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ON THE APPROXIMATION OF ELECTROMAGNETIC FIELDS BY
EDGE FINITE ELEMENTS. PART 3: SENSITIVITY TO

COEFFICIENTS∗
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Abstract. In bounded domains, the regularity of the solutions to boundary value problems
depends on the geometry, and on the coefficients that enter into the definition of the model. This is in
particular the case for the time-harmonic Maxwell equations, whose solutions are the electromagnetic
fields. In this paper, emphasis is put on the electric field. We study the regularity in terms of the
fractional order Sobolev spaces Hs, s ∈ [0, 1]. Precisely, our first goal is to determine the regularity
of the electric field and of its curl, that is, to find some regularity exponent τ ∈ (0, 1), such that they
both belong to Hs, for all s ∈ [0, τ). After that, one can derive error estimates. Here, the error is
defined as the difference between the exact field and its approximation, where the latter is built with
Nédélec’s first family of finite elements. In addition to the regularity exponent, one needs to derive
a stability constant that relates the norm of the error to the norm of the data: this is our second
goal. We provide explicit expressions for both the regularity exponent and the stability constant
with respect to the coefficients. We also discuss the accuracy of these expressions, and we provide
some numerical illustrations.
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1. Introduction. We study the numerical approximation of electromagnetic
fields governed by Maxwell’s equations. More precisely, our goal is to characterize
the dependence of the error between the exact and computed fields, with respect to
the coefficients that define the model (PDEs, supplemented with boundary condi-
tions). This paper is the third part of the series entitled “On the Approximation of
Electromagnetic Fields by Edge Finite Elements” [12, 13].

For Maxwell’s equations, the coefficients are the electric permittivity, the magnetic
permeability, and the conductivity. Classically, the model is recast as an equivalent
variational formulation. The first goal is to determine the value of the constants
that appear in the analysis of the variational formulation, which are the continuity
modulus of the forms, and the coercivity or inf-sup constants. Then, one performs the
numerical analysis of the model. In addition to the abovementioned constants, one has
to estimate the order of convergence, which depends on the (extra-)regularity of the
fields; this (extra-)regularity depends itself on the behavior of the coefficients and on
the geometry of the model. In particular, it is crucial to use ad hoc norms to measure
the fields and the data, and particular care is devoted to the definition of those norms.
We observe that if the coefficients belong to a set not reduced to a singleton (e.g.,
random coefficients), then the (extra-)regularity may vanish in some limit cases.

The outline of the paper is as follows.
In the next section, we introduce the model problem (see, eg., [2]), set in a

bounded region of R3, with volume sources. We prescribe some a priori conditions
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on the coefficients and on the source terms; the coefficients are only supposed to be
piecewise smooth, hence they may be discontinuous. The variational formulation is
introduced. Then, in section 3, we recall the main results regarding the discretization
of electromagnetic fields by Nédélec’s finite elements [30, 29, 12, 20]. We also define
the function spaces that will allow us to perform the analysis of the model. Particular
attention is paid to the fractional order Sobolev spaces, which play a crucial role in
the analysis. These are defined either using the real interpolation method [28, 33, 9]
or with the help of the Sobolev–Slobodeckij norms [24, 25, 11]: this yields two ways
to measure their elements. In section 4, we provide the (well-known) estimates for the
continuity modulus and the coercivity constant related to the variational formulation,
with respect to the coefficients of the model.

It remains to estimate the so-called regularity exponent and the stability con-
stant, which relate the norm of the electromagnetic fields in ad hoc fractional order
Sobolev spaces norms to the norm of the source terms. Estimating these last two
quantities with respect to the coefficients of the model is less classical. Hence, most
novelties in the paper are contained in the approach developed in sections 5 and 6.
In section 5, we recall how one can split the electromagnetic fields into a regular part
and a gradient part [4], so the (lack of) regularity of the fields rests on the regularity
of the gradients. This is the subject of section 6. We use a perturbation argument à la
Jochmann [27] or Bonito, Guermond, and Luddens [6] to estimate this regularity with
respect to the coefficients of the model. We call it the global approach. When the co-
efficient are piecewise constant, one may also use the local approach; see Appendix B.
The main novelties are threefold: the extension of existing results to problems with
complex-valued coefficients, set in a nontopologically trivial domain; the use of the
two measures for elements of the Sobolev spaces, and their interplay; and the design of
estimates for the numerical error that depend only on the coefficients of the model (see
Theorem 6.15). To conclude, we illustrate our results by two examples in section 7.

We denote constant fields by the symbol cst. Vector-valued (resp., tensor-valued)
function spaces are written in boldface characters (resp., blackboard bold characters).
Given a nonempty open set O of R3, we use the notation (·|·)0,O (resp., ‖·‖0,O) for the
L2(O) and the L2(O) := (L2(O))3 hermitian scalar products (resp., norms). More
generally, (·|·)s,O and ‖ · ‖s,O (resp., | · |s,O) denote the hermitian scalar product and
the norm (resp., seminorm) of the Sobolev spaces Hs(O) and Hs(O) := (Hs(O))3

for s ∈ R (resp., for s > 0). The index zmv indicates zero-mean-value fields. If more-
over the boundary ∂O is Lipschitz, n denotes the unit outward normal vector field to
∂O. Finally, it is assumed that the reader is familiar with function spaces related to
Maxwell’s equations, such as H(curl;O), H0(curl;O), H(div;O), H0(div;O), etc.
A priori, H(curl;O) is endowed with the norm v 7→ (‖v‖20,O + ‖ curlv‖20,O)1/2, etc.
We refer to the monographs of Monk [29] and Assous, Ciarlet, and Labrunie [4] for
details. We will define more specialized function spaces later on.

2. The model problem. Let Ω be a domain in R3, that is, an open, con-
nected, and bounded subset of R3 with a Lipschitz-continuous boundary ∂Ω. We are
interested in solving the time-harmonic Maxwell’s equations (with time-dependence
exp(−ıωt), for a given pulsation ω > 0),

ıωd+ curlh = j in Ω,(2.1)

−ıωb+ curl e = 0 in Ω,(2.2)

divd = % in Ω,(2.3)

div b = 0 in Ω.(2.4)
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Above, (e,d,h, b) are the electromagnetic fields. We suppose that d and b are related
to e and h by the constitutive relations

d = εe, b = µh in Ω,(2.5)

where the real-valued coefficient ε is the electric permittivity and the real-valued
coefficient µ is the magnetic permeability.

The source terms j and % are respectively the current density and the charge
density, and they are related by the charge conservation equation

−ıω%+ div j = 0.(2.6)

We suppose that the current density may be written as

j = jext + σe in Ω,(2.7)

where jext is an externally imposed current, and the real-valued coefficient σ is the
conductivity.

2.1. A priori assumptions. Classically, the electromagnetic fields all belong
to L2(Ω) and the coefficients ε, µ, and σ have a fixed sign (positive): we make
these assumptions from now on. We also assume throughout this work that these
coefficients together with their inverses belong to L∞(Ω), and we use the notation
εmax = ‖ε‖L∞(Ω), εmin = (‖ε−1‖L∞(Ω))

−1, etc.
We choose the data (jext, %) in H(div; Ω)×H−1(Ω). It is also possible to choose

jext ∈ L
2(Ω) with div jext ∈ H−t(Ω) for some t ∈ (0, 1), but we assume for simplicity

that div jext ∈ L2(Ω). We refer to section 6.5 for the study of the more general case.
Finally, we assume that the medium Ω is surrounded by a perfect conductor, so

that the boundary condition below holds:

e× n = 0 on ∂Ω.(2.8)

Equations (2.1)–(2.8) together with the assumptions on the coefficients and on the
source terms define our model problem. When we focus on the discretization (see
section 3.3 and afterward), we assume that Ω is a Lipschitz polyhedron, that ε, σ
are piecewise smooth on Ω, and that µ is constant on Ω. We call this setting the
polyhedral model problem. Let us mention that once the field e is known, then all
other electromagnetic fields d, b, and h are known too. As a consequence, we focus
on the study of the field e. In particular, we note that e belongs to the function space
H0(curl; Ω).

2.2. Variational formulation. In the spirit of the charge conservation equa-
tion, let us introduce %ext = −ı/ω div jext ∈ L2(Ω). Our model problem can be
formulated in the electric field e only, namely

Find e ∈H0(curl; Ω) such that
−ω2εσe+ curl(µ−1 curl e) = ıωjext in Ω,
div εσe = %ext in Ω.

(2.9)

Above, the complex-valued coefficient εσ is defined by εσ = ε + ıσ/ω. Note that in
(2.9), the equation div εσe = %ext is implied by the second-order equation −ω2εσe+
curl(µ−1 curl e) = ıωjext, together with the charge conservation equation (2.6) and
the splitting of the current (2.7), so it can be omitted. Moreover, one can check that
the equivalent variational formulation in H0(curl; Ω) is written{

Find e ∈H0(curl; Ω) such that
(µ−1 curl e| curlv)0,Ω − ω2(εσe|v)0,Ω = ıω(jext|v)0,Ω ∀v ∈H0(curl; Ω).

(2.10)
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Under the assumptions on the coefficients, this variational formulation is well-posed
(see, for instance, [4, section 8.3.2]). In other words,

∃C(ε,µ,σ) > 0 such that ∀jext ∈ L
2(Ω), ∃!e solution to (2.10), and

‖e‖H(curl;Ω) ≤ C(ε,µ,σ) ‖jext‖0,Ω.
(2.11)

3. Discretization of electromagnetic fields. Here, we define finite element
approximations of the electric field e. We also recall how one can build an a pri-
ori error estimate between e and its approximation. When we study the numerical
approximations and for ease of exposition, we assume that Ω is a Lipschitz polyhe-
dron (polyhedral model problem). To define finite dimensional subspaces (V h)h of
H0(curl; Ω), we choose the so-called Nédélec’s first family of edge finite elements,
defined on simplicial meshes of Ω. We follow here [12, section 2.4]. It is sufficient
to use first-order finite elements because we focus on electromagnetic fields with low
regularity. Ω is triangulated by a shape regular family of meshes (Th)h, made up of
(closed) simplices, generically denoted by K. A mesh is indexed by h := maxK hK
(the meshsize), where hK is the diameter of K. Denoting by ρK the diameter of the
largest ball inscribed in K, we assume that there exists a shape regularity parameter
ς > 0 such that for all h, for all K ∈ Th, it holds that hK ≤ ςρK . Nédélec’s
H(curl; Ω)-conforming (first family, first-order) finite element spaces are defined as

V h := {vh ∈H0(curl; Ω) : vh|K ∈ R1(K) ∀K ∈ Th},

where R1(K) is the six-dimensional vector space of polynomials on K

R1(K) :=
{
v ∈ P 1(K) : v(x) = a+ b× x, a, b ∈ R3

}
.

According to [30, Theorem 1], any element v in R1(K) is uniquely determined by the
degrees of freedom in the moment set ME(v):

ME(v) :=

(∫
e

v · t dl
)
e∈AK

.

Above, AK is the set of edges of K, and t is a unit vector along the edge e. The global
set of moments on V h is then obtained by taking one degree of freedom as above per
interior edge of Th. We recall that the basic approximability property is written (cf.
[29, Lemma 7.10])

lim
h→0

(
inf

vh∈V h
‖v − vh‖H(curl;Ω)

)
= 0 ∀v ∈H0(curl; Ω).(3.1)

Assuming for simplicity that the integrals are computed exactly, the discrete electric
problem is written{

Find eh ∈ V h such that
(µ−1 curl eh| curlvh)0,Ω − ω2(εσeh|vh)0,Ω = ıω(jext|vh)0,Ω ∀vh ∈ V h.

(3.2)

Because the exact problem is well-posed (cf. (2.11)), one may apply Céa’s lemma to
find

∃C](ε,µ,σ) > 0 ∀h, ‖e− eh‖H(curl;Ω) ≤ C](ε,µ,σ) inf
vh∈V h

‖e− vh‖H(curl;Ω) .(3.3)
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Classically, the constant C](ε,µ,σ) depends on the coercivity constant and on the norm

of the sesquilinear form in the left-hand side of (2.10) and (3.2). This constant is
investigated in detail in section 4. It follows from (3.1) that

lim
h→0
‖e− eh‖H(curl;Ω) = 0.

In order to obtain a result which is more accurate, typically a convergence rate in the
order of hs for some s > 0, one has to use information on the (extra-)regularity of the
electric field. Let us recall how this can be achieved.

3.1. A few reminders about Sobolev spaces. Let O ⊂ Ω be a nonempty
connected open subset of R3 with Lipschitz boundary. To give a precise meaning to
the regularity of a scalar or vector field on O, we use the well-known Sobolev scale
(Hs(O))s.
(0) For s ∈ N, one uses the standard definition:

Hs(O) := {v ∈ L2(O) s.t. ∀α ∈ N3, |α| ≤ s, ∂αv ∈ L2(O)},

equipped with the norm ‖v‖s,O := (
∑
α∈N3, |α|≤s ‖∂αv‖2L2(O))

1/2. Obviously, H0(O) =

L2(O).
(1) To define those spaces for s > 0, s 6∈ N, several possibilities exist. Let us begin
with the real interpolation method [28] (see also Appendix A), which allows us to
define those Hilbert spaces for noninteger indices s = m+ σ, m ∈ N, σ ∈ (0, 1), as

Hs(O) := (Hm(O), Hm+1(O))σ,2.

The corresponding norm is denoted by ‖ · ‖s,O. In particular, for all 0 ≤ s ≤ t, it
holds that Ht(O) ⊂ Hs(O) with continuous embedding [9, section 14]:

∃C(s,t) > 0 ∀v ∈ Ht(O), ‖v‖s,O ≤ C(s,t) ‖v‖t,O.

Given 0 < s0 ≤ s1 < t < 1, s 7→ C(s,t) is continuous on [s0, s1].
A well-known alternative is to define, for σ ∈ (0, 1),

Hσ(O) :=
{
v ∈ L2(O) s.t. |v|Hσ(O) <∞

}
,

where

|v|Hσ(O) :=

(∫
O

∫
O

|v(x)− v(y)|2

|x− y|3+2σ
dx dy

)1/2

is the Sobolev–Slobodeckij seminorm,

and Hσ(O) is endowed with the Sobolev–Slobodeckij norm

‖v‖Hσ(O) :=
(
‖v‖20,O + |v|2Hσ(O)

)1/2

.

And then, for s = m+ σ, m ∈ N, σ ∈ (0, 1):

Hs(O) := {v ∈ Hm(O) s.t. ∀α ∈ N3 with |α| = m, ∂αv ∈ Hσ(O)},

endowed with the Sobolev–Slobodeckij norm

‖v‖Hs(O) :=

‖v‖2m,O +
∑

α∈N3, |α|=m

|∂αv|2Hσ(O)

1/2

.
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The Sobolev–Slobodeckij seminorm is

|v|Hs(O) :=

 ∑
α∈N3, |α|=m

|∂αv|2Hσ(O)

1/2

.

For all s ∈ R+ \ N, it holds that Hs(O) = Hs(O) algebraically and topologically:

∃m(s),M(s) > 0 ∀v ∈ Hs(O), m(s) ‖v‖Hs(O) ≤ ‖v‖s,O ≤M(s) ‖v‖Hs(O).

However, in a bounded set O, there are no results on the uniform equivalence of
Sobolev–Slobodeckij norms and real interpolation norms when s spans (0, 1), i.e., on
bounding one norm with the other times a constant that is independent of s ∈ (0, 1).
We refer to [25, 11] for illuminating discussions on this topic. On the other hand (see
[24] or [9, section 14]), if s spans [s0, s1] with 0 < s0 ≤ s1 < 1, there is a uniform
equivalence of norms: in other words, m,m−1,M,M−1 are continuous on [s0, s1].
(2) For s ≥ 0, Hs

0(O) is the closure of D(O) in Hs(O). For s ∈ [0, 1
2 ], it holds

that Hs
0(O) = Hs(O) algebraically and topologically (see, for instance, [21, Theorem

1.4.2.4]), while for s > 1
2 , it holds that Hs

0(O) ( Hs(O).

(3) For s < 0, Hs(O) is the topological dual of H−s0 (O).

(4) For s ≥ 0, H̃s(O) (also denoted in the literature by Hs
00(O)) is composed of

elements of Hs(O) such that the continuation by zero outside O belongs to Hs(R3);

for s /∈ 1
2 + N, it holds that H̃s(O) = Hs

0(O), while for s ∈ 1
2 + N, it holds that

H̃s(O) ( Hs
0(O). Going back to the real interpolation method, for noninteger indices

s = m+ σ, m ∈ N, σ ∈ (0, 1), one has H̃s(O) = (Hm
0 (O), Hm+1

0 O))σ,2.

For the regularity studies, we choose the real interpolation method, while we
use the double-integral Sobolev–Slobodeckij norms and seminorms to perform the
numerical analysis and derive convergence rates.

3.2. Piecewise smooth fields. The set P := {Ωj}j=1,...,J is called a parti-
tion of Ω if (Ωj)j=1,...,J are disjoint domains, and it holds that Ω = ∪Jj=1Ωj . When
the (Ωj)j=1,...,J are Lipschitz polyhedra, we use the term polyhedral partition. Given
a partition, we introduce the corresponding interface Σ := ∪1≤j 6=j′≤J(∂Ωj ∩ ∂Ωj′).
For a field v defined on Ω, we denote by vj its restriction to Ωj for all j. In relation
to the partition P and for s ≥ 0, we define

PHs(Ω) :=
{
v ∈ L2(Ω) : vj ∈ Hs(Ωj), 1 ≤ j ≤ J

}
, endowed with

‖v‖PHs(Ω) :=

 ∑
1≤j≤J

‖vj‖2s,Ωj

1/2

or ‖v‖PHs(Ω) :=

 ∑
1≤j≤J

‖vj‖2Hs(Ωj)

1/2

.

To simplify the notation, the reference to P is usually omitted. Let us recall the
technical result (Theorem 4.1 of [1], or Lemma 2.1 of [6]).

Proposition 3.1. For all s ∈ [0, 1], it holds that

‖v‖PHs(Ω) ≤ ‖v‖s,Ω ∀v ∈ Hs(Ω).

Note that one has PHs(Ω) = Hs(Ω) algebraically and topologically for all parti-
tions and for all s ∈ [0, 1

2 ).
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Finally, we introduce

PHs(curl; Ω) := {v ∈ PHs(Ω) : curlv ∈ PHs(Ω)} for s > 0 ;

PW 1,∞(Ω) := {ζ ∈ L∞(Ω) : ζj ∈W 1,∞(Ωj), 1 ≤ j ≤ J}.

PHs(curl; Ω) is endowed with the graph norm. We observe that one has the embed-
ding PHs(curl; Ω) ⊂H(curl; Ω), according to the definition of PHs(Ω).

And we endow PW 1,∞(Ω) with the norm ‖ζ‖PW 1,∞(Ω) := ‖ζ‖L∞(Ω)+|ζ|PW 1,∞(Ω)

and the seminorm |ζ|PW 1,∞(Ω) := max1≤j≤J ‖∇ζj‖L∞(Ωj). For a piecewise constant
coefficient ζ, it holds that ‖ζ‖PW 1,∞(Ω) = ‖ζ‖L∞(Ω) = max1≤j≤J |ζj |.

When the partition is trivial, that is, P = {Ω}, we omit the P or P in the name
of the function space.

We note that, for the polyhedral model, the assumption on the coefficients is
written ε, σ ∈ PW 1,∞(Ω), and the interface Σ can be viewed as the locus of the
discontinuities of at least one of the two coefficients. More generally, if ε, σ, µ ∈
PW 1,∞(Ω), Σ is the locus of the discontinuities of at least one of the three coefficients.

3.3. Finite element interpolation or quasi-interpolation operators. In a
Lipschitz polyhedron Ω, one can build finite element interpolation, or quasi-interpola-
tion, operators that act on piecewise smooth fields, with range in V h. For a polyhedral
partition P := {Ωj}j=1,...,J , the family of meshes (Th)h is said to be conforming if, for
all h, for all K ∈ Th, there exists j0 such that K ⊂ Ωj0 . Let us recall briefly the theory
of finite element interpolation. Classically, those results are obtained by studying the
properties of the mappings to the reference element, using Sobolev–Slobodeckij semi-
norms. It holds, for conforming meshes, that

∀s ∈ (0, 1], ∃Cinterp(ς,s) > 0, ∀v ∈ PHs(curl; Ω), ∀h,
‖v −Πinterp

h v‖H(curl;Ω) ≤ Cinterp(ς,s) hs{‖v‖PHs(Ω) + ‖ curlv‖PHs(Ω)}.
(3.4)

In (3.4), the interpolation operator Πinterp
h is defined in [29, section 5.5] for

s > 1
2 , resp., is the so-called combined interpolation operator of [12, section 4.2]

for s ≤ 1
2 . Regarding the theory of finite element quasi-interpolation, a similar result

can be derived, namely, that (3.4) holds, where Πinterp
h now stands for the quasi-

interpolation operator defined in [20, section 3.5]. The two finite element interpolation
and quasi-interpolation bounds are identical, bearing in mind that Πinterp

h is either the

interpolation or the quasi-interpolation operator. In addition, we note that Cinterp(ς,s) is

not proven to be independent of s in the abovementioned papers. On the other hand,
one can check that Cinterp(ς,s) depends continuously on s in (0, 1) with the help of the

tools proposed in those papers. For the derivation of those continuous dependence
results, we refer precisely to the proof of Theorem 3.3 in [20] using abstract estimates
from [19, section 5] for the quasi-interpolation, resp., [12, section 4.2] using estimates
for the Scott–Zhang interpolation, for the combined interpolation. Both proofs rely
on [9, section 14.3].

With the help of the results on the equivalence of norms of section 3.1(1), we
conclude that one can write (3.4) with the real interpolation norms

∀s ∈ (0, 1], ∃Cinterp(ς,s) > 0, ∀v ∈ PHs(curl; Ω), ∀h,
‖v −Πinterp

h v‖H(curl;Ω) ≤ Cinterp(ς,s) hs ‖v‖PHs(curl;Ω).
(3.5)

Furthermore, one can choose s 7→ Cinterp(ς,s) that is continuous on [s0, s1] for all 0 <
s0 ≤ s1 < 1.
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3.4. Extra-regularity of the electric field and convergence rate. Since
jext ∈H(div; Ω), one may prove that the electric field that solves (2.9)–(2.10) enjoys
extra smoothness. More precisely, the aim is to prove that

∃τ(ε,µ,σ) > 0, ∀t ∈ (0, τ(ε,µ,σ)), ∃C?(ε,µ,σ,t), ∀jext ∈H(div; Ω),

e ∈ PHt(curl; Ω) and ‖e‖PHt(curl;Ω) ≤ C?(ε,µ,σ,t) ‖jext‖H(div;Ω).
(3.6)

Above, τ(ε,µ,σ) plays the role of a regularity exponent, while C?(ε,µ,σ,s) can be seen as
a stability constant.

Let Θ be a set of coefficients (ε, µ, σ) whose elements are all piecewise smooth
on the same partition, and assume that τ = inf(ε,µ,σ)∈Θ τ(ε,µ,σ) > 0, where τ(ε,µ,σ) is
defined in (3.6), and let jext the data be given. Regrouping all the previous results,
one concludes first that for all (ε, µ, σ) ∈ Θ, the solution e to (2.9)–(2.10) is in⋂
s∈[0,τ)PH

s(curl; Ω), and second that one has the error estimates

∀s ∈ (0, τ),

‖e− eh‖H(curl;Ω) ≤ C](ε,µ,σ) C
interp
(ς,s) C?(ε,µ,σ,s) h

s ‖jext‖H(div;Ω).
(3.7)

In the error estimates (3.7), only C](ε,µ,σ) and C?(ε,µ,σ,s) depend on the coefficients

(ε, µ, σ). Also, for a given ε ∈ (0, τ), since s 7→ Cinterp(ς,s) is continuous for s > 0, one

may replace Cinterp(ς,s) by the s-independent maxs∈[ε,τ) C
interp
(ς,s) for all s ∈ [ε, τ).

Our purpose is now to estimate more precisely the constants that appear in
(3.3), (3.5), (3.6), and (3.7). The dependency of C](ε,µ,σ) on (ε, µ, σ) is addressed in

section 4. For τ(ε,µ,σ) and C?(ε,µ,σ,s), this dependency can be studied via the global
approach, which relies on a decomposition of the electric field, and of its curl, into
a regular part and a gradient part. To obtain this splitting, we adapt [4, Chapter
6] to the case of complex-valued coefficients, and in the process we generalize the
results of [15] to the case of a nontopologically trivial domain: this is the subject
of section 5. In section 6, one studies the regularity of the gradient part, where the
scalar potential is governed by a second-order elliptic PDE complemented either with
Dirichlet boundary conditions (for the electric field) or with Neumann boundary con-
ditions (for its curl). The global approach, in the spirit of [27, 6], uses a perturbation
argument, where the regularity of the gradient part, i.e., of its scalar potential, is
derived in comparison to the regularity of the solution to the Laplace equation with
the same boundary condition. Indeed, in a domain Ω and for L2(Ω) volume data, it
is known from [26] that the gradient of the solution to the Laplace equation belongs

to H
1
2 (Ω). Using interpolation theory, one can find a regularity exponent τ(ε,µ,σ) in

(3.6) for our problem. To our knowledge, this analysis has only been carried out for
PDEs with real-valued coefficients. Here, we check in particular that the analysis
proposed in [6] can be extended to the case of complex-valued coefficients. The main
results are the derivation of a regularity exponent τ(ε,µ,σ) that depends polynomially
on the coefficients, and the computation of an upper bound for the stability constant
C?(ε,µ,σ,s) when s spans (0, τ(ε,µ,σ)). Finally, in section 7 we illustrate the theory in
two examples for which the singular behavior can be determined explicitly.

Remark 3.2. For piecewise constant coefficients, there exists an alternative, which
focuses on the singular behavior of the gradient part of the solution by finding directly
the “best” regularity exponent τopt(ε,µ,σ) attached to this part of the solution. We call

it the local approach; see Appendix B. On the other hand, providing an upper bound
with the local approach for C?(ε,µ,σ,s) when s spans (0, τopt(ε,µ,σ)) is an open question.



ON THE APPROXIMATION OF ELECTROMAGNETIC FIELDS 9

4. Estimating the constant C](ε,µ,σ). Let V := H0(curl; Ω) be endowed

with ‖v‖V := (‖v‖20,Ω + ‖ curlv‖20,Ω)1/2, and let a(·, ·) be the sesquilinear form on V
defined by

(v,w) 7→ (µ−1 curlv| curlw)0,Ω − ω2(εσv|w)0,Ω.

Then, let Ccont(ε,µ,σ) be the best continuity constant, or continuity modulus, of a(·, ·),

Ccont(ε,µ,σ) = sup
v,w∈V \{0}

|a(v,w)|
‖v‖V ‖w‖V

,

resp., Ccoer(ε,µ,σ) be the best coercivity constant of a(·, ·),

Ccoer(ε,µ,σ) = inf
v∈V \{0}

|a(v,v)|
‖v‖2V

.

Proposition 4.1. Let the coefficients ε, µ, and σ be as in section 2.1. Then the
sesquilinear form a(·, ·) is continuous, with Ccont(ε,µ,σ) ≤ max(ω(ω2ε2

max+σ2
max)1/2, µ−1),

and it is coercive with Ccoer(ε,µ,σ) ≥
1
2σmin min(ωεminε

−1
max, µ

−1(ω2ε2
max + 1

2σ
2
min)−1/2).

Proof. (We omit the subscript 0,Ω for the L2(Ω)-scalar product and norm). Re-
garding continuity, given v,w ∈ V , one finds

|a(v,w)| ≤ ω2‖εσ‖L∞(Ω)‖v‖ ‖w‖+ µ−1‖ curlv‖ ‖ curlw‖
≤ max

(
ω2‖εσ‖L∞(Ω), µ

−1
)

(‖v‖ ‖w‖+ ‖ curlv‖ ‖ curlw‖)
≤ max

(
ω2‖εσ‖L∞(Ω), µ

−1
)
‖v‖V ‖w‖V

≤ max
(
ω
(
ω2ε2

max + σ2
max

)1/2
, µ−1

)
‖v‖V ‖w‖V

because ‖εσ‖L∞(Ω) ≤ (ε2
max + ω−2σ2

max)1/2.
Regarding coercivity, given v ∈ V , we let c = curlv, and one finds

|a(v,v)|2 =
(
−ω2 (εv|v) + µ−1‖c‖2

)2
+ ω2(σv|v)2

= ω4(εv|v)2 + µ−2‖c‖4 − 2ω2µ−1(εv|v)‖c‖2 + ω2(σv|v)2

≥
(
ω4 − ω2η

)
(εv|v)

2
+ µ−2(1− ω2η−1)‖c‖4 + ω2(σv|v)2

for all η > 0 (Young’s inequality). Then,

|a(v,v)|2 ≥
(
ω4 − ω2η

)
(εv|v)2 + µ−2

(
1− ω2η−1

)
‖c‖4 + ω2σ2

min‖v‖4

≥ ω2ε2
min

(
ω2 + σ2

minε
−2
max − η

)
‖v‖4 + µ−2

(
1− ω2η−1

)
‖c‖4.

As a consequence, choosing η ∈ (ω2, ω2 + σ2
minε

−2
max), one derives coercivity. For

instance, let η = ω2 + 1
2σ

2
minε

−2
max. It follows that

|a(v,v)|2 ≥ 1

2
ω2σ2

min

ε2
min

ε2
max

‖v‖4 +
σ2
min

2µ2
(
ω2ε2

max + 1
2σ

2
min

)‖c‖4
≥ σ2

min

2
min

(
ω2 ε

2
min

ε2
max

,
1

µ2
(
ω2ε2

max + 1
2σ

2
min

)) (‖v‖4 + ‖c‖4
)

≥ σ2
min

4
min

(
ω2 ε

2
min

ε2
max

,
1

µ2
(
ω2ε2

max + 1
2σ

2
min

)) ‖v‖4V .
Hence, |a(v,v)| ≥ 1

2σmin min(ωεminε
−1
max, µ

−1(ω2ε2
max + 1

2σ
2
min)−1/2)‖v‖2V .
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Corollary 4.2. Let the coefficients ε, µ, and σ be as in section 2.1. Then the
error estimate (3.3) holds with

C](ε,µ,σ) ≤
2 max

(
ω
(
ω2ε2

max + σ2
max

)1/2
, µ−1

)
σmin min

(
ωεminε

−1
max, µ−1

(
ω2ε2

max + 1
2σ

2
min

)−1/2
) .

Proof. This is an obvious consequence of the fact that one can choose

C](ε,µ,σ) =
Ccont(ε,µ,σ)

Ccoer(ε,µ,σ)

in the error estimate (3.3).

5. Splitting into a regular part and a gradient part. Below, we recall
some results of [4], and we adapt them to the case of complex-valued coefficients if
necessary. Letting ξ be a coefficient defined on Ω, we assume in the current section
that ξ fulfills{

ξ is a complex-valued measurable scalar field on Ω, ξ, ξ−1 ∈ L∞(Ω),
∃ξ− > 0, θ? ∈ [0, 2π), <(exp(−ıθ?)ξ) ≥ ξ− a.e. in Ω.

(5.1)

Lemma 5.1. Let the coefficients ε and σ be as in section 2.1. Then ξ = εσ fulfills
(5.1), where θ? can be any element of [0, π/2].

Remark 5.2. In other words, ξ = εσ belongs to a subclass of those coefficients that
are defined by (5.1). In the case where σ ≥ 0 (in particular, in the nonconducting
case, that is, when it holds that σ = 0 on some region of Ω), the above result still
holds for all θ? ∈ [0, π/2). On the other hand, a real-valued, sign-changing coefficient
ξ does not fulfill (5.1). We refer to [8, 7, 18, 10] for those more “exotic” configurations
of Maxwell’s equations, in which ε and/or µ are real-valued and exhibit a sign change.

Proof. One has εσ, ε
−1
σ ∈ L∞(Ω). The result follows from <(exp(−ıθ?)εσ) ≥

cos θ? εmin + sin θ? σmin/ω > 0 a.e. in Ω.

Define

XDir(Ω, ξ) := {v ∈H0(curl; Ω) : ξv ∈H(div; Ω)},
XNeu(Ω, ξ) := {v ∈H(curl; Ω) : ξv ∈H0(div; Ω)}.

The function spaces XDir(Ω, ξ) and XNeu(Ω, ξ) are endowed with the graph norm
v 7→ (‖v‖2H(curl;Ω) +‖ξv‖2H(div;Ω))

1/2. In the particular case where ξ is equal to 1, one

writes XB(Ω) instead of XB(Ω, 1) for B ∈ {Dir,Neu}. We also define the subspaces
of regular fields, resp., the null subspaces:

HB(Ω) := XB(Ω) ∩H1(Ω), B ∈ {Dir,Neu},
ZB(Ω) := {v ∈XB(Ω) : curlv = 0, div v = 0 in Ω}, B ∈ {Dir,Neu}.

In our case, both εσ and µ fulfill (5.1) and moreover, since jext ∈ H(div; Ω), we
note that the solution e to (2.9) is such that e ∈ XDir(Ω, εσ), and µ−1 curl e ∈
XNeu(Ω, µ).
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5.1. Geometric framework. The domain Ω can be topologically nontrivial or
with a nonconnected boundary. Regarding the first item, we assume that

• either (Top)I=0: “given any curl-free vector field v ∈ C1(Ω), there exists
p ∈ C0(Ω) such that v = ∇p in Ω”;

• or (Top)I>0: “there exist I nonintersecting manifolds, Σ1, . . . ,ΣI , with

boundaries ∂Σi ⊂ ∂Ω, such that, if we let Ω̇ = Ω\
⋃I
i=1 Σi, given any curl-free

vector field v, there exists ṗ ∈ C0(Ω̇) such that v = ∇ṗ in Ω̇.”
When I = 0, Ω̇ = Ω. For short, we write (Top)I to cover both instances. One

can build cuts that are piecewise plane, see [23, Chapter 6]. Finally, we assume that
Ω̇ is a connected set. For the polyhedral model problem, we assume that (Top)I is
fulfilled.

The domain Ω is said to be topologically trivial when I = 0. When I > 0, the set
Ω̇ has pseudo-Lipschitz boundary in the sense of [3].

The a priori regularity of elements of XDir(Ω) and XNeu(Ω) is described in [3,
Remark 2.16 and Proposition 3.7]. Below, ⊂ refers to an algebraical and topological
embedding.

Proposition 5.3. Let Ω be a Lipschitz polyhedron: there exists σDir ∈ ( 1
2 , 1] such

that it holds that XDir(Ω) ⊂HσDir (Ω). Assume in addition that (Top)I is fulfilled:
there exists σNeu ∈ ( 1

2 , 1] such that it holds that XNeu(Ω) ⊂HσNeu(Ω).
Let Ω be a domain: the embeddings hold with σDir = σNeu = 1

2 .

Corollary 5.4. With the same assumptions as in Proposition 5.3, it holds that
ZDir(Ω) ⊂HσDir (Ω) and ZNeu(Ω) ⊂HσNeu(Ω).

Finally, one can prove that the null spaces ZDir(Ω) and ZNeu(Ω) are finite di-
mensional vector spaces.

5.2. Splittings of fields. We now provide splittings into a regular part and
a gradient part of elements of XDir(Ω, ξ) (“electric case”), resp., of elements of
XNeu(Ω, ξ) (“magnetic case”), called regular/gradient splittings. The proofs can be
found in sections 6.1.6 and 6.2.6 of [4]. We provide some comments on these splittings
below.

Theorem 5.5. Let Ω be a domain such that (Top)I is fulfilled, and assume that ξ
fulfills (5.1). Then, there exists a continuous splitting operator acting from XDir(Ω, ξ)
to HDir(Ω)×ZDir(Ω)×H1

0 (Ω).
More precisely, given v ∈XDir(Ω, ξ),

∃(vreg, z, p0) ∈HDir(Ω)×ZDir(Ω)×H1
0 (Ω), v = vreg + z +∇p0 in Ω.(5.2)

One has

‖vreg‖1,Ω + ‖vreg‖XDir(Ω) + ‖z‖σDir,Ω + ‖vreg + z‖1/2,Ω ≤ CDirX ‖v‖H(curl;Ω).

(5.3)

The scalar field p0 is governed by the variational formulation:

{
Find p0 ∈ H1

0 (Ω) such that
(ξ∇p0|∇ψ)0,Ω = −(ξz|∇ψ)0,Ω − (ξvreg|∇ψ)0,Ω − (div ξv|ψ)0,Ω ∀ψ ∈ H1

0 (Ω).

(5.4)

Theorem 5.6. Let Ω be a domain such that (Top)I is fulfilled, and assume that ξ
fulfills (5.1). Then, there exists a continuous splitting operator acting from XNeu(Ω, ξ)
to H1

zmv(Ω)×ZNeu(Ω)×H1
zmv(Ω).
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More precisely, given v ∈XNeu(Ω, ξ),

∃(wreg, z, q0) ∈H1
zmv(Ω)×ZNeu(Ω)×H1

zmv(Ω), v = wreg + z +∇q0 in Ω.(5.5)

One has

‖wreg‖1,Ω + ‖wreg‖XNeu(Ω) + ‖z‖σNeu,Ω + ‖wreg + z‖1/2,Ω ≤ CNeuX ‖v‖H(curl;Ω).

(5.6)

The scalar field q0 is governed by the variational formulation:

{
Find q0 ∈ H1

zmv(Ω) such that
(ξ∇q0|∇ψ)0,Ω = −(ξz|∇ψ)0,Ω − (ξwreg|∇ψ)0,Ω − (div ξv|ψ)0,Ω ∀ψ ∈ H1

zmv(Ω).

(5.7)

In the splitting (5.2) of v ∈ XDir(Ω, ξ), all three terms vreg, z,∇p0 have vanishing
tangential components on the boundary ∂Ω, whereas in the splitting (5.5) of v ∈
XNeu(Ω, ξ), wreg does not verify a homogeneous boundary condition in general. Since
ξ fulfills (5.1), both variational formulations (5.4) and (5.7) are well-posed. Finally,
we note that regarding the a priori regularity in (5.2), one has vreg ∈H1(Ω) and z ∈
HσDir (Ω). Likewise, regarding the a priori regularity in (5.5), one has wreg ∈H1(Ω)
and z ∈HσNeu(Ω).

5.3. Comments. One may easily generalize the splitting theory to the case
where ξ is a complex-valued, measurable, tensor field. As a matter of fact, it is
straightforward to check that if ξ fulfills{

ξ is a complex-valued measurable tensor field on Ω, ξ, ξ−1 ∈ L∞(Ω),
∃ξ− > 0, θ? ∈ [0, 2π), ∀z ∈ C3, <(exp(−ıθ?)ξz · z) ≥ ξ− |z|2 a.e. in Ω,

then the conclusions of Theorems 5.5 and 5.6 still apply. Obviously, (5.4) and (5.7)
are well-posed.

In the special case where ξ is a normal tensor field (ξ∗ξ = ξξ∗ a.e. in Ω), or
equivalently there exists a unitary tensor field U and a diagonal tensor field D such
that ξ = U−1DU a.e. in Ω, one can reformulate the second line of the above condition
as

∃ξ− > 0, θ? ∈ [0, 2π), min
k=1,2,3

<(exp(−ıθ?)Dkk) ≥ ξ− a.e. in Ω.(5.8)

6. The global approach for finding a regularity exponent τ(ε,µ,σ) and a
stability constant C?(ε,µ,σ,s). To estimate the regularity exponent, we adapt some

results of [6] to the case of complex-valued coefficients. Let ξ be a coefficient defined
on Ω; we assume in the current section that ξ fulfills (5.1). This assumption prescribes
that

ξ ∈ {z = ρ exp(ıθ), ρ ∈ [ξ−, ξmax], θ ∈ [θmin, θmax]} a.e. in Ω, where

ξmax := ‖ξ‖L∞(Ω), and 0 ≤ θmax − θmin ≤ 2 arccos
(

ξ−
ξmax

)
.

(6.1)

In other words, since arccos(ξ−/ξmax) < π/2 the coefficient ξ takes its values in some
open, half plane in C. If the coefficients ε and σ are as in section 2.1, then ξ = εσ
takes its values in some open, quarter plane in C.

We recall that e ∈ XDir(Ω, εσ) and µ−1 curl e ∈ XNeu(Ω, µ). Hence, according
to Theorems 5.5 and 5.6, we may write

e = ereg + ze +∇p0 in Ω, ereg ∈H1(Ω), ze ∈HσDir (Ω) ;(6.2)

µ−1 curl e = creg + zc +∇q0 in Ω, creg ∈H1(Ω), zc ∈HσNeu(Ω).(6.3)
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In addition, it holds that

‖ereg‖1,Ω + ‖ereg‖XDir(Ω) + ‖ze‖σDir,Ω + ‖ereg + ze‖1/2,Ω ≤ CDirX ‖e‖H(curl;Ω),

‖creg‖1,Ω + ‖creg‖XNeu(Ω) + ‖zc‖σNeu,Ω + ‖creg + zc‖1/2,Ω ≤ CNeuX ‖µ−1 curl e‖H(curl;Ω).

It now remains to evaluate the regularity and norm of the gradient parts ∇p0 and
∇q0. Note that p0 is governed by the second-order scalar PDE (5.4) with Dirichlet
boundary condition, while q0 is governed by the second-order scalar PDE (5.7) with
Neumann boundary condition. We will use this vocabulary in the following to address
both cases.

6.1. Preliminary results. To start with, given O ⊂ Ω a nonempty connected
open subset of R3 with Lipschitz boundary, let H0(O) be equal to L2(O) in the
Dirichlet case, resp., L2

zmv(O) in the Neumann case, and H1(O) be equal to H1
0 (O)

in the Dirichlet case, resp., H1
zmv(O) in the Neumann case. We equip H1(O) with

the norm ‖v‖H1(O) := ‖∇v‖0,O.
Then, for s ∈ (0, 1), we introduce Hs(O), the Sobolev space obtained by the

real interpolation method between H1(O) and H0(O): if needed, we distinguish the
two cases by writing HsDir(O), resp., HsNeu(O). In particular, by definition (cf.

section 3.1), it holds that HsDir(O) = H̃s(O) for all s ∈ [0, 1], and we recall that

Hs(O) = H̃s(O) for all s ∈ [0, 1
2 ).

We denote by H−s(O) the dual space of Hs(O) for s ∈ [0, 1]. Finally, for s ∈ [0, 1],
we define H1+s(O) := {v ∈ H1(O) s.t. ∇v ∈ Hs(O)}, equipped with the norm
‖v‖H1+s(O) := ‖∇v‖s,O.

Lemma 6.1. Given s ∈ [0, 1], there exists CP(s) > 0 such that

∀v ∈ H1+s(O), ‖v‖H1+s(O) ≤ ‖v‖1+s,O ≤ CP(s) ‖v‖H1+s(O).

Proof. The result is obvious for s ∈ {0, 1}, according to the Poincaré inequality.
We let now s ∈ (0, 1).

For the left inequality, notice that

∀v ∈ H1(O), ‖∇v‖0,Ω ≤ ‖v‖1,Ω ; ∀v ∈ H2(O), ‖∇v‖1,Ω ≤ ‖v‖2,Ω.

As a consequence, the left inequality follows. This is the so-called exact sequence
property. Following Appendix A, if we let v ∈ H1+s(O),

‖v‖H1+s(O) := ‖∇v‖s,O

= ‖t−s inf
∇v = v0 + v1

v0 ∈ L2(O),v1 ∈H1(O)

(
‖v0‖20,O + t2‖v1‖21,O

)1/2 ‖L2(0,∞; dtt )

≤ ‖t−s inf
v = v0 + v1
v0 ∈ H1(O), v1 ∈ H2(O)

(
‖∇v0‖20,O + t2‖∇v1‖21,O

)1/2 ‖L2(0,∞; dtt )

(cf. above) ≤ ‖t−s inf
v = v0 + v1
v0 ∈ H1(O), v1 ∈ H2(O)

(
‖v0‖21,O + t2‖v1‖22,O

)1/2 ‖L2(0,∞; dtt )

=: ‖v‖1+s,O.
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For the right inequality, let us introduce the Poincaré constant:

C := sup
v∈H1(O))\{0}

‖v‖0,O
‖∇v‖0,O

.

Using the equivalence of norms, the definition of ‖ · ‖H1+s(O), the Poincaré inequality,
and finally the equivalence of norms again, we find

‖v‖1+s,O ≤M(1+s) ‖v‖H1+s(O) := M(1+s)

(
‖v‖21,O + |∇v|2Hs(O)

)1/2

≤M(1+s)

((
1 + C2

)
‖∇v‖20,O + |∇v|2Hs(O)

)1/2

≤M(1+s)

(
1 + C2

)1/2 ‖∇v‖Hs(O)

≤M(1+s)

(
1 + C2

)1/2
m−1

(s)‖∇v‖s,O =: M(1+s)

(
1 + C2

)1/2
m−1

(s)‖v‖H1+s(O).

Hence, one may choose CP(s) = M(1+s)(1 + C2)1/2m−1
(s).

If we let s ∈ [0, 1], we want to find the a priori regularity of the solution to{
Find u ∈ H1(Ω) such that
(ξ∇u|∇v)0,Ω = 〈f, v〉H1(Ω) ∀v ∈ H1(Ω),

(6.4)

and f is some data in H−s(Ω).
If ξ is constant on Ω, that is, if one considers the Laplace operator with Dirichlet

boundary condition, or with Neumann boundary condition, then one may apply the
classical results of [26] or [32] (see [6, p. 504]). See also Proposition 6.7 below. In the
statement of the next theorem, the constant cLap(s) depends on Ω. For the sake of
conciseness, we omit this dependence.

Theorem 6.2. Let ξ 6= 0 be constant on Ω. Then, for all s ∈ [0, 1
2 ), there exists

c(s) := cLap(s) > 0 such that for all f ∈ Hs−1(Ω), the solution u ∈ H1(Ω) to (6.4)
belongs to Hs+1(Ω), and

‖u‖Hs+1(Ω) ≤
c(s)

ξmax
‖f‖Hs−1(Ω).

Definition 6.3. Let the coefficient ξ fulfill (5.1). We say that ξ fulfills the coef-
ficient assumption if there exists a partition P of Ω such that ξ ∈ PW 1,∞(Ω).

If ξ fulfills the coefficient assumption on a partition, then ξ−1 fulfills the coefficient
assumption on the same partition.

From now on in the current section, we consider the case where ξ 6= 0 is a scalar,
nonconstant, complex-valued coefficient that fulfills the coefficient assumption on a
partition P := {Ωj}j=1,...,J . In [6], the authors study the case of a symmetric-tensor,
real-valued coefficient ξ. There are similarities between the two cases, and also some
differences, that are highlighted below. We refer to section 6.5 for a generalization to
the case of a normal-tensor, complex-valued coefficient ξ. Let

Λξ :=
|ξ|PW 1,∞(Ω)

ξmax
.

By definition, it holds that ‖ξ‖PW 1,∞(Ω) = ξmax(1 + Λξ). For a piecewise constant
coefficient ξ, one has Λξ = 0. Otherwise, Λξ > 0.
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For s ∈ [0, 1
2 ), choosing O ∈ {Ωj , 1 ≤ j ≤ J}, we denote by Ds

j the norm of the

natural embedding of Hs(Ωj) into H̃s(Ωj):

Ds
j := sup

vj∈Hs(Ωj)\{0}

‖vj‖H̃s(Ωj)

‖vj‖s,Ωj
, 1 ≤ j ≤ J ;

Ds := max
(
1,max1≤j≤J D

s
j

)
≥ 1.

(6.5)

Remark 6.4. It holds that lims→ 1
2
Ds
j = +∞, because constant, nonvanishing

fields defined on Ωj belong to H
1
2 (Ωj) but not to H̃

1
2 (Ωj).

Also, we denote the Poincaré constants by

Cj := sup
vj∈H1

0(Ωj)\{0}

‖vj‖0,Ωj
‖∇vj‖0,Ωj

, 1 ≤ j ≤ J ; C := max
1≤j≤J

Cj > 0.(6.6)

We note that, obviously, the constants Λξ, (Ds
j )j , Ds, (Cj)j , and C all depend on Ω

and on the partition P. These dependences are omitted.
Then, we define the multiplicative operator mξ ∈ L(L2(Ω),L2(Ω)) by mξv(x) =

ξ(x)v(x), for all v ∈ L2(Ω), a.e. x ∈ Ω. One may now adapt the proof of Proposition
2.1 of [6] to the complex-valued case, to find the following.

Proposition 6.5. Let ξ fulfill the coefficient assumption. Then, for all s ∈ [0, 1
2 ),

it holds that mξ ∈ L(Hs(Ω),Hs(Ω)) and in addition,

‖mξ‖L(Hs(Ω),H̃s(Ω))
≤ ξmaxNs

ξ , where Ns
ξ := Ds

(
2
(
1 + C2Λξ

2
))s/2

.(6.7)

Furthermore, for all r ∈ [0, 1
2 ), it holds that

‖mξ‖L(Hs(Ω),H̃s(Ω))
≤ ξmax (Nr

ξ )s/r ∀s ∈ [0, r].(6.8)

We then recall the technical Lemmas 3.1 and 3.2 of [6], which are independent of
the coefficient ξ. Introduce the operator D ∈ L(L2(Ω),H−1(Ω)) defined by

〈Dv, q〉H1(Ω) = (v|∇q)0,Ω ∀v ∈ L2(Ω), ∀q ∈ H1(Ω).

Proposition 6.6. For all s ∈ [0, 1], one has

D ∈ L(H̃s(Ω),Hs−1(Ω)) and ‖D‖L(H̃s(Ω),Hs−1(Ω))
≤ 1.(6.9)

Introduce the operator L ∈ L(H−1(Ω),H1(Ω)) defined by

(∇(Lv)|∇q)0,Ω = 〈v, q〉H1(Ω) ∀v ∈ H−1(Ω), ∀q ∈ H1(Ω).

One may rephrase Theorem 6.2 (with ξ = 1) as follows.

Proposition 6.7. For all r ∈ [0, 1
2 ), one has L ∈ L(Hr−1(Ω),Hr+1(Ω)) and

there exists Kr ≥ 1 such that it holds that

‖L‖L(Hr−1(Ω),Hr+1(Ω)) ≤ Kr ;(6.10)

for all s ∈ [0, r], ‖L‖L(Hs−1(Ω),Hs+1(Ω)) ≤ (Kr)
s/r.(6.11)

Obviously, Kr depends on Ω. This dependence is omitted.
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6.2. Regularity of scalar fields. We transpose Theorem 3.1 of [6] to the
complex-valued case. Since the second half of the proof (choice of the parameter
k, here complex-valued; explicit dependence of the regularity exponent τ and stabil-
ity constant c on P, ξ...) is quite different in this case, we provide it for the sake of
completeness.

Theorem 6.8. Let ξ be a scalar, nonconstant, complex-valued coefficient that
fulfills the coefficient assumption. Then, there exists a regularity exponent τξ :=
τ(P, ξ−/ξmax,Λξ) ∈ (0, 1

2 ) such that, for all s ∈ [0, τξ), there exists a constant
c(s, ξ) := c(P, s, ξ−/ξmax,Λξ) such that for all f ∈ Hs−1(Ω), the solution u ∈ H1(Ω)
to (6.4) belongs to Hs+1(Ω), and

‖u‖Hs+1(Ω) ≤
c(s, ξ)

ξmax
‖f‖Hs−1(Ω).

Remark 6.9. By introducing the scaling factor (ξmax)−1, one is able to refine the
dependence of the constant c on the coefficient, namely that c depends only on the
amplitude ξ−/ξmax and the local, scaled, variations Λξ. And because the coefficient
ξ is nonconstant, condition (5.1) yields ξ−/ξmax ∈ (0, 1).

Proof. Let k ∈ C \ {0}. Using the operator D, we note that given f∗ ∈ H−1(Ω)
and denoting by u∗ the solution to (6.4) with data f∗, it holds that

f∗ = D(ξ∇u∗) = D(k∇u∗)−D((k− ξ)∇u∗) = D(∇(ku∗))−D
((

1− ξ

k

)
∇(ku∗)

)
.

Introducing ξ̄ = (1−ξ/k) ∈ PW 1,∞(Ω) and v∗ = ku∗ ∈ H1(Ω), we get f∗ = D(∇v∗)−
D(ξ̄∇v∗). Because LD∇ is equal to the identity operator in L(H1(Ω),H1(Ω)), it
follows that

Lf∗ = v∗ − L(D(ξ̄∇v∗)) = v∗ − L(D(mξ̄(∇v∗))).

Let us now denote Q := LDmξ̄∇ ∈ L(H1(Ω),H1(Ω)). If moreover Q belongs to

L(Hs+1(Ω),Hs+1(Ω)) for some s ∈ (0, 1
2 ), then we derive from the above that if we

consider some data f ∈ Hs−1(Ω) in (6.4), one has

|k| ‖u‖Hs+1(Ω) ≤
‖L‖s−1,s+1

1− ‖Q‖s+1,s+1
‖f‖Hs−1(Ω),(6.12)

under the condition ‖Q‖s+1,s+1 < 1, where ‖L‖s−1,s+1 := ‖L‖L(Hs−1(Ω),Hs+1(Ω)) and
‖Q‖s+1,s+1 := ‖Q‖L(Hs+1(Ω),Hs+1(Ω)).

Given s ∈ (0, 1
2 ), let v ∈ Hs+1(Ω). One checks successively that ∇v ∈ Hs(Ω);

mξ̄(∇v) ∈ H̃s(Ω) (cf. Proposition 6.5); D(mξ̄∇v) ∈ Hs−1(Ω) (cf. Proposition 6.6);
L(Dmξ̄∇v) ∈ Hs+1(Ω) (cf. Proposition 6.7). In addition, all those results are ac-
companied by a continuous dependence. Hence, one has Q ∈ L(Hs+1(Ω),Hs+1(Ω))
with

‖Q‖s+1,s+1 ≤ ‖L‖s−1,s+1 ‖D‖L(H̃s(Ω),Hs−1(Ω))
‖mξ̄‖L(Hs(Ω),H̃s(Ω))

.(6.13)

So it remains to prove that there exists τ ∈ (0, 1
2 ) such that, for all s ∈ [0, τ),

‖Q‖s+1,s+1 < 1, where the bound on the norm is derived by an appropriate choice of
k ∈ C \ {0}.
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To that aim, let τ0 ∈ (0, 1
2 ) be given, and let s ∈ [0, τ0). Using the bound (6.13), we

obtain first that

‖Q‖s+1,s+1 ≤ (Kτ0)s/τ0 ξ̄max

(
Nτ0
ξ̄

)s/τ0
,(6.14)

where ξ̄max := ‖ξ̄‖L∞(Ω), according to (6.8), (6.11), and Proposition 6.6. We know
from Proposition 6.7 that Kτ0 ≥ 1, and that it is independent of k and ξ. Let us study
now the behavior of ξ̄max and Nτ0

ξ̄
with respect to k and ξ, so that for an appropriate

choice of k and of τ ∈ (0, τ0], one can guarantee that

(Kτ0)s/τ0 ξ̄max

(
Nτ0
ξ̄

)s/τ0
< 1 ∀s ∈ [0, τ).(6.15)

To achieve (6.15), one needs that ξ̄max < 1. Indeed, once k is given, it holds that
lims→0+(Kτ0)s/τ0 (Nτ0

ξ̄
)s/τ0 = 1.

Let k = ρ̄ exp(ıθ̃), ρ̄ > 0, θ̃ ∈ [0, 2π). Keeping the notation of (6.1), one has

|ξ̄(x)|2 = |1− ξ(x)/k|2 = 1 +
ρ(x)

ρ̄

(
ρ(x)

ρ̄
− 2 cos(θ(x)− θ̃)

)
, a.e. x ∈ Ω.

It follows that |ξ̄(x)| < 1 a.e. x ∈ Ω if, and only if,

1

2

ρ(x)

ρ̄
< cos(θ(x)− θ̃), a.e. x ∈ Ω.

Choosing the angular part θ̃ = 1
2 (θmin + θmax) and recalling that ξmax = ‖ρ‖L∞(Ω)

(cf. (6.1)), this condition is implied by

1

2

ξmax
ρ̄

< cos

(
1

2
(θmax − θmin)

)
.

Since one has θmax − θmin ≤ 2 arccos(ξ−/ξmax), a sufficient condition is

1

2

ξmax
ρ̄

<
ξ−
ξmax

⇐⇒ 1

2

(ξmax)2

ξ−
< ρ̄.

So, let us choose k = γ (ξmax)2/ξ− exp( ı2 (θmin + θmax)) for some γ ∈ ( 1
2 ,∞) to be

determined. With this value of k = k(γ), one can find an upper bound for ξ̄max:

|ξ̄(x)|2 = 1 +
ρ(x)(ξ−)2

γ2(ξmax)3

(
ρ(x)

ξmax
− 2γ

ξmax
ξ−

cos(θ(x)− θ̃)
)
, a.e. x ∈ Ω.

But ρ(x) ≤ ξmax and cos(θ(x)− θ̃) ≥ cos( 1
2 (θmax − θmin)) a.e x ∈ Ω, so

ρ(x)

ξmax
− 2γ

ξmax
ξ−

cos(θ(x)− θ̃) ≤ 1− 2γ
ξmax
ξ−

cos

(
1

2
(θmax − θmin)

)
≤ 1− 2γ, a.e. x ∈ Ω.

Since 1− 2γ < 0, we now observe that ρ(x) ≥ ξ− a.e x ∈ Ω leads to

|ξ̄(x)|2 ≤ 1 +
1− 2γ

γ2

(
ξ−
ξmax

)3

, a.e. x ∈ Ω.
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The minimum of γ 7→ (1− 2γ)/γ2 on ( 1
2 ,∞) is obtained for γ = 1 and is equal to −1.

So we finally choose k = k(1), i.e.,

k =
(ξmax)2

ξ−
exp

( ı
2

(θmin + θmax)
)
,(6.16)

and conclude that, for this choice of k, it holds that

ξ̄max ≤

(
1−

(
ξ−
ξmax

)3
)1/2

.(6.17)

With this choice for k, one can also infer an upper bound for Nτ0
ξ̄

= Dτ0(2(1 +

C2Λξ̄
2))τ0/2, where Λξ̄ = |ξ̄|PW 1,∞(Ω)/ξ̄max = max1≤j≤J ‖∇ξ̄j‖L∞(Ωj)/ξ̄max.

Let us bound ξ̄max from below:

0 <

(
1− ξ−

ξmax

)2

≤
(

1− ρ(x) ξ−
(ξmax)2

)2

, a.e. x ∈ Ω,

= 1 +
ρ(x)(ξ−)2

(ξmax)3

(
ρ(x)

ξmax
− 2

ξmax
ξ−

)
, a.e. x ∈ Ω,

≤ 1 +
ρ(x)(ξ−)2

(ξmax)3

(
ρ(x)

ξmax
− 2

ξmax
ξ−

cos(θ(x)− θ̃)
)
, a.e. x ∈ Ω,

= |ξ̄(x)|2, a.e. x ∈ Ω,

so |ξ̄(x)| ≥ 1− ξ−
ξmax

> 0, a.e. x ∈ Ω.

Hence, ξ̄max ≥ 1− ξ−/ξmax.
Next, for 1 ≤ j ≤ J ,

‖∇ξ̄j‖L∞(Ωj) =
1

|k|
‖∇ξj‖L∞(Ωj) =

ξ−
(ξmax)2

‖∇ξj‖L∞(Ωj).

It follows that1

Λξ̄ ≤
1(

1− ξ−
ξmax

) max
1≤j≤J

‖∇ξ̄j‖L∞(Ωj)

=
1(

1− ξ−
ξmax

) ξ−
ξmax

max1≤j≤J ‖∇ξj‖L∞(Ωj)

ξmax
,

so Λξ̄ ≤
1(

ξmax
ξ−
− 1
) Λξ.

We conclude that

Nτ0
ξ̄
≤ Dτ0

2

1 +
C2(

ξmax
ξ−
− 1
)2 Λξ

2



τ0/2

.

1Notice that in the particular case where ξ is piecewise constant, we have that Λξ̄ = Λξ = 0.
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From this point on, one can choose τ ≤ τ0 to ensure that (6.15), and so (6.14), holds.
Due to the upper bounds on ξ̄max and Nτ0

ξ̄
, it is sufficient that

(
1−

(
ξ−
ξmax

)3
)1/2

2(Kτ0Dτ0)2/τ0

1 +
C2(

ξmax
ξ−
− 1
)2 Λξ

2



s/2

< 1 ∀s ∈ [0, τ).

Since 2(Kτ0Dτ0)2/τ0 ≥ 2 (see Proposition 6.7 and (6.5)) and (1 + C2 · · · ) ≥ 1, this
last condition is equivalent to

(
1−

(
ξ−
ξmax

)3
) 2(Kτ0Dτ0)2/τ0

1 +
C2(

ξmax
ξ−
− 1
)2 Λξ

2



τ

< 1.

This leads to choosing

τξ = min

τ0,−
log

(
1−

(
ξ−
ξmax

)3
)

log 2 + 2
τ0

log(Kτ0Dτ0) + log

(
1 + C2(

ξmax
ξ−
−1
)2 Λξ

2

)
 ∈ (0, τ0].

(6.18)

Finally, we also conclude from (6.12), (6.14), (6.16) and the bounds above that, for all
s ∈ [0, τ), for all f ∈ Hs−1(Ω), the solution u ∈ H1(Ω) to (6.4) belongs to Hs+1(Ω),
and

‖u‖Hs+1(Ω) ≤
ξ−

(ξmax)2

(Kτ0)s/τ0

1− (Kτ0)s/τ0 ξ̄max

(
Nτ0
ξ̄

)s/τ0 ‖f‖Hs−1(Ω)

≤ c(s, ξ)

ξmax
‖f‖Hs−1(Ω),where

c(s, ξ) =

ξ−
ξmax

(Kτ0)s/τ0

1−

(
2(Kτ0Dτ0)2/τ0

(
1 + C2(

ξmax
ξ−
−1
)2 Λξ

2

))s/2(
1−

(
ξ−
ξmax

)3
)1/2

.(6.19)

This proves the claim.

According to (6.17), one finds that ξ̄max = 0 only in the particular case where
ξ− = ξmax. As a matter of fact, in this case, we know from (5.1) that ξ(x) =
ξ− exp(ıθ?) a.e. in Ω. Hence, the operator Dmξ∇ is proportional to the Lapla-
cian D∇ and the result is trivial: one can even pick any regularity exponent τ
lower than 1

2 ; cf. Theorem 6.2.
On the other hand, for a piecewise constant coefficient ξ, one has Λξ = 0, so that

once τ0 ∈ (0, 1
2 ) is chosen, (6.18) and (6.19) respectively simplify to
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τξ = min

τ0,− log

(
1−

(
ξ−
ξmax

)3
)

log 2 + 2
τ0

log(Kτ0Dτ0)

 ∈ (0, τ0] ;(6.20)

c(s, ξ) =

ξ−
ξmax

(Kτ0)s/τ0

1− (2(Kτ0Dτ0)2/τ0)s/2
(

1−
(

ξ−
ξmax

)3
)1/2

.(6.21)

For our model problem, of special interest is the electric case, with the coefficient
ξ = εσ: in this case, (εσ)− can be chosen among (cos θ? εmin+sin θ? σmin/ω)θ?∈[0,π/2].
In particular

(εσ)− ≥ max
θ?∈[0,π/2]

(cos θ? εmin + sin θ? σmin/ω) =
(
(εmin)2 + (σmin/ω)2

)1/2
.

On the other hand,

(εσ)max ≤ ((εmax)2 + (σmax/ω)
2
)1/2.

When both ε and σ are constant on Ω, the operator −div εσ∇ (with Dirichlet bound-
ary condition) is proportional to the Laplace operator (with Dirichlet boundary con-
dition), and one has (εmin)2 + (σmin/ω)2 = (εmax)2 + (σmax/ω)2, so the bounds on
(εσ)− and (εσ)max are sharp. According again to Theorem 6.2, any τεσ < 1

2 with
cεσ = cLap(τεσ ) is admissible in this case.

In the other configurations (nonconstant εσ), let τ0 ∈ (0, 1
2 ) be fixed, and intro-

duce

Rεσ := (εσ)max/(εσ)− > 1 ;

then the regularity exponent (6.18), resp., the stability constant (6.19) of Theorem
6.8, is given by

τεσ = min

τ0,− log
(
1− (Rεσ )−3

)
log 2 + 2

τ0
log(Kτ0Dτ0) + log

(
1 + C2

(Rεσ−1)2
Λεσ

2
)
 ∈ (0, τ0] ;(6.22)

c(s, εσ) =
(Rεσ )−1(Kτ0)s/τ0

1−
(

2(Kτ0Dτ0)2/τ0

(
1 + C2

(Rεσ−1)2
Λεσ

2
))s/2

(1− (Rεσ )−3)
1/2

.(6.23)

6.3. Bounding the norm of scalar fields. We now bound the norm of the
right-hand sides of the variational formulations (5.4) and (5.7), governing, respectively,
p0 and q0.

Lemma 6.10. Let Ω be a domain such that (Top)I is fulfilled, and assume that
ξ fulfills the coefficient assumption. Let v ∈XB(Ω, ξ) be given, for B ∈ {Dir,Neu}.
Let s ∈ [0, 1

2 ): if B = Dir, the right-hand sides f defined by (5.4) belong to Hs−1
Dir (Ω);

respectively, if B = Neu the right-hand sides f defined by (5.7) belong to Hs−1
Neu(Ω).

In addition, for all s ∈ (0, 1
2 ), it holds that

‖f‖Hs−1(Ω) ≤ cB s1/2 ‖ div ξv‖0,Ω + C(s, 12 ) ξmaxN
s
ξ ‖v‖H(curl;Ω).(6.24)
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Proof. Let us focus on the case B = Dir (proof is similar in the case B = Neu).
We use the same notation as in Theorem 5.5. Introduce f ∈ H−1(Ω):

f : ψ 7→ (ξ(z + vreg)|∇ψ)0,Ω + (div ξv|ψ)0,Ω ∀ψ ∈ H1(Ω).

Let s ∈ (0, 1
2 ) be given.

First, it is obvious that f0 : ψ 7→ (div ξv|ψ)0,Ω belongs to Hs−1(Ω). Indeed,
according to Appendix A,

∀ψ ∈ H1−s(Ω), |(div ξv|ψ)0,Ω| ≤ ‖div ξv‖0,Ω‖ψ‖0,Ω ≤ c
Dir s1/2 ‖ div ξv‖0,Ω‖ψ‖H1−s(Ω).

Hence, f0 ∈ Hs−1(Ω) and ‖f0‖Hs−1(Ω) ≤ cDir s1/2 ‖ div ξv‖0,Ω.

Then we recall that z+vreg belongs to H
1
2 (Ω) ⊂Hs(Ω), so that mξ(z+vreg) =

ξ(z+vreg) ∈ H̃s(Ω) according to Proposition 6.5. Then it follows from Proposition 6.6
that D(mξ(z + vreg)) ∈ Hs−1(Ω). In other words, ψ 7→ (ξ(z + vreg)|∇ψ)0,Ω also
belongs to Hs−1(Ω).

Regarding the norm estimate (6.24), we simply use the bounds (6.7) and (6.9)
together with (5.3) to conclude the proof: the dependence in s (the constant C(s, 12 ))

comes from the continuous embedding H
1
2 (Ω) ⊂Hs(Ω).

Given r ∈ (0, 1
2 ), one may use (6.8) for s ∈ (0, r] and thus replace (6.24) for all

s ∈ (0, r] by

‖f‖Hs−1(Ω) ≤ cB s1/2 ‖ div ξv‖0,Ω + C(s, 12 ) ξmax (Nr
ξ )s/r ‖v‖H(curl;Ω).(6.25)

6.4. Application to the polyhedral model problem. We recall that, un-
der the assumptions defining the polyhedral model problem, the coefficients (ε, µ, σ)
are such that ε, σ fulfill the coefficient assumption, and µ is constant on Ω. Accord-
ing to the definition of the model problem (2.9), it always holds that µ−1 curl e ∈
XNeu(Ω, µ). Here, because µ is a constant, XNeu(Ω, µ) = XNeu(Ω). It follows that
µ−1 curl e ∈ HσNeu(Ω) with σNeu > 1

2 ; cf. Proposition 5.3. Then, regarding the
choice of a regularity exponent for the electric field e itself, because εσ ∈ PW 1,∞(Ω),
we note that either any τεσ < 1

2 is admissible (constant εσ) or that it is given by
(6.22) (nonconstant εσ). Indeed, one has the regular/gradient splitting (6.2):

e = ereg + ze +∇p0 in Ω, where ereg ∈H1(Ω), ze ∈HσDir (Ω).

The regularity of the gradient part, namely ∇p0 ∈ Hs(Ω), is a straightforward con-
sequence of Theorems 6.2 (constant εσ) and 6.8 (nonconstant εσ), provided that the
right-hand side f given there belongs to Hs−1(Ω) for all values s ∈ [0, τεσ ). But, since
this regularity result on f was proven in Lemma 6.10, one has indeed ∇p0 ∈ Hs(Ω)
for all s ∈ [0, τεσ ).

It follows that we can provide values for τ(ε,µ,σ) (regularity exponent), resp.,
C?(ε,µ,σ,s) (stability constant), in (3.6). Because the limiting value of a regularity

exponent is constrained by τεσ (τεσ <
1
2 < σNeu), we choose

τ(ε,µ,σ) := τεσ ∈
(

0,
1

2

)
.

From now on, we assume that we are given a set Θ of coefficients (ε, µ, σ) such
that ε, σ fulfill the coefficient assumption, and µ is constant on Ω. Moreover, we
consider the case where τ := inf(ε,µ,σ)∈Θ τ(ε,µ,σ) > 0. This covers in particular the
case where Θ is a singleton {(ε0, µ0, σ0)}, and τ = τ(ε0,µ0,σ0).
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Lemma 6.11. Let p0 be defined as in (5.4). For all (ε, µ, σ) ∈ Θ, for all s ∈ (0, τ),
the norm in Hs−1(Ω) of the right-hand side f in (5.4) is bounded by

‖f‖Hs−1(Ω) ≤ c00 ω ‖jext‖0,Ω + c0div ω
−1 ‖ div jext‖0,Ω, where

c00 := C(s, 12 ) (εσ)max (Nτ
εσ )s/τ (Ccoer(ε,µ,σ))

−1, and c0div := cDir s1/2.

Remark 6.12. We recall that

(Nτ
εσ )s/τ := (Dτ )s/τ

(
2
(
1 + C2Λεσ

2
))s/2

,

where Dτ is defined at (6.5), resp., C is the Poincaré constant defined at (6.6), and
Λεσ := ((εσ)max)−1|εσ|PW 1,∞(Ω). Note that only Dτ and C, and hence N

τ
εσ , depend

on the partition induced by (ε, µ, σ).

Proof. According to (6.25), we know that the right-hand side that defines ∇p0 is
bounded by

‖f‖Hs−1(Ω) ≤ cDir s1/2 ‖div εσe‖0,Ω + C(s, 12 ) (εσ)max (Nτ
εσ )s/τ ‖e‖H(curl;Ω).

Going back to the model problem (2.9), the left part of the upper bound is readily
replaced by cDir s1/2 ω−1 ‖ div jext‖0,Ω. Then, using the coercivity bound of Propo-
sition 4.1,

Ccoer(ε,µ,σ) ‖e‖
2
H(curl;Ω) ≤ ω|(jext|e)0,Ω| ≤ ω‖jext‖0,Ω ‖e‖H(curl;Ω),

we find for the right part the bound

C(s, 12 ) (εσ)max (Nτ
εσ )s/τ

(
Ccoer(ε,µ,σ)

)−1

ω ‖jext‖0,Ω,

which proves the claim.

The bound on ‖∇p0‖s,Ω = ‖p0‖H1+s(Ω) follows: for all s ∈ (0, τ),

‖∇p0‖s,Ω ≤
cDir(s, εσ)

(εσ)max

(
c00 ω ‖jext‖0,Ω + c0div ω

−1 ‖ div jext‖0,Ω
)
,

where cDir(s, εσ) is given in Theorem 6.2 or Theorem 6.8 ; cDir(s, εσ) depends on the
partition induced by (ε, µ, σ).

We are now in a position to estimate the norm of e in PHs(curl; Ω), for all
values s ∈ (0, τ), which then leads to the desired convergence rate.

Lemma 6.13. For all (ε, µ, σ) ∈ Θ, for all s ∈ (0, τ), one has the estimate

‖e‖PHs(curl;Ω) ≤ C?0 (ε,µ,σ,s) ‖jext‖0,Ω + C?div(ε,µ,σ,s) ‖div jext‖0,Ω, where

C?0 (ε,µ,σ,s) :=

(
C(s, 12 )

Ccoer(ε,µ,σ)

(
cDir(s, εσ)(Nτ

εσ )s/τ + CDirX

)
+C(s,σNeu) IXNeu

(
(1 + µω2 (εσ)max)

Ccoer(ε,µ,σ)

+ µ

))
ω,

C?div(ε,µ,σ,s) :=
cDir(s, εσ) cDir s1/2

(εσ)max
ω−1,

and IXNeu
denotes the norm of the embedding XNeu(Ω) ⊂HσNeu(Ω).
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Remark 6.14. The above is slightly different from (3.6), where both contributions
of the norm ‖jext‖H(div;Ω) are merged. Also, only cDir(s, εσ) and N

τ
εσ depend on the

partition induced by (ε, µ, σ).

Proof. One has ‖e‖s,Ω ≤ ‖ereg + ze‖s,Ω + ‖∇p0‖s,Ω, and the bound on ‖∇p0‖s,Ω
is given right above. On the other hand,

‖ereg + ze‖s,Ω ≤ C(s, 12 ) ‖ereg + ze‖1/2,Ω

≤ C(s, 12 ) C
Dir
X ‖e‖H(curl;Ω) ≤

C(s, 12 ) C
Dir
X

Ccoer(ε,µ,σ)

ω ‖jext‖0,Ω.

We conclude that for all s ∈ (0, τ),

‖e‖s,Ω ≤

(
cDir(s, εσ) c00

(εσ)max
+
C(s, 1

2
) C

Dir
X

Ccoer(ε,µ,σ)

)
ω ‖jext‖0,Ω +

cDir(s, εσ) c0div ω
−1

(εσ)max
‖div jext‖0,Ω,

where c00 and c0div are defined in Lemma 6.11.
Regarding the norm of curl e, we recall that curl e ∈XNeu(Ω). But XNeu(Ω) is

continuously embedded inHσNeu(Ω) (Proposition 5.3) so we find that for all s ∈ (0, τ),

‖ curl e‖s,Ω ≤ C(s,σNeu) ‖ curl e‖σNeu,Ω
≤ C(s,σNeu) IXNeu

‖ curl e‖XNeu(Ω)

= C(s,σNeu) IXNeu
‖ curl e‖H(curl;Ω).

Next, we have, using the model problem (2.9),

‖ curl e‖H(curl;Ω) ≤ ‖ curl e‖0,Ω + ‖ curl curl e‖0,Ω
= ‖ curl e‖0,Ω + µ ‖ curlµ−1 curl e‖0,Ω
= ‖ curl e‖0,Ω + µ ‖ω2εσe+ ıωjext‖0,Ω
≤ (1 + µω2 (εσ)max)‖e‖H(curl;Ω) + µω ‖jext‖0,Ω

≤

(
(1 + µω2 (εσ)max)

Ccoer(ε,µ,σ)

+ µ

)
ω ‖jext‖0,Ω.

Hence, for all s ∈ (0, τ),

‖ curl e‖s,Ω ≤ C(s,σNeu) IXNeu

(
(1 + µω2 (εσ)max)

Ccoer(ε,µ,σ)

+ µ

)
ω ‖jext‖0,Ω.

Then, using Proposition 3.1, we find, for all s ∈ (0, τ),

‖e‖PHs(curl;Ω) ≤ ‖e‖PHs(Ω) + ‖ curl e‖PHs(Ω) ≤ ‖e‖s,Ω + ‖ curl e‖s,Ω,

and the conclusion follows.

We recall that C](ε,µ,σ) = Ccont(ε,µ,σ)(C
coer
(ε,µ,σ))

−1 is the constant appearing in Céa’s

lemma (and bounded in section 4) and that ς > 0 is the shape regularity parameter of
the family of meshes. Then one has the following convergence rate for the polyhedral
model problem.
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Theorem 6.15. Let (ε, µ, σ) be such that ε, σ fulfill the coefficient assumption,
and µ is constant on Ω. For all s ∈ (0, τ(ε,µ,σ)), there exist constants Cinterp(ς,s) ,

C?0 (ε,µ,σ,s), and C?div(ε,µ,σ,s) such that for all jext ∈ H(div; Ω) and all h, the error

estimate holds:

‖e− eh‖H(curl;Ω) ≤ C](ε,µ,σ) C
interp
(ς,s) hs

(
C?0 (ε,µ,σ,s) ‖jext‖0,Ω

+C?div(ε,µ,σ,s) ‖ div jext‖0,Ω
)
.(6.26)

Let Θ be a set of coefficients (ε, µ, σ) whose elements are all piecewise smooth on the
same polyhedral partition, and assume that τ := inf(ε,µ,σ)∈Θ τ(ε,µ,σ) > 0. Then (6.26)
holds true for all s ∈ (0, τ).

Remark 6.16. The above is slightly different from (3.7), where both contributions
of the norm ‖jext‖H(div;Ω) are merged.

Proof. It is straightforward to derive the result (6.26) by using successively (3.3)
and (3.5), and finally the estimate of Lemma 6.13 for τ = τ(ε,µ,σ).

6.5. A few possible generalizations. Let us mention two cases we have ex-
cluded so far: first when µ fulfills the coefficient assumption, but µ is not constant on
Ω, and second when jext 6∈ H(div; Ω), but jext ∈ L

2(Ω) with div jext ∈ H−t(Ω) for
some t ∈ (0, 1).

In the first situation, all the previous analyses apply, except when one addresses
the regularity of µ−1 curl e with respect to the scale (Hs(Ω))s. Although it still holds
that µ−1 curl e ∈XNeu(Ω, µ), one has XNeu(Ω, µ) 6= XNeu(Ω). To find a regularity
exponent, one uses now (6.3), where the regularity is determined by the gradient
part ∇q0: see Theorem 6.8 (Neumann case), which yields the value of the regularity
exponent τµ. One then chooses

τ(ε,µ,σ) := min(τεσ , τµ) ∈
(

0,
1

2

)
.

Next, one derives an estimate on ‖ curl e‖s,Ω for all s ∈ (0, τ(ε,µ,σ)). Noting that the
multiplicative operator mµ belongs to L(Hs(Ω),Hs(Ω)), it follows that

‖ curl e‖s,Ω ≤ ‖mµ‖L(Hs(Ω),Hs(Ω)) ‖µ−1 curl e‖s,Ω.

The first quantity, ‖mµ‖L(Hs(Ω),Hs(Ω)), is easily bounded from above, thanks to
Proposition 6.5 and (6.5).

Then, using (6.3), one writes

‖µ−1 curl e‖s,Ω ≤ ‖creg + zc‖s,Ω + ‖∇q0‖s,Ω.

Thanks to (5.6), one has

‖creg + zc‖s,Ω ≤ C(s, 12 ) ‖creg + zc‖1/2,Ω ≤ C(s, 12 ) C
Neu
X ‖µ−1 curl e‖H(curl;Ω).

On the other hand, according to Theorem 6.8 it holds that

‖∇q0‖s,Ω ≤
cNeu(s, µ)

µmax
‖f‖Hs−1(Ω),
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where f is the right-hand side of (5.7). Using Lemma 6.10 yields

‖∇q0‖s,Ω ≤ cNeu(s, µ)C(s, 12 ) (Nτ
µ )s/τ ‖µ−1 curl e‖H(curl;Ω).

Aggregating the two estimates, one finds now

‖µ−1 curl e‖s,Ω ≤ C(s, 12 )

(
CNeuX + cNeu(s, µ) (Nτ

µ )s/τ
)
‖µ−1 curl e‖H(curl;Ω).

Writing finally

‖µ−1 curl e‖H(curl;Ω) ≤ ‖µ−1 curl e‖0,Ω + ‖ curlµ−1 curl e‖0,Ω

≤ 1

µmin
‖ curl e‖0,Ω + ‖ curlµ−1 curl e‖0,Ω

(cf. (2.9)) ≤
(

1

µmin
+ ω2 (εσ)max

)
‖e‖H(curl;Ω) + ω ‖jext‖0,Ω

and using the coercivity, the rest of the estimates follow easily.
In the second situation, namely when div jext ∈ H−t(Ω) for some t ∈ (0, 1), one

must use a generalized regular/gradient splitting. Precisely, one introduces (see [4,
Theorem 6.1.15])

XDir(Ω, ξ,−t) := {v ∈H0(curl; Ω) : div ξv ∈ H−t(Ω)}.

Then, one may generalize Theorem 5.5 to elements of XDir(Ω, ξ,−t). The only
difference is that ∇p0 is now governed by{

Find p0 ∈ H1
0 (Ω) such that

(ξ∇p0|∇ψ)0,Ω = −(ξz|∇ψ)0,Ω − (ξvreg|∇ψ)0,Ω − 〈div ξv, ψ〉Ht0(Ω) ∀ψ ∈ H1
0 (Ω).

With this result at hand, one may proceed as before, replacing the occurences of
‖ div jext‖0,Ω by ‖ div jext‖−t,Ω: one simply notices that when div jext ∈ H−t(Ω), one
may still apply Lemma 6.10, but only for all s ∈ (0,min( 1

2 , 1− t)). Hence, one chooses

τ(ε,µ,σ,t) := min(τεσ , τµ, 1− t) ∈
(

0,
1

2

)
.

Computations can then be carried out.

Then, what happens when Θ is not reduced to a singleton? For simplicity,2 let us
consider that all its elements (ε, µ, σ) are such that ε, σ, µ are piecewise constant on
a fixed partition and that jext ∈H(div; Ω). Then the regularity exponent is written

τ := inf
(ε,µ,σ)∈Θ

min(τεσ , τµ).

According to (6.20), we see that if condition

sup
(ε,µ,σ)∈Θ

(εσ)max
(εσ)−

+ sup
(ε,µ,σ)∈Θ

µmax
µmin

<∞(6.27)

2If more generally the coefficients are piecewise smooth, or if the partition depends on the element
(ε, µ, σ), the condition is more involved than (6.27) proposed below.
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holds, then τ > 0, and for any (ε, µ, σ) ∈ Θ one may apply the previous results for
all s ∈ [0, τ). Note that this condition is comparable to the one found using the
local approach (see (B.8)), because one has (εσ)max ≤ ω−1(ε2

max ω
2 + σ2

max)1/2, and
(εσ)− ≥ ω−1(ε2

min ω
2 + σ2

min)1/2. On the other hand, there exist configurations such
that if, e.g., sup(ε,µ,σ)∈Θ µmax/µmin = ∞, it holds that inf(ε,µ,σ)∈Θ τµ = 0. In other
words, there is no (extra-)regularity in this limit case. We refer to section 7.2 for an
illustration.

Also, what can be said in the context of section 5.3, that is, when ξ is a complex-
valued, measurable, tensor field that fulfills the coefficient assumption? It turns out
that one may address the case of a normal tensor field, i.e., ξ = U−1DU a.e. in Ω,
where U is a unitary tensor field, resp., D is a diagonal tensor field, defined in Ω. Let
us briefly explain why.

First, Proposition 6.5 still applies. Then, (5.1) is now replaced by (5.8), but the
latter can be seen as the equivalent of the former, imposed on D11, D22, and D33.
Hence one may use the reformulated (6.1), namely

Dkk ∈ {z = ρ exp(ıθ), ρ ∈ [ξ−, ξmax], θ ∈ [θmin, θmax]} a.e. in Ω for k = 1, 2, 3,

where ξmax := sup
z∈C3\{0}

ess sup
Ω

|ξz]

|z|
, and 0 ≤ θmax − θmin ≤ 2 arccos

(
ξ−
ξmax

)
,

in the proof of Theorem 6.8.
The proof then proceeds as before, and one can conclude that Theorem 6.8 still

holds. The rest of the proofs are unchanged.
Finally, let us mention that the nonconductive case (σ = 0) can be handled

similarly, under the assumption that the model problem is well-posed (i.e., ω2 is not
an eigenvalue of the corresponding eigenproblem). In this case the coercivity constant
is frequency dependent, in the sense that it is inversely proportional to the distance
of ω2 to the closest eigenvalue; see, for instance, [4, section 8.3]. On the other hand,
the estimates on the regularity exponent and on the stability constant can still be
recovered in this context.

7. Evaluating the regularity exponent. Below, we evaluate the “sharpness”
of the bounds on τ(ε,µ,σ) on two examples.

7.1. The coplanar waveguide. First, let us consider the coplanar waveguide
case, as provided by the MORwiki Community [34, 5]. Precisely, the geometry of
interest is a parallelepided; see Figure 1. The upper part of the domain is made of
air, while the bottom part is made of a substrate (in yellow) in which three perfectly
conducting striplines (in blue) are embedded. The electric permittivity ε and the
conductivity σ are piecewise constant (with different values in the air and in the
substrate), while the magnetic permeability µ takes the same value in the air and in
the substrate.

The resulting Ω is thus equal to the paralleliped minus the three striplines, and
the interface Σ separates the two materials (air, substrate): it is flat; see Figure 1.
Importantly, all angles, either at the boundary or at the interface between the two
materials, are equal to multiples of π/2. One solves the model problem (2.9) in this
configuration for a given jext.

Since the coefficients are piecewise constant, one may use the local approach;
cf. Appendix B. According to the framework developed there, one has to study the
local problems on interior domains (no intersection with ∂Ω; cf. section B.1), resp.,
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Fig. 1. A coplanar waveguide [34].

on boundary domains (cf. section B.2), to determine the “best regularity” exponent
τopt(ε,µ,σ). In the present case, studying local problems on interior domains (see (B.7)),

one finds that there is no constraint on τopt(ε,µ,σ) because the interface is flat. On the

other hand, the study of local problems on boundary domains is more involved a priori;
there are edge problems with interface (at the intersection ∂Ω ∩ Σ), edge problems
without interface (on ∂Ω), and finally corner problems without interface (on ∂Ω).

Interestingly, for the edge problems with interface and because the diedric angles
are equal to π/2 in both materials, one notices that, using a symmetry argument
(odd reflection for the Dirichlet boundary condition, resp., even reflection for the
Neumann boundary condition; see [22, p. 41]), one can recast the problem as an
interior problem, with a flat interface. Hence, τe,Σ(ξ) = 1 for ξ ∈ {µ, εσ}.

Also, making the same observation on the value of the angles, and using again
a symmetry argument, one can recast the corner problem without interface as an
edge problem without interface: it follows that τc,∂Ω(ξ) = τe,∂Ω(ξ), where τe,∂Ω(ξ) is
characterized next, for ξ ∈ {µ, εσ}, and one has τopt(ε,µ,σ) = min(1, τe,∂Ω(µ), τe,∂Ω(εσ)).

So, in the end, it remains to study the edge problem without interface to determine
the value of τopt(ε,µ,σ). But this is a standard problem: one looks for the regularity ex-

ponent in an L-shape (local) domain O for the Laplace operator (there is no interface,
hence no jump of the coefficient) with either homogeneous Dirichlet or homogeneous
Neumann boundary condition: it is well-known that τe,∂Ω(µ) = τe,∂Ω(εσ) = 2/3.

Aggregating all results, one concludes that τopt(ε,µ,σ) = 2/3 for the coplanar wave-

guide, independently of the values of the coefficients (ε, µ, σ). In other words the lower
bounds provided by (6.27) and (B.8) are not “sharp.”

7.2. The checkerboard. We study now a simple example (cf., for instance,
Dauge’s benchmark [16]) to illustrate the fact that the conditions (6.27) and (B.8)
can be “sharp”: let us consider the domain Ω := (−1, 1) × (−1, 1) × (0, 1), made of
four cubes, stacked together,

Ω1 := (−1, 0)× (−1, 0)× (0, 1), Ω2 := (0, 1)× (−1, 0)× (0, 1),
Ω3 := (0, 1)× (0, 1)× (0, 1), Ω4 := (−1, 0)× (0, 1)× (0, 1).
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Table 1
Asymptotic and computed values of

√
ν0.

δ 4
π

√
δ (

√
ν0)computed

10−1 4.0263 10−1 3.8996 10−1

10−2 1.2732 10−1 1.2690 10−1

10−8 1.2732 10−4 1.2732 10−4

We assume that ε and σ are constant, while µ is piecewise constant, and equal to 1
in Ω1 ∪ Ω3, resp., to δ ∈ (0, 1) in Ω2 ∪ Ω4.

Again, all angles are multiples of π/2. Proceeding as in section 7.1, one observes
first that τopt(ε,µ,σ) = min(1, τe,Σ(µ)). Then, solving (B.7) and looking for the smallest

nonzero eigenvalue ν0, one may check that it is governed by

cos
(√

ν0
π

2

)
=

1− δ
1 + δ

, or equivalently
√
ν0 =

2

π
arccos

(
1− δ
1 + δ

)
.

Performing the expansion in the limit δ → 0, one finds that
√
ν0 ∼ 4

π

√
δ. Since

τe,Σ(µ) =
√
ν0, we find τopt(ε,µ,σ) ∼

4
π

√
δ, so there is no (extra-)regularity in the limit

case: in this sense the conditions (6.27) and (B.8) are “sharp” for the checkerboard.
To conclude, we provide some excerpts from Dauge’s benchmark [16]; see Table 1.
These numerical values corroborate the asymptotic formula when δ goes to 0.

7.3. Comments. When applicable, the local approach allows one to compute
the “best” regularity exponent τopt(ε,µ,σ), up to numerical precision. As a matter of fact,

one has to solve numerically a series of eigenproblems; see sections B.1–B.2. Or, in
more favorable cases (cf. section 7.1), it is even known exactly. However, the theory
we recalled in Appendix B is limited to the case of piecewise constant coefficients, on
a polyhedral partition, or, at least, to coefficients that are locally (piecewise) constant
near the interface and locally smooth near the boundary. And, near the boundary
and for smooth coefficients, one may use the so-called frozen coefficients technique;
cf. [21, section 5.2] or [17, section 5]. In principle, the value of τopt(ε,µ,σ) can still be

computed. But when the coefficients are only piecewise smooth, the technique no
longer applies.

Also, there is no obvious way to compute the constant C?(ε,µ,σ,t) appearing in (3.6)

when t spans (0, τopt(ε,µ,σ)), or to provide bounds of such a constant with respect to the

coeffficients, with the help of the local approach.
On the other hand, the global approach allows one to address all of the above, on a

partition made of (possibly) nonpolyhedral domains. It is only when the discretization
is concerned that one assumes the partition to be made of polyhedra.

Appendix A. Real interpolation method. We follow here [33, sections 22–
23] and [9, section 14]. Let H0, H1 be two Hilbert spaces, continuously embedded
into a third Hilbert space H:

• H0+H1 is equipped with the norm ‖v‖H0+H1 = infv=v0+v1(‖v0‖H0 +‖v1‖H1) ;
• resp., H0 ∩H1 is equipped with the norm ‖v‖H0∩H1

= max(‖v‖H0
, ‖v‖H1

).
One introduces, for v ∈ H0 + H1, K(t; v) := infv=v0+v1(‖v0‖2H0

+ t2‖v1‖2H1
)1/2. For

s ∈ (0, 1), one defines the interpolated space

(H0, H1)s,2 :=

{
v ∈ H0 +H1 s.t. t−sK(t; v) ∈ L2

(
0,∞;

dt

t

)}
,

equipped with the norm ‖v‖(H0,H1)s,2 := ‖t−sK(t; v)‖L2(0,∞; dtt ).
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In the case where H1 ⊂ H0, we use the notation Hs = (H0, H1)s,2. In this case
and after elementary computations, one finds that

• for all s, s′ ∈ (0, 1), s ≤ s′,

∃C(s,s′) ∀v ∈ Hs′ , ‖v‖Hs ≤ C(s,s′) ‖v‖Hs′ ;

• for all s ∈ (0, 1), Hs ⊂ H0,

∃c0 > 0, ∀s ∈ (0, 1), ∀v ∈ Hs, ‖v‖H0
≤ c0 s

1/2(1− s)1/2 ‖v‖Hs ;

• for all s ∈ (0, 1), H1 ⊂ Hs,

∃c1 > 0, ∀s ∈ (0, 1), ∀v ∈ H1, s
1/2(1− s)1/2 ‖v‖Hs ≤ c1 ‖v‖H1 .

If H1 = H0, the above holds for c0 = 2, resp., c1 = 1√
2
.

Appendix B. The local approach for finding a regularity exponent
τ(ε,µ,σ). We know that e and µ−1 curl e may be split into regular and gradient parts
(6.2)–(6.3). The regularity of the regular parts is known to be independent of the coef-
ficients (see Proposition 5.3). On the other hand, the regularity of the gradient parts,
∇p0 governed by (5.4), resp., ∇q0 governed by (5.7), depends a priori on the coeffi-
cients: it is now determined by the local approach. Based on the global approach,
we have obtained a regularity exponent τ(ε,µ,σ) which is strictly lower than 1

2 . So it

may not be equal to the “best” regularity exponent τopt(ε,µ,σ). Indeed, one knows that

the best regularity exponent is always lower than or equal to 1 and that there exist
configurations for which it is equal to 1; see, e.g., [3]. To summarize, τopt(ε,µ,σ) ∈ (0, 1]

and
• either p0, q0 ∈ PH2(Ω) always holds, in which case τopt(ε,µ,σ) = 1 ;

• or p0, q0 ∈
⋂
s∈[0,τopt

(ε,µ,σ)
) PH

1+s(Ω), and possibly p0, q0 6∈ PH
1+τopt

(ε,µ,σ)(Ω),

always holds, in which case τopt(ε,µ,σ) ∈ (0, 1).

Below, we recall how one can characterize the best regularity exponent τopt(ε,µ,σ) by the

local approach, in the case where the coefficients (ε, µ, σ) are as in section 2.1, and
moreover (ε, µ, σ) are piecewise constant over a polyhedral partition. Below, we focus
on the influence of the interface Σ, that is to say, on the influence of the coefficients.
Obviously, the influence of the boundary ∂Ω must be taken into account. But unless
the interface intersects with it, the coefficients do not play a role in the regularity of
the solution there, only the geometry of the boundary does. Along the same lines, if
the coefficient is constant on Ω, the local approach allows one to determine the “best”
(largest) value of σDir and σNeu. We follow here [14, 15] and the references therein:
according to Kondratiev’s theory, one studies the second-order elliptic PDEs locally
all over Ω and in particular the (local) regularity of its solution [21, section 8.2].

B.1. Interior domain. Let O be the domain on which a local problem is de-
fined. We consider here that O is an interior domain, that is, ∂O∩ ∂Ω = ∅. The case
of a boundary domain (∂O ∩ ∂Ω 6= ∅) is sketched in section B.2.

The first type of local problems occurs when O does not intersect with the inter-
face, and then the solution belongs to H2(O).

There are three other types of local problems, namely
• problems where the interface is a smooth manifold, in this case the solution

is piecewise smooth, i.e., it belongs to PH2(O);
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• edge problems where the interface is a smooth manifold, except for one edge
e, that allow us to determine the so-called edge singularities: there exists
τe ∈ (0, 1) such that the solution always belongs to

⋂
s∈[0,τe)

PH1+s(O) but

may not belong to PH1+τe(O);
• corner problems, where the interface is smooth, except for several edges that

intersect at a corner c, that allow us to determine the so-called corner sin-
gularities: there exists τc ∈ (0, 1) such that the solution always belongs to⋂
s∈[0,τc)

PH1+s(O) but may not belong to PH1+τc(O).
We focus first on corner problems. The case of the edge problem is treated next.

For a corner c, the singularities are obtained as nonzero quasi-homogeneous functions
which solve the same problem in Γ with zero right-hand side, where Γ is the infinite
cone that coincides with the domain O at c. Introducing S2 the unit sphere, resp.,
(ρ, θ, ϕ) ∈ R+ × [0, π)× [0, 2π) the spherical coordinates, centered at c, and defining
G := Γ ∩ S2, one can choose a priori those functions in the sets

Sλc (Γ) :=
{

Ψ = ρλψ(θ, ϕ) s.t. ψ ∈ H1(G)
}
, where λ ∈ C.

More precisely (see [15, p. 818]), one should look for quasi-homogeneous functions
of the type ρλ

∑
q=0,Q(log ρ)qψq(θ, ϕ) with Q ∈ N. However, it is sufficient for

our purposes—determining the exponent—to focus on homogeneous functions. In
spherical coordinates, we recall that the volume element is written ρ2dρ dς, where
dς := sin θdθdϕ, whereas the gradient is written ∇v = ∂ρv eρ + ρ−1∇ςv, with
∇ςv := ∂θv eθ + (sin θ)−1∂ϕv eϕ.

Because O is an interior domain, observe that one has G = S2 and ∂Γ = ∅.
For the local corner problem at hand, since one is looking for Ψc = ρλcψ(θ, ϕ) in

H1
loc(Γ), one finds that a necessary and sufficient condition on the exponent λc is that
<(λc) > − 1

2 and moreover that

τc(ξ) := min
λc st. <(λc)>− 1

2

(
λc +

1

2

)
,

where Ψc 6= 0 is a (nonsmooth) function governed by div(ξ∇Ψc) = 0 in Γ. The
coefficient ξ being independent of ρ, one easily checks that it is equivalent to finding
solutions to the eigenproblem Find ψ ∈ H1(S2) \ {0}, ν ∈ C such that∫

S2
ξ∇ςψ · ∇ςψ′ dς = ν

∫
S2
ξψψ′ dς ∀ψ′ ∈ H1(S2)

(B.1)

with the relation ν = λc(λc + 1). Note that ψ = 1 and ν = 0 is an eigenpair of
(B.1), which yields the values λc = 0 or λc = −1. The latter is excluded, because one
has necessarily <(λc) > − 1

2 , whereas the former yields Ψc = 1, which is a smooth
function, and thus one concludes that no singular behavior is associated with ν = 0.
Then, choosing ψ′ = ψ in (B.1) one finds that∫

S2
ξ|∇ςψ|2 dς = ν

∫
S2
ξ|ψ|2 dς.

Using the notation vR := <(v) and vI := =(v) for complex-valued fields, and taking
respectively the real and imaginary parts of the previous equation, one derives the
relations
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νR :=

(∫
S2 ξR|∇ςψ|

2 dς
) (∫

S2 ξR|ψ|
2 dς
)

+
(∫

S2 ξI |∇ςψ|
2 dς
) (∫

S2 ξI |ψ|
2 dς
)(∫

S2 ξR|ψ|2 dς
)2

+
(∫

S2 ξI |ψ|2 dς
)2 ,(B.2)

νI :=

(∫
S2 ξI |∇ςψ|

2 dς
) (∫

S2 ξR|ψ|
2 dς
)
−
(∫

S2 ξR|∇ςψ|
2 dς
) (∫

S2 ξI |ψ|
2 dς
)(∫

S2 ξR|ψ|2 dς
)2

+
(∫

S2 ξI |ψ|2 dς
)2 .(B.3)

Considering both cases ξ = µ and ξ = εσ, one notices that, under the assumptions
of section 2.1, the spectral theorem can be applied to characterize the solutions to
the eigenproblem (B.1); see, for instance, [31, section 2.1]. In particular, the eigen-
functions can be chosen as the elements of a Hilbert basis of L2(S2). We already
observed that ψ = 1 is an eigenfunction (with related eigenvalue ν = 0). Hence, as
a consequence of the Poincaré inequality in H1

zmv(S2), there exists cP > 0 such that,
for all eigenfunctions ψ related to a nonzero eigenvalue, it holds that∫

S2
|∇ςψ|2 dς∫

S2
|ψ|2 dς

≥ c2P .(B.4)

For the two cases of interest, the following hold:
• If ξ = µ (real-valued coefficient case), one has according to (B.2)–(B.3) that

ν =

∫
S2
µ|∇ςψ|2 dς∫

S2
µ|ψ|2 dς

≥ µmin
µmax

c2P > 0.(B.5)

Recall that ν = λc(λc + 1), i.e., λc = − 1
2 ±

√
ν + 1

4 . Due to the condition

<(λc) > − 1
2 and because one has ν > 0, the only admissible relation is

λc = − 1
2 +

√
ν + 1

4 . Hence λc > 0 for all nonzero eigenvalues ν, which yields

τc(µ) > 1/2 independently of the values of µmin and µmax.
• If ξ = εσ (complex-valued coefficient case), one has according to (B.2) that

νR ≥
(ξR)2

min + (ξI)
2
min

(ξR)2
max + (ξI)2

max

∫
S2
|∇ςψ|2 dς∫

S2
|ψ|2 dς

≥ ε2
min ω

2 + σ2
min

ε2
max ω

2 + σ2
max

c2P > 0,(B.6)

while, according to (B.3), νI can take positive or negative values. Due to
the condition <(λc) > − 1

2 and because one has now νR > 0 (see (B.6)), the

only admissible relation is again λc = − 1
2 +
√
ν + 1

4 . Let ν+ 1
4 = ρν exp(ıθν),

ρν > 0, θν ∈ [0, 2π). Then <(
√
ν + 1

4 ) = (ρν)1/2 cos(θν/2), with ρν ≥ (νR+ 1
4 )

and cos2(θν/2) = 1
2 (1 + cos θν) = 1

2 (1 + (ρν)−1(νR + 1
4 )). Hence,

<

(√
ν +

1

4

)
=

(
1

2

(
ρν + νR +

1

4

))1/2

≥
(
νR +

1

4

)1/2

>
1

2
.

This yields τc(εσ) > 1/2 independently of the values of εmax, εmin, σmax,
and σmin.
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We focus now on edge problems. For an edge e, the singularities are obtained as
nonzero quasi-homogeneous functions which solve the same problem in Γ with zero
right-hand side, where Γ× R is the infinite sector that coincides with the domain O
at e. Introducing S1 the unit circle, resp., (ρ, θ, z) ∈ R+ × [0, 2π)× R the cylindrical
coordinates with e ⊂ {z = 0}, and defining G := Γ∩S1, one can choose a priori those
functions in the sets

Sλe (Γ) :=
{

Ψ = ρλψ(θ) s.t. ψ ∈ H1(G)
}
, where λ ∈ C.

One should look for quasi-homogeneous functions; however, restricting to homoge-
neous is again sufficient to determine the exponent. In the polar coordinates (ρ, θ),
we recall that the surface element is written ρdρ dθ, whereas the gradient is written
∇v = ∂ρv eρ + ρ−1∂θv eθ. Because O is an interior domain, observe that one has
G = S1 and ∂Γ = ∅.
For the local edge problem at hand, since one is looking for Ψe = ρλeψ(θ) in H1

loc(Γ),
one finds that a necessary and sufficient condition on the exponent λe is that <(λe) > 0
and moreover that

τe(ξ) := min
λe st. <(λe)>0

λe,

where Ψe 6= 0 is a (nonsmooth) function governed by div(ξ∇Ψe) = 0 in Γ. The coeffi-
cient ξ being independent of ρ, it is equivalent to finding solutions to the eigenproblem Find ψ ∈ H1(S1) \ {0}, ν ∈ C such that∫

S1
ξ∂θψ∂θψ′ dθ = ν

∫
S1
ξψψ′ dθ ∀ψ′ ∈ H1(S1)

(B.7)

with the relation ν = λ2
e. The spectral theorem can be applied under the assumptions

of section 2.1 for ξ = µ and ξ = εσ. As previously, ψ = 1 and ν = 0 is an eigenpair
of (B.7), leading to Ψe = 1, and one concludes again that no singular behavior is
associated with ν = 0. So, using the Poincaré inequality in H1

zmv(S1), there exists
cP > 0 such that, for all eigenfunctions ψ related to a nonzero eigenvalue, the bound
(B.4) holds, and one also recovers (B.2)–(B.3), with ∇ς replaced by ∂θψ, resp., dς by
dθ. Then we have as follows:

• If ξ = µ (real-valued coefficient case), one derives again the lower bound
(B.5) on ν. Due to the condition <(λe) > 0, the only admissible relation is
λe =

√
ν. Hence λe > 0 for all nonzero eigenvalues ν, which yields τe(µ) > 0.

More precisely, one gets the lower bound

τe(µ) ≥ cP
(
µmin
µmax

)1/2

.

• If ξ = εσ (complex-valued coefficient case), one has the lower bound (B.6)
for νR. And, according to (B.3), νI can take positive or negative values.
Due to the condition <(λe) > 0 and because νR > 0, one has λe =

√
ν.

Writing ν := νR + ı νI = ρν exp(ıθν), with ρν > 0 and θν ∈ (−π2 ,
π
2 ), one has

λe = ρ
1/2
ν exp(ıθν/2), so that <(

√
ν) ≥ 2−1/2ρ

1/2
ν . One may check that

<(
√
ν) ≥ 2−1/2

((∫
S1 ξR|∂θψ|

2 dθ
)2

+
(∫

S1 ξI |∂θψ|
2 dθ

)2(∫
S1 ξR|ψ|2 dθ

)2
+
(∫

S1 ξI |ψ|2 dθ
)2

)1/4

.
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Hence, one gets the lower bound

τe(εσ) ≥ 2−1/2cP

(
ε2
min ω

2 + σ2
min

ε2
max ω

2 + σ2
max

)1/4

.

B.2. Boundary domain. We consider now that the domain O on which a
local problem is defined is a boundary domain, for which ∂O ∩ ∂Ω 6= ∅. The main
difference with the interior domain case is that the local problems now come with
a (homogeneous) boundary condition: Dirichlet boundary condition for p0, resp.,
Neumann boundary condition for q0. On the other hand, the theory is quite similar
to the one of section B.1. As in the interior domain case, one must consider edge
problems and corner problems. Below, we suppose explicitly that O ∩ Σ 6= ∅.

For the corner problem, one looks for homogeneous solutions that belong to Sλc (Γ),
but now ∂Γ 6= ∅, and G = Γ ∩ S2 is a strict subset of S2. Then, one solves an
eigenproblem like (B.1), with the relation ν = λc(λc + 1), now set in the function
space H1

0 (G) (Dirichlet boundary condition), resp., in H1
zmv(G) (Neumann boundary

condition). The main observation for the corner problem set in a boundary domain
is that, since there holds a Poincaré inequality in both function spaces, one may still
apply the previous analysis (interior domain) to draw the conclusions. Namely, one
finds that

τc(µ) > 1/2, τc(εσ) > 1/2,

independently of the values of the coefficients.
For the edge problem, one looks for homogeneous solutions that belong to Sλe (Γ),

where ∂Γ 6= ∅, and G is a strict subset of S1. One solves an eigenproblem like
(B.7), with the relation ν = λ2

e, set in the function space H1
0 (G) (Dirichlet boundary

condition), resp., in H1
zmv(G) (Neumann boundary condition). Since there holds a

Poincaré inequality in both function spaces, one may again apply the previous analysis
(interior domain) to draw the conclusions. One finds the lower bounds:

τe(µ) ≥ cP,Neu
(
µmin
µmax

)1/2

, τe(εσ) ≥ 2−1/2cP,Dir

(
ε2
min ω

2 + σ2
min

ε2
max ω

2 + σ2
max

)1/4

.

Finally, if there is no interface in O, i.e., O ∩ Σ = ∅, one simply considers that the
coefficient ξ is constant on O. In this case the value of τc, τe ∈ ( 1

2 , 1] is determined by
the geometry of the boundary. Precisely, if O is defined as the intersection of Ω with
a ball, one finds that τc < 1 or τe < 1 if, and only if, O is not convex.

B.3. Behavior of the best exponent. From the previous studies, we conclude
that one derives the actual value of the best regularity exponent by taking τopt(ε,µ,σ) :=

min(1,mine τe,minc τc). In particular, one may compute numerically the value of
τopt(ε,µ,σ).

As for the global approach (see section 6.5), let us study what happens when Θ
is not reduced to a singleton. Again, let us consider that all its elements (ε, µ, σ) are
such that ε, σ, µ are piecewise constant on a fixed partition. We see that if condition

sup
(ε,µ,σ)∈Θ

µmax
µmin

+ sup
(ε,µ,σ)∈Θ

(
ε2
max ω

2 + σ2
max

ε2
min ω

2 + σ2
min

)1/2

<∞(B.8)

holds, then inf(ε,µ,σ)∈Θ τ
opt
(ε,µ,σ) > 0.
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Paris, 1968.

[29] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, New
York, 2003.
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