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NUMERICAL ANALYSIS OF THE MIXED FINITE ELEMENT1

METHOD FOR THE NEUTRON DIFFUSION EIGENPROBLEM2

WITH HETEROGENEOUS COEFFICIENTS3

P. Ciarlet Jr.1, L. Giret1,2, E. Jamelot3,* and F.D. Kpadonou1,4
4

Abstract. We study first the convergence of the finite element approximation of the mixed diffusion5

equations with a source term, in the case where the solution is of low regularity. Such a situation6

commonly arises in the presence of three or more intersecting material components with different7

characteristics. Then we focus on the approximation of the associated eigenvalue problem. We prove8

spectral correctness for this problem in the mixed setting. These studies are carried out without, and9

then with a domain decomposition method. The domain decomposition method can be non-matching10

in the sense that the traces of the finite element spaces may not fit at the interface between subdomains.11

Finally, numerical experiments illustrate the accuracy of the method.12
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1. Introduction15

The multigroup neutron diffusion equation, which is an approximation of the multigroup neutron transport16

equation, is important in nuclear industry since it allows to model many nuclear reactor cores [16]. In the17

steady state case, it corresponds to a generalized eigenvalue problem. We propose here the numerical analysis18

of this problem in the case of a discretization with mixed finite elements, possibly with a domain decomposition19

method. We focus on the one group of energy case which is the base block of the multigroup case. This paper is20

thus the extension of [13], where the authors proposed the numerical analysis of the one-group neutron diffusion21

equation with a source term, discretized with mixed finite elements, with matching and non-matching domain22

decomposition methods.23

Nuclear reactor cores often have a Cartesian geometry. In Figure 1a, we draw a top view of a PWR-like24

core model. Each square, which represents a part of the reflector or an assembly, is made itself of cells, which25

are rectangular cuboids of R3. In Figure 1b, we make a zoom on a patch of six (3 × 2) assemblies: each26
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2 P. CIARLET JR. ET AL.

Figure 1. 2D depiction of a PWR core and a zoom on six assemblies.

colored square represents a cell containing fuel, absorbing or reflector material. In our model, the coefficients27

are polynomial (possibly constant) in each cell [16, 23, 24]. The global domain of the reactor core (see again28

Fig. 1a) is represented by a rectangular cuboid of R3. In practice the coefficients characterizing the materials29

may differ from one cell to another by a factor of order 10 or more.30

The outline is as follows. In Section 2, we introduce the notations, and recall basic mathematical definitions. In31

the next section, we provide the main abstract tool that enables us to characterize the so-called low-regularity32

solutions, that is piecewise H1+r solutions with an exponent r > 0 that can be (arbitrarily) small. Then in33

Section 4, we solve the diffusion equation written in mixed form, with either a source term, or as an eigenproblem.34

We recall that the approximation of eigenvalue problems has been studied among others by Osborn et al. in35

[1, 27], and in particular by Boffi et al. [4, 5, 6] when the eigenproblem is in a mixed form. In our case however,36

their theory does not ensure the spectral correctness of the approximation so we design a new proof to obtain37

this result. On the other hand, we can adapt the work of Boffi et al. [8] to exhibit a convergence rate for the38

eigenvalues. For the discretization, we choose the well-known Raviart-Thomas-Nédélec finite element. Then in39

Sections 5 and 6, we consider the same problems, solved now with the help of a Domain Decomposition method:40

the DD+L2-jumps method. Finally, we analyze the numerical capabilities of the DD+L2-jumps method, before41

giving some concluding remarks.42

2. Geometry, Hilbert spaces and notations43

Throughout the paper, C is used to denote a generic positive constant which is independent of the meshsize,44

the triangulation and the quantities/fields of interest. We also use the shorthand notation A . B for the45

inequality A ≤ CB, where A and B are two scalar quantities, and C is a generic constant. Respectively, A h B46

for the inequalities A . B and B . A.47

Vector-valued (resp. tensor-valued) function spaces are written in boldface character (resp. blackboard char-48

acters); for the latter, the index sym indicates symmetric fields. Given an open set O ∈ Rd, d = 1, 2, 3, we use49

the notation (·|·)0,O (respectively ‖ · ‖0,O) for the L2(O) and L2(O) := (L2(O))d scalar products (resp. norms).50

More generally, (·|·)s,O and ‖ · ‖s,O (respectively | · |s,O) denote the scalar product and norm (resp. semi-norm)51

of the Sobolev spaces Hs(O) and Hs(O) := (Hs(O))d for s ∈ R (resp. for s > 0).52

If moreover the boundary ∂O is Lipschitz, n denotes the unit outward normal vector field to ∂O. Finally, it53

is assumed that the reader is familiar with vector-valued function spaces related to the diffusion equation, such54

as H(div ;O), H0(div ;O), etc.55

We let R be a bounded, connected and open subset of Rd, having a Lipschitz boundary which is piecewise56

smooth. We split R into N open disjoint parts {Ri}1≤i≤N with Lipschitz, piecewise smooth boundaries: R =57

∪1≤i≤NRi and the set {Ri}1≤i≤N is called a partition of R. For a field v defined over R, we shall use the58

notations vi = v|Ri , for 1 ≤ i ≤ N .59
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Given a partition {Ri}1≤i≤N of R, we introduce function spaces with piecewise regular elements:60

PHs(R) =
{
ψ ∈ L2(R) |ψi ∈ Hs(Ri), 1 ≤ i ≤ N

}
, s > 0;

PW 1,∞(R) =
{
D ∈ L∞(R)|Di ∈W 1,∞(Ri), 1 ≤ i ≤ N

}
.

We recall that for a piecewise smooth ψ ∈ PHs(R), ‖ψ‖2PHs(R) =
∑N
i=1 ‖ψ‖2s,Ri . Similarly for elements of61

PW 1,∞(R).62

3. Setting of the model63

Given a source term Sf ∈ L2(R), we consider the following neutron diffusion equation, with vanishing64

Dirichlet boundary condition. In its primal form, it is written:65

Find φ ∈ H1
0 (R) such that:66

− divD gradφ+ Σa φ = Sf in R (3.1)

where φ, D, and Σa denote respectively the neutron flux, the diffusion coefficient and the macroscopic absorption67

cross section. Finally, Sf denotes the fission source. When Sf depends on φ, the steady state neutron diffusion68

equation is a generalized eigenvalue problem. It reads (one group of energy):69

Find φ ∈ H1
0 (R)\{0}, λ ∈ R such that:70

− divD gradφ+ Σa φ = λ νΣfφ in R (3.2)

where νΣf is the fission yield times the macroscopic fission cross section. Under the assumption that the71

coefficients D, Σa and νΣf are positive, the physical solution corresponds to the smallest λ ≥ 0 [12, 16]. When72

this problem is solved using the inverse power iteration, the source problem (3.1) corresponds to one iteration73

step, which further justifies its study.74

When solving the neutron diffusion equation, D is scalar-valued. From now on and unless otherwise speci-75

fied, we adopt the more general setting of a (symmetric) tensor-valued coefficient D. The coefficients defining76

Problems (3.1) and (3.2) satisfy the assumptions:77 
(D,Σa, νΣf ) ∈ L∞sym(R)× L∞(R)× L∞(R),

∃D∗, D∗ > 0, ∀z ∈ Rd, D∗‖z‖2 ≤ (Dz, z) ≤ D∗‖z‖2 a.e. in R,
∃(Σa)∗, (Σa)∗ > 0, 0 < (Σa)∗ ≤ Σa ≤ (Σa)∗ a.e. in R,
0 ≤ νΣf a.e. in R, νΣf 6= 0.

(3.3)

In particular, it can happen that νΣf vanishes on some regions. Also, it is well known that Problem (3.1) is78

equivalent to the following variational formulation:79

Find φ ∈ H1
0 (R) such that ∀ψ ∈ H1

0 (R):80 ∫
R
D gradφ · gradψ +

∫
R

Σaφψ =

∫
R
Sfψ. (3.4)

Under the assumptions (3.3) on the coefficients, the primal problem (3.1) is well-posed, in the sense that81

for all Sf ∈ L2(R), there exists one and only one φ ∈ H1
0 (R) that solves (3.1), and in addition there holds82

‖φ‖1,R . ‖Sf‖0,R. We recall that under additional mild assumptions on the coefficients, the solution φ has83

some extra regularity (see [9, 14] and [13], Prop. 1).84
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Proposition 3.1. Let D ∈ PW1,∞
sym(R) and Σa ∈ PW 1,∞(R) satisfy (3.3). There exists rmax ∈]0, 1], called the85

regularity exponent, such that for all source terms Sf ∈ L2(R), the solution φ ∈ H1(R) to Problem (3.1) belongs86

to
⋂

0≤r<rmax
PH1+r(R) (rmax < 1) or PH2(R) (rmax = 1) with continuous dependence:87

∀r ∈ [0, rmax[, ‖φ‖PH1+r(R) . ‖Sf‖0,R (rmax < 1) or ‖φ‖PH2(R) . ‖Sf‖0,R (rmax = 1).88

In the following, we study the two different problems, the source problem (3.1) and the eigenvalue problem89

(3.2). Unless otherwise specified, we keep the assumptions of Proposition 3.1 throughout the paper. Since cross-90

points are allowed in our model, cf. Figure 1a, and in accordance with [9], the low-regularity case corresponds91

precisely to92

rmax < 1/2.

For the eigenvalue problem, the analysis is carried out for eigenfunctions which can be either low-regularity93

functions or “smooth” functions.94

Remark 3.2. Instead of imposing a vanishing Dirichlet boundary condition in the model, one can consider a95

vanishing Neumann boundary condition D gradφ ·n = 0 on ∂R. Under some slight restrictions on the geometry,96

one can also consider a vanishing Fourier boundary condition µFφ+D gradφ · n = 0 on ∂R, with µF > 0. In97

the latter case, the restriction is that the coefficient D is smooth in a neighborhood of the boundary. The theory98

and numerical analysis written hereafter still apply.99

4. The plain case100

We start our study with the neutron diffusion problem without domain decomposition method: we call it the101

plain case. In this section, we use the function space:102

X =
{
ξ := (q, ψ) ∈ H(div ,R)× L2(R)

}
, ‖ξ‖X :=

(
‖q‖2H(div ,R) + ‖ψ‖20,R

)1/2

.

From now on, we use the notations: ζ = (p, φ) and ξ = (q, ψ).103

4.1. Setting of the mixed variational formulation104

Starting from the solution φ to (3.1), if one lets p := −D gradφ ∈ L2(R), known as the neutron current,105

one may write the neutron diffusion problem as:106

Find (p, φ) ∈ H(div ,R)×H1
0 (R) such that:107 {

−D−1 p − gradφ = 0 in R,
div p + Σaφ = Sf in R.

(4.1)

Solving the mixed problem (4.1) is actually equivalent to solving (3.1), as the result below recalls.108

Theorem 4.1. Let D satisfy (3.3). The solution (p, φ) ∈ H(div ,R) × H1
0 (R) to (4.1) is such that φ is a109

solution to (3.1) with the same data. Conversely, the solution φ ∈ H1
0 (R) to (3.1) is such that (−D gradφ, φ) ∈110

H(div ,R)×H1
0 (R) is a solution to (4.1) with the same data.111

In practice, writing the diffusion equation in its mixed form allows to compute precisely both the solution112

and its gradient: it avoids the propagation of the numerical error from the solution to its gradient. In order to113

obtain the variational formulation for the mixed problem (4.1), we consider any test functions q ∈ H(div ,R)114

and ψ ∈ L2(R), we multiply the first equation of (4.1) by q, the second equation of (4.1) by ψ ∈ L2(R), and115
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we integrate over R. We sum the contributions to reach:116 ∫
R

(
−D−1 p · q− gradφ · q + ψ div p + Σaφψ

)
=

∫
R
Sfψ. (4.2)

We recall that φ ∈ H1
0 (R). One can integrate by parts to remove the first order derivatives of φ:117

−
∫
R

gradφ · q =

∫
R
φ div q.

Hence, the regularity requirement on the solution can be lowered to φ ∈ L2(R), and we find that the solution118

to (4.1) also solves:119

Find (p, φ) ∈ X, such that ∀(q, ψ) ∈ X:120 ∫
R

(
−D−1 p · q + φ div q + ψ div p + Σa φψ

)
=

∫
R
Sf ψ. (4.3)

We define the bilinear forms:121

a :

H(div ,R)×H(div ,R)→ R

(p,q) 7→
∫
R
−D−1 p · q

; (4.4)

122

b :

H(div ,R)× L2(R)→ R

(q, ψ) 7→
∫
R
ψ div q

; (4.5)

123

t :

L
2(R)× L2(R)→ R

(φ, ψ) 7→
∫
R

Σa φψ
; (4.6)

and:124

c :

{
X×X→ R
(ζ, ξ) 7→ a(p,q) + b(q, φ) + b(p, ψ) + t(φ, ψ)

. (4.7)

Remark 4.2. The form c(·, ·) is symmetric as soon as the tensor field D is symmetric.125

We consider the linear form:126

f :

X→ R

ξ 7→
∫
R
Sfψ

. (4.8)

We may rewrite the variational formulation (4.3) as:127

Find ζ ∈ X such that ∀ξ ∈ X:128

c(ζ, ξ) = f(ξ). (4.9)
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Theorem 4.3. The solution ζ = (p, φ) to (4.9) satisfies (4.1). Hence, problems (4.9) and (4.1) are equivalent.129

4.2. Well-posedness of the mixed formulation130

We now recall how to obtain the well-posedness of (4.9) by proving in particular an inf-sup condition.131

Theorem 4.4. Let D and Σa satisfy (3.3). Then, there exists a unique solution ζ ∈ X to the mixed variational132

formulation (4.9).133

Proof. Since the form c(·, ·) is symmetric, the inf-sup condition yields the claim. This condition writes:134

∃η > 0, inf
ζ∈X

sup
ξ∈X

c(ζ, ξ)

‖ζ‖X ‖ξ‖X
≥ η. (4.10)

To achieve (4.10), a possible choice is:135 q = −p ∈ H(div ,R),

ψ =
1

2
φ+

1

2
(Σa)−1div p ∈ L2(R).

(4.11)

It holds ‖ζ‖X ≥ υ ‖ξ‖X, with υ :=
(
1 + 1

4 ((Σa)∗)
−2)
)−1/2

. The bound on c reads:136

c(ζ, ξ) ≥ γ υ ‖ζ‖X‖ξ‖X,

with γ := min
(
(D∗)−1, 1

2 (Σa)∗,
1
2 ((Σa)∗)−1

)
.137

4.3. Discretization138

We study conforming discretizations of the variational formulation (4.9). To fix ideas, we use a family of139

triangulations, indexed by a parameter h, which is classically chosen as the largest diameter of elements of the140

triangulation. We introduce discrete, finite-dimensional, spaces indexed by h as follows:141

Qh ⊂ H(div ,R), and Lh ⊂ L2(R).

For approximation purposes, and following Definition 2.14 in [17], we assume that (Qh)h, resp. (Lh)h have the142

approximability property in the sense that143

∀q ∈ H(div ,R), lim
h→0

(
inf

qh∈Qh

‖q− qh‖H(div ,R)

)
= 0,

∀ψ ∈ L2(R), lim
h→0

(
inf

ψh∈Lh
‖ψ − ψh‖0,R

)
= 0, (4.12)

and also that Lh includes the subspace L0
h of piecewise constant fields on the triangulation.144

We impose: div Qh ⊂ Lh.145

We endow Qh with the norm ‖ · ‖H(div ,R), while Lh is endowed with ‖ · ‖0,R.146

We finally define:

Xh = { ξh := (qh, ψh) ∈ Qh × Lh} , endowed with ‖ · ‖X.

The conforming discretization of the variational formulation (4.9) reads:147
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Find (ph, φh) ∈ Xh, such that ∀(qh, ψh) ∈ Xh:148

a(ph,qh) + b(qh, φh) + b(ph, ψh) + t(φh, ψh) = (Sf , ψh)0,R. (4.13)

Or equivalently:149

Find ζh ∈ Xh such that ∀ξh ∈ Xh, c(ζh, ξh) = f(ξh). (4.14)

For later use, we denote π0 the L2(R) orthogonal projector on its subspace L0
h. By construction, it holds150

range(π0) = L0
h where π0 is defined by:151

∀ψ ∈ L2(R), ∀ψh ∈ L0
h, (π0ψ − ψ,ψh)0,R = 0.

According to Proposition 1.135 of [17]:152

∀z ∈ L2(R), ‖z − π0z‖0,R . ‖z‖0,R,
∀z ∈ PH1(R), ‖z − π0z‖0,R . h ‖z‖PH1(R),

∀z ∈ PW 1,∞(R), ‖z − π0z‖∞,R . h ‖z‖PW 1,∞(R). (4.15)

For the last two inequalities, the result holds provided that the triangulations are conforming with respect to153

the partition, namely for all triangulations, for all elements K of a triangulation, it holds that there exists154

1 ≤ i ≤ N such that K ⊂ Ri. Similar results hold on subsets of R.155

4.4. Discrete inf-sup condition156

The discrete inf-sup condition to be found writes:157

∃ ηh > 0, inf
ζh∈Xh

sup
ξh∈Xh

c(ζh, ξh)

‖ζh‖X ‖ξh‖X
≥ ηh. (4.16)

Once (4.16) is achieved, one obtains existence and uniqueness of the discrete solution ζh, hence the corresponding158

linear system is well-posed. More generally, our aim is to obtain that (ηh)h is uniformly bounded away from 0.159

In this sense, one has at hand a uniform discrete inf-sup condition (udisc), from which the error analysis can160

classically be derived.161

Theorem 4.5. Let D, resp. Σa ∈ PW 1,∞(R), satisfy (3.3). The discrete inf-sup condition (4.16) is fulfilled.162

Moreover, it is a uniform discrete inf-sup condition.163

Proof. In order to prove the discrete inf-sup condition, we use the same method as for the continuous inf-164

sup condition (cf. proof of Thm. 4.4). One can remark that if Σa is piecewise-constant, 1
2 (Σa)−1 div ph is165

automatically in Lh.166

Otherwise, we project (Σa)−1 on the piecewise-constant functions. One modifies (4.11) by choosing:167 qh = −ph ∈ Qh,

ψh =
1

2
φh +

1

2
π0((Σa)−1) div ph ∈ Lh.

Using (4.15) with z = (Σa)−1 yields ‖(Σa)−1 − π0((Σa)−1)‖∞,R . h, which allows us to derive again a udisc in168

this more general case.169
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4.5. Numerical analysis of the source problem170

We consider the neutron diffusion equation assuming that D, resp. Σa ∈ PW 1,∞(R), satisfy (3.3). Under171

the assumptions of Section 4.3, it follows from the previous study that limh→0 ‖ζ − ζh‖X = 0. We find below172

a sharper bound of the error ‖ζ − ζh‖X by using Proposition 3.1. In order to obtain optimal a priori error173

estimates, we must know the regularity of the solution to problem (3.1). Since we have assumed that the174

source term Sf belongs to L2(R), we already know that ‖φ‖1,R . ‖Sf‖0,R. Moreover, under the assumptions of175

Proposition 3.1, the solution φ has some extra regularity, and the low-regularity case corresponds to rmax < 1/2176

there. This is the case that we are focusing on now. In this setting, the field p := −D gradφ automatically177

belongs to PHr(R), for 0 ≤ r < rmax. We suppose in addition that178

∃µ ∈]0, rmax[, Sf ∈ PHµ(R).

Then we have div p ∈ PHµ(R) (recall PHµ(R) = Hµ(R) for µ < 1/2). We will use this hypothesis on Sf to179

carry on the calculations of the error estimates.180

We recall below the definition of the Raviart-Thomas-Nédélec (or RTN) finite element [26, 28]. Let (K`)1≤`≤L181

be a conforming mesh, or triangulation, of R made of parallelepipeds (a mesh, or triangulation, is said to be182

conforming if in every K`, D and Σa are smooth). Let P (K`) be the set of polynomials defined over K`. For183

integer values l,m, p ≥ 0, we consider the following subspace of P (K`):184

Ql,m,p(K`) =

q(x, y, z) ∈ P (K`) | q(x, y, z) =

l,m,p∑
e,j,k=0

ae,j,k x
e yj zk, ae,j,k ∈ R

 .

For integer k ≥ 0, let us set k′ = k + 1 and introduce the vector polynomial space:185

Dk(K`) = [Qk′,k,k(K`)× 0× 0]⊕ [0×Qk,k′,k(K`)× 0]⊕ [0× 0×Qk,k,k′(K`)].

We can now define the RTN[k] finite element subspace of H(div ,R)× L2(R):186

Qk
h =

{
q ∈ H(div ,R) | ∀` ∈ {1, . . . , L}, q|K` ∈ Dk(K`)

}
,

Lkh =
{
ψ ∈ L2(R) | ∀` ∈ {1, . . . , L}, ψ|K` ∈ Qk,k,k(K`)

}
. (4.17)

As required, it holds div Qk
h ⊂ Lkh and L0

h ⊂ Lkh. We recall that for any q in H(div ,R), its RTN[k]-interpolant187

qkR ∈ Qk
h satisfies:188

∀ψh ∈ Lkh, b(q− qkR, ψh) = 0. (4.18)

In addition thanks to the commuting diagram property, cf. Section 2.5.2 of [7], it holds189

∀q ∈ H(div ,R), div q0
R = π0(div q). (4.19)

Let q ∈ Hr(R), such that div q ∈ Hs(R), 0 < r, s < rmax. According to Lemma 3.3 of [3]:190

‖q− q0
R‖0,R . (hr|q|r,R + h ‖div q‖0,R) ,

‖div (q− q0
R)‖0,R . hs|div q|s,R. (4.20)

Similar results hold on subsets of R, provided the discretizations are conforming.191
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Remark 4.6. If one chooses another discretization, all results presented hereafter hold provided the estimates192

(4.20) remain true. For instance, for the RTN[k] finite element defined on tetrahedral triangulations of R, cf.193

Section 2.3.1 of [7]. To prove (4.20) in this case, one has simply to apply the results of Section 3.2 from [3].194

On the other hand, provided that the field q and its divergence are “smooth” in the sense that they belong to195

PHm+1(R) for some integer m ≥ 0, using the RTN[m] finite element one can recover interpolation estimates in196

O(hm+1), cf. Section 2.5.5 in [7]. For meshes made of affine elements such as tetrahedra or parallelepipeds, the197

approximation estimate (4.20-top) does not require the term with the divergence (see, e.g. [7], Sect. 2.5.1).198

4.5.1. A priori error estimates199

Since we focus on the low-regularity case, we choose the RTN[0] finite element, i.e. Xh = Q0
h × L0

h. If the200

solution is “smooth”, one can increase the order of the RTN finite element. This will be used in particular in201

Section 4.6.2 for the study of the error on the eigenvalues. According to first Strang’s Lemma [17] and because202

(1 + ‖c‖(ηh)−1) . 1, the error reads:203

‖ζ − ζh‖X . inf
ξh∈Xh

‖ζ − ξh‖X. (4.21)

Theorem 4.7. Under the assumptions of Proposition 3.1, it holds, with rmax < 1/2:204

∀µ ∈]0, rmax[, ∀Sf ∈ Hµ(R),

‖p− ph‖H(div ,R) + ‖φ− φh‖0,R . hµ ‖Sf‖µ,R. (4.22)

Remark 4.8. In particular, for “smooth data” Sf , i.e. Sf ∈ Hrmax(R), one expects a convergence rate at205

least in hrmax−η for η > 0 arbitrary small: by a slight abuse of notation there and in the sequel, we shall write206

hrmax . Also, the previous analysis can be extended to the case where rmax is in [1/2, 1] and µ < rmax (or µ ≤ 1207

if rmax = 1). Furthermore, for a “smooth” solution, one may recover a convergence rate like O(hm+1) for an208

RTN[m] discretization of order m ≥ 0.209

Proof. Choosing ξh = (p0
R, π

0φ) ∈ Xh, then thanks to the a priori estimates (4.15) and (4.20), it follows that:210

‖ζ − ξh‖2X = ‖p− p0
R‖2H(div ,R) + ‖φ− π0φ‖20,R

. h2µ(|p|2µ,R + ‖div p‖2µ,R) + h2‖φ‖21,R

. h2µ ‖Sf‖2µ,R.

211

4.5.2. Aubin-Nitsche-type estimates212

To derive improved estimates on the error ‖φ− φh‖0,R in Xh = Q0
h × L0

h, we shall rely on the illuminating213

work of Falk-Osborn [18]. Interestingly, one can obtain an improvement of the convergence rate, contrary to the214

case where the solution is “smooth”. From the previous analysis, for all µ < rmax, we already have the estimate215

(4.22).216

Lemma 4.9. Let (p, φ) (resp. (ph, φh)) the solution of continuous (resp. discrete) variational problem (4.3)217

(resp. (4.13)). For all (qh, ψh) in Xh, it holds:218

a(p− ph,qh) + b(qh, φ− φh) = 0, (4.23)

219

b(p− ph, ψh) + t(φ− φh, ψh) = 0. (4.24)
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Proof. Let (qh, ψh) be in Xh. The subtraction of (4.3) from (4.13), with (q, ψ) = (qh, ψh) in the former, gives220

a(p− ph,qh) + b(qh, φ− φh) + b(p− ph, ψh) + t(φ− φh, ψh) = 0.

We obtain the first equality (4.23) (resp. the second equality (4.24)) with ψh = 0 (resp. qh = 0).221

Before improving the estimate, we need to introduce the adjoint problem:222

For d ∈ L2(R), find (yd, ηd) ∈ X such that ∀(q, ψ) ∈ X:223

a(yd,q) + b(q, ηd) + b(yd, ψ) + t(ηd, ψ) = (d, ψ)0,R. (4.25)

Theorem 4.10. Under the assumptions of Proposition 3.1, it holds, with rmax < 1/2:224

∀µ ∈]0, rmax[, ∀Sf ∈ Hµ(R), ‖φ− φh‖0,R . h2µ ‖Sf‖µ,R. (4.26)

Proof. Adapting the methodology of [18] and by using (0, φ − φh) as a test function in the adjoint problem225

(4.25), we remark:226

‖φ− φh‖0,R = sup
d∈L2(R)\{0}

b(yd, φ− φh) + t(ηd, φ− φh)

‖d‖0,R
. (4.27)

We now look for an upper bound of the supremum in (4.27). We find that the numerator is successively equal227

to:228

b(yd − (yd)
0
R, φ− φh) + b((yd)

0
R, φ− φh) + t(ηd, φ− φh);

using (4.18), for any ψ∗h, ψ
′
h in Lh:229

b(yd − (yd)
0
R, φ− ψ∗h) + b((yd)

0
R, φ− φh) + t(ηd − ψ′h, φ− φh) + t(ψ′h, φ− φh);

using (4.23) with qh = (yd)
0
R:230

b(yd − (yd)
0
R, φ− ψ∗h)− a(p− ph, (yd)

0
R) + t(ηd − ψ′h, φ− φh) + t(ψ′h, φ− φh);

now we use (4.24) with ψh = ψ′h:231

b(yd − (yd)
0
R, φ− ψ∗h)− a(p− ph, (yd)

0
R) + t(ηd − ψ′h, φ− φh)− b(p− ph, ψ

′
h);

we add (4.25) with (p− ph, 0) as a test function:232

b(yd − (yd)
0
R, φ− ψ∗h) + a(p− ph,yd − (yd)

0
R) + t(ηd − ψ′h, φ− φh) + b(p− ph, ηd − ψ′h). (4.28)

All terms1 in the previous relation can be bounded with an h-dependent term:233

inf
ψ∗h∈Lh

|b(yd − (yd)
0
R, φ− ψ∗h)| . ‖div (yd − (yd)

0
R)‖0,R inf

ψ∗h∈Lh
‖φ− ψ∗h‖0,R

. ‖div yd‖0,R h ‖φ‖1,R

. h ‖Sf‖µ,R‖d‖0,R;

1In particular, ‖div (yd − (yd)0R)‖0,R . ‖divyd‖0,R according to (4.15) and (4.19).
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|a(p− ph,yd − (yd)
0
R)| . ‖p− ph‖0,R‖yd − (yd)

0
R‖0,R

. hµ‖Sf‖µ,R (hµ|yd|µ,R + h ‖div yd‖0,R)

. h2µ‖Sf‖µ,R‖d‖0,R.

The last two terms in (4.28) are considered together.234

inf
ψ′h∈Lh

|b(p− ph, ηd − ψ′h) + t(φ− φh, ηd − ψ′h)|

. (‖div (p− ph)‖0,R + ‖φ− φh‖0,R) inf
ψ′h∈Lh

‖ηd − ψ′h‖0,R

. hµ‖Sf‖µ,R inf
ψ′h∈Lh

‖ηd − ψ′h‖0,R

. hµ‖Sf‖µ,R h ‖ηd‖1,R . hµ+1‖Sf‖µ,R ‖d‖0,R.

Thus, for low-regularity solutions (µ < 1/2), we conclude that it holds:235

‖φ− φh‖0,R . max(h, h2µ, hµ+1) ‖Sf‖µ,R h h2µ ‖Sf‖µ,R.

236

Corollary 4.11. In the case of “smooth data” Sf , i.e. Sf ∈ Hrmax(R), the error estimate gives:237

‖φ− φh‖0,R . h2rmax ‖Sf‖rmax,R.

4.6. Numerical analysis of the generalized eigenvalue problem238

Let us focus on the approximation of the generalized eigenvalue problem (3.2) in our low-regularity setting,239

under the assumptions of Proposition 3.1, supplemented with νΣf ∈ PW 1,∞(R).240

Let 0 ≤ µ < rmax be given, we introduce an operator Bµ associated to the source problem (4.3): given241

f ∈ Hµ(R), we call Bµf = φ ∈ H1(R) the second component of the couple (p, φ) that solves (4.3) with source242

Sf = νΣff . Since νΣf belongs to PW 1,∞(R), it holds ‖Sf‖µ,R . ‖f‖µ,R because µ < 1/2. Hence, Bµ is a243

bounded operator from Hµ(R) to itself:244

‖Bµf‖µ,R . ‖Bµf‖1,R = ‖φ‖1,R . ‖Sf‖0,R . ‖Sf‖µ,R . ‖f‖µ,R;

we write Bµ ∈ L(Hµ(R)) for short. In addition, since the second component of the solution actually belongs245

to H1(R) with continuous dependence (‖φ‖1,R . ‖f‖µ,R), it follows that Bµ is a compact operator. Denote by246

σ(Bµ) its spectrum. By construction, λ−1 ∈ σ(Bµ) if, and only if, λ is an eigenvalue of (3.2).247

Finally, we consider the discrete operator Bhµ associated to the discrete source problem (4.13): given f ∈248

Hµ(R), we call Bhµf the second component of the couple (ph, φh) that solves (4.13) with source Sf = νΣff .249

Under the assumptions of Section 4.3 and as noted at the beginning of Section 4.5, it holds limh→0 ‖B0f −250

Bh0 f‖0,R = 0 for all f ∈ L2(R). This property is the so-called pointwise convergence. However, for a mixed251

formulation, the fact that the family (Bh0 )h converges pointwise towards the compact operator B0 is not sufficient252

to guarantee that the family (Bh0 )h converges in operator norm towards B0.253

4.6.1. Convergence in operator norm254

On the other hand, according to [27], proving that limh→0 ‖Bµ −Bhµ‖L(Hµ(R)) = 0 for discrete approximants255

(Bhµ)h is a sufficient condition to obtain convergence of the eigenvalues. In order to ensure the convergence in256

operator norm of the family (Bhµ)h towards the compact operator Bµ, we need a technical assumption on the257

triangulations.258



U
nc
or
re
ct
ed

P
ro
of

12 P. CIARLET JR. ET AL.

Definition 4.12. A family of triangulations (Th)h is regular+ if it satisfies:259

∃θ > 0, ∀h, h2−θ . min
K∈Th

diam(K). (4.29)

In particular, a quasi-uniform family of triangulations is regular+(take θ = 1 in (4.29)). For a regular+ family,260

one has the following inverse inequality, whose proof is given in Appendix A.261

Lemma 4.13. Let µ ∈ [0, 1/2[. For a regular+ family of triangulations, it holds:262

∀h, ∀ψh ∈ Lkh, ‖ψh‖µ,R . h−2µ+θµ‖ψh‖0,R. (4.30)

Theorem 4.14. Under the assumptions of Proposition 3.1 with rmax < 1/2 plus νΣf ∈ PW 1,∞(R), let µ ∈263

[0, rmax[. Provided that the family of triangulations is regular+, one has:264

‖Bµ −Bhµ‖L(Hµ(R)) . hθµ. (4.31)

Proof. According to (4.26), we know that265

‖(Bµ −Bhµ)f‖0,R . h2µ ‖f‖µ,R. (4.32)

It remains to estimate ‖(Bµ −Bhµ)f‖µ,R: for that, we use the triangle inequality266

‖(Bµ −Bhµ)f‖µ,R ≤ ‖Bµf − π0(Bµf)‖µ,R + ‖π0(Bµf)−Bhµf‖µ,R.

To bound the first term, we have according to Theorem 2.3 in [2] that267

∀ψ ∈ PH1(R), ‖ψ − π0ψ‖µ,R . h1−µ ‖ψ‖PH1(R).

Applying the result to ψ = Bµf , we find ‖Bµf − π0(Bµf)‖µ,R . h1−µ‖f‖µ,R.268

To bound the second term, we use first the inverse inequality (4.30) on the discrete space Lkh, valid for a269

regular+ family of triangulations. Applying the result to ψh = π0(Bµf) − Bhµf and using again the triangle270

inequality, we now find that271

‖π0(Bµf)−Bhµf‖µ,R . h−2µ+θµ‖π0(Bµf)−Bhµf‖0,R
. h−2µ+θµ

(
‖π0(Bµf)−Bµf‖0,R + ‖Bµf −Bhµf‖0,R

)
. max(h1−2µ+θµ, hθµ)‖f‖µ,R,

where we have used (4.15) and (4.32) to derive the final estimate. Since µ < 1/2, we conclude by aggregating272

the results that (4.31) holds.273

Thanks to [27], convergence of the discrete eigenvalues to the exact ones is guaranteed, and so is the absence274

of spectral pollution:275

• Given any closed, non-empty disk D ⊂ C such that D ∩ σ(Bµ) = ∅, there exists h0 > 0 such that, for all276

h < h0, D ∩ σ(Bhµ) = ∅.277

• Given any closed, non-empty disk D ⊂ C such that D ∩ σ(Bµ) = {λ}, with λ of multiplicity mλ, there278

exists h0 > 0 such that, for all h < h0, D ∩ σ(Bhµ) contains exactly mλ discrete eigenvalues.279
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4.6.2. Optimal convergence rate280

Let the assumptions of Theorem 4.14 hold. We determine now the rate of convergence of the eigenvalues in281

the spirit of [8]. Let ν = λ−1 be an eigenvalue of Bµ. For simplicity, let us assume that ν is a simple eigenvalue,282

and denote by W the associated eigenspace. According to the absence of spectral pollution, for h small enough,283

the closest discrete eigenvalue, denoted by νh, is also simple; we denote by Wh the associated eigenspace.284

Definition 4.15. Let ων > 0 be the regularity exponent of the eigenfunction, i.e. either W ⊂ PH1+s(R) for285

s < ων and W 6⊂ PH1+ων (R), or W ⊂ PH1+ων (R) and W 6⊂ PH1+s(R) for s > ων . Let ω = min(ων ,m+ 1),286

where m ≥ 0 is the order of the RTN finite element.287

Clearly, ων , and as a consequence ω, can be greater than rmax. We shall prove that the approximation288

converges with a rate equal to twice the exponent ω defined above: this result is stated in Corollary 4.23 at the289

end of the subsection.290

Let µ ∈ [0, rmax[ be given. As we defined Bµ (resp. Bhµ), we define Aµ (resp. Ahµ): for f ∈ Hµ(R), we call291

Aµf = p ∈ H(div ,R) (resp. Ahµf = ph ∈ Qh) the first component of the couple (p, φ) (resp. (ph, φh)) that292

solves (4.3) (resp. (4.13)) with source Sf = νΣff . The following lemma introduces some equalities that we will293

use later on.294

Lemma 4.16. Let ϕ and ϕ′ be given in W . Then, it holds:295

(νΣfϕ, (Bµ −Bhµ)ϕ′)0,R = a(Aµϕ, (Aµ −Ahµ)ϕ′)

+b((Aµ −Ahµ)ϕ′, Bµϕ) + b(Aµϕ, (Bµ −Bhµ)ϕ′) + t(Bµϕ, (Bµ −Bhµ)ϕ′); (4.33)

and296

0 = a(Ahµϕ, (Aµ −Ahµ)ϕ′) + b((Aµ −Ahµ)ϕ′, Bhµϕ)

+b(Ahµϕ, (Bµ −Bhµ)ϕ′) + t(Bhµϕ, (Bµ −Bhµ)ϕ′). (4.34)

Proof. The definitions of Aµ, Bµ imply that for all f ∈ Hµ(R), for all (q, ψ) ∈ X:297

(νΣff, ψ)0,R = a(Aµf,q) + b(q, Bµf) + b(Aµf, ψ) + t(Bµf, ψ), (4.35)

whereas the definitions of Ahµ, B
h
µ imply that for all f ∈ Hµ(R), for all (q, ψ) ∈ Xh:298

(νΣff, ψ)0,R = a(Ahµf,q) + b(q, Bhµf) + b(Ahµf, ψ) + t(Bhµf, ψ). (4.36)

The first equality (4.33) comes from (4.35) with:299

f = ϕ; q = (Aµ −Ahµ)ϕ′; ψ = (Bµ −Bhµ)ϕ′.

The second one, (4.34), comes from the difference between (4.35) and (4.36) with:300

f = ϕ′; q = Ahµϕ; ψ = Bhµϕ;

and with the symmetry of a(·, ·) and t(·, ·).301
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We remark that ϕ 7→ ‖ϕ‖W = ‖(νΣf )
1
2ϕ‖0,R is a norm over W ,2 and this norm is induced by the inner302

product303

(ϕ,ϕ′)W = (νΣfϕ,ϕ
′)0,R.

Proposition 4.17. Let ω be as in Definition 4.15. For every ϕ in W , the following inequalities hold:304

‖(Bµ −Bhµ)ϕ‖0,R . hω‖ϕ‖W
‖(Aµ −Ahµ)ϕ‖H(div ,R) . hω‖ϕ‖W .

Proof. These two inequalities come from the first Strang’s Lemma. The method is the same as for Theorem 4.7305

(see Rem. 4.8 for the “smooth” case). Here, we use the equivalence of all norms on W to state the result.306

Introducing δ(Z,Z ′) = supz∈Z, ‖z‖0=1 infz′∈Z′ ‖z − z′‖0,R for Z, Z ′ closed subspaces of L2(R), the gap between307

W and Wh is defined by:308

δ̂(W,Wh) = max[δ(W,Wh), δ(Wh,W )].

It allows us to evaluate the approximation of the continuous eigenfunctions by their discrete counterparts.309

Classically, this gap can be bounded with the help of Proposition 4.17, following Theorem 1 from [27]:310

δ̂(W,Wh) . hω. (4.37)

Let us now define Eh as the projector from L2(R) onto Wh such that311

∀ϕ ∈ L2(R), ∀ψh ∈Wh, (νΣf (ϕ− Ehϕ), ψh)0,R = 0. (4.38)

Lemma 4.18. The operators Eh and Bhµ commute.312

Proof. Let ϕ ∈ L2(R) be decomposed into ϕ = Ehϕ + ϕ̄. By construction Ehϕ ∈ Wh, so that BhµEhϕ ∈ Wh,313

hence EhB
h
µEhϕ = BhµEhϕ because Wh is invariant through Eh. It follows EhB

h
µϕ = EhB

h
µEhϕ + EhB

h
µϕ̄ =314

BhµEhϕ+ EhB
h
µϕ̄. This is equivalently expressed as315

(EhB
h
µ −BhµEh)ϕ = EhB

h
µϕ̄.

By construction, ψh = EhB
h
µϕ̄ belongs to Wh, with squared norm equal to316

(νΣfψh, ψh)0,R = (νΣfEhB
h
µϕ̄, ψh)0,R = (νΣfB

h
µϕ̄, ψh)0,R = (νΣf ϕ̄, B

h
µψh)0,R = 0.

The penultimate equality stems from the fact that c(·, ·) is symmetric, and the last one comes from the definition317

of ϕ̄ and Eh.318

Let Fh be the restriction of Eh to W . One has the following simple results as a consequence of the gap319

property.320

Lemma 4.19. For h small enough, Fh is a bijection from W to Wh. Moreover321

∀ϕ ∈W,
∥∥∥(νΣf )

1
2 (ϕ− Fhϕ)

∥∥∥
0,R

. hω‖ϕ‖W . (4.39)

2If ‖ϕ‖W = 0, then νΣfϕ = 0. By definition of W , ϕ is solution of (3.2) with zero right-hand side. Thus, by uniqueness of the
solution it follows that ϕ = 0.
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Let Sh = F−1
h Eh − I ∈ L(L2(R)) for h small enough.322

Lemma 4.20. For h small enough, W ⊂ ker(Sh); (Sh)h is uniformly bounded.323

One can then prove an “orthogonality” result involving Sh.324

Proposition 4.21. For all f in L2(R) and ϕh in Wh, one has for h small enough325

(νΣfShf, ϕh)0,R = 0.

Proof. Let f be in L2(R) and ϕh be in Wh. We find:326

(νΣfShf, ϕh)0,R = (νΣf (F−1
h Ehf − f), ϕh)0,R

= (νΣf (F−1
h Ehf − Ehf), ϕh)0,R

= (νΣf (F−1
h Ehf − FhF−1

h Ehf), ϕh)0,R.

The second equality uses (4.38) with ϕ = f . One concludes by remarking that ψ = F−1
h Ehf ∈W so (νΣf (ψ −327

Fhψ), ϕh)0,R = 0 using again (4.38), because Fhψ = Ehψ.328

329

To obtain an optimal rate of convergence we restrict the operators Bµ and Bhµ to the eigenspace W . We denote330

finally by B̂µ and B̂hµ the operators, from W to itself, B̂µ = Bµ|W and B̂hµ = F−1
h BhµFh. Let us estimate331

‖B̂µ − B̂hµ‖L(W ) = sup
ϕ,ϕ′∈W\{0}

|(ϕ, (B̂µ − B̂hµ)ϕ′)W |
‖ϕ‖W ‖ϕ′‖W

.

Theorem 4.22. Let ω be as in Definition 4.15. Then for h small enough, the following estimate holds true332

‖B̂µ − B̂hµ‖L(W ) . h2ω. (4.40)

Proof. Using the definition of Fh, Lemma 4.18 and finally Lemma 4.20, one checks that for all ϕ′ ∈W :333

(B̂µ − B̂hµ)ϕ′ = Bµϕ
′ − F−1

h BhµFhϕ
′

= Bµϕ
′ − F−1

h BhµEhϕ
′

= Bµϕ
′ − F−1

h EhB
h
µϕ
′

= (Bµ −Bhµ)ϕ′ +Bhµϕ
′ − F−1

h EhB
h
µϕ
′ + ShBµϕ′

= (Bµ −Bhµ)ϕ′ + Sh(Bµ −Bhµ)ϕ′. (4.41)

Hence, given ϕ,ϕ′ ∈W , we can bound |(ϕ, (B̂µ − B̂hµ)ϕ′)W | = |(νΣfϕ, (B̂µ − B̂hµ)ϕ′)0,R| by334

|(νΣfϕ, (Bµ −Bhµ)ϕ′)0,R|+ |(νΣfϕ,Sh(Bµ −Bhµ)ϕ′)0,R|.

Let us bound each part separately below.335

One obtains from the difference between (4.33) and (4.34)336

(νΣfϕ, (Bµ −Bhµ)ϕ′)0,R = a((Aµ −Ahµ)ϕ, (Aµ −Ahµ)ϕ′) + b((Aµ −Ahµ)ϕ′, (Bµ −Bhµ)ϕ)

+b((Aµ −Ahµ)ϕ, (Bµ −Bhµ)ϕ′) + t((Bµ −Bhµ)ϕ, (Bµ −Bhµ)ϕ′).
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Then, one can bound the first part:337

|(νΣfϕ, (Bµ −Bhµ)ϕ′)0,R| . ‖(Aµ −Ahµ)ϕ‖0,R‖(Aµ −Ahµ)ϕ′‖0,R
+‖div (Aµ −Ahµ)ϕ′‖0,R‖(Bµ −Bhµ)ϕ‖0,R
+‖div (Aµ −Ahµ)ϕ‖0,R‖(Bµ −Bhµ)ϕ′‖0,R
+‖(Bµ −Bhµ)ϕ‖0,R‖(Bµ −Bhµ)ϕ′‖0,R

. h2ω‖ϕ‖W ‖ϕ′‖W .

The second part is bounded by:338

|(νΣfϕ,Sh(Bµ −Bhµ)ϕ′)0,R| = |(νΣf (ϕ− Fhϕ),Sh(Bµ −Bhµ)ϕ′)|
≤ ‖νΣf (ϕ− Fhϕ)‖0,R‖Sh(Bµ −Bhµ)ϕ′‖0,R
. ‖νΣf (ϕ− Fhϕ)‖0,R‖(Bµ −Bhµ)ϕ′‖0,R
. h2ω‖ϕ‖W ‖ϕ′‖W .

In the first line we use Proposition 4.21 with f = (Bµ − Bhµ)ϕ′ and ϕh = Fhϕ. In the third line we use the339

uniform continuity of Sh in h, and in the last line we use the first inequality of Proposition 4.17 and the340

estimation (4.39). Therefore we have obtained (4.40).341

From this estimation and the work of Osborn in Theorem 2 of [27], one derives an optimal estimate on the error342

on the eigenvalues.343

Corollary 4.23. Let ω be as in Definition 4.15. Then for h small enough, the error on the eigenvalue is given344

by345

|ν − νh| . h2ω.

Remark 4.24. If ν has an algebraic multiplicity mν > 1, the previous analysis and the a priori estimate are346

still valid with νh = 1
mν

∑mν
i=1 νh,i, where (νh,i)i=1,mν are the m discrete eigenvalues closest to ν, see again347

Theorem 2 of [27].348

5. The DD case349

We continue by considering the neutron diffusion problem using a domain decomposition method: we call350

it the DD case. The diffusion problem with low-regularity solution in a mixed, multi-domain form has been351

analyzed in [13]. In this section, we first define some notations and spaces. Then we recall some results of [13],352

in which technical aspects on the choice and properties of the spaces and discretization are discussed. Finally,353

we define the variational formulation. The numerical analysis of the DD case is carried out in Section 6.354

5.1. Setting of the DD spaces355

Let us consider a partition {R̃i}1≤i≤Ñ of R which can be independent from the physical partition of the356

materials in R (see e.g. [10, 11, 23]). In other words, it can happen that {R̃i}1≤i≤Ñ 6= {Ri}1≤i≤N . We denote357

by Γij the interface between two subdomains R̃i and R̃j , for i 6= j: if the Hausdorff dimension of R̃i ∩ R̃j is358

d − 1, then Γij = int(R̃i ∩ R̃j); otherwise, Γij = ∅. By construction, Γij = Γji. We define the interface ΓS ,359
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respectively the wirebasket ∂ΓW by360

ΓS =

Ñ⋃
i=1

Ñ⋃
j=i+1

Γij , ∂ΓW =

Ñ⋃
i=1

Ñ⋃
j=i+1

∂Γij .

It is stressed that the resulting interface ΓS needs not necessarily coincide with the physical interface between361

cells.362

When d = 2, the wirebasket consists of isolated crosspoints. When d = 3, the wirebasket consists of open363

edges and crosspoints. For a field v defined over R, we shall use the notation vi = v|R̃i , for 1 ≤ i ≤ Ñ . Let us364

define the function space with zero Dirichlet boundary condition:365

P̃H1
0 (R) =

{
ψ ∈ L2(R) |ψi ∈ H1(R̃i), ψ|∂R̃i\ΓS = 0, 1 ≤ i ≤ Ñ

}
.

When Γij 6= ∅, let H
1/2
Γij

be the set of H1/2(Γij) functions whose continuation by 0 to ∂Ri belongs to H1/2(∂Ri).
On can prove that H

1/2
Γij

= H
1/2
Γji

. We also introduce the space of piecewise H(div ) vector-valued functions:

P̃H(div ,R) =
{

q ∈ L2(R) |qi ∈ H(div , R̃i), 1 ≤ i ≤ Ñ
}
, ||q||P̃H(div ,R) =

(∑
i

‖qi‖2H(div ,R̃i)

)1/2

.

For p ∈ P̃H(div ,R), let us set [p · n]ij :=
∑
k=i,j pk · nk|Γij the jump of the normal component of p on Γij366

when Γij 6= ∅. [p · n]ij is well defined in (H
1/2
Γij

)′ the dual space of H
1/2
Γij

(see e.g. [19]). The global jump [p · n] of367

the normal component on the interface is defined by:368

[p · n]|Γij := [p · n]ij , for 1 ≤ i, j ≤ Ñ .

By definition, it holds [p · n] ∈
∏
i<j(H

1/2
Γij

)′. We recall that for p ∈ H(div ,R), the global jump vanishes:369

[p · n] = 0 (see e.g. [13], Lem. 1).370

We introduce finally the following Hilbert spaces:371

M =

ψS ∈
∏
i<j

L2(Γij)

 , ‖ψS‖M =

∑
i<j

‖ψS‖20,Γij

1/2

;

H
1/2
− (ΓS) =

{
ψS ∈M |ψS|Γij ∈ H

1/2(Γij), ∀i < j
}
, with graph norm;

Q̃ =
{

q ∈ P̃H(div ,R) | [q · n] ∈M
}
,

‖q‖Q̃ =
(
||q||2P̃H(div ,R)

+ ||[q · n]||2M
)1/2

;

X̃ =
{
ξ := (q, ψ) ∈ Q̃× L2(R)

}
, ‖ξ‖X̃ :=

(
‖q‖2

Q̃
+ ‖ψ‖20,R

)1/2

;

W =
{
w := (ξ, ψS) ∈ X̃×M

}
, ‖w‖W :=

(
‖ξ‖2

X̃
+ ‖ψS‖2M

)1/2

.

By construction, one has M ⊂
∏
i<j(H

1/2
Γij

)′. We will next define a variational formulation which is conforming372

in Q̃× L2(R).373
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5.2. Variational formulation and discretization in the DD case374

The mixed form of the neutron diffusion problem (4.1) is now given by (see Sect. 3.2 from [13]):375

Find (p, φ, φS) ∈ Q̃× P̃H1
0 (R)×M such that:376 
−D−1

i pi − gradφi = 0 in R̃i, for 1 ≤ i ≤ Ñ ,
div pi + Σa,iφi = Sf,i in R̃i, for 1 ≤ i ≤ Ñ ,
φi = φS on ∂R̃i ∩ ΓS , for 1 ≤ i ≤ Ñ ,
[p · n] = 0 on ΓS .

(5.1)

To solve this problem, we are looking for a solution ((p, φ), φS) in W. Find ((p, φ), φS) ∈ W, such that377

∀((q, ψ), ψS) ∈ W:378 ∫
R

(
−D−1 p · q + φdiv q + ψ div p + Σa φψ

)
+

∫
ΓS

[p · n]ψS −
∫

ΓS

[q · n]φS =

∫
R
Sf ψ. (5.2)

In (5.1)–(5.2), φS , ψS play the role of Lagrange multipliers, with M the space of those Lagrange multipliers.379

To be mathematically precise, we should be integrating on ∪i<jΓij instead of ΓS . We make this slight abuse of380

notations from now on. This approach is called the DD+L2-jumps method.381

From now on, we use the notations:382

• u = (ζ, φS), ζ = (p, φ), p = (pi)1≤i≤Ñ and φ = (φi)1≤i≤Ñ ;383

• w = (ξ, ψS), ξ = (q, ψ), q = (qi)1≤i≤Ñ and ψ = (ψi)1≤i≤Ñ ;384

and we define the bilinear forms:385

`S :

W× W→ R

(u, w) 7→
∫

ΓS

[p · n]ψS
, (5.3)

and:386

cS :

{
W× W→ R
(u, w) 7→ c(ζ, ξ) + `S(u, w) − `S(w, u)

. (5.4)

We consider the linear form:387

fS :

{
W→ R
w 7→ f(ξ)

. (5.5)

Above, we extended the definition (4.7) (resp. (4.8)) of the form c (resp. f), to elements of X̃ × X̃ (resp. X̃).388

We may rewrite the variational formulation (5.2) as:389

Find u ∈ W such that ∀w ∈ W:390

cS(u, w) = fS(w). (5.6)

We recall that cS satisfies an inf-sup condition, so the variational problem is well-posed (see [13], Sect. 4), and391

that, under the assumptions of Proposition 3.1, the global jump of p vanishes: [p · n] = 0 in M (see Lem. 1 of392

[13]).393

We study abstract, conforming, discretization of the variational formulation (5.6) as it is done in Section 5 from394



U
nc
or
re
ct
ed

P
ro
of

NUMERICAL ANALYSIS FOR MIXED EQUATIONS 19

[13]. To that aim, we introduce discrete, finite-dimensional, spaces indexed by a (small) parameter h as follows:395

Qi,h ⊂ H(div , R̃i) and Li,h ⊂ L2(R̃i), for 1 ≤ i ≤ Ñ . We impose the following requirements, for all 1 ≤ i ≤ Ñ :396

• qi,h · n|∂R̃i ∈ L
2(∂R̃i) for all h > 0, for all qi,h ∈ Qi,h;397

• div Qi,h ⊂ Li,h for all h > 0;398

• (Qi,h)h and (Li,h)h satisfy the approximability property (4.12) in R̃i.399

Then, let400

Q̃h =
∏

1≤i≤Ñ

Qi,h and Lh =
∏

1≤i≤Ñ

Li,h.

In particular, the discretization Q̃h × Lh is globally conforming in Q̃ × L2(R). We endow Q̃h with the norm401

‖ · ‖Q̃, while Lh is endowed with ‖ · ‖0,R.402

We then define Ti,h as the space of the normal traces of vectors of Qi,h on ∂R̃i ∩ ΓS :403

Ti,h :=
{
qi,h ∈ L2(∂R̃i ∩ ΓS) | ∃qi,h ∈ Qi,h, qi,h = qi,h · ni|∂R̃i∩ΓS

}
. (5.7)

Classically, several situations can occur on a given interface Γij , 1 ≤ i, j ≤ Ñ :404

(1) non-nested meshes: Ti,h|Γij 6⊂ Tj,h|Γij and Tj,h|Γij 6⊂ Ti,h|Γij ;405

(2) nested meshes: Ti,h|Γij ⊂ Tj,h|Γij or Tj,h|Γij ⊂ Ti,h|Γij ;406

(3) matching meshes: nested meshes with Ti,h|Γij = Tj,h|Γij .407

Usually, the term nested meshes is used to describe a family of successively refined meshes. In this paper, we408

will use this expression to express that on all interfaces Γij , case (5.2) described above holds. As an illustration,409

see the interfaces between the subdomains in Fig. 3a.410

Let us denote by Mh ⊂M the discrete space of the Lagrange multipliers. We assume that Mh includes the411

subspace M0
h of piecewise constant fields. We introduce the discrete projection operators ([13], Sect. 5) from412

the spaces of normal traces Ti,h to Mh, and vice versa, which are defined by:413

∀qi,h ∈ Ti,h, ∀ψS,h ∈ Mh


∫
∂R̃i∩ΓS

(Πi(qi,h)− qi,h) ψS,h = 0∫
∂R̃i∩ΓS

(πi(ψS,h)− ψS,h) qi,h = 0
. (5.8)

As the operators Πi and πi are orthogonal projections, they are continuous, with a continuity modulus equal414

to 1. We also introduce the orthogonal projection operator Π0
S : M → M0

h . According to Proposition 1.135 of415

[17], if we denote by hS the meshsize on ΓS :416

∀ψS ∈ H1/2
− (ΓS), ‖ψS −Π0

S(ψS)‖M . h
1/2
S ‖ψS‖H1/2

− (ΓS)
. (5.9)

Next, let ph ∈ Q̃h. We define the discrete jump of the normal component of ph on the interface Γij as [ph ·417

n]h,ij :=
∑
l=i,j

Πl(pl,h · nl|Γij ). The discrete global jump of the normal component, [ph · n]h ∈Mh, is defined by:418

[ph · n]h|Γij := [ph · n]h,ij , for 1 ≤ i, j ≤ Ñ .
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We finally define:419

X̃h =
{
ξh := (qh, ψh) ∈ Q̃h × Lh

}
, endowed with ‖ · ‖X̃,

Wh =
{
wh := (ξh, ψS,h) ∈ X̃h ×Mh

}
, endowed with ‖ · ‖W.

In the DD+L2-jumps setting, the conforming discretization of the variational formulation (5.6) reads:420

Find uh ∈ Wh such that ∀wh ∈ Wh, cS(uh, wh) = fS(wh). (5.10)

It is shown in Section 5 from [13] that cS verifies a discrete inf-sup condition if the following conditions hold:421

∃βh > 0, ∀qh ∈ Q̃h,

∫
ΓS

[qh · n]h [qh · n] ≥ βh
∫

ΓS

[qh · n]2 (5.11)

and422

∃γh > 0, ∀ ψS,h ∈Mh,

Ñ∑
i=1

Ñ∑
j=i+1

∫
Γij

(
πi(ψS,h)2 + πj(ψS,h)2

)
≥ γh‖ψS,h‖2M , (5.12)

Moreover, if βh and γh can be chosen independently of h, the form cS satisfies a udisc. For instance, conditions423

(5.11)–(5.12) are uniformly fulfilled when Mh is chosen as424

Mh =

Ñ∑
i=1

Ti,h. (5.13)

Last, under (5.11), one easily checks that [ph · n] = 0. In other words:425

ph ∈ H(div ,R) ∩ Q̃h. (5.14)

In the DD case, we define Qh = H(div ,R) ∩ Q̃h.426

6. Numerical analysis in the DD case427

To carry out the numerical analysis in the low-regularity case, we first introduce a suitable discretization428

of the DD problem, and then we carry out the numerical analysis on this discretization. Again, if one chooses429

another discretization that fulfills those properties detailed in the previous section, one may recover similar430

convergence results.431

6.1. Discretization432

We consider (5.10) where the RTN finite element is used on each subdomain with a conforming mesh, or433

triangulation. For 1 ≤ i ≤ Ñ , let hi denote the local meshsize in R̃i, and h = maxi hi the global meshsize. Let434

us denote by ki ≥ 0 the order of the discretization in R̃i, and k = mini ki, the minimal order of the RTN finite435

element. The local RTN finite element subspace of H(div , R̃i)× L2(R̃i) is defined as Qki
i,hi
× Lkii,hi . With this436

choice, we have div Qki
i,hi
⊂ Lkii,hi as required: local consistency is ensured. Now, if we set Q̃k

h =
∏

1≤i≤Ñ Qki
i,hi

437

and Lkh =
∏

1≤i≤Ñ L
ki
i,hi

, we have qi,h · n|∂R̃i ∈ L
2(∂R̃i) for all qi,h ∈ Qki

i,hi
, hence it follows that Q̃k

h ⊂ Q̃:438
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the discretization Q̃k
h × Lkh is globally conforming in Q̃ × L2(R). For the reader’s convenience, we omit the439

superscript ki in the analysis below.440

Finally, we choose Mh so that on the one hand (5.11)–(5.12) hold uniformly, and on the other hand it holds441

hS . h: we refer to Section 5.2 from [13] for an extended discussion on suitable choices. According to the first442

Strang’s Lemma [17] and because cS verifies a udisc, the error reads:443

‖u− uh‖W . inf
wh∈Wh

‖u− wh‖W. (6.1)

As a consequence limh→0 ‖u− uh‖W = 0. This result holds for nested and non-nested meshes. We study below444

how to improve the bound on the error, how to derive an Aubin-Nitsche estimate, and finally how to prove445

convergence for the generalized eigenvalue problem, for nested meshes.3 As previously, those results hold under446

the assumptions of Proposition 3.1 (plus νΣf ∈ PW 1,∞(R) for the eigenproblem). We focus again on the447

low-regularity case.448

6.2. A priori error estimates449

Let q ∈ H(div ,R) ∩ P̃Hµ(R), with 0 < µ. A global RTN interpolant of q is defined on every subdomain R̃i450

via its restriction qi, and denoted by q̃i,R for 1 ≤ i ≤ Ñ . One may thus define the global interpolant of q in Q̃h,451

denoted by q̃R henceforth: q̃R|R̃i = q̃i,R for 1 ≤ i ≤ Ñ . Below, we also use the orthogonal projection operators452

π0 : L2(R)→ L0
h (see Sect. 4.5.1) and Π0

S : M →M0
h (see Sect. 5.2). One has the following result, whose proof453

is given in Appendix A.454

Lemma 6.1. Assume that the meshes are nested, non-matching, on the interface Γfc, and that they are quasi-455

uniform on Γfc. To fix ideas, we assume Tc,h|Γfc ⊂ Tf,h|Γfc with Tc,h|Γfc 6= Tf,h|Γfc(
4).456

Let q ∈ H(div ,R) ∩Hµ(R) with 0 < µ < 1/2, it holds:457

‖[q̃R · n]‖0,Γfc . h
1/2
f ‖qf ‖H(div ,R̃f ).

Theorem 6.2. Let the assumptions of Proposition 3.1 hold, with rmax < 1/2. One has for matching meshes:458

∀µ ∈]0, rmax[, ∀Sf ∈ Hµ(R),
‖p− ph‖H(div ,R) + ‖φ− φh‖0,R + ‖φS − φS,h‖M . hµ ‖Sf‖µ,R.

(6.2)

For nested, non-matching meshes, the result holds under the assumption that on an interface Γij where the459

meshes Ti,h|Γij and Tj,h|Γij are non-matching (Ti,h|Γij 6= Tj,h|Γij ), the families of triangulations of Ti,h|Γij and460

Tj,h|Γij are quasi-uniform.461

Proof. We bound the different contributions in the right-hand side of (6.1) for some appropriately chosen discrete462

field wh. Recall that u = ((p, φ), φS).463

Matching meshes. We know that [p ·n] = 0. For matching meshes, one has also [p̃R ·n] = 0, so [(p− p̃R) ·n] = 0.464

Starting from (6.1), the conclusion follows. Indeed, according to the a priori estimates (4.15), (4.20) and (5.9),465

wh = (p̃R, π
0φ,Π0

S(φS)) ∈ Wh is such that466

‖u− wh‖2W =

Ñ∑
i=1

‖pi − pi,R‖2H(div ,R̃i)
+ ‖φ− π0φ‖20,R + ‖φS −Π0

S(φS)‖2M

. h2µ(|p|2µ,R + ‖div p‖2µ,R) + h2‖φ‖2PH1(R) + hS‖φS‖2H1/2
− (ΓS)

. h2µ ‖Sf‖2µ,R.

3For non-nested meshes, numerical illustrations suggest that the convergence properties can be recovered in some situations (see
[13], Tab. 2). See also Section 6.5.

4f refers to fine discretization, while c refers to coarse discretization.



U
nc
or
re
ct
ed

P
ro
of

22 P. CIARLET JR. ET AL.

Hence we conclude that for matching meshes it holds:467

‖u− uh‖W . hµ ‖Sf‖µ,R. (6.3)

Nested meshes. In this case, [p̃R · n] 6= 0 in general. Nonetheless, one can use the result of Lemma 6.1, to find468

that469

‖ [(p− p̃R) · n] ‖M . h1/2 ‖p‖H(div ,R),

provided that the meshes are quasi-uniform on the part of the interface where they are non-matching. One470

concludes that the estimate (6.3) still holds for nested meshes under this condition.471

Conclusion. Noting that it always holds [p · n] = [ph · n] = 0 (cf. (5.14)), developing the norm ‖u− uh‖W, one472

concludes:473

‖p− ph‖H(div ,R) + ‖φ− φh‖0,R + ‖φS − φS,h‖M . hµ ‖Sf‖µ,R.

In other words, we have the a priori error estimate (6.2).474

As in the plain case, for “smooth data” Sf , i.e. Sf ∈ Hrmax(R), one expects a convergence rate at least in hrmax .475

Remark 6.3. Within our framework, we obtain error estimates that generalize those of [11, 32] for low-regularity476

solutions. In addition, the technical aspects we propose remain quite simple and natural.477

6.3. Aubin-Nitsche-type estimates478

To derive improved estimates on the error ‖φ − φh‖0,R, we adapt the calculations of Section 4.5.2 to the479

DD case. Recall that Qh = Q̃h ∩H(div ,R). We already know that when conditions (5.11)–(5.12) hold, the480

solution ((ph, φh), φS,h) ∈ X̃h ×Mh of (5.10) (discrete DD case) is such that (ph, φh) ∈ Xh, since ph ∈ Qh.481

Then restricting the test-fields in (5.10) to elements of Xh ×Mh we observe that (ph, φh) satisfies (4.14) too482

(discrete plain-case), because all interface terms vanish. Hence, to estimate ‖φ − φh‖0,R in the DD case, we483

explicitly consider that the discrete fields (ph, φh) are also the solution to the variational formulation of the484

plain-case (4.14). Let us begin by a technical result, whose proof is given in Appendix A.485

Lemma 6.4. Let the assumptions of Lemma 6.1 hold. Let q ∈ H(div ,R) ∩Hµ(R) with 0 < µ < 1/2, and486

define δqfc ∈ Qf,h by δqfc · n|Γfc = (q̃c,R · n− q̃f,R · n)|Γfc and zero extension in R̃f \ Γfc. It holds487

‖δqfc‖H(div ,R̃f ) . hµ
(
‖qf‖µ,R̃f + ‖div qf‖0,R̃f

)
.

Theorem 6.5. Under the assumptions of Theorem 6.2 with rmax < 1/2, one has for nested meshes:488

∀µ ∈]0, rmax[, ∀Sf ∈ Hµ(R), ‖φ− φh‖0,R . h2µ ‖Sf‖µ,R. (6.4)

Proof. Matching meshes. In this case, one can use the theory already developed in Section 4.5 for the plain case,489

to conclude that (6.4) holds.490

Nested meshes. The difficulty for non-matching meshes is that one cannot define the global RTN-interpolant of491

p directly. Instead it is defined via its subdomain interpolants (p̃i,R)1≤i≤Ñ . Introduce, for 1 ≤ i ≤ Ñ , Ii as the492

set of indices j such that Tj,h|Γij ⊂ Ti,h|Γij (since we are dealing with nested meshes, it holds Tj,h|Γij ⊂ Ti,h|Γij493

or Ti,h|Γij ⊂ Tj,h|Γij ). We proceed as follows to obtain an H(div ,R)-conforming approximant, i.e. an element494

of Qh. On all interfaces Γij , introduce δpij ·n = p̃c,R ·n|Γij − p̃f,R ·n|Γij where p̃f,R is the interpolant from the495

finer discretization on Γij , resp. p̃c,R is the interpolant from the coarser discretization on Γij . By construction,496
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δpij ·n = 0 when Ti,h|Γij = Tj,h|Γij . Then δpij ·n is extended by zero in R̃i to define an element of Qi,h; with a497

slight abuse of notation, we still denote the extension by δpij . The H(div ,R)-conforming approximant pR ∈ Qh498

is then defined subdomain by subdomain as499

pi,R = p̃i,R +
∑
j∈Ii

δpij for 1 ≤ i ≤ Ñ .

Indeed, [pR · n]Γij = 0 for 1 ≤ i, j ≤ Ñ by direct inspection. It remains to evaluate500

‖p− pR‖2H(div ,R) =
∑

1≤i≤Ñ

‖pi − pi,R‖2H(div ,R̃i)
, with

‖pi − pi,R‖H(div ,R̃i) ≤ ‖pi − p̃i,R‖H(div ,R̃i) +
∑
j∈Ii

‖δpij‖H(div ,R̃i) for 1 ≤ i ≤ Ñ .

Above, the fact that the index j belongs to Ii implies that if δpij 6= 0, then the finer discretization on Γij501

automatically originates from R̃i. To evaluate ‖δpij‖H(div ,R̃i), one uses the results of Lemma 6.4 to find502

‖δpij‖H(div ,R̃i) . hµ
(
‖pi‖µ,R̃i + ‖div pi‖0,R̃i

)
.

Again, this bound holds under the condition that the meshes are quasi-uniform on the part of the interface503

where they are non-matching. Due to (4.20), one has ‖pi − pi,R‖H(div ,R̃i) . hµ ‖Sf‖µ,R for 1 ≤ i ≤ Ñ , and it504

follows that505

‖p− pR‖H(div ,R) . hµ ‖Sf‖µ,R.

As a consequence (follow Sect. 4.5.2) we conclude that the estimate (6.4) holds.506

6.4. Numerical analysis of the generalized eigenvalue problem507

Let us focus on the approximation of the generalized eigenvalue problem (3.2) for low-regularity solutions508

with nested (matching or non-matching) meshes. We will follow the methodology of Section 4.6.509

6.4.1. Convergence in operator norm510

Let 0 ≤ µ < rmax be given, we introduce an operator Bµ associated to the source problem (5.6): given f ∈511

Hµ(R), we call Bµf = φ ∈ H1(R) the second component of the triple (p, φ, φS) that solves the source problem512

with Sf = νΣff . For the same reason as in the plain case Section 4.6.1, Bµ is a bounded and compact operator.513

Next, let us consider the discrete operator Bhµ associated to the discrete source problem: given f ∈ Hµ(R), we514

call Bhµf the second component of the triple (ph, φh, φS,h) that solves (5.10) with source Sf = νΣff . Using515

estimate (6.4), we obtain, like in the plain case, the result below.516

Theorem 6.6. Under the assumptions of Theorem 6.2 with rmax < 1/2 plus νΣf ∈ PW 1,∞(R), let µ ∈]0, rmax[.517

Provided that the families of triangulations are regular+ on every subdomain, one has for nested meshes:518

‖Bµ −Bhµ‖L(Hµ(R)) . hθ̃µ, (6.5)

where θ̃ = minÑi=1 θi > 0, and for 1 ≤ i ≤ Ñ , θi is defined by (4.29) on R̃i.519

We conclude to the absence of spectral pollution.520
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6.4.2. Optimal convergence rate521

Let the assumptions of Theorems 6.2 and 6.6 hold, and in particular the conditions for nested, non-matching522

meshes. We use the same notations as in Section 4.6.2. In particular, let ω̃ν > 0 be the regularity exponent523

associated to ν with respect to (P̃H1+s(R))s>0, and introduce ω̃ = min(ω̃ν , k + 1).524

Let µ ∈ [0, rmax[ be given. As we defined Bµ (resp. Bhµ), we define Aµ and Cµ (resp. Ahµ and Chµ): for525

f ∈ Hµ(R), we call Aµf = p ∈ Q̃ and Cµf = φS ∈M (resp. Ahµf = ph ∈ Q̃h and Chµf = φS,h ∈Mh) the first526

and the third components of the triple (p, φ, φS) (resp. (ph, φh, φS,h)) that solves (5.6) (resp. (5.10)) with source527

Sf = νΣff .528

For the DD+L2-jumps method, the transposition of Lemma 4.16 reads:529

Lemma 6.7. Let ϕ and ϕ′ be in W . Then, it holds:530

(νΣfϕ, (Bµ −Bhµ)ϕ′)0,R = a(Aµϕ, (Aµ −Ahµ)ϕ′) + b((Aµ −Ahµ)ϕ′, Bµϕ)

+b(Aµϕ, (Bµ −Bhµ)ϕ′) + t(Bµϕ, (Bµ −Bhµ)ϕ′); (6.6)

and531

0 = a(Ahµϕ, (Aµ −Ahµ)ϕ′) + b((Aµ −Ahµ)ϕ′, Bhµϕ)

+b(Ahµϕ, (Bµ −Bhµ)ϕ′) + t(Bhµϕ, (Bµ −Bhµ)ϕ′). (6.7)

The formulas (6.6) and (4.33), resp. (6.7) and (4.34), are identical. As Strang’s Lemma holds for the DD+L2-532

jumps method with nested meshes, we can also transpose Proposition 4.17. For that, we admit that the result of533

Lemma 6.1 can be improved for smooth functions q. As a matter of fact, in this case one may directly compare534

the discrete normal traces Πf,R(q · n|Γfc) and Πc,R(q · n|Γfc) to the exact normal trace q · n|Γfc , and evaluate535

the difference in L2(Γfc)-norm, because for smooth functions the exact normal trace always belongs to L2(Γfc).536

Proposition 6.8. For every ϕ in W , the following inequalities hold for the DD+L2-jumps method with nested537

meshes:538

‖(Bµ −Bhµ)ϕ‖0,R . hω̃‖ϕ‖W ;

‖(Aµ −Ahµ)ϕ‖H(div ,R) . hω̃‖ϕ‖W .

Estimate (4.37) on the gap between W and Wh is still valid: δ̂(W,Wh) . hω̃. Let Eh be the operator defined539

in (4.38). We recall that Eh and Bhµ commute (Lem. 4.18 holds). The restriction of Eh to W , denoted by Fh540

is a bijection that satisfies estimate (4.39), for h small enough. We will also make use of Sh = F−1
h Eh − I that541

satisfies Lemma 4.20 and Proposition 4.21. We recall that B̂µ = Bµ|W and B̂hµ = F−1
h BhµFh. The transposition542

of Theorem 4.22 is stated next. The proof is identical (replace ω by ω̃), so it is omitted.543

Theorem 6.9. For h small enough, one has for the DD+L2-jumps method with nested meshes:544

‖B̂µ − B̂hµ‖L(W ) . h2ω̃. (6.8)

Corollary 6.10. For h small enough, the error on the eigenvalue for the DD+L2-jumps method with nested545

meshes is given by:546

|ν − νh| . h2ω̃.
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Figure 2. The domain of study, and the subdomain meshsizes.

6.5. About non-nested meshes547

We recall that, for general non-nested meshes, one has convergence without explicit convergence rate, as soon548

as (5.11)–(5.12) hold uniformly. In the most general case however, it seems difficult to obtain a convergence549

error that depends explicitly on h.550

On the other hand, let us consider the case where the meshes are non-nested, with some structure. By551

structure, it is understood that the non-nestedness can be described by a finite number of configurations (e.g.552

3-face mesh vs. 5-face mesh, etc.) that are reproduced at smaller and smaller scales when the meshsize diminishes.553

We note first that a result similar to Lemma 6.1 can be recovered. Going back to the reference configurations554

(by assumption there are a finite number of them) and taking the supremum in the upper bounds among all555

these configurations, we infer from (A.5) that ‖[q̃R · n]‖0,Γfc . hc|Γfc ‖ qf,h ‖0,Γfc , i.e. one can conclude the556

proof as before. As a consequence, an explicit convergence rate may be derived for the source problem as in557

Theorem 6.2.558

Then, one may proceed in a similar fashion to prove Lemma 6.4, so as to derive an Aubin-Nitsche estimate559

as in Theorem 6.5. Finally, because interface terms are absent in the analysis of the convergence rate of the560

eigenvalues (see in particular (6.6)–(6.7)), such estimates can also be proved for non-nested meshes, with some561

structure.562

7. Numerical illustrations563

The tests are carried out in two dimensions: the cartesian coordinates are denoted by (x, y). We use RTN[0]564

finite elements on rectangular meshes. We define the discrete space of Lagrange multipliers Mh as in (5.13).565

7.1. Benchmark square for transmission problems566

We study a singular toy problem described on Dauge’s website [15] for a magnetic problem and adapted here567

for the neutron diffusion equation with Neuman boundary condition. Set R :=]− 1, 1[2, and divide it into four568

subsquares (see Fig. 2 left). Let D, be a scalar, piecewise-constant, coefficient: D := D = 0.1 in R1 ∪R3, and 1569

elsewhere, Σa = 1 and νΣf = 1. We consider the following problem:570 −divD gradφ+ φ = λφ in R
∂φ

∂n
= 0 on ∂R.

(7.1)

The singularity exponent is rmax ≈ 0.39. Implementation is in MATLAB.571
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Table 1. Results with 16 subdomains.

1/h Nφ ελ1
ελ2

ελ3
ελ4

4 448 2.88 e− 3 3.92 e− 2 5.49 e− 3 2.00 e− 2
8 1 792 7.22 e− 4 2.36 e− 2 1.38 e− 3 5.00 e− 3
12 4 032 3.22 e− 4 1.74 e− 2 6.12 e− 4 2.22 e− 3
16 7 168 1.81 e− 4 1.40 e− 2 3.44 e− 4 1.25 e− 3
20 11 200 1.16 e− 4 1.18 e− 2 2.20 e− 4 8.00 e− 4
24 16 128 8.05 e− 5 1.02 e− 2 1.53 e− 4 5.05 e− 4

Rate h2 h0.76 h2 h2

Table 2. Results with 25 subdomains using graded meshes.

1/h Nφ ελ1
ελ2

ελ3
ελ4

3 304 7.47 e− 3 1.14 e− 2 1.92 e− 2 1.12 e− 1
6 1 216 1.92 e− 3 8.19 e− 3 4.90 e− 3 2.75, e− 2
12 4 864 4.83 e− 4 5.28 e− 3 1.23 e− 3 6.85 e− 3
15 7 600 3.10 e− 4 4.42 e− 3 7.88 e− 4 4.38 e− 3
18 10 944 2.15 e− 4 3.86 e− 3 5.47 e− 4 3.04 e− 3
21 14 896 1.59 e− 4 6.68 e− 4 4.02 e− 4 2.24 e− 3

Rate h2 h0.71 h2 h2

We study the error on the four first eigenvalues (excluding λ0 = 1), with two different partitions {R̃i}1≤i≤Ñ .572

The results are given in Tables 1 and 2, which data are:573

• h: the meshsize,574

• Nφ: the number of degrees of freedom of φ,575

• ελi = |λh,i − λi|/|λi|: the relative error for the eigenvalue λi, i = 1, 4.576

In the last line, we report the average rate of convergence of the computations. In Figure 3a (resp. 3b), we577

represented the mesh for 1/h = 12 (resp. 1/h = 18) and the second non-constant eigenfunction φ2, which is578

singular at the cross-point.579

The first partition is based on Ñ = 16 square subdomains, represented in Figure 2 middle. As indicated in580

this figure, the four centered subdomains have a meshsize equal to hf whereas the other subdomains have a581

meshsize equal to hc = 2hf , so that the parameter is h = hc. The results are given in Table 1.582

The second partition is based on Ñ = 25 subdomains, with graded meshes towards the cross-point, where583

the singular behaviour is expected. The subdomain in the center of R has a mesh size equal to hf , whereas the584

four subdomains on the corners of R have a meshsize equal to hc = 6hf (see Fig. 2 right). This is similar in585

spirit to the XFEM except there is only one mesh near the cross-point [20].586

The results are given in Table 2. With this simple idea (the use of graded meshes), one derives an accurate587

approximation of the singular eigenfunction at low cost. Indeed, comparing Tables 1 and 2, one notices that the588

error ελ2
is comparable using the coarser mesh of the second partition (with Nφ = 304) than using the finer589

mesh of the first partition (with Nφ = 16 128). However, the approximation of eigenvalues associated to smooth590

eigenfunctions is not improved by the use of graded meshes. On the contrary, as the order of the eigenvalues591

increases, their approximations seem to be more and more degraded, which is due to the difficulty to capture592

the faster and faster oscillations of the corresponding eigenfunctions.593
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Figure 3. The second non-constant eigenfunction.

7.2. PWR core594

We give here some results of computations carried out with the MINOS solver of the APOLLO3r5 neutronics595

code [30] developed at CEA. This industrial test models a pressurized water large reactor core with heavy-steel596

reflector similar to the one described in [29]. The neutron transport equation is discretized using the multigroup597

simplified PN (SPN ) equations, with two groups of energy, and SP1 and SP3 angular orders. We recall that,598

for each group, the neutron SP1 equation is similar to the neutron diffusion equation, whereas the neutron SP3599

equation corresponds to two coupled neutron diffusion equations. The different homogenization steps that allow600

to obtain the coefficients of this discretization on square cells lead to 229 different media. The coefficients are601

thus parametrized according to the medium, the energy group and the angular order, which depend respectively602

on the position, the energy and the direction of the neutrons. We refer to [23, 24, 25] for more details on the603

multigroup SPN and diffusion neutron equations and the general algorithm to solve them.604

The subdomains {R̃i}1≤i≤361 of the partition correspond to the 19× 19 cells of Figure 1a. In each subdomain,605

the coarser triangulation is also such that the coefficients are piecewise constant. The meshes of the subdomains606

are nested.607

In neutronics, the quantity of interest is the inverse of the smallest eigenvalue, which is called the criticality,608

and is denoted by keff. Below, we make comparisons on the criticality, the reference value, denoted by kref
eff , being609

computed on a conforming mesh made of 1.5 e+ 7 (resp. 7.5 e+ 6) rectangles in SP1 (resp. SP3).610

In Table 3, we present the results obtained with the MINOS solver for different levels of refinement, with611

RTN[0] finite elements on rectangles. The data are:612

• h: the meshsize,613

• Nφ: the spatial number of degrees of freedom of the neutron flux φ,614

• ε1 (resp. ε3): the relative error made on the criticality |keff − kref
eff |/k

ref
eff , for a computation using the SP1615

(resp. SP3) approximation.616

• rate: the averaged rate of convergence.617

Convergence rates are higher than 1, seemingly indicating the absence of strong singularities in the first618

eigenfunction. Instead, we hypothetize that we are still in the pre-asymptotic regime (for the first eigenfunction):619

5APOLLO3 is a registered trademark in France.
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Table 3. Results with 361 subdomains.

1/h Nφ ε1 ε3

285 5.40 e+ 5 1.35 e− 4 1.37 e− 4
380 9.60 e+ 5 8.01 e− 5 8.79 e− 5
570 2.16 e+ 6 4.10 e− 5 5.12 e− 5
665 2.94 e+ 6 3.26 e− 5 4.30 e− 5
950 6.00 e+ 6 2.09 e− 5 3.15 e− 5

Rate h1.55 h1.22

Figure 4. Neutron flux.

on the one hand, the norm of the “more singular” part is small compared to the norm of the “more regular”620

part, and on the other hand there are only a few degrees of freedom per characteristic length (see Fig. 1b).621

Note that the DD version is parallelized in the APOLLO3r code, contrary to the plain version. Hence,622

computational times are greatly reduced: we refer to [23] for the analyses of algorithms and their parallelization.623

The neutron flux of the first (resp. second) group of energy are represented in Figure 4a (resp. Fig. 4b).624

8. Conclusion625

The solution of the steady-state one-group neutron diffusion equation being usually of low-regularity, the626

convergence of the eigenvalues and the error estimates are not straightforward to obtain. In particular, we627

provide new proofs:628

• for the source and eigen-problems, with low-regularity solutions;629

• for the eigenproblems, in mixed setting with non-vanishing zero-order term (Σa 6= 0).630

Notice that our results are obtained under the regular+ condition on the family of triangulations. For the DD631

case, we suggest the following strategies to take into account the apparently restrictive condition on quasi-632

uniform meshes on the interface, compared to the regular+ condition on the family of triangulations:633

• use {R̃i}1≤i≤Ñ for DD as the orthogonal (i.e. Voronöı) tessellation of {Ri}1≤i≤N ;634

• use {R̃i}1≤i≤Ñ = {Ri}1≤i≤N and compute the singular part of the solution (or eigenfunction) via some635

ad hoc technique (SCM, XFEM, etc.).636

A possible continuation of this paper is the study of the steady-state multigroup neutron SPN problem [21].637

Appendix A. Additional proofs638

We provide here the proof of three technical lemmas.639

Let (Th)h be a given regular family of triangulations. We call K̂ := [0, 1]d the reference element. Let h be640

given. For every K ∈ Th, we denote by x = FK(x̂) := AK x̂ + bK , AK ∈ Rd×d, bK ∈ Rd, the map from K̂ to641
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K. Introducing hK = diam(K) for all K ∈ Th, one may bound ‖AK‖, ‖(AK)−1‖, |det(AK)| with respect to hK .642

The change of variable formulas from K̂ to K, and vice versa, can be found e.g. in Section 1 of [17].643

Proof of Lemma 4.13. We follow Section 2 of [2]. Given ψh ∈ Lkh, one has ψh ∈ Hµ(R), for all µ < 1/2. By the644

definition of the norm of Hµ(R), we have the following equalities:645

‖ψh‖2µ,R = ‖ψh‖20,R +

∫
R

∫
R

|ψh(x)− ψh(y)|2

|x− y|d+2µ
dydx

=
∑
K∈Th

(
‖ψh‖20,K +

∫
K

∫
R

|ψh(x)− ψh(y)|2

|x− y|d+2µ
dydx

)

=
∑
K∈Th

‖ψh‖2µ,K +
∑
K∈Th

∫
K

∫
R\K

|ψh(x)− ψh(y)|2

|x− y|d+2µ
dydx. (A.1)

Let us estimate first
∑
K∈Th ‖ψh‖

2
µ,K . According to Corollary 1.138 of [17], we know that646

∑
K∈Th

‖ψh‖2µ,K .
∑
K∈Th

h−2µ
K ‖ψh‖20,K . h−2µ

min ‖ψh‖
2
0,R, (A.2)

where hmin = min
K∈Th

hK . To estimate the remaining part, we recall that, for any K ∈ Th and any x ∈ K, it holds647

that, by going back the reference space, applying (cf. [22], 1.3.2.12) on K̂ and then going to the physical space:648 ∫
R\K

1

|x− y|d+2µ
dy .

1

ρ∂K(x)2µ
,

where ρ∂K(x) = infy∈∂K |x− y|. Thus we have:649 ∫
K

∫
R\K

|ψh(x)− ψh(y)|2

|x− y|d+2µ
dydx =

∑
K′∈Th
K′ 6=K

∫
K

∫
K′

|ψh(x)− ψh(y)|2

|x− y|d+2µ
dydx

.
∑
K′∈Th
K′ 6=K

∫
K

∫
K′

ψh(x)2 + ψh(y)2

|x− y|d+2µ
dydx

.
∫
K

ψh(x)2

ρ∂K(x)2µ
dx. (A.3)

Going back to the reference element K̂ and introducing ψh|K(x) = ψ̂(x̂), it stands:650

∫
K

ψh(x)2

ρ∂K(x)2µ
dx . hd−2µ

K

∫
K̂

ψ̂(x̂)2

ρ∂K̂(x̂)2µ
dx̂.

Because µ < 1/2 (cf. [22], Thm. 1.4.4.4), ψ̂ 7→ (
∫
K̂
ψ̂(x̂)2ρ∂K̂(x̂)−2µ dx̂)1/2 is a norm on L̂k = Qk,k,k(K̂). Thanks651

to the equivalence of the norms on finite dimensional vector spaces, one gets652 ∫
K

ψh(x)2

ρ∂K(x)2µ
dx . hd−2µ

K ‖ψ̂‖2
0,K̂

.
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Finally, going back to element K, we know that ‖ψ̂‖2
0,K̂

. h−dK ‖ψh‖20,K . Hence using (A.3) and the results that653

follow, we have:654 ∫
K

∫
R\K

|ψh(x)− ψh(y)|2

|x− y|d+2µ
dydx . h−2µ

K ‖ψh‖20,K . (A.4)

Starting from (A.1) using (A.2) and (A.4), we obtain finally the global bound:655

‖ψh‖µ,R . h−µmin‖ψh‖0,R.

As the family of triangulations is regular+, one has h−µmin . h(θ−2)µ, which concludes the proof.656

Proof of Lemma 6.1. For l = c, f , we introduce the operators from the normal trace spaces (H(div ,R) ∩657

Hµ(R)) · n|Γfc to the discrete spaces of normal traces Tl,h on Γfc:658 {
Πl,R : (H(div ,R) ∩Hµ(R)) · n|Γfc → Tl,h|Γfc
q′ · n|Γfc 7→ q̃′l,R · n|Γfc .

With a slight abuse of notations, we write Πl,R(q′l · n|∂R̃l) = q̃′l,R · n|∂R̃l . We also introduce the operator Π0
c,R659

on the vector space of normal traces of elements of Q̃c,h with lowest-order RTN finite element, i.e. the vector660

space T 0
c,h|Γfc of piecewise constant functions on the interface mesh defined as the trace on Γfc of the mesh used661

in R̃c. Note that because the meshes are nested, the restriction of Πf,R (resp., Πc,R and Π0
c,R) on Tf,h|Γfc (resp.,662

on the subspaces Tc,h|Γfc and T 0
c,h|Γfc where applicable) may also be considered as an orthogonal projection663

operator. Denoting qf,h = Πf,R(q · n|Γfc), we have:664

‖[q̃R · n]‖0,Γfc = ‖Πf,R(q · n|Γfc)−Πc,R(q · n|Γfc)‖0,Γfc
= ‖Πf,R(q · n|Γfc)−Πc,R ◦Πf,R(q · n|Γfc)‖0,Γfc
= ‖(I−Πc,R)qf,h‖0,Γfc
≤ ‖(I−Π0

c,R)qf,h‖0,Γfc . (A.5)

As the meshes are quasi-uniform on the interface, one has hc|Γfc h hf |Γfc . Then, starting from (A.5), thanks to665

the quasi-uniform mesh assumption for the inverse inequalities on Γfc, cf. Lemma 10.10 of [31], we find666

‖[q̃R · n]‖0,Γfc . hc|Γfc ‖ qf,h ‖0,Γfc ([3], Lem. 4.9)

. hc|Γfc (hf |Γfc)
−1/4 ‖ qf,h ‖−1/4,Γfc

. (hf |Γfc)
3/4 ‖Πf,R(q · n|∂R̃f ) ‖−1/4,∂R̃f

. (hf |Γfc)
3/4(hf |∂R̃f )−1/4 ‖q̃f,R · n|∂R̃f ‖−1/2,∂R̃f

. h
1/2
f ‖q̃f,R‖H(div ,R̃f ) . h

1/2
f ‖qf ‖H(div ,R̃f ).

Above, we have used the continuity of the normal trace, resp. the stability of the RTN interpolant, to derive667

the last two inequalities.668

Proof of Lemma 6.4. First, let us bound the norm of ‖δqfc‖H(div ,R̃f ) by ‖δqfc · n‖0,Γfc . We use the notation669

v = δqfc below. Denoting by (K`)` the parallelepipeds composing the mesh on R̃f , and NΓ the set of indices `670
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such that Γ` := K` ∩ Γfc is of Hausdorff dimension d− 1, because of the definition of v it now holds671

‖v‖2
H(div ,R̃f )

=
∑
`

‖v|K`‖
2
H(div ,K`)

=
∑
`∈NΓ

‖v|K`‖
2
H(div ,K`)

.

Then, one can bound ‖v|K`‖H(div ,K`) by ‖v|K` · n‖0,Γ` for each index ` ∈ NΓ. To that aim, one goes back to672

the reference element K̂ via the Piola transform, which reads ([7], Sect. 2.1.3):673

v|K`(x) =
1

|det(AK`)|
AK` v̂(x̂), div v|K`(x) =

1

|det(AK`)|
ˆdiv v̂(x̂).

With the help of a classical formula for the change of variables on Γ` ([7], Eq. (2.1.62)), one finds after a few674

elementary algebraic manipulations6 that675

hd−1
K`

∫
Γ`

(v|K` · n)2 dΓ h
∫

Γ̂`

(v̂ · n̂)2 dΓ̂,

where Γ̂` is equal to F−1
K`

(Γ`).676

On the reference element, it holds677

‖v̂‖2
H( ˆdiv ,K̂)

.
∫

Γ̂`

(v̂ · n̂)2 dΓ̂,

because the non-zero degrees of freedom are all located on Γ̂`. Finally, one has the classical bounds ([7], Lem.678

2.1.7):679

‖v|K`‖
2
0,K`

. h2−d
K`
‖v̂‖2

0,K̂
‖div v|K`‖

2
0,K`

. h−dK`‖ ˆdiv v̂‖2
0,K̂

,

so that680

‖v|K`‖
2
H(div ,K`)

. h−dK`‖v̂‖
2
H( ˆdiv ,K̂)

. h−1
K`

∫
Γ`

(v|K` · n)2 dΓ.

Adding up the contributions for ` ∈ NΓ, one finds:681

‖δqfc‖H(div ,R̃f ) . h
−1/2
f ‖δqfc · n‖0,Γfc . (A.6)

By modifying the final computations in the proof of Lemma 6.1, one finds that for all 0 < ε < µ:682

‖δqfc · n‖0,Γfc . hc|Γfc ‖ qf,h ‖0,Γfc ([3], Lem. 4.9)

. hc|Γfc (hf |Γfc)
ε−1/2‖qf,h‖ε−1/2,Γfc ([31], Lem. 10.10)

. h
ε+1/2
f ‖ qf,h ‖ε−1/2,Γfc

. h
ε+1/2
f ‖Πf,R(qf · n|∂R̃f ) ‖ε−1/2,∂R̃f

. h
ε+1/2
f ‖qf · n|∂R̃f ‖ε−1/2,∂R̃f ([2], Thm. 2.4 and Rem. 2.5)

. h
ε+1/2
f

(
‖qf‖ε,R̃f + ‖div qf‖0,R̃f

)
.

6Since the meshes are quasi-uniform on Γfc, they are in particular regular.
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Or, choosing ε = µ− η for η > 0 arbitrary small, that683

‖δqfc · n‖0,Γfc . h
µ+1/2−η
f

(
‖qf‖µ,R̃f + ‖div qf‖0,R̃f

)
.

Using (A.6), we conclude the proof.684
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[12] J. Bussac and P. Reuss, Traité de neutronique. Hermann (1985).707

[13] P. Ciarlet Jr. E. Jamelot and F.D. Kpadonou, Domain decomposition methods for the diffusion equation with low-regularity708

solution. Comput. Math. Appl. 74 (2017) 2369–2384.709

[14] M. Costabel, M. Dauge and S. Nicaise, Singularities of maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649.710

[15] M. Dauge, Benchmark Computations for Maxwell Equations. Available at: https://perso.univ-rennes1.fr/monique.dauge/core/711

index.html (2018).712

[16] J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis. John Wiley & Sons, Inc. (1976).713

[17] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag (2004).714

[18] R.S. Falk and J.E. Osborn, Error estimates for mixed methods. RAIRO Anal. Numer. 14 (1980) 249–277.715

[19] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular716

boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991.717

[20] T.-P. Fries and T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications.718

Int. J. Numer. Methods Eng. 84 (2010) 253–304.719

[21] L. Giret, Non-conforming Domain Decomposition for the Multigroup Neutron SPN Equations. Ph.D. thesis, EDMH, Université720
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