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LOCALIZATION OF GLOBAL NORMS AND ROBUST A POSTERIORI ERROR

CONTROL FOR TRANSMISSION PROBLEMS WITH SIGN-CHANGING

COEFFICIENTS ⇤

Patrick Ciarlet Jr.1 and Martin Vohraĺık2

Abstract. We present a posteriori error analysis of di↵usion problems where the di↵usion tensor
is not necessarily symmetric and positive definite and can in particular change its sign. We first
identify the correct intrinsic error norm for such problems, covering both conforming and nonconforming
approximations. It combines a dual (residual) norm together with the distance to the correct functional
space. Importantly, we show the equivalence of both these quantities defined globally over the entire
computational domain with the Hilbertian sums of their localizations over patches of elements. In
this framework, we then design a posteriori estimators which deliver simultaneously guaranteed error
upper bound, global and local error lower bounds, and robustness with respect to the (sign-changing)
di↵usion tensor. Robustness with respect to the approximation polynomial degree is achieved as well.
The estimators are given in a unified setting covering at once conforming, nonconforming, mixed,
and discontinuous Galerkin finite element discretizations in two or three space dimensions. Numerical
results illustrate the theoretical developments.
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1. Introduction

Let ⌦ ⇢ Rd, 1  d  3, be an open polytope (polygon for d = 2, polyhedron for d = 3) with a Lipschitz-
continuous boundary @⌦, ⌃ a tensor-valued di↵usion tensor, and f a datum. We consider the following problem:
find u : ⌦ ! R such that

�r·(⌃ru) = f in ⌦, (1.1a)

u = 0 on @⌦. (1.1b)

Keywords and phrases: noncoercive problem, sign change, metamaterial, a posteriori error estimate, dual norm, distance to
energy space, localization, equivalence local–global, minimization, best approximation, equilibrated flux, unified framework,
robustness, finite element methods

⇤ This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020
research and innovation program (grant agreement No 647134 GATIPOR). It was also supported by the ERC-CZ project
MORE “MOdelling REvisited + MOdel REduction”, LL1202.
1 Laboratoire POEMS, UMR 7231 CNRS/ENSTA/INRIA, ENSTA ParisTech, 828 Boulevard des Maréchaux, 91762 Palaiseau,
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In contrast to the usual setting, cf. Ciarlet [23], we relax the assumption of ⌃ being positive definite (and
symmetric). Such a situation arises as a model problem in electromagnetism for interfaces between dielectrics
and (negative) metamaterials or metals, see, e.g., Bonnet-BenDhia et al. [11] or Wallen et al. [53] and the
references therein. The exemplar situation is the case where ⌦ is composed of two subdomains ⌦+ and ⌦� of
nonzero measure such that ⌃|⌦

+

= �+I and ⌃|⌦� = ��I, where �+ > 0 and �� < 0 are two scalars and I is
the identity tensor.

We will call u 2 H1
0 (⌦) a weak solution of (1.1) if

(⌃ru,rv) = (f, v) 8v 2 H1
0 (⌦). (1.2)

Conditions for well-posedness (existence, uniqueness, and continuous dependence on the data) of the general
problem (1.2) follow from the celebrated Banach–Nečas–Babuška (also called Brezzi–Babuška or inf–sup) the-
orem, cf., e.g., Ern and Guermond [30, Theorem 2.6]. They have recently been revisited via the T-coercivity
approach, see, e.g., Bonnet-BenDhia et al. [10] or Chesnel and Ciarlet [20] and the references therein. Precisely,
the definition of an appropriate operator T is equivalent to the explicit realization of the inf–sup condition
for the exact problem (1.2). Moreover, the same technique can be applied at the discrete level. Conception of
numerical approximations, their well-posedness, and a priori error estimates have been addressed in [9,20] in the
conforming finite element context and in [21] in the nonconforming finite element and discontinuous Galerkin
context.

A posteriori error analysis for problems of type (1.1) has likewise been started recently. In particular, Nicaise
and Venel [39] bound the error between the known finite element approximation uh and the unknown weak
solution u given by (1.2) by a computable a posteriori indicator. The bound, however, features an unknown
generic constant. The dependence of the quality of the estimator on the tensor ⌃ (on the ratio, or contrast,
�+/�� in the simplest setting) is, unfortunately, not traced; numerical experiments indicate deterioration of
the behavior (so-called non-robustness) when the contrast is approaching the set of forbidden values given by
an interval to which the value �1 always belongs. In [39], there is also a need for a discrete version of the
trace lifting operator, both in the analysis and in the implementation. The previous contributions on di↵usion
problems with jumping coe�cients, see Bernardi and Verfürth [6], Ainsworth [1], or [52] and the references
therein, only study the standard positive definite case.

In terms of a posteriori analysis, there are four goals of this contribution: firstly, we want to derive a posteriori
error estimates which are guaranteed, certifying the maximal error and featuring no unknown constant. Secondly,
we wish them to be robust with respect to the jumps and sign changes in the tensor ⌃. The adaptive mesh
refinement based on the a posteriori error estimators developed in this work produces in particular in our
numerical experiments sequences of meshes leading to optimal decay rates for an arbitrarily singular solution.
Thirdly, we want to develop a unified framework covering all standard numerical methods. We achieve this via
the concept of flux and potential reconstructions, following Prager and Synge [42], Ladevèze and Leguillon [36],
Kelly [34], Destuynder and Métivet [26], Luce and Wohlmuth [37], and Braess and Schöberl [13] for equilibrated
fluxes, Prager and Synge [42], Destuynder and Métivet [25], Ainsworth [1], or Carstensen and Merdon [18]
for the potentials, and the unifying frameworks in Nicaise et al. [40], Repin [43], Ainsworth [2], Carstensen et

al. [16], Becker et al. [5], or [31, 32, 52], see also the references therein. Fourthly and lastly, in extension of
Braess et al. [12] for conforming finite elements and of [32, 33] for nonconforming, mixed, and discontinuous
Galerkin finite elements, we obtain robustness with respect to the approximation polynomial degree.

The key point for obtaining the above-discussed properties is a proper choice of the way the error is measured.
For conforming (lying in the space H1

0 (⌦)) approximations, Verfürth [49], Chaillou and Suri [19], Veeser and
Verfürth [46], Kreuzer and Süli [35], and [29, 31, 52] used the intrinsic problem-dependent norm given by the
dual norm of the residual stemming from the weak formulation. We articulate here two goals. We first identify
a proper generalization of this concept to our setting, including nonconforming approximations uh 62 H1

0 (⌦).
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The norm in which we measure the error is in particular given by

|||v|||2 := max
'2H1

0

(⌦); kr'k=1
(⌃r✓v,r')2 + min

⇣2H1

0

(⌦)
kr✓(v � ⇣)k2 +

X

e2Eh

h�1
e k⇧0

e[[v]]k2e. (1.3)

Here v lies in H1(Th), the broken Sobolev space, see (2.4) below, and r✓ is the discrete gradient defined below
by (2.7). For v = u � uh, the first term above is the dual norm of the residual, the second one is the distance

to the energy space in a gradient seminorm, and the last one evaluates the size of the mean values of jumps

in the approximate solution uh. Secondly, we prove that |||·||| as well as both its components k·k⇤ (first term
in (1.3)) and k·k# (last two terms in (1.3)) are equivalent to the Hilbertian sums of their localizations on patches
of elements. These results seem to be of independent interest, stating a local–global equivalence for norms that
are only global at a first sight. For dual (residual) norms, a result of this type has probably first been shown
in Babuška and Miller [4, Theorem 2.1.1], and may be deduced from more recent a posteriori analyses, see in
particular Carstensen and Funken [17], Morin et al. [38], Verfürth [48, 50], Veeser and Verfürth [46], Cohen et

al. [24], and the references therein, typically for piecewise polynomial approximations. It has recently been
extended in [8] to any bounded linear functional on the Sobolev space W 1,p

0 (⌦), p > 1. Galerkin orthogonality
with respect to lowest-order modes turns out to be crucial here for one direction of the equivalence. For the
distance to the energy space, our localization result seems to be new, although a clue can be again found
in a posteriori error estimates for nonconforming finite element methods on piecewise polynomial spaces, see,
e.g., [16, Theorem 5.1], the survey [32], and the references therein. We also cite Veeser [45] who recently proved
that local and global best-approximation errors in the energy norm are equivalent for piecewise polynomial
spaces. Here, we derive the localization results on the entire broken Sobolev space H1(Th) and give direct and
minimal proofs with clearly identified constants that only depend on mesh shape regularity and on the space
dimension. This in particular gives robustness with respect to the tensor ⌃ and does not request one to work
with piecewise polynomial spaces. Computable upper bounds on the generic constants are also indicated. In
a posteriori error analysis, these results allow to pass from merely global to actually local e�ciency, namely
in [29,31,46,49,52] and in the references therein.

Our paper is organized as follows. Section 2 sets the notation and assumptions and identifies and examines
the intrinsic norm |||·|||. Section 3 resumes our general findings about the localization of global norms. A
posteriori estimates in an abstract framework for all standard numerical approximations of problem (1.1) then
form the content of Section 4. Finally, Section 5 illustrates our theoretical developments on two numerical
examples, whereas Section 6 gives some concluding remarks and outlook.

2. Setting

This section introduces the notation, assumptions, and discusses in detail the choice of the way we will
measure the error in numerical approximations of problem (1.1).

2.1. Notation

Let {Th}h be a family of simplicial partitions of the domain ⌦, i.e., [K2ThK = ⌦ for all Th, any element
K 2 Th for any mesh Th is a closed simplex, and the intersection of two di↵erent simplices in one mesh Th is
either empty, a vertex, or their common l-dimensional face, 1  l  d � 1. The set of vertices will be denoted
by Vh; it is composed of interior vertices V int

h and vertices located on the boundary Vext
h . For element K 2 Th,

VK denotes the set of its vertices. For a vertex a 2 Vh, Ta stands for the patch of the elements of Th which
share a, for !a the corresponding open subdomain, and  a for the continuous, piecewise a�ne “hat” function
which takes value 1 at the vertex a and zero at the other vertices.

The mesh (d � 1)-dimensional faces are collected in the set Eh, with interior faces E int
h and boundary faces

Eext
h . A generic face is denoted by e and its diameter by he. For any e 2 Eh, ne stands for the unit normal

vector to e; the orientation is arbitrary but fixed for e 2 E int
h and points outwards of ⌦ for e 2 Eext

h . We will
use the jump operator [[·]] yielding the di↵erence evaluated along ne of the traces of the argument from the two
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mesh elements that share e 2 E int
h and the actual trace for e 2 Eext

h . Similarly, {{·}} stands for the mean value of
the traces from adjacent mesh elements on faces from E int

h and the actual trace on Eext
h . We denote by ⇧0

e the
L2(e)-orthogonal projection onto constants (mean value) on a face e 2 Eh.

For a d-dimensional subdomain ! of ⌦, we use (·, ·)! to denote the L2(!) or [L2(!)]d scalar product and
k·k! for the associated norm; shall ! = ⌦, the subscript is dropped. For (d � 1)-dimensional subdomains, we
similarly use h·, ·i! and k·k!.

2.2. Assumptions

Throughout the paper, we shall suppose the following:

Assumption 2.1 (Setting). We suppose that

• the family {Th}h is shape regular in the sense that there exists a constant T > 0 such that, for all

triangulations Th, maxK2Th hK/%K  T , where hK is the diameter of K and %K is the diameter of

the largest ball inscribed in K;

• ⌃ 2 [L1(⌦)]d⇥d
;

• f 2 L2(⌦);
• there exists a linear bijective operator T : H1

0 (⌦) ! H1
0 (⌦), cf. [20, Definition 3], bounded in the sense

that kr(Tv)k  kTkkrvk for all v 2 H1
0 (⌦), kTk < 1, and such that the bilinear form in (1.2) is

T-coercive in the sense that (⌃rv,r(Tv)) � ↵krvk2 for all v 2 H1
0 (⌦), ↵ > 0.

Then one immediately obtains:

Corollary 2.2 (Weak solution). Under Assumption 2.1, there exists a well-posed solution of problem (1.1) in

the sense (1.2). It satisfies u 2 H1
0 (⌦) and � := �⌃ru 2 H(div,⌦) with r·� = f .

2.3. Intrinsic norm in the conforming setting

Let, for the moment, v 2 H1
0 (⌦) and r✓ = r. The weak formulation (1.2) and Assumption 2.1 suggest the

intrinsic norm
kvk⇤ := max

'2H1

0

(⌦); kr'k=1
(⌃r✓v,r'); (2.1a)

this writing takes immediately the form we need in this paper, for v from the broken Sobolev space H1(Th) and
the discrete gradient r✓ defined below. We define the local versions of (2.1a), for each vertex a 2 Vh and the
corresponding patch subdomain !a, as

kvk⇤,!a := max
'2H1

0

(!a); kr'k!a=1
(⌃r✓v,r')!a . (2.1b)

For v 2 H1
0 (⌦), the Cauchy–Schwarz inequality implies

(⌃rv,r(Tv))

kr(Tv)k  kvk⇤  k⌃rvk 8v 2 H1
0 (⌦), (2.2)

and the boundedness and coercivity of the operator T and the boundedness of the tensor ⌃ allow to further
confine

↵

kTkkrvk  kvk⇤  k⌃k1krvk 8v 2 H1
0 (⌦), (2.3)

so that kvk⇤ is indeed a norm on the space H1
0 (⌦), equivalent to the canonical norm krvk. Note, however,

that the equivalence constants ↵
kTk and k⌃k1 are setting- and problem-dependent (not robust), see Remark 5.1

below for a discussion of a particular example. Remark also that (⌃rv,rv) may become negative, which
excludes the notion itself of an energy norm; on the other hand kvk⇤ = krvk in the case where ⌃ = I, so that
kvk⇤ is a natural extension of the canonical norm of the Laplace operator.
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2.4. Broken Sobolev space and broken and discrete gradients

In order to make our analysis as general as possible, taking in particular into account nonconforming and
discontinuous Galerkin methods, we will henceforth often work with the broken Sobolev space H1(Th) related
to the mesh Th,

H1(Th) := {v 2 L2(⌦); v|K 2 H1(K) 8K 2 Th}. (2.4)

The corresponding broken gradient rb is given by, for v 2 H1(Th),

(rbv)|K = r(v|K) 8K 2 Th; (2.5)

one simply applies the usual weak gradient elementwise. All the analysis of the present paper holds for the
broken gradient rb. Unfortunately, with rb, it is not possible to directly apply our results to certain numerical
methods. Indeed, we will need to suppose Assumption 2.4 below, and this typically does not hold with rb for
certain discontinuous Galerkin methods. For this reason, following [32, 33], we are lead to present our results
for a further generalization of the concept of the broken gradient.

For each face e 2 Eh, let Te regroup the (one or two) mesh elements sharing the face e. We let V0(Te) stand
for piecewise constant vectors on Te, i.e., vh|K 2 [P0(K)]d for all K 2 Te. Alternatively, vectors vh such that
vh|K 2 [P0(K)]d + P0(K)x for all K 2 Te (piecewise lowest-order Raviart–Thomas–Nédélec space) could also
be used. In both cases, vh·ne is constant for vh 2 V0(Te). Let v 2 H1(Th). Following, e.g., Di Pietro and
Ern [27, Section 4.3] and the references therein, where these concepts are often employed, we define the lifting
operator le : L2(e) ! V0(Te) by

(le([[v]]),vh)Te = h{{vh}}·ne, [[v]]ie 8vh 2 V0(Te). (2.6)

We then extend le([[v]]) by zero outside of Te. For a parameter ✓ 2 {�1, 0, 1}, the discrete gradientr✓v 2 [L2(⌦)]d

is given by

r✓v := rbv � ✓
X

e2Eh

le([[v]]). (2.7)

We observe that r✓v = rbv when ✓ = 0 or when the jumps of v are of mean value 0, i.e., h[[v]], 1ie = 0 for all
e 2 Eh. Similarly, both broken and discrete gradients are consistent extensions of the weak gradient r in the
sense that

r✓v = rbv = rv 8v 2 H1
0 (⌦). (2.8)

2.5. Nonconformity evaluation

An important observation is that k·k⇤ given by (2.1a) is merely a seminorm on the broken Sobolev space
H1(Th). Consequently, it is not su�cient to evaluate the error therein, and we are lead to quantify the non-
conformity H1(Th) 6⇢ H1

0 (⌦). An intrinsic measure here is simply the distance to the energy space H1
0 (⌦),

min⇣2H1

0

(⌦)kr✓(v � ⇣)k for v 2 H1(Th). As in this expression, only the gradient seminorm appears, we are
finally lead to evaluate the nonconformity as

kvk2# := min
⇣2H1

0

(⌦)
kr✓(v � ⇣)k2 +

X

e2Eh

h�1
e k⇧0

e[[v]]k2e v 2 H1(Th). (2.9a)

The second term with the mean values of the jumps on the faces given by ⇧0
e[[v]] ensures the validity of the

broken Poincaré–Friedrichs inequality and plays a key role in Lemma 2.3 below. Note also that scaling both or
one term in (2.9a) by generic constants is possible. As local versions of (2.9a), we define

kvk2#,!a
:= min

⇣2H1

#

(!a)
kr✓(v � ⇣)k2!a

+
X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e (2.9b)
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for each vertex a 2 Vh and the corresponding patch subdomain !a. Here

H1
#(!a) := H1(!a), a 2 V int

h ,

H1
#(!a) := {v 2 H1(!a); v = 0 on @!a \ @⌦}, a 2 Vext

h .
(2.10)

2.6. Intrinsic norm

Combining (2.1a) and (2.9a), we define the total intrinsic norm as

|||v|||2 = kvk2⇤ + kvk2# v 2 H1(Th). (2.11)

We have the following simple but crucial result:

Lemma 2.3 (Intrinsic norm). Let the broken Sobolev space H1(Th) be given by (2.4) and the discrete gradient

r✓ by (2.7) with ✓ 2 {�1, 0, 1}. Then |||·||| given by (2.11) defines a norm on H1(Th).

Proof. Clearly, |||↵v||| = |↵||||v||| and |||v + w|||  |||v||| + |||w||| for any ↵ 2 R and any v, w 2 H1(Th). Let now
|||v||| = 0. Then the second term in (2.9a) implies that the jumps of v are of mean value 0, h[[v]], 1ie = 0 for all
e 2 Eh, and thus r✓ = rb. Consequently, for s := argmin⇣2H1

0

(⌦)krb(v � ⇣)k, the broken Poincaré–Friedrichs
inequality

kv � sk  CbPF,⌦h⌦krb(v � s)k,
see Brenner [14] or [51], implies from the fact that the first term in (2.9a) vanishes that v = s and thus
v 2 H1

0 (⌦). Finally, the equivalence (2.3) valid on the energy space H1
0 (⌦) shows that indeed v = 0. ⇤

2.7. Evaluating the error by the dual norm of the residual and the distance to the energy
space

When ⌃ = I, there holds, for arbitrary u 2 H1
0 (⌦) and uh 2 H1(Th),

kr✓(u� uh)k2 = max
'2H1

0

(⌦); kr'k=1
(r✓(u� uh),r')2 + min

⇣2H1

0

(⌦)
kr✓(uh � ⇣)k2, (2.12)

see Theorems 3.3 in [28, 32] and the references therein. Note that the present definition (2.9a) implies

ku� uhk2# = min
⇣2H1

0

(⌦)
kr✓((u� uh)� ⇣)k2 +

X

e2Eh

h�1
e k⇧0

e[[u� uh]]k2e

= min
⇣2H1

0

(⌦)
kr✓(uh � ⇣)k2 +

X

e2Eh

h�1
e k⇧0

e[[uh]]k2e,
(2.13)

since u 2 H1
0 (⌦) and since its jumps are zero. Thus ku � uhk# is a distance of uh to the space H1

0 (⌦) and it
simplifies to the energy distance min⇣2H1

0

(⌦)kr✓(uh � ⇣)k = min⇣2H1

0

(⌦)krb(uh � ⇣)k whenever the jumps of
uh are of mean value zero, h[[uh]], 1ie = 0 for all e 2 Eh. For ⌃ = I, our intrinsic problem-dependent error thus
takes the form

|||u� uh|||2 = ku� uhk2⇤ + ku� uhk2# = kr✓(u� uh)k2 +
X

e2Eh

h�1
e k⇧0

e[[uh]]k2e,

so that in particular |||u � uh||| = kr✓(u � uh)k whenever the jumps of uh are of mean value zero. In what
concerns the first term ku � uhk⇤, using the dual norm definition (2.1a), equivalence (2.8) on H1

0 (⌦), and the
weak solution characterization (1.2), it takes the form

ku� uhk⇤ = max
'2H1

0

(⌦); kr'k=1
{(f,')� (⌃r✓uh,r')},
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so that this is nothing but the dual norm of the residual. Note that only this term remains whenever uh 2 H1
0 (⌦);

in this case |||u� uh||| = ku� uhk⇤.

2.8. Orthogonality with respect to the hat functions

We conclude this introductory section by an assumption that will be crucial for some of the forthcoming
results:

Assumption 2.4 (Galerkin orthogonality with respect to  a). There holds

(⌃r✓uh,r a)!a = (f, a)!a 8a 2 V int
h .

This assumption is naturally satisfied in most Galerkin numerical approximations of problem (1.1), namely
in various conforming, nonconforming, and discontinuous Galerkin finite elements. Application to mixed finite
elements can be achieved along the lines of [32, Section 4.4].

3. Equivalent localization of global dual and distance norms

This section shows that two types of global norms, dual norms on the space H1
0 (⌦) of the form k·k⇤ of (2.1a)

and distance norms of the form k·k# of (2.9a), admit an equivalence with their local versions of the respective
forms k·k⇤,!a of (2.1b) and k·k#,!a of (2.9b). Let us note immediately that Assumption 2.4 is central for one
direction in the first case. This may be seen as an extension of some previous results in [4,17,24,31,32,38,46,48,50]
to the broken Sobolev space H1(Th) of (2.4). The presentation below is not necessarily linked to a posteriori
error analysis and we find it of independent interest. We give direct and minimal proofs, with clearly identified
constants that only depend on the mesh shape regularity T and space dimension d. All results here actually
hold for any space dimension d � 1.

3.1. Some useful local inequalities

Some more definitions and tools will now be needed. Let first the patchwise Sobolev spaces be given by

H1
⇤ (!a) := {v 2 H1(!a); (v, 1)!a = 0}, a 2 V int

h ,

H1
⇤ (!a) := {v 2 H1(!a); v = 0 on @!a \ @⌦}, a 2 Vext

h .
(3.1)

It follows from [17, Theorem 3.1], [12, Section 3], see also [32, Lemma 3.12], that

kr( av)k!a  Ccont,PFkrvk!a 8v 2 H1
⇤ (!a), 8a 2 Vh, (3.2)

where
Ccont,PF := max

a2Vh

{1 + CPF,!ah!akr ak1,!a} (3.3)

only depends on the shape regularity parameter T and possibly on the space dimension d. Here CPF,!a is the
Poincaré–Friedrichs constant from

kvk!a  CPF,!ah!akrvk!a 8v 2 H1
⇤ (!a), (3.4)

see Payne and Weinberger [41] or Veeser and Verfürth [47].
Similarly, it follows as in [32, Lemma 3.13] and [33, Section 4] that

krb( av)k!a  Ccont,bPF

 
krbvk!a +

(
X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e

)1/2!
,

8v 2 H1(Ta) with (v, 1)!a = 0 when a 2 V int
h , 8a 2 Vh,

(3.5)
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where Ccont,bPF := maxa2Vh{1 + CbPF,!ah!akr ak1,!a} only depends on the shape regularity parameter T
and possibly on the space dimension d. Here CbPF,!a is the constant from the broken Poincaré–Friedrichs
inequality

kvk!a  CbPF,!ah!a

0

@krbvk2!a
+

X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e

1

A
1/2

,

8v 2 H1(Ta) with (v, 1)!a = 0 when a 2 V int
h ,

(3.6)

see Brenner [14] or [51].
Finally, as the spaces V0(Te) in the definition (2.7) of the discrete gradient consist of low-order polynomials,

the inverse inequality gives

kvh·neke  Cinvh
�1/2
e kvhkK 8K 2 Th, 8e 2 EK , 8vh 2 V0(Te), (3.7)

where Cinv only depends on T and d.

3.2. Localization of dual (residual) norms

The following is our localization result for the dual norm of the residual ku � uhk⇤ defined by (2.1a), with
the patchwise contributions ku� uhk⇤,!a given by (2.1b):

Proposition 3.1 (Localization of the dual norm of the residual). Let u be the weak solution given by (1.2) and
let uh 2 H1(Th) satisfying Assumption 2.4 be arbitrary. Then

ku� uhk⇤  (d+ 1)1/2Ccont,PF

(
X

a2Vh

ku� uhk2⇤,!a

)1/2

, (3.8a)

(
1

d+ 1

X

a2Vh

ku� uhk2⇤,!a

)1/2

 ku� uhk⇤. (3.8b)

Remark 3.1 (Bound (3.8a) with patchwise constants). Using Ccont,PF,!a := {1 + CPF,!ah!akr ak1,!a}
in (3.8a) in place of Ccont,PF, the slightly sharper bound

ku� uhk⇤  (d+ 1)1/2
(

X

a2Vh

C2
cont,PF,!a

ku� uhk2⇤,!a

)1/2

(3.9)

immediately follows.

This proposition is an immediate consequence of the following general theorem of independent interest. Recall
that Ccont,PF is the constant from inequality (3.2):

Theorem 3.2 (Localization of a dual norm with  a-Galerkin orthogonality). Let v 2 [L2(⌦)]d. Then, under

the hat functions orthogonality condition

(v,r a)!a = 0 8a 2 V int
h , (3.10)

there holds

max
'2H1

0

(⌦); kr'k=1
(v,r')2  (d+ 1)C2

cont,PF

X

a2Vh

max
'2H1

0

(!a); kr'k!a=1
(v,r')2!a

. (3.11a)
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There always holds

X

a2Vh

max
'2H1

0

(!a); kr'k!a=1
(v,r')2!a

 (d+ 1) max
'2H1

0

(⌦); kr'k=1
(v,r')2. (3.11b)

Proof. Let ' 2 H1
0 (⌦) with kr'k = 1 be fixed. The partition of unity by the hat functions  a,

P
a2Vh

 a = 1,
and the Galerkin orthogonality with respect to  a expressed by (3.10) give

(v,r') =
X

a2Vh

(v,r( a')) =
X

a2Vh

(v,r( a'))!a

=
X

a2Vint

h

(v,r( a('�⇧0,!a')))!a +
X

a2Vext

h

(v,r( a'))!a ,

where ⇧0,!a' is the mean value of the function ' on the patch !a. There holds ('� ⇧0,!a')|!a 2 H1
⇤ (!a) for

the space H1
⇤ (!a) given by (3.1) and ( a(' � ⇧0,!a'))|!a 2 H1

0 (!a) for an interior vertex a 2 V int
h . Similarly,

'|!a 2 H1
⇤ (!a) and ( a')|!a 2 H1

0 (!a) for a boundary vertex a 2 Vext
h . Thus, passing to a maximum and using

inequality (3.2) yields, for any interior vertex a 2 V int
h ,

(v,r( a('�⇧0,!a')))!a = kr( a('�⇧0,!a'))k!a

⇣
v,

r( a('�⇧0,!a'))

kr( a('�⇧0,!a'))k!a

⌘

!a

 kr( a('�⇧0,!a'))k!a max
'2H1

0

(!a); kr'k!a=1
(v,r')!a

 Ccont,PFkr('�⇧0,!a')k!a max
'2H1

0

(!a); kr'k!a=1
(v,r')!a

= Ccont,PFkr'k!a max
'2H1

0

(!a); kr'k!a=1
(v,r')!a ,

finally employing that the gradient of a constant vanishes. A similar estimate holds for a 2 Vext
h . Thus, the

Cauchy–Schwarz inequality gives

(v,r')2  C2
cont,PF

X

a2Vh

kr'k2!a

X

a2Vh

max
'2H1

0

(!a); kr'k!a=1
(v,r')2!a

.

Now the fact that each simplex has d+ 1 vertices gives

X

a2Vh

kr'k2!a
=

X

a2Vh

X

K2Ta

kr'k2K =
X

K2Th

X

a2VK

kr'k2K = (d+ 1)kr'k2, (3.12)

so that the premise kr'k = 1 finally yields (3.11a).
The converse estimate (3.11b) does not need the hypothesis (3.10). Let a 2 Vh and let ⇣a 2 H1

0 (!a) be
defined by the lifting

(r⇣a,r')!a = (v,r')!a 8' 2 H1
0 (!a).

Then

(v,r⇣a)!a = (r⇣a,r⇣a)!a = max
'2H1

0

(!a); kr'k!a=1
(r⇣a,r')2!a

= max
'2H1

0

(!a); kr'k!a=1
(v,r')2!a

.
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Consequently, taking ⇣ :=
P

a2Vh
⇣a 2 H1

0 (⌦),

X

a2Vh

max
'2H1

0

(!a); kr'k!a=1
(v,r')2!a

=
X

a2Vh

(v,r⇣a)!a = (v,r⇣)

 max
'2H1

0

(⌦); kr'k=1
(v,r')kr⇣k,

where we finally passed to the maximum. Noticing that

kr⇣k2 =
X

K2Th

����
X

a2VK

(r⇣a)|K
����
2

K

 (d+ 1)
X

a2Vh

kr⇣ak2!a
,

we arrive at (3.11b). ⇤

Remark 3.3 (Further generalization). Theorem 3.2 has recently been extended to any bounded linear functional

on the Sobolev space W 1,p
0 (⌦), p > 1, in [8].

3.3. Localization of distances to the energy space

Recall that d is the space dimension, rb is the broken gradient given by (2.5), r✓ is the discrete gradient
given by (2.7) with the parameter ✓ 2 {�1, 0, 1}, and that the constants Ccont,bPF and Cinv are respectively
given by (3.5) and (3.7). It appears that the distance ku� uhk# defined in (2.9a) admits a similar localization
property for the contributions ku�uhk#,!a defined in (2.9b), as this was the case for ku�uhk⇤ in Proposition 3.1:

Proposition 3.2 (Localization of the distance to the energy space). Let u 2 H1
0 (⌦) and uh 2 H1(Th) be

arbitrary. Then

ku� uhk2#  C2
loc

X

a2Vh

ku� uhk2#,!a
,

X

a2Vh

ku� uhk2#,!a
 (d+ 1)ku� uhk2#,

where

C2
loc := 8(d+ 1)C2

cont,bPF +
1

d

�
2|✓|2(d+ 1)C2

inv + 1
�
+

1

d

�
8|✓|2(d+ 1)3C2

cont,bPFC
2
inv

�
. (3.13)

To prove this result, the following theorem of independent interest will be crucial:

Theorem 3.4 (Localization of a global distance for jumps of mean value zero). Let v 2 H1(Th). Then, when

the jumps of v have zero mean values, i.e.

h[[v]], 1ie = 0 8e 2 Eh, (3.14)

there holds

min
⇣2H1

0

(⌦)
krb(v � ⇣)k2  (d+ 1)C2

cont,bPF

X

a2Vh

min
⇣2H1

#

(!a)
krb(v � ⇣)k2!a

. (3.15a)

There always holds X

a2Vh

min
⇣2H1

#

(!a)
krb(v � ⇣)k2!a

 (d+ 1) min
⇣2H1

0

(⌦)
krb(v � ⇣)k2; (3.15b)

(3.15b) also holds for the discrete gradient r✓ in place of the broken gradient rb.
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Proof. The second claim (3.15b) is immediate, as local-best approximation is always subordinate to the global-
best one:

X

a2Vh

min
⇣2H1

#

(!a)
krb(v � ⇣)k2!a

 min
⇣2H1

0

(⌦)

X

a2Vh

krb(v � ⇣)k2!a
= (d+ 1) min

⇣2H1

0

(⌦)
krb(v � ⇣)k2.

In the inequality, we have used that restriction of any ⇣ 2 H1
0 (⌦) to the patch subdomain !a for any vertex

a 2 Vh lies in the space H1
#(!a) given by (2.10); in the equality, the fact that each element K 2 Th lies in

(d+ 1) patches has been employed as in (3.12). This estimate is obviously the same for rbv replaced by r✓v.
The rest of the proof is thus dedicated to showing the first claim (3.15a).

Let, for a given vertex a 2 Vh, sa be defined by the orthogonal projection of the function  av onto the space
H1

0 (!a),

sa := arg min
⇣2H1

0

(!a)
krb( av � ⇣)k!a ; (3.16)

equivalently, sa 2 H1
0 (!a) solves

(rsa,r⇣)!a = (rb( av),r⇣)!a 8⇣ 2 H1
0 (!a).

Extending sa by zero outside of !a and setting s :=
P

a2Vh
sa 2 H1

0 (⌦), we have, also employing the partition
of unity

P
a2VK

 a|K = 1|K ,

min
⇣2H1

0

(⌦)
krb(v � ⇣)k2  krb(v � s)k2 =

X

K2Th

krb(v � s)k2K

=
X

K2Th

����
X

a2VK

(rb( av � sa))|K
����
2

K

 (d+ 1)
X

a2Vh

krb( av � sa)k2!a
.

(3.17)

The fact that  a⇣ 2 H1
0 (!a) for any ⇣ 2 H1

#(!a) gives from (3.16)

krb( av � sa)k!a  inf
⇣2H1

#

(!a)
krb( a(v � ⇣))k!a . (3.18)

LetH1
#,v(!a) := H1

#(!a) for a 2 Vext
h andH1

#,v(!a) := {⇣ 2 H1
#(!a); (⇣, 1)!a = (v, 1)!a} for a 2 V int

h . Introduc-

ing this space allows us to restrain the arguments to mean value zero on vertices a 2 V int
h , so that we can employ

inequality (3.5). Therein the jumps actually disappear thanks to the present simplifying assumption (3.14). In
combination with the Cauchy–Schwarz inequality, we obtain

inf
⇣2H1

#

(!a)
krb( a(v � ⇣))k!a  inf

⇣2H1

#,v(!a)
krb( a(v � ⇣))k!a

 Ccont,bPF min
⇣2H1

#,v(!a)
krb(v � ⇣)k!a

= Ccont,bPF min
⇣2H1

#

(!a)
krb(v � ⇣)k!a ;

(3.19)

in the final equality, we have employed that the gradient of a constant on the patch !a vanishes. Collecting
these results finishes the proof. ⇤

Proof of Proposition 3.2. The equality

X

a2Vh

X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e = d
X

e2Eh

h�1
e k⇧0

e[[v]]k2e 8v 2 H1(Th) (3.20)
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follows immediately from the fact that each face is shared by d vertices. The second claim of Proposition 3.2 then
follows from inequality (3.15b) employed for the discrete gradient r✓ and using definitions (2.9a) and (2.9b)
together with property (2.13). We now turn to the proof of the first claim of Proposition 3.2.

Let v 2 H1(Th) be arbitrary (not subject to condition (3.14)) and recall that by definition (2.9a), one has
kvk2# = min⇣2H1

0

(⌦)kr✓(v � ⇣)k2 +
P

e2Eh
h�1
e k⇧0

e[[v]]k2e. From (3.20), the jump terms immediately take the
local form requested in (2.9b). Denote s1 := argmin⇣2H1

0

(⌦)kr✓(v � ⇣)k and s2 := argmin⇣2H1

0

(⌦)krb(v � ⇣)k.
The minimization property of s1 together with the discrete gradient definition (2.7) and the fact that the jumps
of s2 are zero give

kr✓(v�s1)k2  kr✓(v�s2)k2 =

�����rb(v�s2)�✓
X

e2Eh

le([[v]])

�����

2

 2krb(v�s2)k2+2|✓|2
�����
X

e2Eh

le([[v]])

�����

2

. (3.21)

Recall that Te regroups the mesh elements sharing the face e. Employing the definition (2.6) of the lifting le([[v]]),
the facts that le([[v]]) is only supported on Te and that vh·ne|e is constant for vh 2 V0(Te), the Cauchy–Schwarz
inequality, and the inverse inequality (3.7), we easily infer, for each face e 2 Eh,

kle([[v]])kTe = sup
vh2V0(Te); kvhkTe=1

(le([[v]]),vh)Te

= sup
vh2V0(Te); kvhkTe=1

h{{vh}}·ne, [[v]]ie

= sup
vh2V0(Te); kvhkTe=1

h{{vh}}·ne,⇧
0
e[[v]]ie

 Cinvh
�1/2
e k⇧0

e[[v]]ke.

Consequently, since every simplex has d+ 1 faces, we can estimate the last term in (3.21) as

�����
X

e2Eh

le([[v]])

�����

2

=
X

K2Th

�����
X

e2EK

le([[v]])

�����

2

K

 (d+ 1)
X

K2Th

X

e2EK

kle([[v]])k2K

= (d+ 1)
X

e2Eh

kle([[v]])k2Te
 (d+ 1)C2

inv

X

e2Eh

h�1
e k⇧0

e[[v]]k2e.
(3.22)

Finally, for the bound on krb(v� s2)k, we use that s2 is the minimizer for the broken gradient rb and proceed
as in the proof of Theorem 3.4. In particular, both (3.17) and (3.18) hold true, whereas in (3.19), we need to
employ inequality (3.5) without assumption (3.14), yielding

inf
⇣2H1

#

(!a)
krb( a(v � ⇣))k!a  Ccont,bPF

 
min

⇣2H1

#

(!a)
krb(v � ⇣)k!a +

(
X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e

)1/2!
. (3.23)

Consequently,

krb(v � s2)k2  2(d+ 1)C2
cont,bPF

X

a2Vh

(
min

⇣2H1

#

(!a)
krb(v � ⇣)k2!a

+
X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e

)
.
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This already gives an upper bound with a local minimization structure, and we are left to make reappear the
discrete gradients in place of the broken ones. In order to do so, we proceed similarly to (3.21),

X

a2Vh

min
⇣2H1

#

(!a)
krb(v � ⇣)k2!a

 2
X

a2Vh

min
⇣2H1

#

(!a)
kr✓(v � ⇣)k2!a

+ 2|✓|2
X

a2Vh

�����
X

e2Eh

le([[v]])

�����

2

!a

 2
X

a2Vh

min
⇣2H1

#

(!a)
kr✓(v � ⇣)k2!a

+ 2|✓|2(d+ 1)2C2
inv

X

e2Eh

h�1
e k⇧0

e[[v]]k2e,
(3.24)

where we have used
P

a2Vh
k
P

e2Eh
le([[v]])k2!a

= (d+ 1)k
P

e2Eh
le([[v]])k2 like in (3.12) and (3.22). Altogether,

kvk2#  C2
loc

X

a2Vh

(
min

⇣2H1

#

(!a)
kr✓(v � ⇣)k2!a

+
X

e2Eh, a2e

h�1
e k⇧0

e[[v]]k2e

)
,

where C2
loc is given by (3.13), and the proof is concluded using the property (2.13) to apply the derived result

to v = u� uh. ⇤

4. Guaranteed, robust, and locally efficient a posteriori estimates in a
unified framework

We present in this section our a posteriori estimates on the error in a numerical approximation of prob-
lem (1.1). The estimates give guaranteed global error upper bound (global reliability). Crucially, we achieve
all robustness with respect to the jumps and anisotropy of the di↵usion tensor ⌃, robustness with respect to
the approximation polynomial degree, and local error lower bound (local e�ciency); the latter in consequence
of the localization results of Section 3. Our results are presented in an abstract framework, following [31–33].
This enables to cover at once basically any classical numerical method, in particular all types of conforming,
nonconforming, mixed, and discontinuous Galerkin finite elements. The key idea is to build a piecewise polyno-
mial H1

0 (⌦)-conforming potential reconstruction and a piecewise polynomial H(div,⌦)-conforming equilibrated
flux reconstruction, in extension of the methodology developed in [1, 2, 5, 13, 18, 25, 26, 34, 36, 37, 40, 42, 43, 52]
and the references therein.

4.1. Flux and potential reconstruction

Let Pp(Th), p � 0, stand for piecewise polynomials on the mesh Th of total degree at most p; we will denote
by ⇧p the L2(⌦)-orthogonal projection onto Pp(Th). For vector-valued functions, the Raviart–Thomas–Nédélec
mixed finite element spaces will be used; RTNp(Th) := {vh 2 [L2(⌦)]d;vh|K 2 RTNp(K)}, p � 0, with the
local spaces RTNp(K) := [Pp(K)]d + Pp(K)x, K 2 Th, see Brezzi and Fortin [15] or Roberts and Thomas [44].

To obtain an H(div,⌦)-conforming flux reconstruction, we solve homogeneous local Neumann (Neumann–
Dirichlet close to the boundary) problems over patches of elements Ta via the mixed finite element method:

Definition 4.1 (Equilibrated flux reconstruction). Let uh 2 H1(Th) satisfy Assumption 2.4. For all vertices

a 2 Vh, set

Va
h := {vh 2 RTNp(Ta) \H(div,!a); vh·n!a = 0 on @!a},

Qa
h := {qh 2 Pp(Ta); (qh, 1)!a = 0},

a 2 V int
h ,

Va
h := {vh 2 RTNp(Ta) \H(div,!a); vh·n!a = 0 on @!a \ @⌦},

Qa
h := Pp(Ta),

a 2 Vext
h .
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Then prescribe �a
h 2 Va

h and r̄ah 2 Qa
h by solving

(�a
h,vh)!a � (r̄ah,r·vh)!a = �( a⌃r✓uh,vh)!a 8vh 2 Va

h, (4.1a)

(r·�a
h, qh)!a = ( af �⌃r✓uh·r a, qh)!a 8qh 2 Qa

h (4.1b)

and define, after extension by zero outside of !a,

�h :=
X

a2Vh

�a
h.

To obtain an H1
0 (⌦)-conforming potential reconstruction, we solve homogeneous local Dirichlet problems

over patches of elements Ta via the finite element method:

Definition 4.2 (Potential reconstruction). Let uh 2 H1(Th). For all vertices a 2 Vh, set

W a
h := Pp+1(Ta) \H1

0 (!a).

Then prescribe sah 2 W a
h by solving

(rsah,r⇣h)!a = (rb( auh),r⇣h)!a 8⇣h 2 W a
h (4.2)

and define, after extension by zero outside of !a,

sh :=
X

a2Vh

sah.

The two above constructions yield a piecewise vector-valued polynomial �h 2 RTNp(Th) \H(div,⌦) and a
piecewise scalar-valued polynomial sh 2 Pp+1 \H1

0 (⌦). It is easy to verify that, crucially,

r·�h = ⇧pf, (4.3)

see [13] or [32, Lemma 3.5]. Problems (4.1) and (4.2) actually admit local minimization characterizations, see,
e.g., [32, Remarks 3.7 and 3.10] and [33, Corollaries 3.1 and 3.3]:

Remark 4.3 (Local minimizations). Problems (4.1) and (4.2) can be equivalently rewritten as

�a
h := arg min

vh2Va
h,r·vh=⇧Qa

h
( af�⌃r✓uh·r a)

k a⌃r✓uh + vhk!a 8a 2 Vh, (4.4a)

sah := arg min
⇣h2Wa

h

krb( auh � ⇣h)k!a 8a 2 Vh. (4.4b)

Remark 4.4 (Discrete and broken gradients). In practice, one could also choose sah := argmin⇣h2Wa
h
kr✓( auh�

⇣h)k!a instead of (4.4b). The current choice is motivated by the key property (4.7b) below which enables to

prove the (local) e�ciencies in Theorem 4.8.

In practice, the approximate solution uh is a piecewise p-degree polynomial, see Assumption 4.6 below. This
fixes the degree p in Definitions 4.1 and 4.2.

4.2. Guaranteed error control

We present here our a posteriori error estimate on the intrinsic error |||u� uh||| given by (2.11), still merely
under Assumption 2.4, in the very abstract setting uh 2 H1(Th). Define the data oscillation estimators

⌘osc,K :=
hK

⇡
kf �⇧pfkK , K 2 Th.
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It follows as in [32] and the references therein that:

Theorem 4.5 (A posteriori estimate in a unified framework). Let u be the weak solution of problem (1.1) given
by (1.2). Let uh 2 H1(Th) satisfying Assumption 2.4 be arbitrary. Consider the equilibrated flux reconstruction

of Definition 4.1 and the potential reconstruction of Definition 4.2. Then the error u�uh measured in intrinsic

norm (2.11) can be estimated by

|||u� uh|||2 
X

K2Th

(k⌃r✓uh + �hkK + ⌘osc,K)2 +
X

K2Th

kr✓(uh � sh)k2K +
X

e2Eh

h�1
e k⇧0

e[[uh]]k2e. (4.5)

Proof. We present the proof for self-containedness. From (2.11), we need to bound ku � uhk2⇤ and ku � uhk2#
separately. Using the definition of the dual norm (2.1a), the definition of the weak solution (1.2), and the
consistency property (2.8), we derive

ku� uhk⇤ = max
'2H1

0

(⌦); kr'k=1
(⌃r✓(u� uh),r') = max

'2H1

0

(⌦); kr'k=1
{(f,')� (⌃r✓uh,r')}. (4.6)

Next, we add and subtract ⇧pf and employ the crucial divergence property (4.3) of our equilibrated flux
reconstruction �h as well as the Green theorem (r·�h,')+(�h,r') = 0, since �h 2 H(div,⌦) and ' 2 H1

0 (⌦).
This leads to

ku� uhk⇤ = max
'2H1

0

(⌦); kr'k=1
{(f �⇧pf,')� (⌃r✓uh + �h,r')}

= max
'2H1

0

(⌦); kr'k=1

X

K2Th

{(f �⇧pf,'�⇧0')K � (⌃r✓uh + �h,r')K}.

From here, the elementwise Poincaré inequality k' � ⇧0'kK  hK
⇡ kr'kK , cf. (3.4) (note that simplices are

convex yielding the constant 1/⇡), and the Cauchy–Schwarz inequality lead to the first term of (4.5). The
second and third terms of (4.5) follow immediately from the definition (2.9a) applied to ku � uhk2#. Indeed,

using (2.13), it is enough to note that the potential reconstruction sh 2 H1
0 (⌦), so that we can use it to bound

the first term on the second line of (2.13). ⇤

4.3. Robust (local) e�ciency

We now prove the converse statement to Theorem 4.5, and this locally in the neighborhood of each mesh
element. Results of Section 3 are of course crucial here, stating that the intrinsic norm (2.11) in which we
measure the error indeed admits a local structure. For this local e�ciency result, we need to suppose that the
approximate solution uh is a piecewise polynomial of the degree p, which fixes the polynomial degree used in
Definition 4.1 and 4.2:

Assumption 4.6 (Piecewise polynomial approximation). The approximate solution uh is a piecewise polynomial

of degree p � 1, uh 2 Pp(Th).

Moreover, we henceforth also assume that the di↵usion tensor⌃ is piecewise constant (possible generalizations
are described below in Remark 4.10):

Assumption 4.7 (Piecewise constant di↵usion). The di↵usion tensor ⌃ is piecewise constant with respect to

the computational mesh Th.

The crucial ingredient for local e�ciency under Assumptions 4.6 and 4.7 are the following two stability results
for the problems (4.1) and (4.2), shown respectively in [12, Theorem 7] and in [32, Corollary 3.16] in two space
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dimensions and extended to three space dimensions in [33, Corollaries 3.1 and 3.3] (recall that the space H1
⇤ (!a)

is given by (3.1)):

k a⌃r✓uh + �a
hk!a  Cst max

'2H1

⇤(!a); kr'k!a=1
{�( a⌃r✓uh,r')!a + (⇧p( af)�⌃r✓uh·r a,')!a},

(4.7a)

min
⇣h2Wa

h

krb( auh � ⇣h)k!a  Cst min
⇣2H1

0

(!a)
krb( auh � ⇣)k!a . (4.7b)

Here Cst is a constant that only depends on the mesh shape regularity T and on the space dimension d.
A computable upper bound on Cst is given in [32, Lemma 3.23]. Note that (4.7b) is stated for the broken
gradient (2.5).

Define a local e�ciency data oscillation term

⌘̃osc,K :=
hK

⇡
k af �⇧p( af)kK , K 2 Th, (4.8)

together with ⌘̃osc :=
�P

K2Th
(⌘̃osc,K)2

 1/2
. Recall that the dual norm of the residual ku � uhk⇤ is defined

by (2.1a) and it localizes following Proposition 3.1; the distance to the energy space ku�uhk# is given by (2.9a)
and it localizes following Proposition 3.2; the broken gradient is given by (2.5) and the discrete gradient by (2.7);
the constants Ccont,PF, Ccont,bPF, and Cloc are respectively given by (3.2), (3.5), and (3.13). We then have:

Theorem 4.8 (Local and global e�ciency and robustness for Theorem 4.5). Let u be the weak solution given

by (1.2), let uh satisfy Assumptions 2.4 and 4.6, and let Assumption 4.7 on the di↵usion tensor be satisfied.

Then, for �h given by Definition 4.1,

k⌃r✓uh + �hkK  CstCcont,PF

X

a2VK

ku� uhk⇤,!a + Cst

X

a2VK

(
X

K02Ta

⌘̃2osc,K0

)1/2

8K 2 Th, (4.9a)

k⌃r✓uh + �hk  (d+ 1)CstCcont,PFku� uhk⇤ + (d+ 1)Cst⌘̃osc. (4.9b)

Similarly, for sh given by Definition 4.2, when h[[uh]], 1ie = 0 for all faces e 2 Eh,

krb(uh � sh)kK  CstCcont,bPF

X

a2VK

ku� uhk#,!a 8K 2 Th, (4.10a)

krb(uh � sh)k  (d+ 1)CstCcont,bPFku� uhk# (4.10b)

and in general

kr✓(uh � sh)kK  CstCloc

X

a2VK

X

a02!a

ku� uhk#,!a0 8K 2 Th, (4.11a)

kr✓(uh � sh)k  (d+ 1)1/2CstClocku� uhk#. (4.11b)

There always holds

h�1/2
e k⇧0

e[[uh]]ke = h�1/2
e k⇧0

e[[u� uh]]ke 8e 2 Eh. (4.12)

Proof. Assertion (4.9a) follows as in [12, Theorem 1], cf. also [32, Theorem 3.17], whereas inequality (4.9b) can
be shown as in [32, Lemma 3.22]. As (4.12) is straightforward, we only prove inequalities (4.10) and (4.11).

Let first h[[uh]], 1ie = 0 for all e 2 Eh, so that in particular rbuh = r✓uh in ⌦. Fix an element K 2 Th.
Using Definition 4.2 of sah that yields (4.4b), the potential reconstruction decomposition sh|K =

P
a2VK

sah|K ,
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the partition of unity by the hat functions
P

a2VK
 a|K = 1|K , the triangle inequality, and enlarging the

integration set, we infer

krb(uh � sh)kK =

����
X

a2VK

(rb( auh � sah))|K
����
K


X

a2VK

krb( auh � sah)k!a . (4.13)

Now, the stability (4.7b), inequalities (3.18)–(3.19) with v = uh, the local norm definition (2.9b), and the fact
that h[[uh]], 1ie = 0 for all e 2 Eh imply kuhk#,!a = ku� uhk#,!a , proceeding as in (2.13). Thus

krb( auh � sah)k!a  Cst min
⇣2H1

0

(!a)
krb( auh � ⇣)k!a  CstCcont,bPFku� uhk#,!a . (4.14)

Thus (4.10a) follows. The global e�ciency (4.10b) is then a consequence of the estimate of the form (3.17)
together with (4.13), (4.14), (3.15b), and the norm definitions (2.9)

krb(uh � sh)k2  (d+ 1)
X

a2Vh

krb( auh � sah)k2!a
 (d+ 1)C2

st

X

a2Vh

min
⇣2H1

0

(!a)
krb( auh � ⇣)k2!a

 (d+ 1)C2
stC

2
cont,bPF

X

a2Vh

ku� uhk2#,!a
 (d+ 1)2C2

stC
2
cont,bPF min

⇣2H1

0

(⌦)
krb((u� uh)� ⇣)k2.

(4.15)

In order to show (4.11a), remark first that, using the discrete gradient definition (2.7), the triangle inequality,
and (4.13),

kr✓(uh � sh)kK =

�����rb(uh � sh)� ✓
X

e2EK

le([[uh]])

�����
K


X

a2VK

krb( auh � sah)k!a + |✓|

�����
X

e2EK

le([[uh]])

�����
K

.

First, as in (3.22), employing definition (2.9b),

�����
X

e2EK

le([[uh]])

�����
K

 (d+ 1)1/2Cinv

(
X

e2EK

h�1
e k⇧0

e[[v]]k2e

)1/2

 1

d
(d+ 1)1/2Cinv

X

a2VK

ku� uhk#,!a .

Next, the finite element stability (4.7b) together with (3.18) and (3.23) give

krb( auh � sah)k!a  Cst min
⇣2H1

0

(!a)
krb( auh � ⇣)k!a  Cst inf

⇣2H1

#

(!a)
krb( a(uh � ⇣))k!a

 CstCcont,bPF

 
min

⇣2H1

#

(!a)
krb(uh � ⇣)k!a +

(
X

e2Eh, a2e

h�1
e k⇧0

e[[uh]]k2e

)1/2!
.

Using once more the discrete gradient definition (2.7) and proceeding as in (3.24),

min
⇣2H1

#

(!a)
krb(uh � ⇣)k2!a

 2 min
⇣2H1

#

(!a)
kr✓(uh � ⇣)k2!a

+ 2|✓|2
�����

X

e2Eh,e2!a

le([[uh]])

�����

2

!a

 2 min
⇣2H1

#

(!a)
kr✓(uh � ⇣)k2!a

+ 2|✓|2(d+ 1)C2
inv

X

e2Eh,e2!a

h�1
e k⇧0

e[[uh]]k2e


⇣
2 +

1

d
2|✓|2(d+ 1)C2

inv

⌘ X

a02!a

ku� uhk2#,!a0
,
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where we have used estimate of the form (3.22) for such faces e 2 Eh that lie in the closure of the patch
subdomain !a, whence

min
⇣2H1

#

(!a)
krb(uh � ⇣)k!a 

⇣
2 +

1

d
2|✓|2(d+ 1)C2

inv

⌘1/2 X

a02!a

ku� uhk#,!a0 .

Altogether,

kr✓(uh � sh)kK  CstCcont,bPF

⇣
2 +

1

d
2|✓|2(d+ 1)C2

inv

⌘1/2 X

a2VK

X

a02!a

ku� uhk#,!a0

+ CstCcont,bPF

X

a2VK

ku� uhk#,!a

+
1

d
|✓|(d+ 1)1/2Cinv

X

a2VK

ku� uhk#,!a ,

which proves (4.11a), using that Cst � 1 and definition (3.13) of the constant Cloc.
Finally, for the global bound (4.11b), we first use, as in (3.21)–(3.22),

kr✓(uh � sh)k2  2krb(uh � sh)k2 + 2|✓|2(d+ 1)C2
inv

X

e2Eh

h�1
e k⇧0

e[[uh]]k2e.

One next employs the first line of (4.15). From there, the conclusion follows as in the proof of Proposition 3.2. ⇤

Remark 4.9 (E�ciency in the L2 flux norm for Theorem 4.8). The Cauchy–Schwarz inequality gives kvk⇤,!a 
k⌃r✓vk!a and kvk⇤  k⌃r✓vk for all v 2 H1(Ta) from (2.1), so that, immediately,

k⌃r✓uh + �hkK  CstCcont,PF

X

a2VK

k⌃r✓(u� uh)k!a + Cst

X

a2VK

(
X

K02Ta

⌘̃2osc,K0

)1/2

8K 2 Th,

k⌃r✓uh + �hk  (d+ 1)CstCcont,PFk⌃r✓(u� uh)k+ (d+ 1)Cst⌘̃osc.

Applications to conforming, nonconforming, mixed, and discontinuous Galerkin approximations are straight-
forward following [32, Section 4].

Remark 4.10 (More general di↵usion tensors ⌃). For Theorem 4.8, the requirement of piecewise constant

di↵usion tensor ⌃ from Assumption 4.6 is unavoidable. It is namely crucial for inequality (4.7a) to hold. If

⌃ is piecewise polynomial of degree p0 and uh is piecewise polynomial of degree p, then RTNp+p0(Ta) spaces

would need to be chosen in Definition 4.1 to maintain the present form of the results; otherwise a supplementary

oscillation term of the datum ⌃ of the form of (4.8) would appear in Theorem 4.8.

Remark 4.11 (Polynomial degree and cost of the reconstructions). The reconstruction of Definition 4.1 relies

on solution of local problems with RTNp(Ta)-spaces, whereas that of Definition 4.2 on solution of local problems

with Pp+1(Ta) spaces. Although these constructions are local, the associated computational burden may not be

completely negligible. There exist various ways how to decrease it. First, the proofs in [12] and [33] actually show

that the solves of local problems on each patch Ta by finite elements can be replaced by an explicit run through

Ta and a local construction inside each mesh element. This explicit construction remarkably maintains the

polynomial-degree robustness. Equilibrated reconstruction in RTNp�1(Ta) for uh 2 Pp has also been suggested

in [12] and analyzed in [31, Section 6.2]; one does not know here, however, whether it leads to polynomial-degree

robustness. A recent survey of cheaper (but possibly not polynomial-degree robust) a posteriori estimators via

reconstructions can be found in [5].
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5. Numerical experiments

We report here the results of two numerical experiments, while relying on the conforming piecewise a�ne
finite element approximation: find uh 2 Vh := P1(Th) \H1

0 (⌦) such that

(⌃ruh,rvh) = (f, vh) 8vh 2 Vh. (5.1)

The experiments were implemented by Jan Blechta (Charles University, Prague) using the dolfin-tape [7]
package built on top of the FEniCS Project [3].

We start by noting that that since uh 2 H1
0 (⌦), |||u�uh||| = ku�uhk⇤, and the nonconformity error ku�uhk#

is zero. We will focus on our a posteriori error estimates of Theorem 4.5, while tracing the error ku � uhk⇤
defined by (2.1a) and the estimate of (4.5) that simplifies to

ku� uhk⇤  ⌘ :=

(
X

K2Th

(k⌃ruh + �hkK + ⌘osc,K)2
)1/2

; (5.2)

indeed, sh = uh and [[uh]] = 0 for all e 2 Eh here, cf. (4.11). The e�ciency of our estimates, proven by (4.9b) of
Theorem 4.8, is in practice best appreciated by the e↵ectivity index

E↵ :=
⌘

ku� uhk⇤
. (5.3)

Note in this respect that ku�uhk⇤ cannot easily be computed even if u is known, as this will be the case below.
Indeed, from (2.1a) and (1.2), see (4.6), ku � uhk⇤ = krr k, where r is the Riesz representer of the residual,r 2 H1

0 (⌦) such that
(rr ,rv) = (f, v)� (⌃r✓uh,rv) 8v 2 H1

0 (⌦). (5.4)

In what follows, we compute ku�uhk⇤ approximately, while approximating (5.4). We again employ a posteriori
error estimates to ensure that ku�uhk⇤ is computed with relative accuracy 10�2, see the details in [8, Section 5].
We will also display the canonical H1

0 (⌦)-norm of the error kr(u� uh)k.
Two test cases, one with a regular solution and one with a singular solution, are considered. Only uniform

mesh refinement is used in the first case, whereas mesh adaptivity is employed in the second one. Here all
elements where the estimator exceeds 50% of the maximal estimator value on the given mesh are refined by the
so-called newest-vertex bisection refinement algorithm.

5.1. A regular weak solution

We first consider the test case from [39, Section 5.1] with a regular solution. We set ⌦ := (�1, 1) ⇥ (�1, 1)
with ⌦+ := (0, 1) ⇥ (�1, 1) and ⌦� := (�1, 0) ⇥ (�1, 1) and let ⌃|⌦

+

= �+I, ⌃|⌦� = ��I with �+ = 1 and
�� < 0. The exact solution is given by

u(x, y) = ��x(x+ 1)(x� 1)(y + 1)(y � 1) for (x, y) 2 ⌦+,

u(x, y) = x(x+ 1)(x� 1)(y + 1)(y � 1) for (x, y) 2 ⌦�,

and the (inhomogeneous) source term f is prescribed accordingly. Note that this solution indeed leads to the
homogeneous Dirichlet boundary condition. Together with its finite element approximation and the correspond-
ing initial mesh for the setting �� = �1/3, it is presented in Figure 1. Higher values of the approximate solution
can be noted in particular in the left subdomain ⌦�. Specifying the operator T as is in [39], see also Remark 5.1
below, one can see that the problem is well-posed when �� 6= �1.

The ku� uhk⇤ and kr(u� uh)k errors and the estimate ⌘ of (5.2) are traced in the left parts of Figures 2–4,
for three di↵erent choices of the parameter ��. The corresponding e↵ectivity indices given by (5.3) are plotted
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Figure 1. Exact (left) and approximate (right) solution with the corresponding initial mesh,
the regular case with �� = �1/3
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Figure 2. Estimates and errors for uniform mesh refinement (left) and the corresponding
e↵ectivity indices (right), the regular case with �� = �0.01



TITLE WILL BE SET BY THE PUBLISHER 21

Number of vertices
102 103 104 105

Er
ro

rs
 a

nd
 e

st
im

at
or

s 

10-5

10-4

10-3

10-2

10-1

100

error
error H1

estimate
data osc.

Number of vertices
102 103 104 105

Ef
fe

ct
iv

ity
 in

de
x

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18
effectivity ind.

Figure 3. Estimates and errors for uniform mesh refinement (left) and the corresponding
e↵ectivity indices (right), the regular case with �� = �1/3

in the right parts of these figures. We observe a systematic first-order decrease of both errors, as predicted by
the a priori error analysis, cf. [20]. The overall estimator ⌘ of (5.2), as well as its principal component given by�P

K2Th
k⌃ruh + �hk2K

 1/2
, also decrease with first order, in agreement with Theorems 4.5 and 4.8. On the

other hand, the data oscillation estimator
�P

K2Th
⌘2osc,K

 1/2
decreases with a slope of two and its influence

rapidly diminishes.
The e↵ectivity indices in all the three settings are very close to the optimal value of one, including the last

challenging case �� = �0.99 which is very close to the well-posedness limit. This clearly demonstrates the
robustness of our estimates with respect to the jump and sign-change in the di↵usion tensor ⌃, if the error
is measured in the intrinsic norm ku � uhk⇤. It can be noted from Figures 2–4 that such a robustness does
not hold for the canonical norm kr(u� uh)k. Similarly, the upper bound k⌃r(u� uh)k and the lower bound
(⌃r(u�uh),r(T(u�uh)))

kr(T(u�uh))k on the intrinsic error ku � uhk⇤ given by (2.2) seem rather ⌃- and T-dependent, see

in particular the numerical study in [22, Section 6]. Finally, Figure 5 illustrates that the distribution of the
error is predicted very correctly by our estimators (plotting by a piecewise a�ne function is done as explained
in [8, Section 5]).

We finish this section by a remark relative to the specific case �� = �1/3:

Remark 5.1 (Equivalence of the intrinsic norm with its upper and lower bounds). Consider the intrinsic norm

ku � uhk⇤ given by (2.1a) together with its upper k⌃r(u � uh)k and lower bounds

(⌃r(u�uh),r(T(u�uh)))
kr(T(u�uh))k that

follow from (2.2). Interestingly enough, they all coincide in the case �� = �1/3. To explain this behavior, note
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Figure 4. Estimates and errors for uniform mesh refinement (left) and the corresponding
e↵ectivity indices (right), the regular case with �� = �0.99

Figure 5. Exact (left) and estimated (right) error distribution, the regular case with �� = �1/3
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Figure 6. Approximate solution uh (left) the pointwise error u�uh (right) on the correspond-
ing initial mesh, the singular case with �� = �3.1

first that k⌃r(u � uh)k and ku � uhk⇤ will coincide whenever ⌃r(u � uh) is a gradient of some scalar field

from H1
0 (⌦). This will happen when curl of ⌃r(u� uh) = 0 on all K 2 Th and [[R⇡

2

⌃r(u� uh)·n]] = 0 on all

e 2 Eh. These conditions are actually satisfied in this test case for all values of ��. To account for the other

equality, one then notices that, when �� 2 (�1, 0), the operator T may be defined as

Tu(x, y) =

⇢
u+(x, y) for (x, y) 2 ⌦+,
�u�(x, y) + 2u+(�x, y) for (x, y) 2 ⌦�

for this test case, with u+ := u|⌦
+

and u� := u|⌦� . The chosen exact solution being such that u+(x, y) =
���u�(�x, y) for (x, y) 2 ⌦+, the formula for Tu in ⌦� simplifies to (Tu)|⌦� = (�1�2��)u�. With the help

of these expressions, one may compute exactly

R(��) :=
(⌃ru,r(Tu))

kr(Tu)k k⌃ruk =
(1 + 2�� + |��|)

(|1 + 2��|2 + |��|2)1/2
p
2
.

For �� 2 (�1/3, 0), it holds that R(��) 2 (1/
p
2, 1) and moreover R(�1/3) = 1, whereas lim��!�1 R(��) = 0.

To obtain the same result for the ratio

(⌃r(u�uh),r(T(u�uh)))
kr(T(u�uh))k k⌃r(u�uh)k , one needs to work with symmetric meshes

with respect to the line {x = 0}, that is, globally T-conform meshes in the sense of [20]. In this case, one

has TVh = Vh, so that the properties of T at the continuous level carry over to the discrete level, whereas

uh|⌦
+

(x, y) = ���uh|⌦�(�x, y) for (x, y) 2 ⌦+, by direct inspection of the formulation (5.1).

5.2. A singular weak solution

We next consider the test case from [39, Section 5.2] with a singular solution. We set ⌦ := (�1, 1)⇥ (�1, 1)
with ⌦+ := (0, 1)⇥ (0, 1) and ⌦� := ⌦ \⌦+ and let again ⌃|⌦

+

= �+I, ⌃|⌦� = ��I with �+ = 1 and �� < 0.
The exact solution is according to Bonnet-BenDhia et al. [11] given by

u(x, y) = r�(c1 sin(�✓) + c2 sin(�(⇡/2� ✓))) for (x, y) 2 ⌦+,

u(x, y) = r�(d1 sin(�(✓ � ⇡/2)) + d2 sin(�(2⇡ � ✓)) for (x, y) 2 ⌦�.
(5.5)
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Figure 7. Estimates and errors for uniform and adaptive mesh refinement (left) and the
corresponding e↵ectivity indices (right), the singular case with �� = �5

Here (r, ✓) are the polar coordinates centered at the origin and � = 2/⇡ arccos((1 � ��)/(2|1 + ��|)). We
consider two test settings with �� = �5 and �� = �3.1 leading respectively to c1 = 1, c2 = �1, d1 = �0.8,
d2 = �0.8, � ⇡ 0.4601069123 and c1 = 1, c2 = �1, d1 ⇡ �0.3556451613, d2 ⇡ 0.3556451613, � ⇡ 0.1391989493.
Classically, u 2 H1+�(⌦) only, with a singularity at the origin. The finite element approximation on the
coarsest mesh for the case �� = �3.1 is presented in the left part of Figure 6. The steep gradient around the
origin of the exact solution is largely missed by the approximation, as it can be seen from the right part of
Figure 6. The inhomogeneous Dirichlet boundary condition is prescribed according to (5.5). It is naturally
treated in the reconstruction of Definition 4.1, see [28, Definition 3.5], but we neglect here the additional
quadrature estimator that theoretically appears in the upper and lower bounds, see [28, Theorems 3.3 and 3.12]
and [33, Corollary 3.8]. The source term f corresponding to (5.5) is equal to 0; consequently, the data oscillation
estimators ⌘osc,K in (5.2) vanish. The operator T is specified in [39]; the problem is in particular well-posed
when �� < �3 or �1/3 < �� < 0.

The intrinsic error norm ku � uhk⇤ together with the canonical error norm kr(u � uh)k and the estimator
⌘ given by (5.2) are presented in the left parts of Figures 7–8. The corresponding e↵ectivity indices are then
given in the right parts of these figures. They are remarkably close to the optimal value of one in all the
settings, illustrating numerically the robustness that has been proven in Section 4. The convergence orders of
both errors and of the estimate for uniform mesh refinement correspond to the a priori analysis, being 0.46 and
0.12 respectively in the two settings. For adaptive mesh refinement (after a preliminary phase for the strongly
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Figure 8. Estimates and errors for uniform and adaptive mesh refinement (left) and the
corresponding e↵ectivity indices (right), the singular case with �� = �3.1

Figure 9. Exact (left) and estimated (right) error distribution on an adaptively refined mesh,
the singular case with �� = �3.1
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singular setting), the convergence orders are optimal and close to 1. Finally, the predicted spatial distribution
of the error still seems to be very accurate even in the close-to-the-limit singular case �� = �3.1, see Figure 9.

6. Conclusions and outlook

We have shown in this work that globally defined dual norms as well as globally defined distance norms to
the energy space admit an equivalent localization. Direct proofs with clearly identified constants are given. In
the setting of the transmission problem with sign-changing coe�cients (1.1), this suggests that the intrinsic
global norm (2.11) is suitable for a posteriori error analysis. Indeed, relying on the concept of flux and potential
reconstructions, we have obtained a guaranteed upper bound, as well as local lower bounds up to a generic
constant independent of the jump or sign change in the di↵usion coe�cient and the approximation polynomial
degree. This robustness is moreover obtained in a unified framework covering basically all classical numerical
methods. Numerical experiments, in the conforming finite element setting, confirm these results. Possible future
developments include control of the error from a not completely converged linear solver (and corresponding
stopping criteria), extension to nonlinear problems, or proposition of an adaptive operator T for self-adapting
the method.

Appendix A. Localization of the flux distance to the energy space

In extension of the discussion in Section 2.7, we can observe that

ku� uhk⇤  min
�2H(div,⌦);r·�=f

k⌃r✓uh + �k

by the Green theorem, so that ku� uhk⇤ is linked to the nonconformity in the approximate flux �⌃r✓uh. We
now present for this term a localization result like those of Section 3.2. Let H⇤(div,!a) stand for H(div,!a)
functions with zero normal trace in the appropriate sense on @!a for a 2 V int

h and for H(div,!a) functions with
zero normal trace in the appropriate sense on @!a \ @⌦ for a 2 Vext

h . One can show similarly as in Section 3.2,
with the constant Ccont,PF of inequality (3.2) that:

Theorem A.1 (Localization of the flux nonconformity evaluation). Let uh 2 H1(Th) satisfying Assumption 2.4

be arbitrary. Then

min
�2H(div,⌦);r·�=f

k⌃r✓uh + �k2  (d+ 1)
X

a2Vh

min
�a2H⇤(div,!a);r·�a= af�⌃r✓uh·r a

k a⌃r✓uh + �ak2!a
,

X

a2Vh

min
�a2H⇤(div,!a);r·�a= af�⌃r✓uh·r a

k a⌃r✓uh + �ak2!a
 (d+ 1)C2

cont,PF min
�2H(div,⌦);r·�=f

k⌃r✓uh + �k2.

Acknowledgement: The authors are very much grateful to Jan Blechta (Charles University, Prague) for kindly
providing the numerical results.

References

[1] Ainsworth, M. Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal.
42, 6 (2005), 2320–2341.

[2] Ainsworth, M. A framework for obtaining guaranteed error bounds for finite element approximations. J. Comput. Appl.
Math. 234, 9 (2010), 2618–2632.

[3] Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., and
Wells, G. The FEniCS Project version 1.5. Archive of Numerical Software 3, 100 (2015).
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[35] Kreuzer, C., and Süli, E. Adaptive finite element approximation of steady flows of incompressible fluids with implicit

power-law-like rheology. ESAIM Math. Model. Numer. Anal. 50, 5 (2016), 1333–1369.
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