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ON THE CONVERGENCE IN \bfitH \bfone -NORM FOR THE FRACTIONAL
LAPLACIAN\ast 

JUAN PABLO BORTHAGARAY\dagger AND PATRICK CIARLET JR.\ddagger 

Abstract. We consider the numerical solution of the fractional Laplacian of index s \in (1/2, 1)
in a bounded domain \Omega with homogeneous boundary conditions. Its solution a priori belongs to the
fractional-order Sobolev space \widetilde Hs(\Omega ). For the Dirichlet problem and under suitable assumptions on
the data, it can be shown that its solution is also in H1(\Omega ). In this case, if one uses the standard
Lagrange finite element to discretize the problem, then both the exact and the computed solution
belong to H1(\Omega ). A natural question is then whether one can obtain error estimates in H1(\Omega ) norm

in addition to the classical ones that can be derived in the \widetilde Hs(\Omega ) energy norm. We address this
issue, and in particular we derive error estimates for the Lagrange finite element solutions on both
quasi-uniform and graded meshes.
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1. Introduction. Let \Omega be a bounded Lipschitz domain in \BbbR n satisfying the
exterior ball condition. In this paper, we study the fractional Laplace equation of
index s \in (1/2, 1)

(1.1)

\biggl\{ 
( - \Delta )su = f in \Omega ,

u = 0 in \Omega c = \BbbR n \setminus \Omega .

We call f the right-hand side, which is a priori in L\infty (\Omega ). The operator ( - \Delta )s is
called the fractional Laplacian of order s, and it is one of the most prominent nonlocal
operators. It is ubiquitous in the modeling of complex physical, biological, and social
phenomena that span vastly different length scales [36].

There is a clear way to define the fractional Laplacian of order s for functions
defined over \BbbR n. Indeed, it is the pseudodifferential operator with symbol | \xi | 2s; given
a function u in the Schwartz class, set

( - \Delta )su := \scrF  - 1
\bigl( 
| \xi | 2s\scrF u

\bigr) 
,

where \scrF denotes the Fourier transform. Equivalently, the fractional Laplacian can
be defined by means of the following pointwise formula (see [33, section 1.1] and [24,
Proposition 3.3]):

(1.2) ( - \Delta )su(x) = C(n, s) p.v.

\int 
\BbbR n

u(x) - u(y)

| x - y| n+2s
dy, C(n, s) =

22ss\Gamma (s+ n
2 )

\pi n/2\Gamma (1 - s)
,

where p.v. stands for the Cauchy principal value and C(n, s) is a normalization con-
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stant. Identity (1.2) makes evident the nonlocal structure of the fractional Lapla-
cian. In the theory of stochastic processes, this operator appears as the infinitesimal
generator of a 2s-stable L\'evy process [9]. We refer the reader to [32] for further
characterizations of the fractional Laplacian over \BbbR n.

There is not a unique mode to consistently extend the definition of the fractional
Laplacian over a bounded domain \Omega ; see [10, 26, 34] for a comparison of the different
definitions and related numerical methods. In this work, we consider the integral
fractional Laplacian, which is defined as follows. Given u \in C\infty 

0 (\Omega ), we first consider
the zero-extension of u onto \Omega c and then use definition (1.2). This definition maintains
the probabilistic interpretation of the fractional Laplacian defined over \BbbR n, that is, as
the generator of a random walk in \Omega with arbitrarily long jumps, where particles are
killed upon reaching \Omega c [18, Chapter 2].

For this operator, we analyze direct discretizations for problem (1.1) using linear

Lagrangian finite elements. Under the assumption that f \in [ \widetilde Hs(\Omega )]\ast , which is clearly
true as long as we consider f \in L\infty (\Omega ), it follows immediately that the solution u to

(1.1) belongs to \widetilde Hs(\Omega ) (cf. section 2.1 for a definition of these spaces). Obviously,
computing finite element solutions to (1.1) is nothing more than projecting u over the

discrete spaces with respect to the \widetilde Hs(\Omega ) energy norm. Therefore, it is natural to de-

rive convergence rates for such a method in the \widetilde Hs(\Omega ) norm [2, 3, 4, 22]. Additionally,
convergence rates in the L2(\Omega ) norm can be obtained by performing a duality argu-
ment \`a la Aubin--Nitsche [16]. In [11], error estimates in the L2(\Omega ) norm are derived
for a related finite element discretization based on a Dumford--Taylor representation
formula for the weak form of the fractional Laplacian.

In the case s \in (1/2, 1), under additional assumptions on the right-hand side, it
can be proven that u \in H1(\Omega ). Since the discrete functions also belong to H1(\Omega )
(in fact, the discrete spaces are contained in \cap \epsilon >0H

3/2 - \epsilon (\Omega )), a natural question is
whether one can obtain error estimates in H1(\Omega ) norm. The goal of this work is to
address such a question and to derive error estimates for the Lagrange finite element
solutions on both quasi-uniform and graded meshes.

The choice of the H1(\Omega ) norm is also motivated by the study of certain interface
problems. Namely, consider the equation div(\sigma \nabla u) = f in \Omega (plus boundary condi-
tions), and assume the diffusivity is piecewise constant and equals \sigma i in \Omega i (i = \{ 1, 2\} )
with \Omega 1\cup \Omega 2 = \Omega and \Omega 1\cap \Omega 2 = \emptyset . If \sigma 1 and \sigma 2 have different sign, then well-posedness
in H1(\Omega ) can be compromised, as the problem is not elliptic. This occurs when the
ratio \sigma 2/\sigma 1 belongs to the so-called critical interval [12]. When the interface has a
corner, we have shown in [14] that this critical interval is shrunk if one replaces the
standard H1-bilinear forms by corresponding Hs-forms (s \in (0, 1)). However, despite
this significant advantage, the expense of computing the nonlocal interactions may
be prohibitive in applications. Thus, we propose to confine the non-local model to a
neighborhood of the interface while keeping the standard local model in the rest of
the domain.

This leads to the question of how to couple the local and nonlocal problems. In
this regard, a number of strategies have recently been proposed; see, for example,
[23, 25] and the references therein. Second, once a coupling method is at hand, con-
vergence of the two models (local and nonlocal) needs to be addressed. In particular,
can one recover convergence in H1(\Omega ) norm for both models? This work is a first
step in this direction.

Let us outline the contents of the paper. In section 2, we recall some useful results
regarding the problem to be solved and the regularity of its solution. More precisely,
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the fractional Laplacian defined over \BbbR n can be extended by density to the Sobolev
space \widetilde Hs(\Omega ); see section 2.1 for a definition of this space. Then one can build an
equivalent variational form (section 2.2). Under suitable assumptions on the data,
it can be shown that its solution also belongs to H1(\Omega ); the regularity results are
recalled in section 2.3. To solve the problem numerically, we choose the standard
Lagrange finite element to define a conforming discretization (sections 2.4 and 2.5).
As pointed out before, both the exact and the computed solution belong to H1(\Omega ).

We address the issue of convergence in H1(\Omega ) norm, first on quasi-uniform meshes
(section 3) and then on graded meshes (section 4). On quasi-uniform meshes, a use
of mostly classical estimates (interpolation error, inverse inequality, etc.) allows us to
conclude that convergence in H1(\Omega ) norm holds with a rate in the order of hs - 1/2 (up
to a | log h| factor), where h is the mesh-size. On the other hand, it is well known that
choosing graded meshes can improve the convergence rate in problems with boundary
layers. For instance, for the same type of discretizations as the ones considered in this
paper, this procedure allows recovering a rate in the order of h (up to a | log h| factor)
in the energy norm [2]. In particular, the grading must be chosen carefully in order
to keep an optimal convergence rate in terms of the dimension of the discrete finite
element space. Also, one has to build estimates with respect to weighted Sobolev
norms. Section 4 is devoted to this task.

In section 5 we present some numerical experiments to highlight the results and
in particular how the predicted convergence rate is recovered numerically. This sec-
tion also includes some numerical experiments in situations that do not satisfy our
assumptions on the domain. Finally, in section 6 we comment on the results in this
manuscript and discuss possible extensions of this work.

2. Settings and preliminaries.

2.1. Sobolev spaces. Given s \in (0, 1) and \Lambda \subset \BbbR n (with the possibility that
\Lambda = \BbbR n), we define the Sobolev space Hs(\Lambda ) as

(2.1) Hs(\Lambda ) =
\bigl\{ 
v \in L2(\Lambda ): | v| Hs(\Lambda ) < \infty 

\bigr\} 
, where | v| Hs(\Lambda ) = (v, v)

1/2
Hs(\Lambda )

with

(2.2) (v, w)Hs(\Lambda ) =
C(n, s)

2

\int \int 
\Lambda \times \Lambda 

(v(x) - v(y))(w(x) - w(y))

| x - y| n+2s
dxdy

and C(n, s) is defined as in (1.2).
Sobolev spaces of noninteger order greater than one are defined as follows. Given

k \in \BbbN , then

Hk+s(\Lambda ) =
\bigl\{ 
v \in Hk(\Lambda ): \partial \beta v \in Hs(\Lambda ) \forall \beta s.t. | \beta | = k

\bigr\} 
,

equipped with the norm

\| v\| Hk+s(\Lambda ) =
\Bigl( 
\| v\| 2Hk(\Lambda ) +

\sum 
| \beta | =k

| \partial \beta v| 2Hs(\Lambda )

\Bigr) 1/2

.

For a Lipschitz bounded domain \Omega \subset \BbbR n, we denote by \widetilde Hs(\Omega ) the space defined by

\widetilde Hs(\Omega ) =
\bigl\{ 
v \in Hs(\BbbR n) s.t. supp(v) \subset \Omega 

\bigr\} 
.
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We point out that, on \widetilde Hs(\Omega ), the natural inner product is equivalent to

(v, w)Hs(\BbbR n) =
C(n, s)

2

\int \int 
\BbbR n\times \BbbR n

(v(x) - v(y))(w(x) - w(y))

| x - y| n+2s
dxdy,(2.3)

\| v\| \widetilde Hs(\Omega ) = (v, v)
1/2
Hs(\BbbR n)

because of the Poincar\'e inequality

\| v\| L2(\Omega ) \lesssim | v| Hs(\BbbR n) \forall v \in \widetilde Hs(\Omega ).

It is well known that smooth functions are dense inHs(\Omega ). Another way to regard
``zero-trace"" functions on \Omega is to take the closure of C\infty 

0 (\Omega ) with respect to the Hs(\Omega )
norm. This gives rise to the space

Hs
0(\Omega ) = C\infty 

0 (\Omega )
\| \cdot \| Hs(\Omega )

.

For s \in (0, 1), the aforementioned Sobolev spaces on \Omega are related by

\widetilde Hs(\Omega ) = Hs
0(\Omega ) = Hs(\Omega ) if s \in (0, 1/2),\widetilde H1/2(\Omega ) \subsetneq H

1/2
0 (\Omega ) = H1/2(\Omega ) if s = 1/2,\widetilde Hs(\Omega ) = Hs

0(\Omega ) \subsetneq Hs(\Omega ) if s \in (1/2, 1).

Remark 2.1 (interpolation spaces). Because \Omega is a Lipschitz domain, we can also
characterize fractional Sobolev spaces over \Omega as real interpolation spaces. Namely,

Hs(\Omega ) = [L2(\Omega ), H1(\Omega )]s, \widetilde Hs(\Omega ) = [L2(\Omega ), H1
0 (\Omega )]s,

and the norms induced by this characterization are equivalent to (2.2) and (2.3),
respectively.

Remark 2.2 (exact interpolation scales). A subsequent question is whether the

fractional Sobolev spaces \widetilde Hs(\Omega ) are exact interpolation spaces in the sense of [8], that
is, whether the fractional-order norms coincide with the norms inherited by interpo-
lation. We point out that, in general, this is not the case: The set \{ Hs(\Lambda ): s \in \BbbR \} 
normed by (2.1)--(2.2) is not an exact interpolation scale [19]. On the other hand, for
a Lipschitz domain \Omega , the equivalence constants depend on the continuity modulus
of certain extension operators. This result is also valid for the \widetilde Hs(\Omega ) spaces by du-

ality with H - s(\Omega ) = [ \widetilde Hs(\Omega )]\ast spaces. For further details, we refer the reader to [19,
section 4], specifically to Lemma 4.2, Corollary 4.9, and Lemma 4.13 therein.

Remark 2.3 (normalization constant). The normalization constant C(n, s) in the
definition of fractional Sobolev spaces compensates the singular behavior of the
Gagliardo seminorms as s approaches 0 and 1. Indeed, it satisfies

C(n, s) \approx s(1 - s) as s \rightarrow 0, 1.

In the limit s \rightarrow 0, the presence of C(n, s) ensures that (see [35, Theorem 3])

lim
s\rightarrow 0

| v| Hs(\BbbR n) = \| v\| L2(\BbbR n) \forall v \in H\sigma 
0 (\BbbR n) for some \sigma > 0.

In particular, we have the limit

lim
s\rightarrow 0

\| v\| \widetilde Hs(\Omega ) = \| v\| L2(\Omega ) \forall v \in \widetilde H\sigma (\Omega ) for some \sigma > 0.
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Similarly, in the limit s \rightarrow 1, the following estimate holds: Given v \in L2(\Omega ), if
lims\rightarrow 1 | v| Hs(\Omega ) exists and it is finite, then v \in H1(\Omega ) and

lim
s\rightarrow 1

| v| Hs(\Omega ) = | v| H1(\Omega ).(2.4)

We refer the reader to [17] for a proof. Although Corollary 2 in that work is mainly
concerned with the need of a factor of the order

\surd 
1 - s to correct the scaling of the

Gagliardo seminorms as s \rightarrow 1, we point out that a direct calculation shows that
identity (2.4) holds.

Regarding problem (1.1), it is known that, independently of the smoothness of
the right-hand side f , solutions exhibit reduced regularity near the boundary of the
domain. More precisely, denoting by \delta (x) the distance from x \in \Omega to \partial \Omega , solutions
to the fractional Dirichlet problem are of the form (cf. [31, formulas (7.7)--(7.12)] and
[37, Theorem 1.2])

(2.5) u(x) \approx \delta (x)s + v(x)

with v smooth. Thus, a natural approach to characterize the behavior of the solution
to (1.1) near the boundary is to introduce weighted Sobolev spaces, where the weight
is a power of the distance to the boundary.

For a nonnegative integer k and \alpha \in \BbbR , we consider the norm

(2.6) \| v\| 2Hk
\alpha (\Omega ) =

\int 
\Omega 

\left(  | v(x)| 2 +
\sum 
| \beta | \leq k

| \partial \beta v(x)| 2
\right)  \delta (x)2\alpha dx

and define Hk
\alpha (\Omega ) and \widetilde Hk

\alpha (\Omega ) as the closures of C
\infty (\Omega ) and C\infty 

0 (\Omega ), respectively, with
respect to the norm (2.6).

Next, we define weighted Sobolev spaces of noninteger order and their zero-
extension counterparts.

Definition 2.1 (weighted fractional Sobolev spaces). Let \ell be a noninteger and
positive real number, and let \alpha \in \BbbR . Take k \in \BbbN \cup \{ 0\} and \sigma \in (0, 1) to be the unique
numbers such that \ell = k + \sigma . We set

H\ell 
\alpha (\Omega ) =

\bigl\{ 
v \in Hk

\alpha (\Omega ): | \partial \beta v| H\sigma 
\alpha (\Omega ) < \infty \forall \beta s.t. | \beta | = k

\bigr\} 
,

where

| v| 2H\sigma 
\alpha (\Omega ) =

\int \int 
\Omega \times \Omega 

| v(x) - v(y)| 2

| x - y| n+2\sigma 
\delta (x, y)2\alpha dx dy

and
\delta (x, y) = min\{ \delta (x), \delta (y)\} .

We equip this space with the norm

\| v\| 2H\ell 
\alpha (\Omega ) = \| v\| 2Hk

\alpha (\Omega ) +
\sum 
| \beta | =k

| \partial \beta v| 2H\sigma 
\alpha (\Omega ).

Similarly, we define zero-extension weighted Sobolev spaces by

\widetilde H\ell 
\alpha (\Omega ) =

\Bigl\{ 
v \in \widetilde Hk

\alpha (\Omega ): | \partial \beta v| H\sigma 
\alpha (\BbbR n) < \infty \forall \beta s.t. | \beta | = k

\Bigr\} 
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equipped with the norm

\| v\| 2\widetilde H\ell 
\alpha (\Omega )

= \| v\| 2Hk
\alpha (\Omega ) +

\sum 
| \beta | =k

| \partial \beta v| 2H\sigma 
\alpha (\BbbR n).

Throughout this paper we make use of the H\ell 
\alpha (\omega ) and \widetilde H\ell 

\alpha (\omega ) norms and semi-
norms, where \omega is a Lipschitz subdomain of \Omega . We point out that, in such a case, the
weight \delta still refers to the distance to \partial \Omega .

2.2. Weak formulation. We denote the duality pairing between \widetilde Hs(\Omega ) and its
dual H - s(\Omega ) by \langle \cdot , \cdot \rangle . The fractional Laplacian of index s is an operator of order

2s; therefore, ( - \Delta )sv \in H - s(\Omega ) whenever v \in \widetilde Hs(\Omega ). The following integration by
parts formula is a direct consequence of definitions (1.2) and (2.3):

\langle ( - \Delta )sv, w\rangle = (v, w)Hs(\BbbR n) \forall v, w \in \widetilde Hs(\Omega ).

With the notation for fractional Sobolev norms introduced in section 2.1, the
variational form of problem (1.1) reads

(2.7) find u \in \widetilde Hs(\Omega ) such that (u, v)Hs(\BbbR n) = \langle f, v\rangle \forall v \in \widetilde Hs(\Omega ).

We call \| \cdot \| \widetilde Hs(\Omega ) the energy norm.

2.3. Regularity of solutions. From this point on, we focus on the case s \in 
( 12 , 1). In particular, s has a fixed value from now on. We recall that we are assuming \Omega 
to be a bounded Lipschitz domain satisfying the exterior ball condition. We emphasize
that, even for smooth domains, the expansion (2.5) is sharp; cf. Remark 2.4 below.

By definition, the solution u to (2.7) belongs to \widetilde Hs(\Omega ). Furthermore, under the mild
assumption of almost everywhere boundedness of the right-hand side, solutions belong
to H1

0 (\Omega ) with continuous dependence on the data.

Proposition 2.1 (H1-estimate; see [2, Lemma 3.10]). If s \in ( 12 , 1) and f \in 
L\infty (\Omega ), then the solution u of (2.7) belongs to H1

0 (\Omega ), and it satisfies

| u| H1(\Omega ) \lesssim 
\| f\| L\infty (\Omega )

2s - 1
,

where the hidden constant depends on \Omega but is uniformly bounded on s \in ( 12 , 1).

A natural question is how much additional smoothness can be guaranteed under
further assumptions on the data. It is the case that, if the right-hand side f possesses
certain H\"older regularity, then further regularity of u follows.

Proposition 2.2 (higher-order estimate; see [2, formula (3.10)] and [10, Theo-
rem 3.5 and identity (3.6)]). Let s \in 

\bigl( 
1
2 , 1

\bigr) 
be given and f \in C\beta (\Omega ) for some \beta > 0.

Then it holds that

(2.8) u \in 
\bigcap 
\epsilon >0

\widetilde Hs+1/2 - \epsilon (\Omega ) with \| u\| \widetilde Hs+1/2 - \epsilon (\Omega ) \lesssim 
\| f\| C\beta (\Omega )

\epsilon 
\forall \epsilon \in (0, 1/2).

Furthermore, for \beta \in (0, 2  - 2s), let \ell \in (s + 1/2, \beta + 2s) and \alpha > \ell  - s  - 1/2. If

f \in C\beta (\Omega ), then u \in \widetilde H\ell 
\alpha (\Omega ) and

(2.9) | u| \widetilde H\ell 
\alpha (\Omega ) \lesssim 

\| f\| C\beta (\Omega )

(\beta + \ell  - 2s)(1/2 + \alpha + s - \ell )
.

The hidden constants depend on \Omega and the dimension n.
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Remark 2.4 (sharpness). The first statement in the previous proposition is sharp.
The boundary behavior (2.5) causes, in general, solutions not to be in Hs+1/2(\Omega ). For
instance, if \Omega is a ball with center x0 and radius r and f \equiv 1, then

u(x) = C (r  - | x - x0| 2)s+.

Additionally, interior regularity estimates for the fractional Laplacian are well un-
derstood and indicate a lifting of order 2s, measured either in the H\"older [37] or in
suitable Besov [21] scales.

Remark 2.5 (case of interest). For a smooth right-hand side, a case of interest in
(2.9) to derive optimal approximation rates in the energy norm (see subsection 4.1)
is, for \epsilon \in (0, 1/2),

\beta = 1 - s, \ell = 1 + s - 2\epsilon , \alpha = 1/2 - \epsilon .

This yields the estimate

(2.10) \| u\| \widetilde H1+s - 2\epsilon 
1/2 - \epsilon 

(\Omega ) \lesssim 
\| f\| C1 - s(\Omega )

\epsilon 
\forall \epsilon \in (0, 1/2).

2.4. Conforming approximations. We consider conforming approximation of
the fractional Laplace equation, realized with the help of globally continuous P 1

Lagrange finite elements on a shape-regular family of triangulations (\scrT h)h of \Omega (see
[28, Definition 1.107]); elements of triangulations are (closed) simplices of \BbbR n. We
call (\BbbV h)h the discrete spaces, where h denotes the mesh-size of a given triangulation;
more precisely, we set

\BbbV h = \{ v \in C(\Omega ) s.t. v| T \in P 1 \forall T \in \scrT h, v| \partial \Omega = 0\} .

Importantly, one has \BbbV h \subset H1
0 (\Omega ) for all h. We write hT for the diameter of an

element T \in \scrT h (recall that h = maxT hT ). In the following, given a set \omega \subset \Omega , S\omega 

denotes the star of elements that intersect \omega :

S\omega =
\bigcup 

T \prime : \omega \cap T \prime \not =\emptyset 

T \prime .

Because elements are closed subsets of \BbbR n, S\omega is by definition a closed subset of \BbbR n.
In particular, given T \in \scrT h, we make use of the sets

ST =
\bigcup 

T \prime : T\cap T \prime \not =\emptyset 

T \prime and SST
=

\bigcup 
T \prime : ST\cap T \prime \not =\emptyset 

T \prime .

We set uh to be the solution of the discrete variational formulation

find uh \in \BbbV h such that (uh, vh)Hs(\BbbR n) = \langle f, vh\rangle \forall vh \in \BbbV h.

It follows immediately that uh is the best approximation in \BbbV h to the solution u with
respect to the energy norm:

(2.11) \| u - uh\| \widetilde Hs(\Omega ) = min
vh\in \BbbV h

\| u - vh\| \widetilde Hs(\Omega ).
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2.5. Interpolation error. From (2.11), the only missing ingredient to deduce
an a priori convergence rate (in the energy norm) for the fractional Laplace equation
is an interpolation error estimate. This, combined with the regularity of solutions
expressed in the first part of Proposition 2.2, gives the desired rate.

Let Ih denote the Scott--Zhang interpolation operator [38]. Local approximation
estimates in integer-order norms are well known:

(2.12) | v  - Ihv| Hk(T ) \lesssim h\ell  - k
T | v| H\ell (ST ) \forall v \in H\ell (\Omega ), k \in \{ 0, 1\} , \ell \in [k, 2].

Moreover, it is a simple exercise to derive an approximation estimate in terms of the
fractional weighted scale introduced in Definition 2.1. Indeed, it holds that

(2.13) | v  - Ihv| Hk(T ) \lesssim h\ell  - k - \alpha 
T | v| H\ell 

\alpha (ST )

for all v \in \widetilde H\ell 
\alpha (\Omega ), k \in \{ 0, 1\} , \ell \in [k, 2], and \alpha \in [0, \ell  - k].

Due to its nonlocal nature, in order to obtain a global interpolation estimate in a
fractional-order norm, it is not desirable to have norms on elements on the left-hand
side. However, such as developed in [2], it suffices to derive bounds over sets of the
form T \times ST and use localization techniques [29].

Proposition 2.3 (local interpolation estimate; see [13, 20]). Let s \in (0, 1) and
\ell \in [s, 2]. Then
(2.14)\int 

T

\int 
ST

| (v  - Ihv)(x) - (v  - Ihv)(y)| 2

| x - y| n+2s
dy dx \lesssim h

2(\ell  - s)
T | v| 2H\ell (SST

) \forall v \in \widetilde H\ell (\Omega )

and, for \alpha \in (0, \ell  - s),
(2.15)\int 

T

\int 
ST

| (v  - Ihv)(x) - (v  - Ihv)(y)| 2

| x - y| n+2s
dy dx \lesssim h

2(\ell  - s - \alpha )
T | v| 2H\ell 

\alpha (SST
) \forall v \in \widetilde H\ell 

\alpha (\Omega )

with hidden constants that depend on n, s and the shape-regularity of the meshes.

3. Quasi-uniform triangulations. Let s \in 
\bigl( 
1
2 , 1

\bigr) 
be given. Throughout this

section, we assume that the right-hand side f belongs to C\beta (\Omega ) for some \beta > 0 and
that approximations are performed on quasi-uniform meshes [28, Definition 1.140].
In such a case, adding up the contributions on each patch of the form T \times ST and
because of the a priori regularity of u (recall (2.8)), we have the estimates

(3.1)

\left\{       
\| u - Ihu\| \widetilde Hs(\Omega ) \lesssim 

h1/2 - \epsilon 

\epsilon 
\| f\| C\beta (\Omega )

\| u - Ihu\| H1(\Omega ) \lesssim 
hs - 1/2 - \epsilon 

\epsilon 
\| f\| C\beta (\Omega )

\forall \epsilon \in (0, 1/2).

Upon combining (2.11) and (3.1, top), it follows that the convergence rate of the
finite element solutions toward the solution of the fractional Laplace problem in the
energy norm is

(3.2) \| u - uh\| \widetilde Hs(\Omega ) \lesssim 
h1/2 - \epsilon 

\epsilon 
\| f\| C\beta (\Omega ) \forall \epsilon \in (0, 1/2).

Clearly, if h is small enough, then taking \epsilon = | log h|  - 1 yields

\| u - uh\| \widetilde Hs(\Omega ) \lesssim h1/2| log h| \| f\| C\beta (\Omega ).
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In this section, we derive an error estimate in H1(\Omega ) norm on quasi-uniform triangu-
lations. For that purpose, we require an inverse inequality.

Proposition 3.1 (inverse inequality). Consider a sequence of discrete spaces
(\BbbV h) over quasi-uniform meshes. Then it holds that

(3.3) | vh| H1(\Omega ) \lesssim hs - 1\| vh\| \widetilde Hs(\Omega ) \forall h, \forall vh \in \BbbV h.

Proof. It follows immediately by interpolation of the trivial identity | vh| H1(\Omega ) \leq 
| vh| H1(\Omega ) and the standard global inverse inequality (for example, [28, Corollary
1.141])

| vh| H1(\Omega ) \leq h - 1\| vh\| L2(\Omega ).

From Proposition 3.1, we infer a first bound on the error in the H1(\Omega ) norm.

Proposition 3.2 (convergence in H1(\Omega ) on uniform meshes). Assume that s \in 
( 12 , 1) and f \in C\beta (\Omega ) for some \beta > 0. Consider a sequence of discrete spaces (\BbbV h)
over quasi-uniform meshes. Then for h sufficiently small, it holds that

\| u - uh\| H1(\Omega ) \lesssim hs - 1/2| log h| \| f\| C\beta (\Omega ).

Proof. Let \epsilon \in (0, 1/2). In the first place, using the triangle inequality and the
interpolation estimate (3.1, bottom), we obtain

\| u - uh\| H1(\Omega ) \leq \| u - Ihu\| H1(\Omega ) + \| Ihu - uh\| H1(\Omega )

\lesssim 
hs - 1/2 - \epsilon 

\epsilon 
\| f\| C\beta (\Omega ) + \| Ihu - uh\| H1(\Omega ).

Therefore, we need to bound \| Ihu  - uh\| H1(\Omega ). By the inverse inequality (3.3) and
using again the triangle inequality, it follows that

\| Ihu - uh\| H1(\Omega ) \lesssim hs - 1
\Bigl( 
\| Ihu - u\| \widetilde Hs(\Omega ) + \| u - uh\| \widetilde Hs(\Omega )

\Bigr) 
.

Finally, by bounding the right-hand side above using (3.1, top) and (3.2), we deduce
that

\| u - uh\| H1(\Omega ) \lesssim 
hs - 1/2 - \epsilon 

\epsilon 
\| f\| C\beta (\Omega ) \forall \epsilon \in (0, 1/2).

The proof is concluded upon setting \epsilon = | log h|  - 1 in the estimate above.

For comparison with the results in the next section, we express the order of
convergence in terms of the number of degrees of freedom. Since the meshes are
quasi-uniform, dim\BbbV h \simeq h - n.

Corollary 3.1 (complexity for uniform meshes). With the same hypotheses as
in Proposition 3.2, it holds that

\| u - uh\| H1(\Omega ) \lesssim (dim\BbbV h)
1/2 - s

n log (dim\BbbV h) \| f\| C\beta (\Omega ).

4. Graded meshes. The results from the preceding section establish that, given
s \in 

\bigl( 
1
2 , 1

\bigr) 
, finite element solutions converge to the solution to (1.1) in theH1(\Omega ) norm.

Nevertheless, the low regularity of the solution substantially affects the convergence
rate. We recall that, according to Proposition 2.2, the regularity assumptions for the
right-hand side are quantified by \beta . This, in turn, determines the regularity of the
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solution (with the differentiability quantified by \ell and the boundary degeneracy by \alpha ).

Finally, one has to take into account the \widetilde Hs(\Omega ) norm in which the error is measured.
Here we focus on two-dimensional problems and exploit regularity in weighted

fractional spaces by performing approximations on a sequence of suitably refined
meshes. Since the solution is known to be more singular near the boundary of the
domain, increased convergence rates are achieved by placing more degrees of freedom
in that zone. More precisely, given a number \mu \geq 1 and a global mesh parameter h,
we set the element diameters to be

(4.1) hT \simeq 
\biggl\{ 

h\mu if ST \cap \partial \Omega \not = \emptyset ,
h d(T, \partial \Omega )(\mu  - 1)/\mu otherwise.

In definition (4.1), considering \mu = 1 corresponds to uniform meshes, whereas for
\mu > 1, elements become smaller as they approach \partial \Omega , which yields the so-called graded
meshes. The mesh-size parameter h has the intuitive interpretation of controlling the
number of degrees of freedom as the mesh-size does for uniform meshes. Indeed, we
have [15]

(4.2) dim\BbbV h \simeq 

\left\{   h - 2, if \mu \in [1, 2),
h - 2| log h| if \mu = 2,
h - \mu if \mu > 2.

As we shall see below, the optimal choice of \mu depends on the parameters s, \beta , \ell , and
\alpha . Analysis of finite element methods in graded meshes can be traced back to the
work by Babu\v ska, Kellogg, and Pitk\"aranta [7] on local problems in polygonal domains
with mixed boundary conditions. The analysis we perform here in two-dimensional
domains is also related with the use of boundary element methods on graded meshes
for three-dimensional problems by von Petersdorff and Stephan [39]. In the setting
of that reference, regularity of solutions is dictated by the maximum angle in the
polyhedron, and thus the optimal mesh grading depends on this value as well. On the
other hand, in our work, since the class of domains under consideration are Lipschitz
and satisfy an exterior ball condition, the optimal grading is related to the regularity
of the right-hand side f and the norm in which the error is measured; see Remark 4.3
below.

Remark 4.1 (choice of \mu ). Estimate (4.2) essentially says that when grading ac-
cording to (4.1), considering the dimension of the resulting finite element space as a
function of \mu , all increments in \mu are ``for free"" as long as \mu < 2. When \mu > 2, there is
an increment in the number of degrees of freedom with respect to h that balances the
expected gain due to the increase in differentiability. So, for smooth right-hand sides,
optimal order of convergence is attained by imposing \mu = 2. Nevertheless, it may also
be the case that the same order of convergence is attained by taking a lower \mu , which
in turn would allow for less stringent hypotheses on f . Keeping the grading as low as
possible is of importance, for example, in order to avoid unnecessarily ill-conditioned
systems. For the problems under consideration it is known [5] that the finite element
stiffness matrices Ah are conditioned according to \kappa (Ah) \simeq (dim\BbbV h)

2s/n(hmax

hmin
)n - 2s.

Therefore, for two-dimensional problems, for meshes graded according to (4.1), since
hmax \simeq h and hmin \simeq h\mu , we deduce that

\kappa (Ah) \simeq (dim\BbbV h)
s h(1 - \mu )(2 - 2s) \simeq 

\left\{   h2 - 4s - \mu (2 - 2s) if \mu \in [1, 2),
h - 2| log h| s if \mu = 2,
h2 - 2s - \mu (2 - s) if \mu > 2.
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As pointed out in [5], preconditioning Ah by a diagonal scaling allows removing the
factor involving hmax

hmin
and thus leads to systems with condition numbers of the order

of (dim\BbbV h)
s. It must be noted, however, that having too small element sizes near

the boundary may affect the accuracy of the computed solution. Therefore, it is
recommended to keep the grading parameter \mu as small as possible.

Remark 4.2 (problems in one or in three dimensions). Let us briefly consider the
case of a one-dimensional or a three-dimensional, problem. For the one-dimensional
case, it is easily checked that the counterpart of (4.2) may be written dim\BbbV h \simeq 
h - 1 independently of \mu . Since \mu can be taken as large as needed, it is possible
(computationally) to recover the optimal linear convergence order in the H1(\Omega ) norm.
See Remark 4.5 and the experiments in section 5.1.

On the other hand, for the three-dimensional case one can check that for graded
meshes defined as in (4.1), the counterpart of (4.2) now writes

dim\BbbV h \simeq 

\left\{   h - 3 if \mu \in [1, 3/2),
h - 3| log h| if \mu = 3/2,
h - 2\mu if \mu > 3/2.

This limits the control one may get with respect to \mu to values in [1, 3/2), in constrast
to \mu \in [1, 2) for the two-dimensional case, and as a consequence limits the order
of convergence that can be obtained with this grading strategy in three-dimensional
problems. A natural cure for this problem that stems from the anisotropic behavior
of the solution near the boundary (cf. (2.5)) is to use anisotropic meshes [6].

4.1. Interpolation estimates. Our first task is to bound a global interpolation
error; naturally this is achieved by adding up local estimates. In view of the grading
(4.1), the key property is that when summing up the local interpolation estimates for
elements not touching \partial \Omega , the exponent in d(T, \partial \Omega ) is zero. This explicitly links the
regularity of the function to be interpolated with the order of the norm in which we
are measuring the error and with the grading parameter.

We illustrate the above discussion with an example: Assuming that f \in C\beta (\Omega )
for some \beta \in (0, 2 - 2s), what is the minimal grading required to optimally bound---in
the energy norm---the interpolation error for the solution to (1.1)?

Once we have set \beta in the second part of Proposition 2.2, we find that u \in \widetilde H\ell 
\alpha (\Omega )

for all

(4.3) \ell \in (s+ 1/2, \beta + 2s), \alpha > \ell  - s - 1/2.

Grading meshes according to (4.1), from (2.14) we deduce, for every T such that
SST

\cap \partial \Omega = \emptyset ,\int 
T

\int 
ST

| (u - Ihu)(x) - (u - Ihu)(y)| 2

| x - y| n+2s
dy dx \lesssim h

2(\ell  - s)
T | u| 2H\ell (SST

)

\lesssim h2(\ell  - s)d(T, \partial \Omega )2
(\mu  - 1)(\ell  - s)

\mu | u| 2H\ell (SST
).

Observe that \delta (x, y) \simeq d(T, \partial \Omega ) for all x, y \in ST when SST
\cap \partial \Omega = \emptyset . Thus, in this

case, we get \int 
T

\int 
ST

| (u - Ihu)(x) - (u - Ihu)(y)| 2

| x - y| n+2s
dy dx

\lesssim h2(\ell  - s)d(T, \partial \Omega )2(
(\mu  - 1)

\mu (\ell  - s) - \alpha )| u| 2H\ell 
\alpha (SST

).
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Imposing the exponent on d(T, \partial \Omega ) to be zero, we obtain the bound in energy norm

(4.4)

\int 
T

\int 
ST

| (u - Ihu)(x) - (u - Ihu)(y)| 2

| x - y| n+2s
dy dx \lesssim h2(\ell  - s)| u| 2H\ell 

\alpha (SST
).

Canceling the exponent corresponds to choosing \alpha equal to

(4.5) \alpha = (\ell  - s)
(\mu  - 1)

\mu 
.

On the other hand, for every element T such that SST
\cap \partial \Omega \not = \emptyset , we point out that

this choice of the parameter \alpha again yields the bound (4.4), this time with the help
of (2.15). Summing up all contributions, we conclude that

| v  - Ihv| Hs(\Omega ) \lesssim h\ell  - s| v| \widetilde H\ell 
\alpha (\Omega ) \forall v \in \widetilde H\ell 

\alpha (\Omega ).

To realize (4.3) when setting \alpha according to (4.5), we are led to the restriction

\mu > 2(\ell  - s).

Since we require \mu \leq 2 but we also want to maximize \ell  - s (as this will be the resulting
order of the interpolation error), it suffices to set the following:

\bullet For \beta \in (0, 1  - s]: \ell = \beta + 2s  - 2\epsilon , \alpha = \beta + s  - 1/2  - \epsilon , \mu = 2(\beta + s), for
some \epsilon \in (0, \beta + s - 1/2). The resulting order is h\beta +s - 2\epsilon .

\bullet For \beta \in [1 - s, 2 - 2s): \ell = 1+s - 2\epsilon , \alpha = 1/2 - \epsilon , \mu = 2, for some \epsilon \in (0, 1/2).
The resulting order is h1 - 2\epsilon .

Remark 4.3 (optimal grading for energy norm). We remark that, in the case
\beta \in (0, 1  - s], any other grading \mu \in [2(\beta + s), 2] also delivers optimal interpolation
rates. On the other hand, the interpolation estimate for \beta = 1  - s, combined with
(2.10) and (2.11), guarantees the linear (up to a logarithm) order of convergence of
the finite element approximations to (1.1). See (4.9) and (4.10) below.

A corollary of the previous discussion is that, for a fixed right-hand side f , the
minimal grading to obtain optimal convergence estimates depends on the norm in
which the error is measured. The next proposition further illustrates this point.

Proposition 4.1 (interpolation error in H1(\Omega ) over graded meshes). Let \ell \in 
(1, 2] and \alpha \in [0, \ell  - 1). Assume the meshes are constructed under the grading hy-
pothesis (4.1) setting \mu = \ell  - 1

\ell  - 1 - \alpha therein. Then it holds that

(4.6) | v  - Ihv| H1(\Omega ) \lesssim h\ell  - 1| v| \widetilde H\ell 
\alpha (\Omega ) \forall v \in \widetilde H\ell 

\alpha (\Omega ).

Proof. We make use of the local interpolation identities (2.12) and (2.13). Indeed,
if ST \cap \partial \Omega = \emptyset ,

| v  - Ihv| 2H1(T ) \lesssim h
2(\ell  - 1)
T | v| 2H\ell (ST ) \lesssim h2(\ell  - 1)d(T, \partial \Omega )

2(\ell  - 1)(\mu  - 1)
\mu | v| 2H\ell (ST ).

Because \delta (x, y) \simeq d(T, \partial \Omega ) for all x, y \in T , we deduce

| v  - Ihv| 2H1(T ) \lesssim h2(\ell  - 1)d(T, \partial \Omega )
2(\ell  - 1)(\mu  - 1)

\mu  - 2\alpha | v| 2H\ell 
\alpha (ST ).

In order to make the exponent in the distance to the boundary term to vanish, we
require that \mu = \ell  - 1

\ell  - 1 - \alpha and conclude

| v  - Ihv| 2H1(T ) \lesssim h2(\ell  - 1)| v| 2H\ell 
\alpha (ST ) if ST \cap \partial \Omega = \emptyset .
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On the other hand, if ST \cap \partial \Omega \not = \emptyset , using our choice of \mu we deduce

| v  - Ihv| 2H1(T ) \lesssim h
2(\ell  - 1 - \alpha )
T | v| 2H\ell 

\alpha (ST ) = h2\mu (\ell  - 1 - \alpha )| v| 2H\ell 
\alpha (ST ) = h2(\ell  - 1)| v| 2H\ell 

\alpha (ST ).

The claim follows immediately.

Combining the general interpolation estimate (4.6) with the regularity estimates
from Proposition 2.2, we optimally bound the interpolation error in H1(\Omega ). We show
that, with respect to the a priori estimates from Proposition 3.2 and Corollary 3.1, it
is possible to double the interpolation error rate by using graded meshes.

Proposition 4.2 (interpolation of the solution). In problem (1.1), assume that
f \in C\beta (\Omega ) for some \beta > 0 and that triangulations are constructed according to (4.1)
with \mu = 2. Then, for the Scott--Zhang interpolation operator Ih,
(4.7)

| u - Ihu| H1(\Omega ) \lesssim h2(s - 1/2 - \epsilon )| u| H2s - 2\epsilon 
s - 1/2 - \epsilon 

(\Omega ) \lesssim 
h2(s - 1/2 - \epsilon )

\epsilon 
\| f\| C\beta (\Omega ) \forall \epsilon \in (0, \beta /2).

In terms of degrees of freedom, for sufficiently refined meshes, the estimate above reads

| u - Ihu| H1(\Omega ) \lesssim (dim\BbbV h)
1/2 - s log(dim\BbbV h)\| f\| C\beta (\Omega ).

Proof. From the second part of Proposition 2.2, we know that u \in \widetilde H\ell 
\alpha (\Omega ) for

all \ell \in (s + 1/2, \beta + 2s) and \alpha > \ell  - s  - 1/2. Thus, given \epsilon sufficiently small, we
set \ell = 2s  - 2\epsilon ; we remark that choosing \alpha = \ell  - 1

2 satisfies the restriction for this

parameter and yields \mu = 2 = \ell  - 1
\ell  - 1 - \alpha .

Therefore, the first inequality in (4.7) follows from Proposition 4.1. The second
inequality is a consequence of the regularity estimate (2.9).

Remark 4.4 (higher regularity assumptions). A question in order is whether the
order of the interpolation error can be increased if we demand more regularity on the
right-hand side f . For example, let us assume that f \in C2(\Omega ), so that we can take
\ell = 2 - 2\epsilon and \alpha > 3/2 - s - 2\epsilon in (2.9), so that

| u| \widetilde H2 - 2\epsilon 
\alpha (\Omega ) \lesssim 

\| f\| C2(\Omega )

\alpha  - (3/2 - s - 2\epsilon )
.

The same computations as in the proof of Proposition 4.1 show that, to maximize the
interpolation order (in h), the grading parameter should be chosen as

\mu =
\ell  - 1

\ell  - 1 - \alpha 
>

1 - 2\epsilon 

s - 1/2
> 2.

Therefore, even though the interpolation error (in the H1(\Omega ) norm) is of the order of
h\ell  - 1 = h1 - 2\epsilon , in terms of degrees of freedom we have

| u - Ihu| H1(\Omega ) \lesssim (dim\BbbV h)
1/2 - s log(dim\BbbV h)\| f\| C2(\Omega ).

Having assumed higher regularity from f has led to no gain: The order is the same
as in (4.7). Also, it should be noted that, as described in Remark 4.1, a more severe
grading negatively affects the conditioning of the resulting system.
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4.2. Global inverse inequality. Our next task is to derive an adequate inverse
inequality for discrete functions over graded meshes. The nonuniformity of the meshes
substantially affects the order (with respect to h) of such an estimate. In spite of its
pessimistic character, the following proposition is instrumental to derive convergence
rates in the H1(\Omega ) norm.

Proposition 4.3 (inverse inequality on graded meshes). Consider a sequence of
discrete spaces (\BbbV h) over a sequence of meshes constructed according to (4.1) with a
grading parameter \mu . Then it holds that

(4.8) | vh| H1(\Omega ) \lesssim h\mu (s - 1)\| vh\| \widetilde Hs(\Omega ) \forall h, \forall vh \in \BbbV h.

Proof. As in Proposition 3.1, the proof follows by interpolation. In view of (4.1),
the local inverse inequality

| vh| H1(T ) \lesssim h - 1
T \| vh\| L2(T ), T \in \scrT h,

can be written as

| vh| H1(T ) \lesssim 

\biggl\{ 
h - \mu \| vh\| L2(T ) if ST \cap \partial \Omega \not = \emptyset ,
h - 1d(T, \partial \Omega ) - (\mu  - 1)/\mu \| vh\| L2(T ) if ST \cap \partial \Omega = \emptyset .

Since d(T, \partial \Omega ) \gtrsim h\mu for all elements T such that ST s \cap \partial \Omega = \emptyset , we obtain the global
inverse inequality

| vh| H1(\Omega ) \lesssim h - \mu \| vh\| L2(\Omega ).

By interpolation, we conclude (4.8).

4.3. Convergence in \bfitH \bfone (\Omega ). We are finally in position to derive a convergence
rate for the solution to (1.1) in H1(\Omega ) using graded meshes. For that purpose recall,
from Remark 4.3, that if f \in C1 - s(\Omega ), then considering the Scott--Zhang interpolation
on meshes graded according to (4.1) with \mu = 2, we have

(4.9) \| u - Ihu\| \widetilde Hs(\Omega ) \lesssim 
h1 - 2\epsilon 

\epsilon 
\| f\| C1 - s(\Omega ).

This, combined with the best approximation property (2.11), gives

(4.10) \| u - uh\| \widetilde Hs(\Omega ) \lesssim 
h1 - 2\epsilon 

\epsilon 
\| f\| C1 - s(\Omega ).

Proposition 4.4 (convergence in H1(\Omega ) on graded meshes). Assume that s \in 
( 12 , 1) and f \in C1 - s(\Omega ). Consider a sequence of discrete spaces (\BbbV h) over meshes
graded according to (4.1) with \mu = 2. Then, for h sufficiently small, it holds that

\| u - uh\| H1(\Omega ) \lesssim h2(s - 1/2)| log h| \| f\| C1 - s(\Omega ).

In terms of the dimension of the discrete spaces, the estimate above reads

\| u - uh\| H1(\Omega ) \lesssim (dim\BbbV h)
1/2 - s log(dim\BbbV h)\| f\| C1 - s(\Omega ).

Proof. The proof follows the steps from Proposition 3.2 but replacing (3.1, bot-
tom) by (4.7). For \epsilon \in (0, 1/2), using the triangle inequality and the interpolation
estimate (4.7), we obtain

\| u - uh\| H1(\Omega ) \leq \| u - Ihu\| H1(\Omega ) + \| Ihu - uh\| H1(\Omega )

\lesssim 
h2(s - 1/2 - \epsilon )

\epsilon 
\| f\| C1 - s(\Omega ) + \| Ihu - uh\| H1(\Omega ).
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Therefore, we need to bound \| Ihu  - uh\| H1(\Omega ). By the inverse inequality (4.8) and
using again the triangle inequality, it follows that

\| Ihu - uh\| H1(\Omega ) \lesssim h2(s - 1)
\Bigl( 
\| Ihu - u\| \widetilde Hs(\Omega ) + \| u - uh\| \widetilde Hs(\Omega )

\Bigr) 
.

Finally, we use (4.9) and (4.10) to bound the right-hand side above and deduce that

\| u - uh\| H1(\Omega ) \lesssim 
h2(s - 1/2 - \epsilon )

\epsilon 
\| f\| C1 - s(\Omega ) \forall \epsilon \in (0, 1/2).

Setting \epsilon = | log h|  - 1 in this inequality, we conclude the proof of the first statement.
The second part of the proposition follows by identity (4.2).

Remark 4.5 (error estimates in one dimension using graded meshes). As we
pointed out in Remark 4.2, for one-dimensional problems, it is possible to arbitrarily
increase the grading parameter \mu without affecting the relation dim\BbbV h \simeq h - 1. When
considering error estimates in the energy norm, this allows to obtain convergence with
order 2 - s by taking \mu = 1/(s - 1/2) > 2.

On the other hand, it is clear that a large \mu affects the inverse inequality (4.8) and
limits the theoretical order of convergence in the H1(\Omega ) norm. Indeed, a direct calcu-
lation shows that the optimal error estimate that can be obtained as in Proposition
4.4 is given by taking \mu = 2(2 - s):

(4.11) \| u - uh\| H1(\Omega ) \lesssim h2(s - 1/2)(2 - s)| log h| \| f\| C2 - 2s(\Omega ).

In section 5.1 we perform experiments that illustrate the sharpness of this estimate.

5. Numerical experiments. In this section, we display some results for prob-
lems in one- and two-dimensional domains for both uniform and graded meshes. The
outcomes of our numerical experiments match the prediction that the convergence
rates deteriorate as s \rightarrow 1/2. For completeness, we include the negative results for
the limit case s = 1/2 in order to further illustrate the fact that the solution to (1.1)
may not belong to H1(\Omega ) (see Remark 2.4).

Unless \Omega is a ball, it is not possible to derive closed expressions for the solution
u to (1.1); thus, we restrict the numerical examples to such domains. Specifically,

consider the Jacobi polynomials P
(\alpha ,\beta )
k : [ - 1, 1] \rightarrow \BbbR , given by

P
(\alpha ,\beta )
k (z) =

\Gamma (\alpha + k + 1)

k! \Gamma (\alpha + \beta + k + 1)

k\sum 
m=0

\biggl( 
k

m

\biggr) 
\Gamma (\alpha + \beta + k +m+ 1)

\Gamma (\alpha +m+ 1)

\biggl( 
z  - 1

2

\biggr) m

,

and the weight function \omega s : \BbbR n \rightarrow \BbbR ,

\omega s(x) = (1 - | x| 2)s+.

Then, given k \in \BbbN , s \in (0, 1), and the right-hand side

(5.1) f(x) = P
(s, n/2 - 1)
k (2| x| 2  - 1),

the solution to (1.1) in the unit ball B(0, 1) \subset \BbbR n is [27, Theorem 3]

(5.2) u(x) =
k! \Gamma 

\bigl( 
n
2 + k

\bigr) 
22s \Gamma (1 + s+ k)\Gamma 

\bigl( 
n
2 + s+ k

\bigr) \omega s(x)P
(s, n/2 - 1)
k (2| x| 2  - 1).
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Fig. 5.1. Errors for the first example described in section 5.1. Least squares fitting of the data
yields estimated orders of convergence 0.101 for s = 0.6, 0.200 for s = 0.7, 0.301 for s = 0.8, and
0.402 for s = 0.9.

Fig. 5.2. H1(\Omega ) seminorm of the finite element solutions for s = 0.5 as a function of the
number of degrees of freedom.

5.1. One-dimensional problems with constant right-hand side. As a first
example, we take \Omega = ( - 1, 1) and f = 1. Then, according to (5.2), for s \in (0, 1), the
solution to (1.1) is given by

u(x) =

\surd 
\pi 

22s\Gamma (1 + s)\Gamma (1/2 + s)
(1 - x2)s+.

We compute finite element solutions on meshes with N \in \{ 1000, 2000, . . . , 10000\} 
equally spaced nodes and the corresponding errors in the H1(\Omega ) norm for s \in 
\{ 0.6, 0.7, 0.8, 0.9\} . We display our results in Figure 5.1. These are in good agree-
ment with the estimates from Proposition 3.2.

Moreover, we run the same experiment for s = 0.5. Naturally, in this case the
solution u does not belong toH1(\Omega ). Therefore, we just compute theH1(\Omega ) seminorm
of the discrete solutions; Figure 5.2 gives evidence that these are indeed unbounded.

As a second example in one dimension, we build graded meshes using either
\mu 1 = 2(2 - s) or \mu 2 = 1

s - 1/2 . As described in Remark 4.5, convergence with order 2(s - 
1/2)(2 - s) can be obtained grading meshes according to \mu 1. As for \mu 2, although we
cannot apply the argument from Proposition 4.4, Table 5.1 shows that experimentally
we recover linear convergence rates in the H1(\Omega ) norm. We point out that, especially
for \mu 2 with s near 1/2, the large magnitude of the required grading yields very small
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Table 5.1
Observed convergence rates in the H1(\Omega ) norm for the one-dimensional homogeneous Dirichlet

problem using graded meshes. In the column with the computed order using \mu 1, the predicted order
2(s - 1/2)(2 - s) is in parentheses.

s \mu 1 = 2(2 - s) Computed order (\mu 1) \mu 2 = 1
s - 1/2

Computed order (\mu 2)

0.6 2.8 0.29 (0.28) 10 1.00
0.7 2.6 0.53 (0.55) 5 0.95
0.8 2.4 0.74 (0.72) 10/3 0.97
0.9 2.2 0.93 (0.88) 2.5 0.99

Table 5.2
Observed convergence rates in the H1(\Omega ) norm for the two-dimensional homogeneous Dirichlet

problem with constant right-hand side. The orders predicted by either Corollary 3.1 and Proposition
4.4 are in parentheses.

s Computed order (uniform) Computed order (graded)

0.6 0.04 (0.05) 0.08 (0.10)
0.7 0.08 (0.10) 0.18 (0.20)
0.8 0.13 (0.15) 0.30 (0.30)
0.9 0.19 (0.20) 0.41 (0.40)

elements near the boundary and therefore limits the number of nodes that the meshes
can have before reaching machine precision. In these sets of experiments, for every s
we considered four meshes with the number of nodes that guaranteed that the smallest
elements were closest to being of size \{ 10 - 6, . . . , 10 - 9\} .

5.2. Two-dimensional problems. We now turn our attention to problems
posed in the two-dimensional unit ball \Omega = B(0, 1) \subset \BbbR 2. In first place, we set
k = 0 in (5.1) and consider problems with s \in \{ 0.6, 0.7, 0.8, 0.9\} . With the aid of
the code from [1], we compute solutions using both uniform and graded meshes with
\mu = 2. Table 5.2 summarizes our findings, which are in accordance with the theory:
In all cases and with respect to dim\BbbV h, the observed order of convergence employing

uniform meshes is about s - 1/2
2 (cf. Corollary 3.1), while this order is doubled when

taking graded meshes (cf. second part of Proposition 4.4).
Figure 5.3 exhibits the logarithm of the norm of the broken gradient of discrete

solutions for s = 0.6 over certain uniform and graded (\mu = 2) meshes with about the
same number of degrees of freedom. We point out that, in this example, the exact
solution verifies | \nabla u(x)| \sim (1  - | x| 2)s - 1 for | x| \sim 1. The better capability of the
graded mesh to capture the singularity of the gradient at the boundary of the domain
is apparent.

Next, we consider a problem with nonconstant right-hand side. Setting k = 1 in
(5.1), we obtain that

u(x) =
1

22s(\Gamma (2 + s))2
\bigl( 
1 - | x| 2

\bigr) s
+

\bigl( 
(2 + s)| x| 2  - 1

\bigr) 
solves (1.1) in B(0, 1) \subset \BbbR 2 for

f(x) = (2 + s)| x| 2  - 1.

We compute solutions over meshes graded according to \mu = 2 and summarize our
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Fig. 5.3. Logarithm of the norm of the gradient of the discrete solutions to the first example in
section 5.2 for s = 0.6 using uniform (left) and graded (right) meshes with approximately the same
number of degrees of freedom (12636 and 12656, respectively). The pictures correspond to a zoom
on the square [0.65, 0.75]2.

Fig. 5.4. Errors for the example with nonconstant right-hand side in the unit ball in \BbbR 2 with
respect to dim\BbbV h. Least squares fitting of the data yields estimated orders of convergence 0.09 for
s = 0.6, 0.20 for s = 0.7, 0.33 for s = 0.8, and 0.42 for s = 0.9.

findings in Figure 5.4. These are in good agreement with the orders s  - 1/2 with
respect to dim\BbbV h predicted by Proposition 4.4.

As a final illustration, we perform a sequence of numerical experiments over non-
convex geometries. More precisely, given \theta \in \{ 3\pi /2, 7\pi /4, 15\pi /8\} , we consider the
sector of angle \theta (in polar coordinates)

\Omega \theta = \{ (r, \varphi ) \in \BbbR 2 : r < 1, 2\pi  - \theta < \varphi < 2\pi \} 

and solve the homogeneous Dirichlet problem (1.1) with right-hand side f = 1 on \Omega \theta .
We point out that, since the domains \Omega \theta do not satisfy the exterior ball condition,
the theory developed in this paper does not carry to this experimental setting: In
particular, we cannot guarantee that Proposition 2.2 holds. Moreover, for the classical,
local, Laplacian (s = 1), it is well known that solutions of the Dirichlet problem on
these domains may not belong to H2(\Omega \theta ); it holds that [30]

u \in 
\bigcap 

t\in [0,\pi /\theta )

H1+t(\Omega \theta ).

We want to numerically explore whether this loss of regularity due to a reentrant
corner also holds for the fractional Laplacian. As a matter of fact, a similar experi-
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Table 5.3
Observed convergence rates in the H1(\Omega ) norm with respect to dim\BbbV h for the two-dimensional

homogeneous Dirichlet problem with constant right-hand side over the nonconvex domains \Omega \theta . The
rightmost column gives the orders predicted by Corollary 3.1 for smooth domains, that is, 1

2
(s - 1

2
).

s \theta = 3\pi /2 \theta = 7\pi /4 \theta = 15\pi /8 (smooth)

0.6 0.11 0.11 0.10 0.05
0.7 0.14 0.14 0.13 0.10
0.8 0.18 0.19 0.18 0.15
0.9 0.28 0.26 0.27 0.20

ment, involving convergence of eigenvalues on an L-shaped domain, was carried out
in [16]. Experimental evidence in that work indicates that the first eigenfunction of
the fractional Laplacian on such a domain is as regular as the first eigenfunction on
any smooth domain. More precisely, approximating on uniform meshes, linear con-
vergence for the first eigenvalue was observed; this is the same order as observed in
the unit ball, for instance. Moreover, this is in agreement with the Babu\v ska--Osborn
theory since, in the energy norm, convergence of order 1/2 is expected.

Here, we compute the order of convergence in H1(\Omega ) norm over uniform meshes
for s \in \{ 0.6, 0.7, 0.8, 0.9\} . Since we do not know the explicit solution to the problems,
we use the discrete solution on a fine mesh---with two levels of refinement more than
the finest experimental mesh---as a surrogate. Our findings are summarized on Table
5.3. It can be seen that, in all cases, the convergence rates we observe are above
those expected even assuming the domain to be smooth and, furthermore, that they
do not deteriorate as the reentrant angle increases. Of course, the high rates observed
can be attributed to the use of a computational solution to estimate them, but they
also suggest that the assumption that \Omega satisfies an exterior ball condition might be
removed.

6. Concluding remarks. In this paper, we analyzed convergence rates for finite
element discretizations of the integral fractional Laplacian over bounded domains. We
showed that the a priori convergence rates can be improved by resorting to graded
meshes.

For the sake of clarity, we restricted the discussion to the H1(\Omega ) norm; never-
theless, the arguments presented here can be applied to obtain convergence rates in
Ht(\Omega ) for all t \in (s, s + 1/2). For instance, the claim in Proposition 3.2 can be
extended to

\| u - uh\| Ht(\Omega ) \lesssim hs+1/2 - t| log h| \| f\| C\beta (\Omega ), t \in (s, s+ 1/2).

Analogous estimates can be obtained for discretizations on graded meshes. In such
a case, the optimal grading depends on the regularity of the data and the norm in
which the error is measured.

The class of graded meshes we considered allows delivering optimal convergence
rates in one-dimensional domains. However, in two and three dimensions, in spite
of accelerating the convergence of the finite element approximations, such meshes
are not capable of delivering optimal convergence rates. Shape-regularity limits the
grading parameter that can be taken while keeping control of the number of degrees
of freedom. Therefore, discretizations using anisotropic elements are required. To
the best of the authors' knowledge, there is no interpolation theory using anisotropic
fractional-order Sobolev spaces in the literature.
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