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Abstract — Hierarchical matrix or H -matrix provides a data-sparse representation of system matrices
resulting from the discretization of non-local operators. We are concerned with H -matrix based iterative
solver in the scope of fast boundary elements methods. We focus specifically on the definition of effi-
cient preconditioners in order to speed up the solution time of such iterative solvers and also to reduce
the number of iterations as the problem complexity increases. We consider a nested outer-inner solver
preconditioning strategy.
Mots clés — wave propagation, H -BEM, Preconditioning, nested GMRES, outer-inner solver.

1 Introduction

Acoustic and Elastodynamic wave propagation problems can be modeled by Boundary Integral Equa-
tions (BIEs) [6]. This formulation is well-adapted to deal with unbounded domain problems, since the
radiation conditions at infinity are exactly taken into account in the formulation with the Green’s func-
tions. The integral equations are commonly solved using the Boundary Element Method (BEM), [15].
The main advantage is that only the domain boundary (a surface) mesh is required. Although this yields,
at a discrete level, to a problem with reduced size, the resulting system matrix is fully populated. As a re-
sult, the complexities of the computational times and storage costs are prohibitive. Given N, the number
of degrees of freedom (dofs) on the boundary of the domain, the storage and matrix-vector product with
the standard BEM are both of the order of O(N2). A direct solution, for example, with the LU factoriza-
tion is of the order of O(N3). For an iterative solver, the global solution complexity is O(niter N2); niter
being the number of iterations. Hence, iterative solvers are more interesting than direct ones provided a
priori that niter << N.
However, due to computational and storage complexities, the BEM in its standard form is not usable
in practice for problem with large number of degrees of freedom. Recently, BEM solvers have been
speeded up with some acceleration techniques yielding to fast BEMs. One well known fast BEM is the
Fast Multipole accelerated BEM (FM-BEM) [9], [12]. The FM-BEM [17] allows to compute efficiently
the application of the integral operator to any given field. This method is exclusively designed for it-
erative solvers since it speeds up the matrix-vector product computation. This approach helps to lower
the memory requirements by not assembling the system matrix. Since only the near contributions of
the system matrix are stored, the bottleneck is the difficulty to define an efficient preconditioner for the
iterative solver used with the FM-BEM. Nevertheless, several applications relative to electromagnetic or
elastodynamic FM-BEMs use an incomplete LU factorization [16], SParse Approximative Inverse [8],
multi-grid methods [7] as preconditioning strategy. However their efficiency is limited and they do not
lead to a drastic reduction of the number of iterations. Indeed, they may not contain enough informa-
tion of the underlying physics. Another approach to speed-up the BEM, that we consider, involves a
hierarchical representation of the system matrix (H -matrix) [1], [10] and will be referred as H -BEM.
The approach originally introduced in [13, 14] relies on an hierarchical partitioning of the system ma-
trix. Through this partitioning, some blocks known a priori to be low-rank, thanks to an admissibility
condition are approximated using compression techniques such as the Adaptive Cross Approximation
(ACA) [3, 5]. The advantage of this approach is that the system matrix is available and one is not re-
stricted in the exploration and definition of an efficient preconditioner for the iterative solver. Various
preconditioning strategies exist in the litterature, namely the implicit and explicit ones. For the explicit
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preconditioner the inverse of the preconditioning operator is explicitely computed and directly applied,
while for the implicit one the application of the preconditioner requires the (iterative) solution of a linear
system. A key and common requirement of both classes of preconditioners is that the evaluation of the
preconditioner has to be computationally cheap. In this regard, the explicit preconditioner are usually
approximated using several techniques such as the Sparse Approximate Inverser (SPAI), incomplete LU
factorization, etc.
We are thus interested, in this contribution, with the proposition of efficient implicit preconditioners for
the iterative solver. The linear system at hand results from a BEM with collocation technique and then the
system matrix is typically non hermitian. Therefore we consider iterative solver based on GMRES (Gen-
eral Minimal RESidual) algorithm [19]. We avoid the computation of the inverse of the preconditioning
operator and consider implicit preconditioners in conjunction with the Flexible variant of the GMRES
algorithm which involves an outer-inner preconditioning (iterative) solver [18]. The first two parts of
this submission recalls the boundary integral equations and several aspects of the H -matrix data-sparse
representation of BEM for wave propagation. Further, in section 4, we give the general fashion of the
outer-inner iterative solver and propose a preconditioner. Finally, in section 5 we illustrate numerically
the efficiency of the approach.

2 Boundary Integral representions and equations

We are concerned with the propagation of time-harmonic acoustic and elastic waves in three-dimensional
isotropic and homogeneous domains. We adopt the following notations: matrices are denoted in black-
board characters and vector quantities in boldface. Then, we denote by u and u respectively the ve-
locity and displacement fields of the acoustic and elastodynamic problems. Let us denote by Ω− ∈ R3

the bounded domain representing the obstacle, with a closed Lipschtiz boundary Γ = ∂Ω− and Ω+ the
exterior domain R3\Ω−. n represents the outward unit normal vector field on Γ. The acoustic and
elastodynamic equations are respectively given by

∆u+κ
2u = 0 (1)

and
div(σ(u))+ρw2u= 0. (2)

The stress and strain tensors are respectively given by σ(u) = λ(divu)I3+2µε(u) and ε(u) = 1
2([∇u]+

[∇u]ᵀ); where I3 is the 3-by-3 identity matrix and [∇u] is the 3-by-3 matrix whose β-th column is the
gradient of the β-th component of u, µ and λ being the Lamé parameters.
κ represents the wavenumber of the acoustic wave. ω and ρ are respectively the circular frequency
and the density for the elastic case. We denote by κp and κs the P and S wavenumbers defined as
κ2

p = ρω2(λ+ 2µ)−1 and κ2
s = ρω2µ−1. The Green’s tensors for the case of an acoustic or elastic full-

space are respectively given by

G(x,y;κ) =
ei κ|x−y|

4π|x−y|
(3)

and
G(x,y;ω) =

1
ρω2 (curlcurlx[G(x,y;κs)I3]−∇x divx[G(x,y;κp)I3]) . (4)

The index x means that differentiation is carried out with respect to x and divxB corresponds to the
application of the divergence along each row of B. We introduce the traction operator T and the acoustic
pressure operator denoted by T for sake of genericity

T = 2µ
∂

∂n
+λndiv+µn× curl and T =

∂

∂n
. (5)

The traction tensor (resp. the normal derivative) of the Green’s function, obtained by applying the traction
operators, are defined as follows

T (x,y,ω) = TyG(x,y;ω) and T (x,y,κ) = TyG(x,y;κ).

For the elastic case the operator T applies to each column.
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Boundary Integral Representation. The classical integral representation is given by

u(x) = Du|Γ(x)−S t|Γ(x), x ∈ R3\Γ,

where u|Γ ∈ H
1
2 (Γ) and t|Γ ∈ H−

1
2 (Γ). Given ϕ ∈ H−

1
2 (Γ) and ψ ∈ H

1
2 (Γ), the single- and double-layer

potentials are respectively defined by

Sϕ(x) =
∫

Γ

G(x,y;κ)ϕ(y)ds(y) and Dψ(x) =
∫

Γ

[TyG(x,y;κ)]ᵀψ(y)ds(y).

For the analagous representation formula in the elastodynamics case, the single- and double-layer poten-
tials are defined similarly: Given ϕ ∈H− 1

2 (Γ) and ψ ∈H 1
2 (Γ)

Sϕ(x) =
∫

Γ

G(x,y;ω)ϕ(y)ds(y) and Dψ(x) =
∫

Γ

[TyG(x,y;ω)]ᵀ(x,y;κ)ψ(y)ds(y).

Boundary Integral Equations. Scattering problems can be formulated as BIEs as follows: Given an
incident wave uinc which is assumed to solve the Helmholtz equation in the absence of obstacle , find u
solution to (1) in Ω+ which satisfies the Dirichlet boundary condition on Γ

u|Γ +uinc = 0.

The acoustic scattering problem is: Find t|Γ ∈ H−
1
2 (Γ) such that

S(t|Γ + t inc
|Γ )(x) = uinc

|Γ (x), x ∈ Γ. (6)

Similarily, for the elastodynamics problem, it is: Find t|Γ ∈H−
1
2 (Γ) such that

S(t|Γ + t
inc
|Γ )(x) = uinc

|Γ (x), x ∈ Γ. (7)

Discretization of the BIE. At a discrete level, one deals with a linear system resulting from the dis-
cretization of the BIE with the BEM. Several discretization techniques can be used in practice, typically
the collocation and Galerkin methods. We consider the collocation technique which requires to sat-
isfy the BIE at some arbitrarily chosen (collocation) points [6]. Let then introduce the sets of points
X = (xi)i=1:Nc and Y = (y j) j=1:N , respectively the collocation points and the points associated to the
degrees of freedom of the mesh Γh ⊂ Γ of the domain boundary. For the acoustic scattering problem it
reads

Sh(t|Γ + t inc
|Γ )(xi) = uinc

|Γ (xi), ∀ i ∈ {1, · · · ,Nc};

h is the mesh parameter and Sh is the discretization of the single layer potential; for Γh :=
⋃

l=1:NE

El

Shϕ(x) =
NE

∑
l=1

∫
El

(· · ·)ds(y).

We denote by A ∈ RNc×N and b ∈ RNc respectively the system matrix (also called BEM matrix) and the
right hand side associated to the incident wave. We are interested by the solution through an iterative
solver of the linear system

Ax = b; (8)

x ∈ RN being the vector of unknown degrees of freedom. The system matrix A is commonly non-
hermitian and fully-populated, hence a prior and crucial point is it appropriate storage-friendly represen-
tation.
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3 Hierarchical data-sparse representation

We are interested with an alternative (data-sparse) representation of the system matrix, which will be
denoted by Aη,ε; the parameter η defines the “data-sparsity pattern” associated to a given partitioning of
A. The parameter ε > 0 is a given accuracy of the data-sparse representation such that, for a given norm
‖ · ‖

‖A−Aη,ε‖ ≤ ε‖A‖.
Thus, instead of (8), one consider the problem (9)

Aη,εxH = b. (9)

It is worth noting that the fidelity of xH with respect to x, solution of (8), is guarantee [10]. Indeed it is
shown that, the error ‖AxH −b‖ is controlled by the sum of the resolution or stability error ‖Aη,εxH −b‖
and an additional error taking into account for the influence of the accuracy parameter ε (the quality of
approximation of Aη,ε).

Low-rank Admissibility (data-sparsity pattern). The essential idea of the H -matrix representation
of a given matrix resides in its hierarchical partitioning in order to exhibits some blocks which are low-
rank. Let us introduce σ ⊂ {1, · · · ,Nc} and τ ⊂ {1, · · · ,N} two sets of indexes corresponding to the
clusters of nodes Xσ = (xi)i∈σ ⊂ X and Yτ = (y j) j∈τ ⊂ Y. We denote by Aσ×τ the block of A restricted
to the row and column indexes corresponding to interaction between the clusters of nodes Xσ and Yτ.
Basically, when X = Y, singularities (therefore full rank blocks) mainly occur at the diagonal and the
kernel function is typically smooth everywhere else. For the Laplace kernel this is transcribed by the
asymptotically smoothness property [2]. Thus, at the discrete level, some blocks Aσ×τ, can be known
and a priori identified as of low-rank using the admissibility condition, i.e. σ× τ ∈ P ad a partition of
{1, · · · ,Nc}×{1, · · · ,N}. The condition depends on geometric characteristics such as the diameters of
the clusters of points Xσ, Yτ and the distance between them. The condition for admissible blocks for the
Laplace (static) case is the η-admissibility condition and reads

min(diam(Xσ),diam(Yτ))≤ ηdist(Xσ,Yτ);

where dist and diam respectively denote the Euclidean distance between two clusters and the diameter
of a cluster.
For the wave propagation problems, this condition should depend also on the wavenumber. However, in
practice, the η-admissibility condition has been shown to be viable towards high frequency regime. In
fact there exists a pre-asymptotic regime [10] where the maximum numerical rank among all admissible
blocks increases linearly.
The η-admissibility condition is used to define the “data-sparsity pattern” corresponding to a given par-
titioning of A. The partitioning of the matrix is based on the clustering of the nodes of X and Y. Indeed
the rows or columns of a given block must correspond to the indexes of nodes or degrees of freedom
interacting at close range. In practice, it is interesting to use an hierarchical partitioning. As stopping
criterion: a given block matrix is recursively subdivised in a 2× 2 subblock matrices until this block is
either η-admissible or min(|σ|, |τ|)≤ nleaf a prescribed (minimum) number of points of the clusters.

Low-rank approximation (data-sparse representation). Once the admissible blocks are determined,
an accurate rank-revealing algorithm is applied to determine the corresponding low-rank approximations.
The truncated SVD [11] gives the best low-rank approximation for unitary invariant norms, its compu-
tation is expensive and requires the complete storage of the matrix. The adaptive cross approximation
(ACA) [1,4,5] offers an interesting alternative to the SVD technique. Reader may refer to [3] for a deep
insight on the matter and specifically to [10] for the extension of the low-rank approximation to vector
value problem using the ACA.

4 Nested GMRES based preconditioned solver

Let M and b respectively be a generic matrix and right hand side vector. The solution x of a system
Mx = b, through an iterative method, is obtained by computing iteratively a sequence of vectors xk,
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approximating the exact solution x. Starting from an initial guess x0, the principle is to build the xk
which minimize the norm of the residual rk = Mxk−b at each iteration over an appropriate subspace.
Using a preconditioner, one is generally interested by solving an alternative system which is expected to
have some better spectral properties, i.e. better conditioning or eigenvalues clustering in comparison to
the original system.
Let us denote by P the preconditioning operator. For a right preconditioning, one solves instead

MP−1Px = b⇔MP−1y = b with Px = y. (10)

Preconditioning strategy

As can be seen in (10), the application of the inverse of P is required throughout the iterative solver.
Instead of consider a “classical” approach, where a direct solver or explicit preconditioner is used, we
consider that the preconditioning system is solved using an iterative solver. This results in a two-level
iterative method. The solver at the first level is called the outer solver. It involves the original system
matrix M and the corresponding right hand side vector b. The second solver is called the inner solver
and it involves the preconditioner P of the outer problem, hereafter denoted Pout. Of course, one can still
assume that the inner solver is right preconditioned with an operator Pin. Finally, one will consider the
procedure described in Figure 1:

Two-level iterative solver (right preconditioning)
Input arguments: (M,b,Pout,Pin)
Outer (main) solver: linear system Mx = b

...

– Inner solver: preconditioning system Poutzkout = vkout

...
· Preconditioning system Pinzkin = vkin (e.g. with direct method)
...

...
...

...

Figure 1: Nested outer-inner iterative solver.

In the above procedure, an exact method can be used for the preconditioning of the inner solver.
At last, a flexible preconditioning strategy [18] can be considered for the outer-inner iterative solver to
allow the preconditioner to change throughout iterations. Thus, one should used the notations Pkout and
Pkin respectively to designate the outer and inner preconditioners at the outer and inner iterations.

Preconditioners tailored for an H -matrix based solver

In our scope of H -BEM, with an H -matrix representation of the system matrix, conversely to a FM-
BEM; the complete system matrix is available, thus one is not restricted for the definition of the precon-
ditioners. We are interested with the definition of the outer preconditioners Pkout . We consider that the
inner solver is not preconditioned, i.e. Pkin = I and, for simplicity, that the outer preconditioner is the
same throughout the iterations, i.e. Pkout = Pout. We denote by nout the total number of outer iterations
and nin the total number of iterations in the inner solver.
On the one hand, theoretically, the best preconditioner is Pout =M. But, with this choice, the inner solver
is equivalent to the outer solver. Hence convergence is achieved after nout = 1 outer iteration. On the
other hand, the operations required, at each iteration, in the nested outer-inner iterative solver are the
application of the system matrix M and the preconditioning matrix Pout to vectors. One will therefore
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be interested with a choice of Pout such that the computational cost of the action w← Poutz is low (in
regards to y←Mz). In the context of H -BEM, we make the choice: Pout = Aη,εout , with an accuracy of
compression of the low-rank blocks of the preconditioner εout ≥ ε, where ε is the accuracy of compres-
sion of the system matrix M = Aη,ε. The idea is to set the preconditioner as a coarse approximation of
M (the theoretical best preconditioner) in order to achieve convergence through a minimum number of
iterations while keeping the computational cost as low as possible. Indeed, for σ× τ ∈ Pad, the matrix-
vector product cost is of the order of O(|σ|+ |τ|)× r(µ); where r(µ) is the numerical rank of a block
matrix. This rank increases with the accuracy µ. The advantage with this choice of preconditioner is
that there is no additional time for its computation nor additional storage requirements. Indeed they are
already included in the computation of the system matrix Aη,ε.

5 Illustration of the preconditioning strategy

We consider the exterior domain scattering problem of a time harmonic acoustic plane wave by a sphere
of unit radius in an homogeneous and isotropic medium. We consider the single-layer formulation (6).
The discretization is performed using a collocation technique and a Lagrange P1 interpolation. The
accuracy of the H -matrix is set to ε = 10−8. We assume that the number of points per wavelength is
constant, i.e. a density nλ = 10.

Eigenvalues clustering: influence of the parameter εout

The efficiency of a preconditioner typically depends on the clustering of the eigenvalues of the precondi-
tioned system. Thus, we look for the influence of the accuracy εout on the clustering of the eigenvalues of
Aη,εA−1

η,εout
. The subsequent analysis is limited to a mesh with N = 6040 degrees of freedom (wavenumber

is κ' 13). Indeed the computational cost of the complete eigenvalue decomposition is very prohibitive.
The diameters of the boxes surrounding the eigenvalues are reported on Table 1. We remark that, as ex-
pected, the eigenvalues are close to the point (1,0) and the diameter of the box decreases as the accuracy
increases. The quality of the preconditioning, in regards to the clustering, is better and better for the
higher accuracies.

Table 1: Information on the clustering of the eigenvalues of the preconditioned system matrix: the diam-
eter of the boxes surrounding the eigenvalues and the corresponding center coordinates as the accuracy
εout of the preconditioner decreases.

εout 10−7 10−5 10−3 10−1

box center (1.00,1.45×10−7) (1.00,−7.33×10−7) (1.00,−1.25×10−5) (1.01,−4.77×10−3)
diameter 4.01×10−6 3.30×10−5 2.63×10−3 2.11×10−1

Performances of the different preconditioners

We are now interested by the performances of the right preconditioned outer-inner solver for different
choices of preconditioner. In the light of the previous test on the eigenvalues, we consider the perfor-
mances for the accuracies εout higher or equal to 10−3, which we compare to those obtained with a
GMRES solver. The number of points per wavelength is still 10, and the wavenumber corresponding to
the different meshes ranges from 17 to 93. The maximum numbers of outer and inner iterations are set
to 2000 while the convergence thresholds of both outer and inner solvers are equal to 10−6. The total
number of iterations of the outer-inner solver is denoted niter := nout(nin).
We report on Table 2 the performances for the different preconditioners and those obtained with the GM-
RES solver. We remark that at fixed frequency, the number of iterations of the solver decreases as the
accuracy increases. Generally, the solver with the accuracy εout = 10−7 yields to the best performances.
Moreover, convergence is achieved after one outer iteration. This behaviour is similar to the one expected
with the best theoretical preconditioner, i.e Pout = Aη,ε.
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Table 2: The number of outer-inner iterations and the solution times of the different solvers for different
wavenumbers.

# dofs κ GMRES 10−3 10−5 10−7

10242 16.64 102 4.59 2(290) 9.56 2(270) 10.15 1(102) 4.78
40962 33.27 131 37.11 2(398) 52.39 2(356) 57.09 1(131) 30.98
61033 40.91 131 72.17 2(311) 62.70 2(313) 81.91 1(131) 50.03
163543 66.61 201 375.95 2(521) 413.74 2(503) 519.41 1(201) 263.98
328606 92.79 929 3933.02 3(4381) 11902.75 2(2451) 7718.07 1(929) 3268.97

For the highest frequency (κ ' 93), the performances of the outer-inner solver increase with the ac-
curacy. But, for the lower frequencies, the solver with εout = 10−3 performs better than the one with
the accuracy εout = 10−5. This behavior may be explained by the fact that, at fixed frequency, the
numerical rank and the CPU time per inner iteration increases with the accuracy - see Figure 2-left
(with semilogy representation). Indeed, the H -matrix-vector product complexity is of the order of
O(max(rmax(εout),nleaf)N log2 N); rmax(εout) being the maximum value of numerical rank among the
admissible blocks, for the accuracy εout. Thus, the efficiency of the preconditioner comes out when the
number of iterations diminishes significantly to overcome the increase of the H -matrix-vector product
cost.
The plot drawn on Figure 2-right represents the CPU time per outer iteration as the wavenumber in-
creases, with a semilogy representation. Generally, the CPU time per outer iteration is larger than the
one of the GMRES solver. Indeed, for the outer-inner solver it corresponds to the CPU time for one pre-
conditioning system solution while for the GMRES solver it corresponds to one H -matrix Aη,ε-vector
product. On Figure 2-right, we remark that the time per outer iteration of the GMRES solver matches
perfectly the theoretical complexity O(κ2.5 log2(κ)) of the H -matrix-vector product operation. Although
the CPU time per outer iteration of the different outer-inner solvers is larger than the one of the GMRES
solver, the better performances for the preconditioner of accuracy εout = 10−7 steams from the fact that
the number of outer iterations is reduced.
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Figure 2: From left to right, the CPU times for per inner iteration (the matrix vector product) and per
outer iteration vs the wavenumber.

Several perspectives can be defined for this preliminary work: for instance, the use of a flexible
strategy with preconditioners varying throughout iterations and also the investigation of the choice of
the “optimal” parameters (convergence thresholds, maximum numbers of iterations) of the outer and
inner solvers. The other perspective can be the choice of two different hierarchical structures for the
preconditioners and the system matrix (i.e. Pout = Aηout,ηout , with ηout 6= η), at the price of an additional
computational costs and storage requirements for the preconditioners.
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6 Conclusion

We propose in this contribution a preconditioner for the H -BEM iterative solvers. The preconditioner
is implicit, i.e. the explicit computation of its inverse is not required, since the iterative solver adopted
involves an outer-inner preconditioning strategy. By doing so, the application of the inverse of the pre-
conditioner is made through an (iterative) inner solver. An interesting point is that the preconditioner is
naturally available, once the H -matrix representation of the system is computed for an appropriate accu-
racy. As a result there is no additional time nor memory requirements for their setting up. The emerging
trend, from the illustrative example, is that the preconditioner with the highest accuracy yields to the best
performances.
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