then, one has that

(ζ curlu| curlv)0,Ω = (f |v)0,Ω , ∀v ∈H0(curl;Ω).

We thus conclude that curl ζ curlu = f in (H0(curl;Ω))′. Hence u solves
the div-curlcurl problem (53). ut

And the well-posedness of (55) is obtained as in theorem 2 and corollary 1, so
the div-curlcurl problem is well-posed. Indeed, observe that one can recover
T-coercivity of the form aζ with the same operator T as the one provided in
the proof of theorem 2: in this sense, the forms aζ and a exhibit the same
properties. Well-posedness then follows.

When we study the discrete div-curlcurl problems and to obtain explicit
convergence rates, we make again two additional assumptions. First, that the
coefficients ζ−1 and ξ are piecewise smooth on a common partition. Second,
regarding the extra-regularity of the data (f , g), we only ask that

g ∈ H−1+τ2(Ω), with τ2 ∈ (0, 1] given.

Indeed, when u solves the div-curlcurl problem, we already noticed that c =
ζ curlu belongs to XT (Ω, ζ−1). Using a shift theorem for the companion
scalar problem with Neumann boundary condition{

Find s ∈ H1
zmv(Ω) such that

(ζ−1∇s|∇q)0,Ω = 〈g′, q〉H1
zmv(Ω), ∀q ∈ H1

zmv(Ω), (56)

and a regular plus gradient splitting (see eg. [30,28]), we introduce τNeu ∈ (0, 1]
depending only on the geometry and on ζ−1 such that

XT (Ω, ζ−1) ⊂ ∩s∈[0,τNeu)PH
s(Ω),

with continuous imbedding for all s ∈ [0, τNeu). Furthermore, using a Weber
inequality (cf. Theorem 6.2.5 in [3]), one has that for all s ∈ [0, τNeu),

∀v ∈XT (Ω, ζ−1),
‖v‖P Hs(Ω) . ‖ curlv‖0,Ω + ‖ div ζ−1v‖0,Ω +

∑
1≤i≤I |〈ζ−1f · n, 1〉Σi |.

As a consequence, we note that since ζ−1 is piecewise smooth, it also holds
that curlu ∈ ∩s∈[0,τNeu)PH

s(Ω) with continuous dependence. And, because
c = ζ curlu is such that div ζ−1c = 0 in Ω and 〈ζ−1c·n, 1〉Σi = 0 for 1 ≤ i ≤ I
(cf. Remark 3.5.2 in [3]), one has the estimate, for all s ∈ [0, τNeu),

‖ curlu‖P Hs(Ω) . ‖ curl ζ curlu‖0,Ω .

Remark 11 In other words, for the div-curlcurl problem (compared to the div-
curl problem), τNeu plays the role of τ1. Observe that choosing f ∈ L2(Ω) is
already sufficient to have extra regularity on the curl of u.
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So one may find interpolation results that are completely similar to the ones
previously obtained. In particular regarding the classical, or combined, inter-
polation of the solution u to the div-curlcurl problem, with τNeu now replacing
τ1 in propositions 7 and 10.
Then, because the forms aζ and a exhibit the same properties, one concludes
that error estimates similar to those of corollaries 3 and 4 hold, that is when a
”full” T-coercivity operator, resp. a ”weak” T-coercivity operator, is available
for the companion scalar problem (3), again with τNeu replacing τ1.

8 Conclusions and extensions

We have studied the fundamental building block for solving problems in elec-
tromagnetism, namely the div-curl and div-curlcurl problems, for classical and
interface models. For the latter, a sign-change of the coefficient appearing in
the divergence condition is possible. We have also proved optimal convergence
rates on the error, when the numerical approximation is computed with the
help of the Nédélec’s first family of edge finite elements. For low-regularity so-
lutions, those results are achieved with the help of the combined interpolation
operator introduced in [28]. All those results have been obtained with the help
of explicit T-coercivity operators for the derivation of the inf-sup conditions.
There are several possible extensions.
The first obvious extension is to deal with a non-vanishing tangential trace,
namely replacing u×n = 0 on ∂Ω by u×n = e on ∂Ω in (1) or (53), where
the data e defined on ∂Ω is actually equal to the tangential trace of some
field ue ∈ H(curl;Ω). Introducing u0 = u − ue ∈ H0(curl;Ω), one finds
that u0 solves the div-curl problem (1), or the div-curlcurl problem (53), with
modified right-hand sides. Hence one may study these problems as before.
In order to obtain explicit convergence rates, one needs to have some ad hoc
extra-regularity assumptions on ue.
Among other possible extensions, one could prove similar results both from
the theoretical and numerical viewpoints for the div-curl model with vanishing
normal trace, namely 

Find u ∈ L2(Ω) such that
curlu = f in Ω,
div ξu = g in Ω,
u · n = 0 on ∂Ω,

(57)

under appropriate assumptions on the data. We refer to §6.2 in [3] for pointers
on how to address the classical case theoretically, from which one may iterate
as in the present paper.
Last, for a div-curl problem with mixed boundary conditions, we refer to the
paper of Fernandes and Gilardi [38] to start the studies.
Another interesting extension is going from those div-curl or div-curlcurl prob-
lems to the time-harmonic Maxwell’s equation, with one, or possibly two, sign-
changing coefficients.
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A Practical T-coercivity for the companion scalar problem

A.1 Explicit T-coercivity operators

In practice, how to realize explicitly the T-coercivity for a well-posed companion scalar
problem (3) in the interface case? The concept was originally introduced in [15] (see Theorem
2.1).
We provide a list à la Prévert to describe a number of situations where explicit T-coercivity
operators are available, taking into account the geometry of the domain Ω, and the shape of
the interface induced by the partition P = (Ωp)p=+,−. In some cases the results are known
for domains in R2 (we use the notations Ω2, resp. (Ω2p)p=+,−). We rely on Refs. [50,11,25,
12,19,10] for the precise results:

– the geometry is symmetric with respect to the interface, cf. §5.1 in [50] or §3.1 in [11] ;
this implies that the interface is a subset of a hyperplane ;

– the geometry is tubular with respect to the interface, with a smooth interface, cf. §3.4
in [11] ;

– the domain Ω2 is a disk or an angular sector in R2, and Ω2+ and Ω2− are angular
subsectors, cf. §3.2 in [11], or the domain Ω2 is the union of self-replicating triangles in
R2, and Ω2+ and Ω2− are union of contiguous triangles, cf. §3 in [10] ; this implies that
the interface has exactly one corner inside Ω2. This can be generalized to a geometry
in R3, by taking Ω := Ω2 × (a, b), resp. Ω± := Ω2± × (a, b), cf. §7.2 in [12], for some
a < b ; this implies that the interface has exactly one edge, and no vertex, inside Ω.

– Ω is the cube (−a, a)3, Ω+ or Ω− is the sub-cube (0, a)3, cf. §7.3 in [12], for some a > 0 ;
or §5.2 in [50] for the same setting in a square domain Ω2 in R2.

Then one can build explicitly an operator T0 that fulfills (9). We say that there is a ”full”
T-coercivity operator T0 available. In all of the above, the operator T0 is derived from
elementary geometrical transforms, such as symmetries, rotations and angle dilation. Except
for the latter, all those transforms can be used after discretization, provided the underlying
discrete geometrical structures (in our case, the meshes, see section 4) are conforming with
respect to the transforms.
One can check that, thanks to the generic definition of the operators T0 that is used (cf. p.
1915 in [15] or p. 4274 in [50]), in all instances, one has (T0)2 = IH1

0 (Ω). This leads to a
similar property for the operator T ∈ L(V) provided in the proof of theorem 2. As a matter
of fact, one has T0p ∈ H1

0 (Ω) and π2u ∈ KN (Ω, ξ), so that

T2((u, p)) = T((∇(T0p) + π2u, T0(π1u)))
= ((∇(T0(T0(π1u))) + π2[∇(T0p) + π2u], T0(T0p)))
= (∇((T0)2(π1u)) + (π2)2u, (T0)2p)
= (∇(π1u) + π2u, p) = (u, p).
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On the other hand, in many other configurations, and even though the scalar problem (3)
is well-posed, only a ”weak” T-coercivity operator T , defined in the following sense (see
Definition 2 in [10]), can be built explicitly:{

∃α, β > 0, ∃T ∈ L(H1
0 (Ω)) bijective,

∀q ∈ H1
0 (Ω), (ξ∇q|∇(Tq))0,Ω ≥ α ‖∇q‖2

0,Ω − β ‖q‖
2
0,Ω .

(58)

The main idea (see §4.3 in [11]) to build those operators is to use localization arguments. For
that, the mathematical tool of choice is an ad hoc partition of unity function. First, one can
focus on a neighborhood of the interface. Second, one separates corners and edges (in R2),
or one splits a smooth interface, etc., into elementary blocks that fit locally the situations
described above. We provide another list à la Prévert in which such a ”weak” T-coercivity
operator T can be built. The geometry of the domain Ω, and the partition P = (Ωp)p=+,−
are such that:

– the geometry is locally symmetric with respect to the interface, cf. §4 in [25] or §7.4 in
[12] ;

– the interface is smooth, cf. §2.B.1 in [19].
– the partition of the domain Ω2 is such that the interface separating Ω2+ and Ω2−

is polygonal, cf. §4 in [10] ; this can be generalized to a geometry in R3, by taking
Ω := Ω2 × (a, b), resp. Ω± := Ω2± × (a, b), for some a < b ; in principle, in R3, it could
be generalized to a polyhedral interface.

Again in all instances above, one has T 2 = IH1
0 (Ω), see Lemma 2 in [10].

Remark 12 Notice that (58) also fits the original concept of T-coercivity, cf. §2 in [15].

A.2 Discrete T-coercivity for the companion scalar problem

We assume below that the companion scalar problem (3) is well-posed.
With the help of ”full” or ”weak” T-coercivity operators for this problem, one may define
discrete T-coercivity operators that help prove well-posedness of the discrete scalar problems
(20). As a matter of fact, this is made possible thanks to the use, in the definition of the
exact operators T0 (”full” T-coercivity operator) and T (”weak” T-coercivity operator), of
elementary geometrical transforms, such as symmetries and rotations. This happens when
the interface is part of a hyperplane, polygonal (in R2) or polyhedral (in R3). Also, one needs
to interpolate the partition of unity function for the ”weak” T-coercivity operator. Then,
one can implement the discrete operators: this amounts to using (locally for the ”weak”
T-coercivity operator) T-conform meshes. Namely, the mesh is first built in Ω−, and then
mapped to Ω+ via the same geometrical transforms as the ones that were chosen to design
T0 or T , in order to define the mesh there. Or the other way around, from Ω+ to Ω−. For
the ”weak” T-coercivity operator, the process is localized to a neighborhood of the interface.
We refer to [25,10] for details.
Consequently, when one has at hand a ”full” T-coercivity operator T0, it can also be used
to establish the uniform discrete T-coercivity of the discrete scalar problems (20). Namely,
T0 is such that{

∀h, T0[Mh] ⊂Mh, and
∃α′0 > 0, ∀h, ∀qh ∈Mh, (ξ∇qh|∇(T0qh))0,Ω ≥ α′0 ‖∇qh‖

2
0,Ω .

(59)

As a first consequence of (59), we note that since (T0)2 = IH1
0 (Ω), one has actually T0[Mh] =

Mh for all h. Another by-product of (59) is that (qh, q′h) 7→ (ξ∇qh|∇q′h)0,Ω fulfills a uniform
discrete inf-sup condition, ie.

∃γ0 > 0, ∀h, ∀qh ∈Mh, sup
q′
h
∈Mh\{0}

(ξ∇qh|∇q′h)0,Ω

‖q′
h
‖H1

0 (Ω)
≥ γ0 ‖qh‖H1

0 (Ω). (60)
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So, the discrete scalar problems (20) are well-posed, and the classical error estimate holds:
‖s− sh‖H1

0 (Ω) . infqh∈Mh ‖s− qh‖H1
0 (Ω). See Theorem 2 in [25] for details.

On the other hand, when one has at hand a ”weak” T-coercivity operator T , because of the
presence of the partition of unity function, one builds ”weak” discrete T-coercivity operators
(see Lemma 3 in [10]), that is discrete operators (Th)h such that

∃C, h0 > 0, ∀h ≤ h0, ∃Th ∈ L(Mh), sup
q∈Mh\{0}

‖∇(T − Th)qh‖0,Ω

‖∇qh‖0,Ω
≤ C h.

Obviously, suph ‖Th‖L(Mh) <∞. We call this situation the ”weak” T-coercivity framework.
It follows that one has a ”weak” discrete T-coercivity property (pp. 820-821 in [10]):

∃α, β, h0 > 0, ∀h ≤ h0, ∀qh ∈Mh, (ξ∇qh|∇(Thqh))0,Ω ≥ α ‖∇qh‖2
0,Ω−β ‖qh‖

2
0,Ω . (61)

Then, thanks to Proposition 3 in [25] where one argues by contradiction(3), one can prove
that (qh, q′h) 7→ (ξ∇qh|∇q′h)0,Ω fulfills a uniform discrete inf-sup condition, for h small
enough, ie.

∃γ0, h0 > 0, ∀h ≤ h0, ∀qh ∈Mh, sup
q′
h
∈Mh\{0}

(ξ∇qh|∇q′h)0,Ω

‖q′
h
‖H1

0 (Ω)
≥ γ0 ‖qh‖H1

0 (Ω). (62)

So, one can derive results for the the discrete scalar problems (20) that are similar to those
that where obtained when a ”full” T-coercivity operator was available, now for h small
enough, that is when h ≤ h0.
Finally, when the interface is smooth, the same guidelines apply, see §2.B.1 in [19]. In this
case, one needs to have at hand some curvilinear finite elements, such as isoparametric
finite elements (cf. §4.3 in [26]), near the interface. It is known that optimal interpolation
properties hold, ie. one may recover up to O(h) accuracy using Lagrange’s first-order finite
elements for a sufficiently smooth scalar field. Or, one can choose the approach of [44] to
achieve again optimal convergence rate: for that one needs a family of simplicial meshes
which resolve the smooth interface sufficiently well. Observe that for first-order edge finite
elements, the latter approach can also be used, to yield O(h) interpolation accuracy for a
sufficiently smooth vector field of H0(curl;Ω) (see [42]).

3 In proposition 16 in section 6, we proceed similarly to derive a uniform discrete inf-sup
condition for the form a. A proof is given there. Note that because we argue by contradiction,
bounds are not explicit anymore.


