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Abstract

This article is concerned with the derivation of fast Boundary Element Methods for 3D acoustic and elas-
todynamic problems. In particular, we are interested in the acceleration of Hierarchical matrix (H-matrix)
based iterative solvers. While H-matrix representations allow to reduce the storage requirements and the
cost of a matrix-vector product, the number of iterations for an iterative solver, as the frequency or the
problem size increases, remains an issue.

We consider an inner-outer preconditioning strategy, i.e., the preconditioner is applied through an iter-
ative solver at the inner level. The preconditioner is defined as a H-matrix representation of the system
matrix with a given accuracy. We investigate the influence of various parameters of the preconditioner,
i.e., the H-matrix accuracy, the GMRES threshold and the maximum number of iterations of the inner
solver. Different numerical results are presented to compare the efficiency of the preconditioner with respect
to the unpreconditioned reference system. Finally, we propose a way to define the optimal setting for this
preconditioner.

Keywords: Boundary Element Methods, Hierarchical Matrices, Wave propagation problems, Nested
GMRES, Preconditionner

1. Introduction

The understanding of acoustic and elastodynamic wave propagation is important for a large range of
real-life phenomena. They are involved, e.g, in the modelling and design of noise barriers for acoustic wave
propagation, in nondestructive testing of material in nuclear area, in soil-structure interactions and site
effects in seismic risk engineering to understand the elastic wave propagation in complex media.

Acoustic and elastodynamic wave propagation problems can be modelled by Boundary Integral Equations
(BIEs) [1, 2]. This formulation is well-adapted to deal with unbounded domain problems, since the radiation
conditions at infinity are exactly taken into account in the formulation with the Green’s functions. The
integral equations are commonly solved numerically using the Boundary Element Method (BEM) [3]. The
main advantage is that only the domain boundary is meshed. Although this yields, at the discrete level, to
a problem with a reduced size, the resulting system matrix is fully populated. Given NDOF, the number of
degrees of freedom (DOFs) on the boundary of the domain, the storage and matrix-vector product with the
standard BEM are both of the order of O(N2

DOF). A direct solution, e.g, via a LU factorization is of the
order of O(N3

DOF). For an iterative solver, the global solution complexity is O(niter N2
DOF); niter being the

number of iterations. Hence, iterative solvers are more interesting than direct ones provided a priori that
niter << NDOF.

Whatever solver is used, due to computational and storage complexities, the BEM in its standard form
is not usable in practice for problems with a large number of DOFs. Recently, BEM solvers have been speed
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up with acceleration techniques yielding to fast BEMs. For smooth geometries, i.e., that are globally pa-
rameterised by spherical coordinates, a very efficient approach is to use high order spectral algorithms [4, 5].
For more general geometries, one well-known fast BEM is the Fast Multipole accelerated BEM (FM-BEM)
[6, 7, 8]. The Fast Multipole Method (FMM) [9, 10] allows to compute efficiently the application of the
integral operator to a given field. This method is exclusively designed for iterative solvers since it speeds up
the matrix-vector product computation. Several versions of the FMM exist for Helmholtz type equations to
reduce the complexity from O(N2

DOF) to O(NDOF log(NDOF)) for the multi-level version (see, e.g., [11]). The
FMM reduces the memory requirements by not assembling the system matrix. Since only the near contribu-
tions of the system matrix are stored, the bottleneck is the difficulty to define an efficient preconditioner for
the iterative solver used with the FM-BEM. Nevertheless, several applications relative to electromagnetic or
elastodynamic FM-BEMs use an incomplete LU factorization [12, 13], SParse Approximative Inverse [14, 15],
multi-grid methods [16] as a preconditioning strategy. However their efficiency is limited and they do not
lead to a drastic reduction of the number of iterations. Indeed, they may not contain enough information
on the underlying physics.

Another approach to speed-up the BEM, that we consider, involves a hierarchical representation of the
system matrix (H-matrix) [17, 18] and will be referred as H-BEM. The approach originally introduced in
[19, 20] relies on a hierarchical partitioning of the system matrix. Through this partitioning, some blocks
known a priori to be low-rank, thanks to an admissibility condition, are approximated using compression
techniques such as the Adaptive Cross Approximation (ACA) [21, 22]. If H-matrix representations allow
to reduce the storage requirements and the cost of a matrix-vector product, the number of iterations for
an iterative solver, as the frequency or the problem size increases, remains an issue. The advantage of this
approach is however that the system matrix is available and one is not restricted in the exploration and
definition of an efficient preconditioner for the iterative solver.

From a more general point of view, various algebraic preconditioning strategies which are not specifically
related to the representation format of the system matrix have been proposed in the literature. To the
authors best knowledge, there exist, to date, no satisfactory approach for all geometries in the context of fast
BEMs for mid to high frequency oscillatory problems, i.e. when the mesh is adapted to the frequency of the
problem. Algebraic preconditioners can mainly be classified into two kinds: implicit or explicit ones. For
explicit preconditioners, the inverse of the preconditioner is explicitly computed and directly applied, while
for implicit ones the application of the preconditioner requires the (iterative) solution of a linear system. In
most existing algebraic approaches, a sparse approximation of the BEM matrix or of its inverse is proposed in
order to reduce the computational cost (see [23] for a review). The sparsity pattern can be set using different
strategies or heuristics [23, 26]. E.g., in [27, 24, 28] the Helmholtz BEM operator is split into a compact
and a bounded operator. The sparse bounded operator is then used to precondition the system. In [25], an
algebraic multi-grid method is used to construct a preconditioner for boundary element matrices arising from
the Galerkin discretization of the single layer potential and the hypersingular boundary integral operators of
Laplace problems. In the context of H-matrices, most of existing approaches use the approximate inverse of
the H-matrix to compute the preconditioner [29, 30, 31]. But these approaches induce an important extra
computational cost and implementation effort compared to the initial unpreconditioned system.

We are interested in this paper with the proposition of an efficient implicit preconditioner for iterative
solvers (GMRES in this work [32]) in the context of fast BEMs (with a collocation discretization). The inverse
of the preconditioner is computed with an iterative solver and thus leads to an inner-outer preconditioned
solver which in practice can be solved through a nested-GMRES method. Contrary to the current trend in
this field [33, 34, 35, 36, 37, 38], we do not resort to Calderón preconditioning. As a result, we do not have
to compute an additional integral operator. We only make use of the information at hand in the system to
be solved. This important feature makes the proposed approach very appealing especially in the mechanical
engineering community.

The article is organized as follows. Section 2 is more introductory and recalls the different ingredients of
BEM solvers for three-dimensional oscillatory kernels. The integral representation formulas are recalled, the
discretization through collocation method is briefly sketched. The hierarchical representation for the BEM
matrix is considered in Section 3. In Section 4, we present the iterative solver which involves an inner-outer
solver and specify the preconditioner. It is defined as a rough approximation of the BEM matrix. The
efficiency of the present framework is controlled thanks to the compression accuracy. The advantage with
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the proposed approach is that no additional memory nor computational time other than the ones already
needed to build the fast BEM are required. In Section 5 several numerical tests are performed to discuss
the efficiency. We compare the preconditioned inner-outer (nested-GMRES) solver to the unpreconditioned
one. Section 6 gives some conclusions and perspectives for future works.

2. Boundary Element Method for Acoustic and Elastodynamic wave propagation

We consider the propagation of time-harmonic acoustic and elastic waves in three-dimensional isotropic
and homogeneous domains. We adopt the following notations: matrices are denoted in blackboard characters
and vector quantities in boldface. Then, we denote by u and u respectively the velocity and displacement
fields of the acoustic and elastodynamic problems. Ω− ∈ R3 is the bounded domain representing the obstacle,
with a closed Lipschitz boundary Γ = ∂Ω−, Ω+ is the exterior domain R3\Ω−. n represents the outward
unit normal vector field on Γ. The acoustic and elastodynamic equations are respectively given by

∆u+ κ2u = 0 (1)

and
div(σ(u)) + ρw2u = 0. (2)

The stress and strain tensors are respectively given by σ(u) = λ(divu)I3 + 2µε(u) and ε(u) = 1
2 ([∇u] +

[∇u]ᵀ); where I3 is the 3-by-3 identity matrix and [∇u] is the 3-by-3 matrix whose β-th column is the
gradient of the β-th component of u, µ and λ being the Lamé parameters. κ represents the wavenumber
of the acoustic wave. ω and ρ are respectively the circular frequency and the density for the elastic case.
We denote by κp and κs the P and S wavenumbers defined as κ2

p = ρω2(λ + 2µ)−1 and κ2
s = ρω2µ−1. The

Green’s tensors for the case of an acoustic and elastic full-space are respectively given by

G(x,y;κ) =
ei κ|x−y|

4π|x− y|
(3)

and
G(x,y;ω) =

1

ρω2
(curl curlx[G(x,y;κs)I3]−∇xdivx[G(x,y;κp)I3]) . (4)

The index x means that the differentiation is carried out with respect to x and divx B corresponds to the
application of the divergence along each row of B. We introduce the traction operator T and the acoustic
pressure operator denoted by T for sake of genericity

T = 2µ
∂

∂n
+ λn div+µn× curl and T =

∂

∂n
. (5)

The traction tensor (resp. the normal derivative) of the Green’s tensor, obtained by applying the traction
operators, are defined as follows

T (x,y, ω) = TyG(x,y;ω) and T (x,y, κ) = Ty G(x,y;κ).

For the elastic case the operator T applies to each column.
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Boundary Integral Representations and Equations. We consider an exterior scattering problem by an obstacle
Ω−. We denote by Hs(Ω−), Hs(Ω+) and Hs(Γ) the standard complex valued Hilbertian Sobolev spaces of
order s ∈ R (|s| ≤ 1 for Hs(Γ)), with the convention H0 = L2. The complex vector value Hermitian spaces
are denoted in boldface, then Hs = [Hs]3.

We introduce the operators ∆∗u := ∆u + κ2u and ∆∗u := divσ(u) + ρw2u and the energy operator
spaces for acoustics

H1
−(∆∗) := {u ∈ H1(Ω−) : ∆∗u ∈ L2(Ω−)}

and
H1

+(∆∗) := {u ∈ H1
loc(Ω+) : ∆∗u ∈ L2

loc(Ω+)};

where loc means local in the case of the exterior domain. u belongs to H1
loc(Ω) if, and only if, u 1K belongs

to H1(Ω) for every compact subset K of Ω, where given a subset S of R3, 1S denotes the indicator function
of S. For elastodynamics, H1

−(∆∗) and H1
+(∆∗) are defined analogously.

The acoustic pressure and elastic traction traces are defined by t|Γ := Tu and t|Γ = Tu; the operators
T and T being defined in (5). For any solution u ∈ H1

+(∆∗) of (1), the classical integral representation
obtained using the Green’s function and the normal trace is

u(x) = Du|Γ(x)− St|Γ(x), x ∈ R3\Γ,

where u|Γ ∈ H
1
2 (Γ) and t|Γ ∈ H−

1
2 (Γ). Given ϕ ∈ H− 1

2 (Γ) and ψ ∈ H 1
2 (Γ), the single- and double-layer

potentials are respectively defined by

Sϕ(x) =

ˆ
Γ

G(x,y;κ)ϕ(y)ds(y) and Dψ(x) =

ˆ
Γ

[TyG(x,y;κ)]ᵀψ(y)ds(y) for x ∈ R3\Γ.

For the analagous representation formula in elastodynamics, the single- and double-layer potentials are
defined similarly: Given ϕ ∈H−

1
2 (Γ) and ψ ∈H

1
2 (Γ)

Sϕ(x) =

ˆ
Γ

G(x,y;ω)ϕ(y)ds(y) and Dψ(x) =

ˆ
Γ

[T yG(x,y;ω)]ᵀψ(y)ds(y).

The corresponding integral representation for a solution u ∈ H1
+(∆∗) to the equation (2) satisfying the

Kupradze radiation condition [1, 2] is

u(x) = Du|Γ(x)− St|Γ(x), x ∈ R3\Γ.

The single-layer potential S (resp. S) is continuous from H−
1
2 (Γ) to H1

−(∆∗) ∪H1
+(∆∗) (resp. H−

1
2 (Γ) to

H1
−(∆∗)∪H1

+(∆∗)). On the other hand, the double-layer potential D (resp. D) is continuous from H
1
2 (Γ)

to H1
−(∆∗) ∪H1

+(∆∗) (resp. H
1
2 (Γ) to H1

−(∆∗) ∪H1
+(∆∗)). For any fields ϕ ∈ H− 1

2 (Γ) and ψ ∈ H 1
2 (Γ)

(resp. ϕ ∈ H−
1
2 (Γ) and ψ ∈ H

1
2 (Γ)), the potentials Sϕ and Dψ (resp. Sϕ and Dψ) solve the Helmholtz

(resp. elastodynamic) equation in Ω+ and Ω−. The exterior and interior Dirichlet γ±0 (resp. γ±0 ) and
traction γ±1 (resp. γ±1 ) traces of S and D (resp. S and D) are given by

γ±0 S = S, γ±1 S = (∓1

2
+D′), γ±0 D = (±1

2
+D) (6)

γ±0 S = S, γ±1 S = (∓1

2
I3 +D′),γ±0 D = (±1

2
I3 +D) (7)

where the operators S (resp. S) and D (resp. D) are continuous from H−
1
2 (Γ) to H

1
2 (Γ) (resp. H−

1
2 (Γ) to

H
1
2 (Γ)) and from H

1
2 (Γ) to H−

1
2 (Γ) (resp. H

1
2 (Γ) to H−

1
2 (Γ)) and are defined as follows

Sϕ(x) =

ˆ
Γ

G(x,y;κ)ϕ(y)ds(y) and Dψ(x) =

ˆ
Γ

[TyG(x,y;κ)]ᵀψ(y)ds(y) for x ∈ Γ;
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S and D are defined analogously. We write integrals, that stand for duality products if the data is insuffi-
ciently smooth.

The scattering problems are then formulated as Boundary Integral Equations (BIEs): Given an incident
wave uinc which is assumed to solve the Helmholtz equation in the absence of obstacle, find u solution to
(1) in Ω+ which satisfies the Dirichlet boundary condition on Γ

u|Γ + uinc = 0.

The acoustic scattering problem is: Find t|Γ ∈ H−
1
2 (Γ) such that

S(t|Γ + tinc|Γ )(x) = uinc|Γ (x), x ∈ Γ. (8)

Similarly, for elastodynamic problems, it is: Find t|Γ ∈H−
1
2 (Γ) such that

S(t|Γ + tinc|Γ )(x) = uinc|Γ (x), x ∈ Γ. (9)

Discretization of the BIE. At the discrete level, one deals with a linear system resulting from the discretiza-
tion of the BIE. Several discretization techniques can be used in practice, typically the collocation and
Galerkin methods. We consider the collocation technique which requires to satisfy the BIE at some arbitrar-
ily chosen (collocation) points [1]. The domain boundary Γ is approximated by NE triangular elements El.
h is the size of mesh Γh :=

⋃
l=1:NE

El. We introduce the sets of points X = (xi)i=1:Nc and Y = (yj)j=1:NDOF
,

respectively the collocation and interpolation points that all belong to Γh. For the acoustic scattering
problems, it reads

Sh(t|Γ + tinc|Γ )(xi) = uinc|Γ (xi), ∀ i ∈ {1, · · · ,Nc};

Sh is the discretization of the single layer potential for Γh. We denote by A ∈ CNc×NDOF and b ∈ CNc

respectively the system matrix (also called BEM matrix) and the right hand side associated to the incident
wave. We are interested in the solution through an iterative solver of the linear system

Ax = b; (10)

x ∈ CNDOF being the vector of unknown DOFs. The system matrix A is commonly non-hermitian and
fully-populated, hence a prior and crucial point is its appropriate storage-friendly representation.

3. Hierarchical data-sparse representation

To speed-up the BEM, we use a data-sparse representation of the system matrix. It is denoted by Aη,ε;
the parameter η defines the “data-sparsity pattern” associated to a given partitioning of A. The parameter
ε > 0 is a given accuracy of the data-sparse representation such that, for a given norm ‖ · ‖

‖A− Aη,ε‖ ≤ ε‖A‖. (11)

Thus, instead of (10), we consider the problem

Aη,εxH = b. (12)

It is worth noting that the fidelity of xH with respect to x, solution of (10), is guaranteed [18]. Indeed, it is
shown that, the error ‖AxH−b‖ is controlled by the sum of the solution error ‖Aη,εxH−b‖ and an additional
error taking into account the influence of the accuracy parameter ε (the quality of the approximation of Aη,ε).

Hierarchical matrices or H-matrices have been introduced by Hackbusch [19] to compute a data-sparse
representation of some special dense matrices (e.g. matrices resulting from the discretization of non-local
operators). The principle of H-matrices is (i) to partition the matrix into blocks and (ii) to perform low-rank
approximations of the blocks of the matrix which are known a priori (by using an admissibility condition)
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to be accurately approximated by low-rank decompositions. Using low-rank representations, the memory
requirements and costs of a matrix-vector product are reduced. We refer to [18] for a deep insight on H-
matrix representation of oscillatory kernels and [39] for general purpose on H-matrix representation, while
only the key points are recalled below.

Low-rank Admissibility (data-sparsity pattern). The essential idea of the H-matrix representation of a given
matrix resides in its hierarchical partitioning in order to exhibit some blocks which are accurately approx-
imated by low-rank matrices. Let σ ⊂ {1, · · · ,Nc} and τ ⊂ {1, · · · ,NDOF} denote two sets of indices
corresponding to the clusters of nodes Xσ = (xi)i∈σ ⊂ X and Yτ = (yj)j∈τ ⊂ Y. Aσ×τ is the block of A
restricted to the row and column indices corresponding to the interaction between the clusters of nodes Xσ

and Yτ . When X = Y, singularities mainly occur (for τ = σ) such that the diagonal is composed of full rank
blocks but the kernel function is smooth everywhere else. For the Laplace kernel this is transcribed by the
asymptotically smooth property [40]. Thus, at the discrete level, some blocks Aσ×τ , are known a priori to
be low-rank using the admissibility condition. The condition depends on geometric characteristics such as
the diameters of the clusters of points Xσ, Yτ and the distance between them. The condition for admissible
blocks for the Laplace (static) case is the η-admissibility condition and reads

min(diam(Xσ),diam(Yτ )) ≤ η dist(Xσ,Yτ ); (13)

where dist and diam respectively denote the Euclidean distance between two clusters and the diameter of a
cluster.

For wave propagation problems, this condition should depend also on the wavenumber. However, in
practice, the η-admissibility condition has been shown to be viable towards high frequency regime. In fact,
it has been shown that there exists a pre-asymptotic regime [18] where the maximum numerical rank among
all admissible blocks increases linearly.

Hierarchical representation. The key ingredient of hierarchical matrices is the recursive block subdivision of
the geometry on which the matrix blockwise partitioning is based. The geometry nodes and corresponding
indices in the matrix are permuted to reflect the physical distances. Indeed, consecutive indices of row and
column should correspond respectively to collocation and interpolation points that interact at close range,
i.e., belonging to the same cluster.

Clustering of the unknowns. For the sake of clarity, in this work A is defined by the same set of indices
I = {1, . . . ,N} for rows and columns. This corresponds to the typical case where the collocation nodes are
chosen as the interpolation points. A binary tree TI is used to drive the clustering. Each node of the tree
defines a subset of indices σ ⊂ I and each subset corresponds to a part in the partition of the domain, see
Figure 1. A stopping criterion for the recursive subdivision of a node of indices σ ⊂ I bears on the minimum
number of indices in a block, i.e., it is defined such that the size of the block matrix satisfies |σ| ≤ nleaf ,
where nleaf is given.

Subdivision of the matrix. Once the clustering of the unknowns is performed, a block cluster representation
TI×I of the matrix A is defined by going through the cluster tree TI . Each node of TI×I contains a pair
(σ, τ) of indices of TI and defines a block Aσ×τ of A (see Figure 2).

In practice, a hierarchical representation P ⊂ TI×I that uses the cluster tree TI and the existence of
admissible blocks is defined. Starting from the initial matrix A, i.e., σ = I and τ = I, a given block matrix
Aσ×τ is recursively subdivised into 2× 2 subblocks Aσα×τβ , (α, β) ∈ {1, 2} matrices with σ = σ1 ∪ σ2, τ =
τ1 ∪ τ2 until this block is either η-admissible or too small, i.e., min(|σ|, |τ |) ≤ nleaf .

The partition P is thus subdivided into two subsets Pad and Pnon-ad reflecting the possibility for a block
τ × σ to be either admissible, i.e., τ × σ ∈ Pad; or non-admissible, i.e., τ × σ ∈ Pnon-ad: P = Pad ∪ Pnon-ad.
This hierarchical partitioning is preferable and optimal in regards to the uniform partioning which relies
only on the leaf nodes of the cluster tree TI , since admissible blocks can occur at higher levels of the block
clustering tree.
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Figure 1: Illustration of the clustering of the degrees of freedom: (a) partition of the degrees of freedom in the domain and (b)
corresponding binary tree.
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Figure 2: Illustration of the construction of the block cluster tree: (a) Clustering of the unknowns on the geometry and (b)
corresponding block clustering in the matrix.

Low-rank (data-sparse) approximation. Once the admissible blocks are determined, an accurate rank-revealing
algorithm is applied to determine the corresponding low-rank approximations. The idea with the low-rank
representations, analogous to compression techniques, is to reveal and keep only the main significant in-
formation. The truncated SVD [41] gives the best low-rank approximation for unitary invariant norms.
However, its computation is expensive and requires the complete storage of the matrix. The adaptive cross
approximation (ACA) [17, 42, 22] offers an interesting alternative to the SVD.

The numerical rank obtained by the ACA being sub-optimal, in the sense that it is greater than the exact
low-rank, it induces a slight additional memory consumption. Therefore, in practice a recompression of
the ACA-based low-rank approximation is further made in order to obtain a more accurate numerical rank.
Indeed, the ACA compression can be viewed as an intermediate step which allows to have at disposal a coarse
low-rank approximation of the initial matrix which is not storage consuming, and on which the truncated
SVD can be applied for a further more optimal low-rank computation. Reader may refer to [21, 43] for
a deep insight on the matter and specifically to [18] for the extension of the low-rank approximation to
vector-valued (elastodynamic) problem using the ACA.

4. Preconditioning a H-BEM solver

Let M and b be respectively a generic matrix and a right hand side vector. The solution x of the
system Mx = b, through an iterative solver, is obtained by computing iteratively a sequence of vectors xk,
approximating the exact solution x. Starting from an initial guess x0, the principle is to build the xk at
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each iteration which minimizes the norm of the residual rk = Mxk −b over an appropriate subspace. Using
a preconditioner, we are interested in solving an alternative system which is expected to have better spectral
properties, i.e., better conditioning or better eigenvalues clustering in comparison to the original system. We
denote by P the preconditioner. For a right preconditioner, we solve the modified system

MP−1Px = b⇔MP−1y = b with Px = y. (14)

The application of the inverse of P is required throughout the iterative solver. Instead of considering a “clas-
sical” approach, where a direct solver or explicit preconditioner is used, we consider that the preconditioning
system is itself solved using an iterative solver. Hence we deal with a two-level iterative method. An outer
solver that involves the original system matrix M and the corresponding right hand side vector b; and an
inner solver that involves the preconditioner P of the outer problem, hereafter denoted Pout. Of course, one
could still assume that the inner solver is right preconditioned with an operator (that would be denoted in
that case Pin). The preconditioned system that we consider in the following thus reduces to

MP−1
outy = b with Poutx = y. (15)

With the H-BEM, the complete system matrix is available conversely to the FM-BEM. Thus there are
no contraints on how to define the preconditioner. In the sequel, we consider that the inner solver is not
preconditioned. We denote by nout the total number of outer iterations and nin the cumulative, total number
of iterations in the inner solver.

Theoretically, the best preconditioner is Pout = M. But, with this choice, the inner solver is equivalent to
the outer solver. Hence the convergence is achieved after nout = 1 outer iteration. The operations required, at
each iteration, in the nested inner-outer iterative solver are the application of the system matrix M and of the
preconditioner Pout to vectors. We look for a choice of Pout such that the computational cost of w← Poutz
is low (with respect to y ← Mz). In the context of H-BEM, we make the choice: Pout = Aη,ε′ , i.e. we use
a low-rank approximation of A with a lower accuracy in the low-rank approximation of the preconditioner.
Hence, we set ε′ ≥ ε, where ε is the accuracy of compression of the system matrix M = Aη,ε. The idea is to
choose the preconditioner as a coarse approximation of M (the theoretical best preconditioner) in order to
achieve convergence through a minimum number of iterations while keeping the computational cost as low as
possible. Indeed, for σ× τ ∈ Pad, the matrix-vector product cost is of the order of O(|σ|+ |τ |)× r(ε). Where
r(ε) is the numerical rank of a block matrix, and this rank decreases with the accuracy ε. The advantage with
this choice of preconditioner is that there is no additional time for its computation nor additional storage
requirements. It is already included in the computation of the system matrix Aη,ε. Given an admissible
block Aσ×τ , σ×τ ∈ Pad and ε′ ≥ ε, it is clear, from the construction of the low-rank approximation through
successive rank-one matrix additions to the approximation, that r(ε′) ≤ r(ε). Now, assume that the low-rank
approximation of Aσ×τ for the accuracy ε is

Bσ×τ = UV∗, U ∈ R|σ|×r(ε) and V ∈ R|τ |×r(ε);

thus the low rank approximation for the accuracy ε′ is

B′σ×τ = U′V
′∗, U′ ∈ R|σ|×r(ε

′) and V′ ∈ R|τ |×r(ε
′).

Then the first r(ε′) columns of U and V form the columns of the matrices U′ and V′.

Remark 4.1. In [30], the adopted preconditioner is a coarse (in regard to the accuracy of compression) LU
factorization of the system H-matrix with application to the Laplace problem with Galerkin method and to
the magnetostatic problem with collocation method. Although, in practice, a low accuracy is sufficient for the
computation of the LU factorization of the H-matrix formatted preconditioner [30], an additional amount
of storage memory is required for the storage of the lower and upper H-matrices. The advantage with the
proposed preconditioning strategy is that no extra memory is required in contrast to the LU factorization
based one.
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5. Numerical efficiency of the proposed strategy

To study the efficiency of the proposed preconditioning strategy, we consider the exterior domain scatter-
ing problem of a time harmonic acoustic plane wave in an homogeneous and isotropic medium by a sphere
of radius r. We use the single-layer formulation (8). The discretization is performed with a collocation
technique and a Lagrange P1 interpolation. The parameter defining the hierarchical pattern and used for
the low-rank admissibility condition is η = 3 and the minimum dimension of the block is nleaf = 100. The
accuracy of the H-BEM matrix is set to ε = 10−8. We assume that the number of points per wavelength is
constant, i.e. a density nλ = 10. The number of wavelengths along the characteristic dimension is denoted
dλ = 2r

λ . The numerical tests are performed on a bi-processor Intel XEON E5-2637 machine where each
processor is composed of 4 cores, with two threads per core and a RAM of 756 Gb. The solver (COFFEE 1

developed at POEMS) is implemented using a shared memory parallelization (OpenMP) of the construction
of theH-matrix representation and of the matrix-vector product. The different numerical tests are performed
with 8 threads. More details on the validation of this fast BEM solver are available in [18, 44].

5.1. Preliminary tests: eigenvalue clustering
The efficiency of a preconditioner depends on the clustering of the eigenvalues of the preconditioned

system, namely on the diameter of the cluster and the numerical range of the operator. Thus, we look for
the influence of the accuracy ε′ on the clustering of the eigenvalues of Aη,εA−1

η,ε′ and the condition number
cond2 in l2-norm.
The subsequent analysis is limited to a mesh with NDOF = 7680. Indeed the computational cost of the
complete eigenvalue decomposition is very prohibitive. The eigenvalues are computed using the library
ARPACK [45] and the application of A−1

η,ε′ required by the routine is made using an iterative solver (a
standard GMRES algorithm [46]) with a threshold equal to 10−6.

Preconditioned inner-outer system. The diameters of the box surrounding the eigenvalues and the condition
numbers corresponding to the different accuracies used in the preconditioners are reported on Table 1 (for
two frequencies and problem sizes). We remark that the eigenvalues of the unpreconditioned system (i.e
with Pout = I) are less clustered and that the clustering, in regards to the values of the diameter of the
box surrounding the eigenvalues improve when a preconditioner with higher accuracy is used. Finally the
preconditioner with an accuracy ε′ = 10−1 appears to be useless in regard to the eigenvalues clustering
without preconditioner.

Table 1: Information on the clustering of the eigenvalues and condition number cond2 of the preconditioned system matrix for
different values of ε′.

NDOF = 7680, rκ = 14·32, dλ = 4.6

ε′ box diam cond2

10−7 4·25 10−6 1·00
10−6 4·64 10−6 1·00
10−5 3·34 10−5 1·00
10−4 3·03 10−4 1·00
10−3 2·94 10−3 1·00
10−2 2·64 10−2 1·03
10−1 0·22 1·47
I 0·18 44·24

NDOF = 6040, rκ = 12·71, dλ = 4.05

box diam cond2

4·10 10−6 1·00
4·22 10−6 1·00
3·23 10−5 1·00
3·02 10−4 1·00
2·56 10−3 1·00
2·32 10−2 1·02

0·21 1·25
0·20 33·92

1https://uma.ensta-paris.fr/soft/COFFEE/
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We have seen the influence of the parameter ε′ on the outer solver. In the light of the previous test, we
expect moderate numbers of outer iterations for ε′ “sufficiently small”. As a consequence, the performances
of the inner-outer solver will mostly depend on the behavior of the inner solver.

Conditioning of the inner solver. We report on Table 2 the values of the diameters and the condition numbers
for the system matrices Aη,ε′ . For each non-dimensional wavenumber, we observe that, for the inner solver,
the clustering of the eigenvalues are very similar and the values of the condition numbers are almost equal
for the different accuracies. Thus, there is no a prior accuracy ε′ to be favoured for the inner solver. The
balance between the computational time per inner iteration and the total number of inner iterations will be
essential for the performance of the inner-outer solver.
In the light of the previous tests on the eigenvalues, one can consider the inner-outer preconditioning for
the accuracies ε′ larger or equal to 10−2. Subsequently, we will focus on the performances of the right
preconditioned, inner-outer solver for different choices of parameters. These performances are compared to
those obtained with the unpreconditioned reference solver.

Table 2: Information on the clustering of the eigenvalues and condition number of the unpreconditioned inner solver problem,
for different values of ε′.

NDOF = 7680, rκ = 14·32, dλ = 4.6

ε′ box diam cond2

10−7 0·18 46·83
10−6 0·18 46·83
10−5 0·18 46·83
10−4 0·18 46·83
10−3 0·18 46·79
10−2 0·18 46·75
10−1 0·18 42·45

NDOF = 6040, rκ = 12·71, dλ = 4.05

box diam cond2

0·20 37·25
0·20 37·25
0·20 37·25
0·20 37·25
0·20 37·21
0·20 37·11
0·20 38·29

5.2. Reference unpreconditioned solver: performances
We first study the performances of the unpreconditioned reference solver. The following parameters are

considered: for the outer GMRES solver, the maximum number of iterations is denoted by Nout and GMRES
stopping criteria is denoted by εtol(out). The stopping criteria εtol(out) is set equal to 10−6 while the maximum
number of iterations is 2000. The performances are checked on different meshes. Their corresponding
numbers of degrees of freedom NDOF, non-dimensional wavenumbers rκ and numbers of wavelengths along
the diameter dλ are reported on Table 3.

Table 3: Number of DOFs, non-dimensional wavenumber and number of wavelengths along the characteristic dimension corre-
sponding to each mesh.

Mesh i 1 2 3 4 5 6 7

NDOF 10 242 40 962 61 033 163 543 254 546 328 606 626 333
rκi 16.64 33.27 40.91 66.61 83.60 92.79 127.84
dλ 5.30 10.30 13.00 21.20 26.62 29.44 40.69

We denote by Tref (resp. nref) the solution time (number of iterations) of the reference solver. The
reference solver corresponds to the problem with the system matrix Aη,ε with ε = 10−8.

The performances of the solver are reported on Table 4, where TH−BEM is the time corresponding to the
H-matrix approximation of the BEM matrix while δH is the compression rate, i.e., the number of entries
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required for the storage of the H-BEM matrix Aη,ε over the one of the standard fully dense BEM matrix A.
That is, δHN2

DOF is the total number of entries for the storage of the full and low-rank admissible blocks of
Aη,ε.

Table 4: Main characteristics of the reference solver.

rκ nref Tref(s) TH−BEM δH

16.64 102 4.6 37.1 0.33
33.27 131 37.1 262.6 0.14
40.91 131 72.2 477.3 0.11
66.61 201 376.0 2046.8 5.9 · 10−2

83.60 715 2316.0 4135.6 4.5 · 10−2

92.79 929 3933.0 6055.2 3.8 · 10−2

128 918 9322.0 17 125.2 2.7 · 10−2

For simplicity, we consider that the reference solver time is

Tref = nref × titer(εACA),

where titer(εACA) represents the computational time per iteration corresponding to a H-matrix-vector prod-
uct operation

titer(εACA) = tfull + tlow(εACA);

tfull (resp. tlow) being the time associated to the matrix-vector product over the non-admissible (resp. admis-
sible) blocks defined through the η-admissibility condition (resp. for an approximation accuracy εACA). As
expected, we observe that the number of iterations drastically increases with the non-dimensional frequency
of the problem, motivating the need for an efficient preconditioner.

5.3. Preliminary experiments
We are looking for an inner-outer two-level GMRES solver which consistently outperforms the reference

solver. There are many parameters involved: the maximum numbers of outer and inner iterations respectively
denoted by Nout and Nin and the GMRES residual based stopping criteria of the outer and inner solvers
respectively denoted by εtol(out) and εtol(in). The stopping criteria εtol(out) (resp. εtol(in)) is set equal (resp.
less than or equal) to 10−6. The main concern is the choice of the outer preconditioner accuracy ε′ and also
the choices of the parameters εtol(in) and Nin used at the inner level to solve the preconditioning system. To
drive this choice, the preconditioner must be cheap to compute and apply. Our preconditioner is available
without any additional time. For a fixed parameter η, the unitary cost of application is titer(ε

′). Let nout

and nin respectively denote the cumulative numbers of outer and inner iterations before convergence of the
inner-outer solver. Then, Tprec denotes the time spent on the H-matrix-vector product operations in the
inner-outer solver. It writes

Tprec(ε, ε′) = Tout(ε) + Tin(ε′);

where Tout and Tin are respectively the total times to perform matrix-vector products at the outer and inner
levels of the preconditioned solver, with

Tout(ε) = nout × titer(ε) and Tin(ε′) = nin × titer(ε
′).

Since titer(ε) and titer(ε
′) depends on the choice of prescribed accuracy in the low-rank approximations, it is

interesting to quantify this dependance.

Complexity of the computational time per iteration vs ε′. The time titer to perform a H-matrix vector
product is decomposed into two parts. The times tlow and tfull associated to the low-rank admissible and
non-admissible blocks are respectively represented in Figure 3a and 3b for the six first meshes defined in
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Table 3. At a fixed non-dimensional wavenumber, we observe that tlow(εACA) ∼ O(| log(εACA)|) while as
expected tfull is constant for all values of εACA. We assume this behavior in the following. We also observe
that tlow dominates tfull.

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0

1

2

3

εACA

t l
o
w

(ε
A

C
A

)(
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κ1
κ2
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κ4
κ5
κ6

(a) Admissible blocks

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−2

10−1

εACA

t f
u
ll
(s
)

(b) Non-admissible blocks

Figure 3: Illustration of the complexity of tlow and tfull (acoustic equation).

An insight on the expectable efficiency as ε′ varies. We now have all the ingredients to study the effects
of the different parameters of our preconditioner. Since we use H-matrix representations with accuracies
respectively ε′ and ε, the times in the outer and inner levels Tout and Tin are given by

Tout(ε) = nout(tfull + tlow(ε)) and Tin(ε′) = nin(tfull + tlow(ε′)). (16)

By taking into account the fact that tlow(εACA) ' O(| log(εACA)|), this yields

Tprec = nprectfull + tlow(ε)(nout + c nin)

where nprec = nout+nin denotes the total number of iterations of the inner-outer solver and c = log(ε′)
log(ε) ∈ [0, 1].

We introduce δT =
Tprec

Tref
the ratio of time of the preconditioned solver over the one of the reference solver

which meseaures the gain obtained over the reference solver. It is given by

δT =
nprectfull + tlow(ε)(nout + c nin)

nref(tfull + tlow(ε))
=
nprec

nref
+

tlow(ε)

tfull + tlow(ε)

(c− 1)nin

nref
.

Denoting by

τ =
tlow

tfull + tlow

the ratio of time devoted to the low-rank admissible blocks, we have

δT =
nprec

nref
+ τ(c− 1)

nin

nref
. (17)

For simplicity, we introduce the dimensionless numbers

nprec =
nprec

nref
and nin =

nin

nref
. (18)
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The idea now is to have an insight on the bound of efficiency that can be obtained with this preconditioner.
Thus we consider the following system of inequalities, with the dimensionless numbers{

nprec − τ(1− c)nin ≤ 1,

−nprec + nin < 0,

(19a)
(19b)

where the second inequality follows from the fact that nprec = nout + nin. We also introduce Nin and
Nprec := Nin + Nout respectively the dimensionless maximum numbers of iterations of the inner and inner-
outer, preconditioned solvers, defined as in (18).
We denote by Sn the set of admissible values of (nin, nprec), filled in magenta in Figure 4, above the blue line

Sn = {(nin, nprec) | 0 < nin ≤ Nin and nin < nprec ≤ Nprec}.

nin

nprec

nprec = nin

nprec = 1 + τ(1− c)nin

nprec = 1

1
τ(1−c)

1
1−τ(1−c)

∗

Nin

Nprec

Nout

2

Figure 4: Geometrical illustration (filled in gray color) of the set of values of (nin, nprec) yielding to faster iterative solver in
comparison to the reference solver performances (representation with τ(1− c) = 0.75).

The corresponding area is

|Sn| =
1

2
N

2

in + NinNout.

We denote by Sc ⊂ Sn the subset of dimensionless couple (nin, nprec) leading to faster solver for the precon-
ditioner defined with the parameter c

Sc = {(nin, nprec) | nprec − τ(1− c)nin ≤ 1} ∩ Sn.

Its corresponding area is

|Sc| = min(Nin,
1

1− τ(1− c)
)− 1

2

[
min(Nin,

1

1− τ(1− c)
)

]2

(1− τ(1− c)).
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On Figure 4, Nin ≥ 1
1−τ(1−c) such that the maximum area corresponding to the region Smax

c , filled in gray is

|Smax
c | := 1

2(1− τ(1− c))

while otherwise the corresponding area is

|Sc| = Nin −
1

2
N

2

in(1− τ(1− c)) < |Smax
c |.

If Sf denotes the global subset of parameters yielding to a faster solver comparatively to the reference solver
and assuming that there exists cmin such that c ∈ [cmin, 1], we have

Sf :=
⋃

cmin≤c≤1

Sc = Scmin
⊂ S0.

Indeed we have Sc1 ⊆ Sc2 for c1 ≥ c2.
Note that for some preconditioners such that c ≥ cmin, the rate of values yielding to a faster solver among
all the admissible values is equal to

|Smax
cmin
|

|Sn| <
|Smax

0 |
|Sn| . It is straightforward to see that

• at a fixed value of τ , i.e., for a given H-matrix representation of the BEM problem we have

∂c|Sc| < 0.

Indeed, the set of values Sc yielding to a fast solver becomes smaller and smaller as the parameter c
increases and tends to the following “limit” subset of values (c = 1)

Slim := S1.

For a very accurate preconditioner, whose evaluation is almost as expensive as the H-BEM matrix, the
efficiency occurs only when the number of iterations of the inner-outer solver is smaller or equal than
nref , i.e., nprec ≤ 1. As expected, requiring a high accuracy on the preconditioner is very constraining
for efficiency.

• On the other hand, for a fixed preconditioner accuracy, i.e., for a fixed value of c, we have

∂τ |Sc| ≥ 0.

Since τ increases with the non-dimensional wavenumber, it turns out that the rate of dimensionless
numbers leading to a fast solver will increase with the non-dimensional wavenumber. On the contrary,
when τ tends to 0 (i.e., a H-BEM matrix tending to a standard full BEM matrix representation), the
efficiency occurs only for the values of Slim. The proposed preconditioning strategy becomes inefficient
when τ is small, i.e., either in the case of a H-BEM with a very coarse accuracy ε or a H-BEM with
small number of low-rank admissible blocks.

Since the ratio of time of inner-outer solver over the time of the reference solver is given by (see (17),
(18))

δT = nprec − τ(1− c)nin

using inequality (19b), we obtain
δT > nprec(1− τ(1− c)).

In other words, for an inner-outer solver of dimensionless number of iterations nprec, with a preconditioner
of parameter c = log(ε′)

log(ε) ; a priori, the relative gain

δrT =
Tref − Tprec

Tref
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is bounded above by the predicted gain

δ̂rT = 1− nprec(1− τ(1− c)). (20)

Subsequently, we consider two kinds of numerical tests to illustrate the effectiveness of the inner-outer pre-
conditioning strategy. First, we assume that the residual based stopping criteria of the inner GMRES solver
εtol(in) can vary: εtol(in) ∈ {10−1, · · · , 10−6}. Then, we consider that the maximum number of iterations of
the inner solver Nin can vary while the GMRES stopping residual is fixed to εtol(in) = 10−6. For both cases,
the outer GMRES residual based stopping criteria is fixed to εtol(out) = 10−6 (similarly to what is prescribed
in the reference solver).

5.4. Inner-outer solver: for different values of εtol(in)

In this Section, the maximum number of inner iterations is fixed (Nin = 2000) per outer iteration and
the parameter εtol(in) varies. For the different non-dimensional wavenumbers rκi, we report on the Table 5
the performances corresponding to the five most efficient preconditioners such that δrT > 0. For each case,
the number of couple of parameters (ε′, εtol(in)) tested is 36. We denote P+ = {(ε′, εtol(in)) s.t. δT > 0} and
|P+| = Card(P+) the number of efficient preconditioners.

15



Table 5: The five most efficient inner-outer solvers for each non-dimensional wavenumber.

rκ = 16.67 and τ = 0.69; |P+| = 3

Ranking ε′ εtol(in) nout nin δ̂rT (%) δrT (%)

1 10−4 10−2 3 120 21.3 10.7
2 10−6 10−6 1 102 16.5 8.8
3 10−5 10−3 2 109 19.5 7.7

rκ = 33.27 and τ = 0.76; |P+| = 13

1 10−5 10−3 2 149 17.5 27.0
2 10−4 10−3 2 153 26.6 26.5
3 10−3 10−2 3 185 24.5 25.8
4 10−4 10−2 3 171 17.6 14.1
5 10−5 10−2 3 168 6.6 14.0

rκ = 40.91 and τ = 0.79; |P+| = 20

1 10−3 10−2 3 153 39.5 37.9
2 10−4 10−2 3 152 28.2 35.7
3 10−4 10−3 2 143 32.9 29.9
4 10−5 10−3 2 143 22.0 29.5
5 10−2 10−1 6 189 39.0 28.7

rκ = 66.61 and τ = 0.86; |P+| = 19

1 10−5 10−3 2 228 22.6 40.7
2 10−4 10−2 3 274 21.6 39.3
3 10−2 10−1 6 369 34.2 37.6
4 10−3 10−1 6 356 17.0 32.9
5 10−5 10−2 3 274 6.8 32.8

rκ = 83.60 and τ = 0.86; |P+| = 14

1 10−4 10−2 3 749 40.2 44.9
2 10−5 10−2 3 749 28.8 38.2
3 10−3 10−1 6 1137 26.3 36.4
4 10−6 10−2 3 749 17.5 25.2
5 10−4 10−1 6 1114 10.9 18.3

rκ = 92.79 and τ = 0.88; |P+| = 16

1 10−5 10−2 3 1096 20.7 38.4
2 10−3 10−1 6 1522 25.8 35.7
3 10−6 10−3 2 1046 12.0 30.0
4 10−6 10−2 3 1098 7.5 28.4
5 10−4 10−1 6 1475 10.6 28.2

rκ = 128 and τ = 0.91; |P+| = 30

1 10−4 10−2 3 1045 37.5 49.4
2 10−4 10−4 2 1126 32.8 45.5
3 10−3 10−1 6 1376 34.7 44.4
4 10−4 10−1 6 1276 23.6 42.2
5 10−4 10−5 2 1200 28.4 37.4

One observes that a small number of preconditioners are efficient for the smallest non-dimensional
wavenumber, which has the lowest number of degrees of freedom and the smallest value of τ . Indeed,
after recompression, the preconditioners may not contain enough information for this case. Therefore high
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accuracies ε′ are required to obtain an efficient preconditioner in this case. The total number of efficient
preconditioners increases with the non-dimensional frequency with |P+| = 30 (among the 36 tested) observed
for the largest non-dimensional wavenumber. The effectively observed gain δrT is greater than the maximum
predicted gain δ̂rT except for rκ = 16.67. Indeed, our estimation does not take into account the time of the
Arnoldi procedure which decreases considerably thanks to the balance of the total number of iterations at
the outer and inner levels. The largest value of δrT = 50% is achieved for rκ = 128. From this particular
numerical example, a good choice of preconditioner can be the one with ε′ = 10−4 and εtol(in) = 10−2. More
generally, we remark that the residual of the inner solver of the efficient solver is such as εtol(in) ≥ ε′. This
corroborates with the fact that any iterative solver does not need to be as accurate as the H-BEM matrix
representation.
We represent on Figure 5 the efficiency δrT (as εtol(in) varies) for preconditioners of P+ and their associated
non-dimensional wavenumber rκi. Since the use of ε′ = 10−2 or 10−6 leads to a small number of efficient
combinations, the results are put together on Figure 5a with the label κi−n meaning the case rκi with
ε′ = 10−n. For the sake of clarity we plot only the cases for which δrT > 0.

(a) Preconditioner with accuracy ε′ = 10−2 or 10−6
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(b) Preconditioner with accuracy ε′ = 10−5
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(c) Preconditioner with accuracy ε′ = 10−4
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(d) Preconditioner with accuracy ε′ = 10−3
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Figure 5: Relative gain with respect to the reference solver δrT .

5.5. Inner-outer solver: for different Nin

Now, we consider a fixed inner solver tolerance εtol(in) = 10−6 while the maximum number of inner
iterations varies (Nin ∈ {10, 15, 30, 50, 60, 80, 100, 150}). Therefore, the number of iterations will mostly be
the stopping criterion for the inner solver. For each case the number of couple of parameters (ε′,Nin) is 56
since we have also tested the preconditioner of accuracy ε′ = 10−1. Again we denote P+ = {(ε′,Nin) s.t. δT >
0} and |P+| = Card(P+) the number of efficient preconditioners. We represent on Table 6 the five most
efficient preconditioners for each non-dimensional wavenumber. In the above table, εconv

tol(in) represents the
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Table 6: The five most efficient inner-outer solvers for each non-dimensional wavenumber with varying Nin.

rκ = 16.67 and τ = 0.69; |P+| = 9

Ranking ε′ Nin nout nin δ̂rT (%) δrT (%) εconv
tol(in)

1 10−4 60 2 120 21.9 25.5 1·87 10−5

2 10−6 150 1 102 16.5 18.3 8·01 10−7

3 10−5 60 2 120 11.5 15.0 1·56 10−5

4 10−3 80 2 160 10.1 10.3 7·12 10−6

5 10−7 150 1 102 17.8 9.7 8·02 10−7

rκ = 33.27 and τ = 0.76; |P+| = 29

1 10−4 100 2 200 4.3 37.1 8·49 10−6

2 10−5 80 2 160 23.4 34.6 4·05 10−5

3 10−4 30 7 210 −2.8 31.2 1·10 10−2

4 10−4 15 14 210 −6.1 28.0 5·13 10−2

5 10−4 60 4 240 −15.6 26.6 8·02 10−4

rκ = 40.91 and τ = 0.79; |P+| = 42

1 10−2 50 4 200 36.2 47.8 2·62 10−3

2 10−3 60 3 180 29.0 46.8 1·23 10−3

3 10−3 30 6 180 27.9 44.3 1·24 10−2

4 10−4 80 2 160 25.0 43.3 1·25 10−4

5 10−2 15 13 195 35.0 42.9 4·32 10−2

rκ = 66.608 and τ = 0.86; |P+| = 47

1 10−3 15 19 285 30.3 47.6 5·59 10−2

2 10−3 100 3 300 30.6 46.7 9·73 10−4

3 10−4 100 3 300 14.3 45.7 9·33 10−4

4 10−2 15 23 345 35.4 44.5 5·59 10−2

5 10−4 15 18 270 18.5 44.1 5·59 10−2

rκ = 83.602 and τ = 0.86; |P+| = 30

1 10−3 50 22 1100 27.6 37.9 1·09 10−2

2 10−2 10 105 1050 42.9 36.7 1·04 10−1

3 10−3 30 36 1080 28.0 36.3 2·32 10−2

4 10−3 60 19 1140 25.2 35.7 8·87 10−3

5 10−3 80 15 1200 21.6 34.7 5·59 10−2

rκ = 92.788 and τ = 0.88; |P+| = 45

1 10−2 15 92 1380 46.0 59.9 6·81 10−2

2 10−3 15 85 1275 34.0 59.2 6·81 10−2

3 10−3 30 47 1410 29.3 58.7 2·54 10−2

4 10−2 10 138 1380 44.3 56.2 1·10 10−1

5 10−3 80 19 1520 25.3 55.3 7·38 10−3

rκ = 128 and τ = 0.91; |P+| = 55

1 10−2 50 39 1950 52.2 63.3 1·58 10−2

2 10−2 30 65 1950 51.6 62.7 3·15 10−2

3 10−2 60 34 2040 50.2 61.5 1·23 10−2

4 10−2 15 121 1815 53.5 61.5 7·66 10−2

5 10−3 50 38 1900 37.0 59.1 1·58 10−2
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minimum observed value of the residual in the inner systems after Nin iterations. In this case also, we
remark that the efficiency δrT effectively observed is greater than the predicted one δ̂rT with some spurious
negative values for rκ = 33.27. As for variable εtol(in), the number of efficient preconditioners |P+| increases
with the non-dimensional wavenumber and |P+| = 55 (among the 56 tested) for the largest non-dimensional
wavenumber.
We observe that the number of outer iterations nout has largely increased comparatively to the previous case.
Indeed it is more constraining to fix the parameter Nin than to fix the GMRES residual to εtol(in) = 10−6.
It thus leads to the use of more preconditioning Krylov subspace basis vectors for the outer solver. The
value of δrT increases with the non-dimensional wavenumber. The largest value δrT = 60% is achieved for
rκ7 and is greater than the highest one with εtol(in) varying. This increase in efficiency can be explained by
a finer balance of the total number of iterations between the outer and inner levels in conjunction with a
preconditioner of lower accuracy. The preconditioners with very high accuracy ε′ = 10−7 or 10−6 are among
the top five ranked only for the smallest non-dimensional wavenumber. On the other hand, a preconditioner
with a larger value of ε′ can be used as the non-dimensional wavenumber increases. The same observation
holds for the residual εconv

tol(in). We represent on Figure 6 the efficiency δrT (as Nin varies) for preconditioners of
P+ and their associated non-dimensional wavenumber rκi. Figures 6(b-d) are restricted to only one ε′ since
a lot of combinations lead to an efficient preconditioner. On the contrary, since the use of ε′ = 10−5, 10−6

or 10−7 leads to a small number of efficient combinations, the results are put together on Figure 6(a) with
the label κi−n meaning the case rκi with ε′ = 10−n.

In this case, we have also tested the preconditioner of accuracy ε′ = 10−1. Surprisingly, despite the “poor
spectral clustering” observed in the first part of the numerical tests, we observe in Figure 7 that it actually
becomes efficient for the five largest non-dimensional wavenumbers, i.e when NDOF becomes large yielding
to a coarse approximation with a good amount of information. However its efficiency rapidly decreases with
Nin and inefficiency occurs in general for large values of Nin. This is certainly due to unnecessary iterations
performed with the intent to achieve the prescribed tolerance εtol(in) = 10−6 (too small compared to 10−1).
Finally, we note that the efficiency of the preconditioner with ε′ = 10−1 improves as the non-dimensional
wavenumber increases.

Ultimately for problems with a high non-dimensional wavenumber rκ one can consider a preconditioner
with ε′ = 10−1 and εtol(in) ∼ 10−1 or ε′ = 10−1 and a moderate maximum number of inner iterations, for
instance Nin ≤ 60.

Elastodynamic case
Finally we consider the H-BEM iterative solver for an elastodynamic problem, which is a 3D vector-

valued problem. We still consider the single-layer formulation, the spherical geometry and the same meshes
as in the acoustic case. The density of points per S-wavelength is fixed to nλS = 10, the corresponding
S-non-dimensional wavenumber and NDOF are reported in Table 7.

Table 7: Number of DOF, non-dimensional S-wavenumber and number of S-wavelengths along the characteristic dimension
corresponding to each mesh (Elastodynamic case).

Mesh i 1 2 3 4

NDOF 30 746 122 886 183 099 490 629
rκS 16.64 33.27 40.91 66.61

The maximum number of iterations is 3000, i.e., nref ≤ 3000. The performances of the reference solver
are reported in Table 8.
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(a) ε′ = 10−5, 10−6, 10−7
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(b) Preconditioner with accuracy ε′ = 10−4
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(c) Preconditioner with accuracy ε′ = 10−3
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(d) Preconditioner with accuracy ε′ = 10−2
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Figure 6: Relative gain with respect to the reference solver δrT . For sake of readability we have rounded the value of δrT .

Table 8: Performances obtained for the reference solver (Elastodynamic case).

rκS nref Tref(s) TH−BEM(s) δH

16.64 320 98.2 111.9 0.31
33.27 634 1210.4 885.9 0.13
40.91 437 1387.8 1634.2 0.10
66.61 2275 31 966.2 7177.0 5.47 · 10−2

We consider that the GMRES threshold of the inner solver is fixed to εtol(in) = 10−6 and look for the
efficient preconditioners yielding to better performances in comparison to the reference solver by varying the
parameter Nin. The top five ranked preconditioners are reported in Table 9.
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Figure 7: Performances of the inner-outer solver (for ε′ = 10−1) as the maximum number of iterations varies. For sake of
readability we have rounded the value of δrT .

Table 9: The five most efficient inner-outer solvers for each non-dimensional wavenumber (Elastodynamic case).

rκS = 16.67 and τ = 0.66; |P+| = 21

Ranking ε′ Nin nout nin δ̂rT (%) δrT (%) εconv
tol(in)

1 10−3 100 6 600 −10.8 19.0 3·46 10−3

2 10−3 30 20 102 −13.3 16.5 5·26 10−2

3 10−3 10 55 120 −10.6 15.9 3·40 10−1

4 10−4 30 19 160 −22.9 14.2 5·25 10−2

5 10−3 15 40 600 −17.0 13.6 1·94 10−1

rκS = 33.27 and τ = 0.75; |P+| = 46

1 10−3 30 32 960 17.0 51.0 1·23 10−1

2 10−3 15 62 930 17.0 48.5 2·69 10−1

3 10−3 50 21 1050 10.4 47.9 7·74 10−2

4 10−2 30 39 1170 16.8 47.8 1·23 10−1

5 10−3 60 18 1080 8.2 45.6 6·69 10−2

rκS = 40.91 and τ = 0.78; |P+| = 51

1 10−2 60 12 720 30.9 56.7 6·11 10−2

2 10−2 30 23 690 32.7 56.3 1·76 10−1

3 10−3 150 4 600 29.4 55.1 5·54 10−3

4 10−2 50 15 750 27.8 54.7 8·63 10−2

5 10−2 150 5 750 28.7 54.3 5·75 10−3

rκS = 66.61 and τ = 0.84; |P+| = 56

1 10−1 50 75 3750 55.0 72.6 1·52 10−1

2 10−1 60 65 3900 53.3 72.5 1·37 10−1

3 10−1 30 118 3540 56.9 72.3 2·16 10−1

4 10−2 60 58 3480 42.1 70.3 1·39 10−1

5 10−2 50 67 3350 44.1 70.2 1·54 10−1

As in acoustics, preconditioners with a coarse accuracy ε′ become more efficient as the non-dimensional
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wavenumber increases. The number of efficient preconditioners increases as the problem size increases.
Full efficiency is even observed for the largest non-dimensional wavenumber, i.e. |P+| = 56. For the
non-dimensional wavenumber rκS = 66.61, the GMRES residual is of the order of εconv

tol(in) ∼ 10−1. The
value observed for δrT is still greater than the predicted maximum value ˆδrT (note that some negative
spurious values are observed for rκS = 16.67). In Figure 8 we represent δrT for the accuracy ε′ and non-
dimensional wavenumber rκS for which efficiency has occurred. The highest gains are observed for the
highest non-dimensional wavenumbers with δrT = 72.6%. Generally, the preconditioning appears more
efficient for elastodynamics in comparison to the acoustic case. Also, in this case, for problems with larger
non-dimensional wavenumbers using the preconditioner of accuracy ε′ = 10−1 in conjunction to a moderate
number of inner iterations or a GMRES threshold εtol(in) ∼ 10−1 remains a good compromise.

(a) ε′ = 10−1, 10−3, 10−4
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(b) Preconditioner of accuracy ε′ = 10−2
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Figure 8: Relative gain with respect to the reference solver δrT . Figure (a) reports the efficient preconditioners for ε′ =
10−1, 10−3 or 10−4 while Figure (b) is restricted to efficient preconditioners for ε′ = 10−2 (since there are more efficient
combinations in that case).

6. Conclusions

This article addresses the question of the efficient preconditioning of a H-BEM iterative solver for wave
propagation problems with oscillatory kernels. The adopted preconditioning strategy involves an inner-outer
GMRES solver, which yields to a two-level iterative method.

The preconditioner is preferably set as a “poor”, coarse compression of the BEM system matrix. We
have used the same data-sparse representation structure for both the H-BEM and the preconditioner (i.e.,
a similar low-rank admissibility condition is used) while the accuracy of the low-rank blocks of the latter
is worse. The advantage of doing so is that there are no additional memory requirements and no increased
computational time since the low-rank approximation involves a cumulative rank-one matrix addition until
the highest precision is reached.

Several numerical illustrations have been proposed. The efficiency of the preconditioner depends mainly
on the maximum number of inner iterations and also on the inner GMRES threshold. We have considered
numerical tests investigating the performances of the inner-outer solver as these parameters vary. We have
derived an upper bound on the gain that can be computed with such a preconditioning strategy. We have
sketched and illustrated throughout the numerical tests that for problems with a small non-dimensional
wavenumber, the preconditioner has to be chosen with a high accuracy. While for a larger non-dimensional
wavenumber (i.e., problems with a large number of degrees of freedom) a coarse approximation can be chosen.
The inner GMRES threshold can be set of the order of 10−1, or a moderate maximum number of iterations
can be set.

The compression is only performed over the admissible blocks. Therefore the time of a matrix vector
product for non admissible blocks is the same for both the original H-matrix representation of the system
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matrix and for the preconditioner, and may be a limiting factor for the gain. In this respect, one could
think to set the preconditioner with a different sparsity pattern parameter (using a different η-admissibility
condition). The drawback with such a choice is that it will require additional amount of storage. One
can also consider the studies relative to the Krylov subspace based method by considering the question of
the optimal setting of the initial solution of the inner solver problem or the recycling of a Krylov subspace
previously computed [47]. Finally, one may consider the use of a flexible strategy [48], with a preconditioner
varying throughout iterations [49]. In addition to the primordial aspect of preconditioning for iterative solver
that we have been considered in this paper, one can also consider some High Performance Computing (HPC)
implementations. For such an HPC implementation however, the issue of load balancing is crucial, and it
requires very careful a priori estimates of block-vector multiplications. In particular, it must be knowna
priori whether each block is full or low-rank. This implies some precise work load distribution and is beyond
the scope of our manuscript (see [50] and references therein).
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