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828 Bd des Maréchaux, 91762 Palaiseau Cedex, France

patrick.ciarlet@ensta-paristech.fr

Charles F. Dunkl

Department of Mathematics, University of Virginia
Charlottesville, Virginia 22904-4137, USA

cfd5z@virginia.edu

Stefan A. Sauter∗

Institut für Mathematik, Universität Zürich
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In this paper, we will develop a family of non-conforming “Crouzeix–Raviart” type finite
elements in three dimensions. They consist of local polynomials of maximal degree p ∈ N

on simplicial finite element meshes while certain jump conditions are imposed across
adjacent simplices. We will prove optimal a priori estimates for these finite elements.
The characterization of this space via jump conditions is implicit and the derivation
of a local basis requires some deeper theoretical tools from orthogonal polynomials on
triangles and their representation. We will derive these tools for this purpose. These
results allow us to give explicit representations of the local basis functions. Finally, we
will analyze the linear independence of these sets of functions and discuss the question
whether they span the whole non-conforming space.
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1. Introduction

For the numerical solution of partial differential equations, Galerkin finite element
methods are among the most popular discretization methods. In the last decades,
non-conforming Galerkin discretizations have become very attractive where the
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test and trial spaces are not subspaces of the natural energy spaces and/or the
variational formulation is modified on the discrete level. These methods have nice
properties, e.g., in different parts of the domain different discretizations can be
easily used and glued together or, for certain classes of problems (Stokes problems,
highly indefinite Helmholtz and Maxwell problems, problems with “locking”, etc.),
the non-conforming discretization enjoys a better stability behavior compared to
the conforming one. One of the first non-conforming finite element space was the
Crouzeix–Raviart element ([12], see [5] for a survey). It is piecewise affine with
respect to a triangulation of the domain while interelement continuity is required
only at the barycenters of the edges/facets (2D/3D).

Our paper can be considered as Part II of [9], where a family of high-order
non-conforming (intrinsic) finite elements have been introduced which corresponds
to a family of high-order Crouzeix–Raviart elements in two dimensions. For Pois-
son’s equation in 2D, this family includes the non-conforming Crouzeix–Raviart
element [12], the Fortin–Soulie element [15], the Crouzeix–Falk element [11], and
the Gauss–Legendre elements [1, 21] as well as the standard conforming hp-finite
elements. However, we focus here on the formulation in the primal variables instead
its intrinsic version.

The definition of Crouzeix–Raviart type finite elements was given in the original
paper [12] in d spatial dimensions and for general polynomial order p. However, this
definition was fully implicit and global. An explicit representation of basis functions
of order p for this space has been derived in [9] for d = 2 while the representation
of general basis functions in three spatial dimensions is the topic of this paper.
These new finite element spaces are non-conforming but the (broken version of the)
continuous bilinear form can still be used. Thus, our results also give insights on
how far one can go in the non-conforming direction while keeping the original forms.

One important application of Crouzeix–Raviart finite elements is the stable
discretization of the Stokes equation. In our paper, the mathematical focus is on
the explicit construction of a basis for these finite elements and this requires the
development of some deeper theoretical tools in the field of orthogonal polynomials
on triangles and their representations. A first step for the definition of these basis
functions is to decompose the space of two variate orthogonal polynomials on the
unit triangle into irreducible S3 modules. Then, a frame for each of these modules
can be constructed by considering eigenvalue problems for combinations of the two
generating reflections for an action of the symmetric group S3. Finally, the frame
is reduced to a basis by deriving and employing appropriate transformations which
allow to determine linear combinations of the frame functions which result in linear
independent functions.

The investigation of the stability of these new Crouzeix–Raviart basis functions
for Stokes equations would overload this paper and will be the topic of future
research. Hence, we consider here Poisson’s equation as a simple model problem for
the derivation of p-explicit representations of Crouzeix–Raviart finite elements in
three dimensions.



2nd Reading

April 3, 2018 9:1 WSPC/S0219-5305 176-AA 1850007

A family of Crouzeix–Raviart finite elements in 3D 3

There is a vast literature on various conforming and non-conforming, primal,
dual, mixed formulations of elliptic differential equations and conforming as well
as non-conforming discretization. Our main focus is the characterization and con-
struction of non-conforming Crouzeix–Raviart type finite elements from theoretical
principles. For this reason, we do not provide an extensive list of references on
the analysis of specific families of finite elements spaces but refer to the classical
monographs [8, 20, 2] and the references therein.

The paper is organized as follows.
In Sec. 2, we introduce our model problem, Poisson’s equation, the relevant

function spaces and standard conditions on its well-posedness.
In Sec. 3, we briefly recall classical, conforming hp-finite element spaces and

their Lagrange basis.
The new non-conforming finite element spaces are introduced in Sec. 4. We

introduce an appropriate compatibility condition at the interfaces between elements
of the mesh so that the non-conforming perturbation of the original bilinear form
is consistent with the local error estimates. We will see that this compatibility con-
dition can be inferred from the proof of the second Strang lemma applied to our
setting. The weak compatibility condition allows to characterize the non-conforming
family of high-order Crouzeix–Raviart type elements in an implicit way. In this sec-
tion, we will also present explicit representations of non-conforming basis functions
of general degree p while their derivation and analysis is the topic of the following
sections.

Section 5 is devoted to the explicit construction of a basis for these new non-
conforming finite elements. It requires deeper theoretical tools from orthogonal
polynomials on triangles and their representation which we will derive for this
purpose in this section.

It is by no means obvious whether the constructed set of functions is linearly
independent and span the non-conforming space which was defined implicitly in
Sec. 4. These questions will be treated in Sec. 6.

Finally, in Sec. 7, we summarize the main results and give some comparison
with the two-dimensional case which was developed in [9].

2. Model Problem

As a model problem we consider the Poisson equation in a bounded Lipschitz
domain Ω ⊂ Rd with boundary Γ := ∂Ω. First, we introduce some spaces and
sets of functions for the coefficient functions and solution spaces.

The Euclidean scalar product in Rd is denoted for a,b ∈ Rd by a ·b. For s ≥ 0,
1 ≤ p ≤ ∞, let W s,p(Ω) denote the classical (real-valued) Sobolev spaces with
norm ‖ · ‖W s,p(Ω). The space W s,p

0 (Ω) is the closure with respect to the ‖ · ‖W s,p(Ω)

of all C∞(Ω) functions with compact support. As usual we write Lp(Ω) short for
W 0,p(Ω). The scalar product and norm in L2(Ω) are denoted by (u, v) :=

∫
Ω

uv

and ‖ · ‖ := (·, ·)1/2. For p = 2, we use Hs(Ω), Hs
0(Ω) as shorthands for W s,2(Ω),
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W s,2
0 (Ω). The dual space of Hs

0(Ω) is denoted by H−s(Ω). We recall that, for positive
integers s, the seminorm | · |Hs(Ω) in Hs(Ω) which contains only the derivatives of
order s is a norm in Hs

0(Ω).
We consider the Poisson problem in weak form:

Given f ∈ L2(Ω) find u ∈ H1
0 (Ω) a(u, v) := (A∇u,∇v) = (f, v) ∀ v ∈ H1

0 (Ω).

(1)

Throughout the paper we assume that the diffusion matrix A ∈ L∞(Ω, Rd×d
sym) is

symmetric and satisfies

0 < amin := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v

≤ ess sup
x∈Ω

sup
v∈Rd\{0}

(A(x)v) · v
v · v =: amax < ∞ (2)

and that there exists a partition P := (Ωj)J
j=1 of Ω into J (possibly curved) polygons

(polyhedra for d = 3) such that, for some appropriate r ∈ N, it holds

‖A‖PW r,∞(Ω) := max
1≤j≤J

‖A|Ωj‖W r,∞(Ωj) < ∞. (3)

Assumption (2) implies the well-posedness of problem (1) via the Lax–Milgram
lemma.

3. Conforming hp-Finite Element Galerkin Discretization

In this paper, we restrict our studies to bounded, polygonal (d = 2) or polyhedral
(d = 3) Lipschitz domains Ω ⊂ Rd and regular finite element meshes G (in the sense
of [8]) consisting of (closed) simplices K, where hanging nodes are not allowed. The
local and global mesh width is denoted by hK := diamK and h := maxK∈G hK .
The boundary of a simplex K can be split into (d−1)-dimensional simplices (facets
for d = 3 and triangle edges for d = 2) which are denoted by T . The set of all
facets in G is called F ; the set of facets lying on ∂Ω is denoted by F∂Ω and defines
a triangulation of the surface ∂Ω. The set of facets in Ω is denoted by FΩ. As
a convention we assume that simplices and facets are closed sets. The interior of

a simplex K is denoted by
◦
K and we write

◦
T to denote the (relative) interior of a

facet T . The set of all simplex vertices in the mesh G is denoted by V , those lying
on ∂Ω by V∂Ω, and those lying in Ω by VΩ. Similar the set of simplex edges in G is
denoted by E , those lying on ∂Ω by E∂Ω, and those lying in Ω by EΩ.

We recall the definition of conforming hp-finite element spaces (see, e.g., [20]).
For p ∈ N0 := {0, 1, . . .}, let Pd

p denote the space of d-variate polynomials of total
degree ≤ p. For a connected subset ω ⊂ Ω, we write P

p
d(ω) for polynomials of

degree ≤ p defined on ω. For a connected m-dimensional manifold ω ⊂ Rd, for
which there exists a subset ω̂ ∈ Rm along an affine bijection χω : ω̂ → ω, we set
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Pm
p (ω) := {v ◦ χ−1

ω : v ∈ Pm
p (ω̂)}. If the dimension m is clear from the context, we

write Pp(ω) short for Pm
p (ω).

The conforming hp-finite element space is given by

Sp
G,c := {u ∈ C0(Ω) | ∀K ∈ G u|K ∈ Pp(K)} ∩ H1

0 (Ω). (4)

A Lagrange basis for Sp
G,c can be defined as follows. Let

N̂ p :=
{

i
p

: i ∈ Nd
0 with i1 + · · · + id ≤ p

}
(5)

denote the equispaced unisolvent set of nodal points on the d-dimensional unit
simplex

K̂ :=
{
x ∈ Rd

≥0 |x1 + · · · + xd ≤ 1
}
. (6)

For a simplex K ∈ G, let χK : K̂ → K denote an affine mapping. The set of nodal
points is given by

N p :=
{
χK(N̂) | N̂ ∈ N̂ p, K ∈ G}, N p

Ω := N p ∩ Ω, N p
∂Ω := N p ∩ ∂Ω. (7)

The Lagrange basis for Sp
G,c can be indexed by the nodal points N ∈ N p

Ω and is
characterized by

BG
p,N ∈ Sp

G,c and ∀N′ ∈ N p
Ω BG

p,N(N′) = δN,N′ , (8)

where δN,N′ is the Kronecker delta.

Definition 1. For all K ∈ G, T ∈ FΩ, E ∈ EΩ, V ∈ VΩ, the conforming spaces
Sp

K,c, Sp
T,c, Sp

E,c, Sp
V,c are given as the spans of the following basis functions:

Sp
K,c := span

{
BG

p,N |N ∈
◦
K ∩ N p

Ω

}
, Sp

T,c := span
{
BG

p,N |N ∈
◦
T ∩ N p

Ω

}
,

Sp
E,c := span

{
BG

p,N |N ∈
◦
E ∩ N p

Ω

}
, Sp

V,c := span
{
BG

p,V

}
.

The following proposition shows that these spaces give rise to a direct sum
decomposition and that these spaces are locally defined. To be more specific we
first have to introduce some notations.

For any facet T ∈ FΩ, vertex V ∈ VΩ, and E ∈ EΩ we define the sets

GT := {K ∈ G : T ⊂ ∂K}, ωT :=
⋃

K∈GT

K,

GV := {K ∈ G : V ∈ ∂K}, ωV :=
⋃

K∈GV

K,

GE := {K ∈ G : E ⊂ ∂K}, ωE :=
⋃

K∈GE

K.

(9)

Proposition 2. Let Sp
K,c, S

p
T,c, S

p
E,c, S

p
V,c be as in Definition 1. Then the direct

sum decomposition holds

Sp
G,c =

( ⊕
V∈VΩ

Sp
V,c

)
⊕
(⊕

E∈EΩ

Sp
E,c

)
⊕
( ⊕

T∈FΩ

Sp
T,c

)
⊕
(⊕

K∈G
Sp

K,c

)
. (10)
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4. Galerkin Discretization with Non-Conforming
Crouzeix–Raviart Finite Elements

4.1. Non-conforming finite elements with

weak compatibility conditions

In this section, we will characterize a class of non-conforming finite element spaces
implicitly by a weak compatibility condition across the facets. For each facet T ∈ F ,
we fix a unit vector nT which is orthogonal to T . The orientation for the inner facets
is arbitrary but fixed while the orientation for the boundary facets is such that nT

points toward the exterior of Ω. Our non-conforming finite element spaces will be
a subspace of

C0
G(Ω) :=

{
u ∈ L∞(Ω) | ∀K ∈ G u| ◦

K
∈ C0

(◦
K
)}

and we consider the skeleton
⋃

T∈F T as a set of measure zero.
For K ∈ G, we define the restriction operator γK : C0

G(Ω) → C0(K) by

(γKw)(x) = w(x) ∀x ∈
◦
K

and on the boundary ∂K by continuous extension. For the inner facets T ∈ F , let
K1

T , K2
T be the two simplices which share T as a common facet with the convention

that nT points into K2. We set ωT := K1
T ∪ K2

T . The jump [ · ]T : C0
G(Ω) → C0(T )

across T is defined by

[w]T = (γK2w)|T − (γK1w)|T . (11)

For vector-valued functions, the jump is defined component-wise. The definition
of the non-conforming finite elements involves orthogonal polynomials on triangles
which we introduce first.

Let T̂ denote the (closed) unit simplex in Rd−1, with vertices 0, (1, 0, . . . , 0)ᵀ,
(0, 1, 0, . . . , 0)ᵀ, (0, . . . , 0, 1)ᵀ. For n ∈ N0, the set of orthogonal polynomials on T̂

is given by

P⊥
n,n−1(T̂ ) :=


P0(T̂ ) n = 0,{

u ∈ Pn(T̂ )
∣∣∣∣ ∫

bT

uv = 0 ∀ v ∈ Pn−1(T̂ )
}

n ≥ 1.
(12)

We lift this space to a facet T ∈ F by employing an affine transform χT : T̂ → T

P⊥
n,n−1(T ) :=

{
v ◦ χ−1

T : v ∈ P⊥
n,n−1(T )

}
.

The orthogonal polynomials on triangles allow us to formulate the weak compatibil-
ity condition which is employed for the definition of non-conforming finite element
spaces:

[u]T ∈ P⊥
p,p−1(T ), ∀T ∈ FΩ and u|T ∈ P⊥

p,p−1(T ), ∀T ∈ F∂Ω. (13)

We have collected all ingredients for the (implicit) characterization of the non-
conforming Crouzeix–Raviart finite element space.
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Definition 3. The non-conforming finite element space Sp
G with weak compatibility

conditions across facets is given by

Sp
G := {u ∈ L∞(Ω) | ∀K ∈ G γKu ∈ Pp(K) and u satisfies (13)}. (14)

The non-conforming Galerkin discretization of (1) for a given finite element
space S which satisfies Sp

G,nc ⊂ S ⊂ Sp
G reads:

Given f ∈ L2(Ω) find uS ∈ S aG(uS , v) := (A∇GuS ,∇Gv) = (f, v) ∀ v ∈ S

(15)

where

∇Gu(x) := ∇u(x) ∀x ∈ Ω

∖( ⋃
T∈F

∂T

)
.

4.2. Non-conforming finite elements of

Crouzeix–Raviart type in 3D

The definition of the non-conforming space Sp
G in (14) is implicit via the weak

compatibility condition. In this section, we will present explicit representations of
non-conforming basis functions of Crouzeix–Raviart type for general polynomial
order p. These functions together with the conforming basis functions span a space
Sp
G,nc which satisfies the inclusions Sp

G,c � Sp
G,nc ⊆ Sp

G (cf. Theorem 10). The deriva-
tion of the formula and their algebraic properties will be the topic of the following
sections.

We will introduce two types of non-conforming basis functions: those whose
support is one tetrahedron and those whose support consists of two adjacent tetra-
hedrons, that is tetrahedrons which have a common facet. For details and their
derivation we refer to Sec. 5 while here we focus on the representation formulae.

4.2.1. Non-conforming basis functions supported on one tetrahedron

The construction starts by defining symmetric orthogonal polynomials bsym
p,k , 0 ≤

k ≤ dtriv(p) − 1 on the reference triangle T̂ with vertices (0, 0)ᵀ, (1, 0)ᵀ, (0, 1)ᵀ,
where

dtriv(p) :=
⌊p
2

⌋
−
⌊

p − 1
3

⌋
. (16)

We define the coefficients

M
(p)
i,j = (−1)p

4F3

(−j, j + 1,−i, i + 1
−p, p + 2, 1

; 1
)

2i + 1
p + 1

0 ≤ i, j ≤ p,

where pFq denotes the generalized hypergeometric function (cf. [17, Chap. 16]). The
4F3-sum is understood to terminate at i to avoid the 0/0 ambiguities in the formal
4F3-series. These coefficients allow to define the polynomials

rp,2k(x1, x2) := 2
∑

0≤j≤p/2

M
(n)
2j,2kbp,2j + bp,2k 0 ≤ k ≤ p/2,
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where bp,k, 0 ≤ k ≤ p, are the basis for the orthogonal polynomials of degree p

on T̂ as defined afterwards in (35). Then, a basis for the symmetric orthogonal
polynomials is given by

bsym
p,k :=

{
rp,p−2k if p is even,

rp,p−1−2k if p is odd,
k = 0, 1, . . . , dtriv(p) − 1. (17)

The non-conforming Crouzeix–Raviart basis function B
bK,nc
p,k ∈ Pp(K̂) on the

unit tetrahedron K̂ is characterized by its values at the nodal points in N̂ p (cf. (5)).
For a facet T ⊂ ∂K̂, let χT : T̂ → T denote an affine pullback to the reference
triangle. Then B

bK,nc
p,k ∈ Pp(K̂) is uniquely defined by

B
bK,nc
p,k (N)

:=


bsym
p,k ◦ χ−1

T (N) ∀N ∈ N̂ p s.t. N ∈ T

for some facet T ⊂ ∂K̂,

0 ∀N ∈ N̂ p\∂K̂,

k = 0, 1, . . . , dtriv(p) − 1.

(18)

Remark 4. In Sec. 5.3, we will prove that the polynomials bsym
p,k are totally sym-

metric, i.e. invariant under affine bijections χ : K̂ → K̂. Thus, any of these functions
can be lifted to the facets of a tetrahedron via affine pullbacks and the resulting
function on the surface is continuous. As a consequence, the value B

bK,nc
p,k (N) in def-

inition (18) is independent of the choice of T also for nodal points N which belong
to different facets.

It will turn out that the value 0 at the inner nodes could be replaced by other
values without changing the arising non-conforming space. Other choices could
be preferable in the context of inverse inequalities and the condition number of
the stiffness matrix. However, we recommend to choose these values such that the
symmetries of B

bK,nc
p,k are preserved.

Definition 5. The non-conforming tetrahedron-supported basis functions on the
reference element are given by

B
bK,nc
p,k =

∑
N∈ bNp∩∂ bK

B
bK,nc
p,k (N)BG

p,N k = 0, 1, . . . , dtriv(p) − 1 (19)

with values B
bK,nc
p,k (N) as in (18). For a simplex K ∈ G the corresponding non-

conforming basis functions BK,nc
p,k are given by lifting B

bK,nc
p,k via an affine pullback

χK from K̂ to K ∈ G:

BK,nc
p,k

∣∣∣ ◦
K′

:=

{
B

bK,nc
p,k ◦ χ−1

K K = K ′,

0 K �= K ′.
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Fig. 1. (Color online) Symmetric orthogonal polynomials on the reference triangle and corre-
sponding tetrahedron-supported non-conforming basis functions.

and span the space

Sp
K,nc := span{BK,nc

p,k : k = 0, 1, . . . , dtriv(p) − 1}. (20)

Example 6. The lowest-order of p such that dtriv(p) ≥ 1 is p = 2. In this case,
we get dtriv(p) = 1. In Fig. 1 the function bsym

p,k and corresponding basis functions
BK,nc

p,k are depicted for (p, k) ∈ {(2, 0), (3, 0), (6, 0), (6, 1)}.

4.2.2. Non-conforming basis functions supported
on two adjacent tetrahedrons

The starting point is to define orthogonal polynomials brefl
p,k on the reference triangle

T̂ which are mirror symmetrica with respect to the angular bisector in T̂ through
0 and linear independent from the fully symmetric functions bsym

p,k . We set

brefl
p,k :=

1
3
(2bp,2k(x1, x2) − bp,2k(x2, 1 − x1 − x2)

− bp,2k(1 − x1 − x2, x1)) 0 ≤ k ≤ drefl(p) − 1, (21)

where

drefl(p) :=
⌊

p + 2
3

⌋
. (22)

Let K1, K2 denote two tetrahedrons which share a common facet, say T . The
vertex of Ki which is opposite to T is denoted by Vi. The procedure of lifting the
nodal values to the facets of ωT := K1 ∪ K2 is analogous as for the basis functions
BK,nc

n,k . However, it is necessary to choose the pullback χi,T̃ : T̂ → T̃ of a facet

aThe superscript “refl” is a shorthand for “reflection” and explained in Sec. 5.3.1.
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T̃ ⊂ ∂Ki\
◦
T such that the origin is mapped to Vi.

BT,nc
p,k (N)

:=


brefl
p,k ◦ χ−1

i,T̃
(N) ∀N ∈ N p s.t. N ∈ T̃

for some facet T̃ ⊂ ∂K\
◦
T i,

0 ∀N ∈ N p ∩ ◦
ωT ,

k = 0, 1, . . . , drefl(p) − 1.

(23)

Again, the value 0 at the inner nodes of ωT could be replaced by other values
without changing the arising non-conforming space.

Definition 7. The non-conforming facet-oriented basis functions are given by

BT,nc
p,k =

∑
N∈Np∩∂ωT

BT,nc
p,k (N)BG

p,N|ωT ∀T ∈ FΩ, k = 0, 1, . . . , drefl(p) − 1 (24)

with values BT,nc
p,k (N) as in (23) and span the space

Sp
T,nc := span{BT,nc

p,k : k = 0, 1, . . . , drefl(p) − 1}. (25)

The non-conforming finite element space of Crouzeix–Raviart type is given by

Sp
G,nc :=

(⊕
E∈EΩ

Sp
E,c

)
⊕
( ⊕

T∈FΩ

Sp
T,c

)
⊕
(⊕

K∈G
Sp

K,c

)

⊕
(⊕

K∈G
Sp

K,nc

)
⊕
( ⊕

T∈FΩ

span{BT,nc
p,0 }

)
. (26)

Remark 8. In Sec. 5.3.3, we will show that the polynomials brefl
p,k are mirror sym-

metric with respect to the angular bisector in T̂ through 0. Thus, any of these func-
tions can be lifted to the outer facets of two adjacent tetrahedrons via (oriented)
affine pullbacks as employed in (23) and the resulting function on the surface is
continuous. As a consequence, the value BT,nc

p,k (N) in definition (23) is independent
of the choice of T also for nodal points N which belong to different facets.

In Theorem 33, we will prove that (26), in fact, is a direct sum and a basis is
given by the functions

BG
p,N ∀N ∈ NΩ\V , BK,nc

p,k ∀K ∈ G, 0 ≤ k ≤ dtriv(p) − 1, BT,nc
p,0 ∀T ∈ FΩ.

Also we will prove that Sp
G,c � Sp

G,nc ⊆ Sp
G . This condition implies that the con-

vergence estimates as in Theorem 10 are valid for this space. We restricted the
reflection-type non-conforming basis functions to the lowest-order k = 0 in order
to keep the functions linearly independent.

Example 9. The lowest-order of p such that drefl(p) ≥ 1 is p = 1. In this case, we
get drefl(p) = 1. In Fig. 2, the function brefl

p,k and corresponding basis functions BT,nc
p,k

are depicted for (p, k) ∈ {(1, 0), (2, 0), (4, 0), (4, 1)}.
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Fig. 2. (Color online) Orthogonal polynomials of reflection type and corresponding non-
conforming basis functions which are supported on two adjacent tetrahedrons. The common facet
is horizontal and the two tetrahedrons are on top of each other.

4.3. Error analysis

In this subsection, we present the error analysis for the Galerkin discretization
(15) with the non-conforming finite element space Sp

G and subspaces thereof. The
analysis is based on the second Strang lemma and has been presented for an intrinsic
version of Sp

G in [9] following the framework developed in [12]. Here we briefly recall
this analysis since the proof (step (30)) provides the important guideline for the
construction of the non-conforming finite elements (and since, as a minor reason
and to the best of our knowledge, the proof for the primal formulation for solutions
with only piecewise higher-order regularity has not been treated in the literature).

For any inner facet T ∈ F and any v ∈ Sp
G , condition (13) implies

∫
T
[v]T = 0:

hence, the jump [v]T is always zero-mean valued. Let hT denote the diameter of T .
The combination of a Poincaré inequality with a trace inequality then yields

‖[u]T ‖L2(T ) ≤ ChT |[u]T |H1(T ) ≤ C̃h
1/2
T |u|H1

pw(ωT ), (27)

where

|u|Hp
pw(ωT ) :=

( ∑
K⊂ωT

|u|2Hp(K)

)1/2

.

In a similar fashion we obtain for all boundary facets T ∈ F∂Ω and all u ∈ Sp
G the

estimate

‖u‖L2(T ) ≤ C̃h
1/2
T |u|H1

pw(ωT ). (28)

We say that the exact solution u ∈ H1
0 (Ω) is piecewise smooth over the partition

P =(Ωj)J
j=1, if there exists some positive s ∈R>0 such that

u|Ωj
∈ H1+s(Ωj) for j = 1, 2, . . . , J.

We write u ∈ PH1+s(Ω) and refer for further properties, e.g., to [19, Sec. 4.1.9; 7].
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For the approximation results, the finite element meshes G are assumed to be
compatible with the partition P in the following sense: for all K ∈ G, there exists a

single index j such that
◦
K ∩ Ωj �= ∅.

The proof that | · |H1
pw(Ω) is a norm on Sp

G is similar as in [6, Sec. 10.3]: For
w ∈ H1

0 (Ω) this follows from |w|H1
pw(Ω) = ‖∇w‖ and a Friedrichs inequality; for

w ∈ Sp
G the condition ‖∇Gw‖ = 0 implies that w|K is constant on all simplices

K ∈ G. The combination with
∫

T
w = 0 for all T ∈ F∂Ω leads to w|K = 0 for

the outmost simplex layer via a Poincaré inequality, i.e. w|K = 0 for all K ∈ G
having at least one facet on ∂Ω. This argument can be iterated step by step over
simplex layers toward the interior of Ω to finally obtain w = 0. Note that the norm
| · |H1

pw(Ω) depends on the mesh G and, consequently, the scaling parameters of the
mesh might enter the estimates. To exclude this, a piecewise Poincaré–Friedrichs
inequality as developed in [4] can be employed which shows that the estimates only
depend on the shape regularity of the mesh.

Theorem 10. Let Ω ⊂ Rd be a bounded, polygonal (d = 2) or polyhedral (d = 3)
Lipschitz domain and let G be a regular simplicial finite element mesh for Ω. Let the
diffusion matrix A ∈ L∞(Ω, Rd×d

sym) satisfy assumption (2) and ‖A‖PW 1,∞(Ω) < ∞.

(a) There exists rmax ∈ ]0, 1] such that, for any f ∈ L2(Ω), the solution u ∈ H1
0 (Ω)

of (1) satisfies u ∈ ⋂0≤r<rmax
PH1+r(Ω) if rmax < 1 and u ∈ PH2(Ω) if

rmax = 1.
(b) Let s ∈ R>0 be such that u ∈ PH1+s(Ω) holds and set r := min{p, s}. We

assume that ‖A‖PW r,∞(Ω) < ∞. Let the continuous problem (1) be discretized
by the non-conforming Galerkin method (15) with a finite-dimensional space S

which satisfies Sp
G,c ⊂ S ⊂ Sp

G on a compatible mesh G. Then, (15) has a unique
solution which satisfies

|u − uS |H1
pw(Ω) ≤ Chr‖u‖PH1+r(Ω).

The constant C only depends on amin, amax, ‖A‖PW r,∞(Ω), p, r, and the shape
regularity of the mesh.

Proof. The regularity result (a) follows from [7, Proposition 1] (see also [3, Theo-
rem 4.1; 10, Theorem 3.1]).

The second Strang lemma (cf. [8, Theorem 4.2.2]) applied to the non-conforming
Galerkin discretization (15) implies the existence of a unique solution which satisfies
the error estimate

|u − uS |H1
pw(Ω) ≤

(
1 +

amax

amin

)
inf
v∈S

|u − v|H1
pw(Ω) +

1
amin

sup
v∈S

|Lu(v)|
|v|H1

pw(Ω)
,

where

Lu(v) := aG(u, v) − (f, v).

The approximation properties of S are inherited from the approximation prop-
erties of Sp

G,c in the first infimum because of the inclusion Sp
G,c ⊂ S. For the second
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term we obtain

Lu(v) = (A∇u,∇Gv) − (f, v). (29)

Note that f ∈ L2(Ω) implies that div(A∇u) ∈ L2(Ω) and, in turn, that the normal
jump [A∇u · nT ]T equals zero and the restriction (A∇u · nT )|T is well defined for
all T ∈ F . We may apply simplexwise integration by parts to (29) to obtain

Lu(v) = −
∑

T∈FΩ

∫
T

(A∇u · nT )[v]T +
∑

T∈F∂Ω

∫
T

(A∇u · nT )v.

Let KT be one simplex in ωT . For 1 ≤ i ≤ d, let qi ∈ P
p−1
d (KT ) denote the

best approximation of wi := (
∑d

j=1 Ai,j∂ju)|KT with respect to the H1(KT ) norm.
Then, qi|T nT,i ∈ P

p−1
d−1(T ) for 1 ≤ i ≤ d, and the inclusion S ⊂ Sp

G implies

|Lu(v)| ≤
∣∣∣∣∣− ∑

T∈FΩ

∫
T

(
d∑

i=1

(wi − qi) · nT,i

)
[v]T

∣∣∣∣∣
+

∣∣∣∣∣ ∑
T∈F∂Ω

∫
T

(
d∑

i=1

(wi − qi) · nT,i

)
v

∣∣∣∣∣
≤
∑

T∈FΩ

‖[v]T ‖L2(T )

d∑
i=1

‖wi − qi‖L2(T )

+
∑

T∈F∂Ω

‖v‖L2(T )

d∑
i=1

‖wi − qi‖L2(T ). (30)

Standard trace estimates and approximation properties lead to

‖wi − qi‖L2(T ) ≤ C(h−1/2
T ‖wi − qi‖L2(KT ) + h

1/2
T |wi − qi|H1(KT ))

≤ Ch
r−1/2
T |wi|Hr(KT ) ≤ Ch

r−1/2
T ‖u‖H1+r(KT ), (31)

where C depends only on p, r, ‖A‖W r(KT ), and the shape regularity of the mesh.
The combination of (30), (31) and (27), (28) along with the shape regularity of the
mesh leads to the consistency estimate

|Lu(v)| ≤ C

( ∑
T∈FΩ

hr
T ‖u‖H1+r(KT )|v|H1

pw(ωT ) +
∑

T∈F∂Ω

hr
T ‖u‖H1+r(KT )|v|H1

pw(ωT )

)

≤ C̃hr‖u‖PH1+r(Ω)|v|H1
pw(Ω),

which completes the proof.

Remark 11. If one chooses in (13) a degree p′ < p for the orthogonality rela-
tions in (13), then the order of convergence behaves like hr′‖e‖H1+r′(Ω), with

r′ := min{p′, s}, because the best approximations qi now belong to P p′−1
d−1 (T ).
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5. Explicit Construction of Non-Conforming
Crouzeix–Raviart Finite Elements

5.1. Jacobi polynomials

Let α, β > −1. The Jacobi polynomial P
(α,β)
n is a polynomial of degree n such that∫ 1

−1

P (α,β)
n (x) q(x)(1 − x)α(1 + x)β dx = 0

for all polynomials q of degree less than n, and (cf. [17, Table 18.6.1])

P (α,β)
n (1) =

(α + 1)n

n!
, P (α,β)

n (−1) = (−1)n (β + 1)n

n!
. (32)

Here the shifted factorial is defined by (a)n := a(a + 1) · · · (a + n − 1) for n > 0
and (a)0 := 1. The Jacobi polynomial has an explicit expression in terms of a
terminating Gauss hypergeometric series (see (cf. [17, 18.5.7]))

2F1

(−n, b

c
; z
)

:=
n∑

k=0

(−n)k(b)k

(c)k k!
zk (33)

as follows

P (α,β)
n (x) =

(α + 1)n

n! 2F1

(−n, n + α + β + 1
α + 1

;
1 − x

2

)
. (34)

5.2. Orthogonal polynomials on triangles

Recall that T̂ is the (closed) unit triangle in R2 with vertices Â0 = (0, 0)ᵀ,
Â1 = (1, 0)ᵀ, and Â3 = (0, 1)ᵀ. An orthogonal basis for the space P⊥

n,n−1(T̂ ) was
introduced in [18] and is given by the functions bn,k, 0 ≤ k ≤ n,

bn,k(x) := (x1 + x2)k P
(0,2k+1)
n−k (2(x1 + x2) − 1)P

(0,0)
k

(
x1 − x2

x1 + x2

)
, (35)

where P
(0,0)
k are the Legendre polynomials (see [17, 18.7.9])b From (36), it follows

that these polynomials satisfy the following symmetry relation:

bn,k(x1, x2) = (−1)kbn,k(x2, x1) ∀n ≥ 0, ∀ (x1, x2). (37)

bThe Legendre polynomials with normalization P
(0,0)
k (1) = 1 for all k = 0, 1, . . . can be defined

[17, Table 18.9.1] via the three-term recursion

P
(0,0)
0 (x) = 1; P

(0,0)
1 (x) = x; and

(k + 1)P
(0,0)
k+1 (x) = (2k + 1)xP

(0,0)
k (x) − kP

(0,0)
k−1 (x) for k = 1, 2, . . . ,

(36)

from which the well-known relation P
(0,0)
k (x) = (−1)kP

(0,0)
k (x) for all k ∈ N0 follows.
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By combining (33)–(35), an elementary calculation leads toc bn,0(0, 0) = (−1)n

(n + 1).
Let

EI := Â0Â1, EII := Â0Â2, and EIII := Â1Â2 (38)

denote the edges of T̂ . For Z ∈ {I, II, III}, we introduce the linear restriction oper-
ator for the edge EZ by γZ : C0(T̂ ) → C0([0, 1]) by

γIu := u(·, 0), γIIu := u(0, ·), γIIIu = u(1 − ·, ·) (39)

which allows to define

bI
n,k := γIbn,k, bII

n,k := γIIbn,k, bIII
n,k := γIIIbn,k, for k = 0, 1, . . . , n.

Lemma 12. For any Z ∈ {I, II, III}, each of the systems (bZ
n,k)n

k=0, form a basis of
Pn([0, 1]).

Proof. First note that {xj(x − 1)n−j : 0 ≤ j ≤ n} is a basis for Pn([0, 1]); this
follows from expanding the right-hand side of xm = xm(x− (x−1))n−m. Specialize
the formula [17, 18.5.8]

P (α,β)
m (s) =

(α + 1)m

m!

(
1 + s

2

)m

2F1

(−m,−m− β

α + 1
;
s − 1
s + 1

)
to m = n − k, α = 0, β = 2k + 1, s = 2x − 1 to obtain

bI
n,k(x) = xn

2F1

(
k − n,−n− k − 1

1
;
x − 1

x

)
(40)

(33)
=

n−k∑
i=0

(k − n)i(−n − k − 1)i

i!i!
xn−i(x − 1)i. (41)

The highest index i of xn−i(x−1)i in bI
n,k(x) is n−k with coefficient (2k+2)n−k

(n−k)! �= 0.
Thus the matrix expressing [bI

n,0, . . . , b
I
n,n] in terms of [(x−1)n, x(x−1)n−1, . . . , xn]

is triangular and nonsingular; hence {bI
n,k : 0 ≤ k ≤ n} is a basis of Pn([0, 1]).

The symmetry relation bII
n,k = (−1)kbI

n,k for 0 ≤ k ≤ n (cf. (37)) shows that
{bII

n,k : 0 ≤ k ≤ n} is also a basis of Pn([0, 1]). Finally substituting x1 = 1−x, x2 = x

in bn,k results in

bIII
n,k(x) = P

(0,2k+1)
n−k (1)P (0,0)

k (1 − 2x), (42)

and P
(0,2k+1)
n−k (1) = 1 (from (32)). Clearly {P (0,0)

k (1− 2x) : 0 ≤ k ≤ n} is a basis for
Pn([0, 1]).

cFurther special values are

bn,0(0, 0) = P
(0,1)
n (−1) = (−1)n (2)n

n!
= (−1)n(n + 1), bn,k(0, 0) = 0, 1 ≤ k ≤ n,

bn,k(1, 0) = P
(0,2k+1)
n−k (1)P

(0,0)
k (1) = 1, 0 ≤ k ≤ n, bn,k(0, 1) = P

(0,2k+1)
n−k (1)P

(0,0)
k (−1)

= (−1)k , 0 ≤ k ≤ n.
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Lemma 13. Let v ∈ Pn([0, 1]). Then, there exist unique orthogonal polynomials
uZ ∈ P⊥

n,n−1(T̂ ), Z ∈ {I, II, III} with v = γZuZ. Thus, the linear extension operator
EZ : Pn([0, 1]) → P⊥

n,n−1(T̂ ) is well defined by EZv := uZ.

Proof. From Lemma 12, we conclude that γZ is surjective. Since the polynomial
spaces are finite-dimensional the assertion follows from

dim Pn([0, 1]) = n + 1 = dim P⊥
n,n−1(T̂ ).

The orthogonal polynomials can be lifted to a general triangle T .

Definition 14. Let T denote a triangle and χT an affine pullback to the reference
triangle T̂ . Then, the space of orthogonal polynomials of degree n on T is

P⊥
n,n−1(T ) :=

{
v ◦ χ−1

T : v ∈ P⊥
n,n−1(T̂ )

}
.

From the transformation rule for integrals one concludes that for any u = v ◦
χ−1

T ∈ P⊥
n,n−1(T ) and all q ∈ Pn−1(T ) it holds∫

T

uq =
∫

T

(v ◦ χ−1
T )q = 2|T |

∫
bT

v(q ◦ χT ) = 0 (43)

since q ◦ χT ∈ Pn−1(T̂ ). Here |T | denotes the area of the triangle T .

5.3. Totally symmetric orthogonal polynomials

In this section, we will decompose the space of orthogonal polynomials P⊥
n,n−1(T̂ )

into three irreducible modules (see Sec. 5.3.1) and thus, obtain a direct sum decom-
position P⊥

n,n−1(T̂ ) = P
⊥,sym
n,n−1(T̂ )⊕P

⊥,refl
n,n−1(T̂ )⊕P

⊥,sign
n,n−1(T̂ ). We will derive an explicit

representation for a basis of the space of totally symmetric polynomials P
⊥,sym
n,n−1(T̂ )

in Sec. 5.3.2 and of the space of reflection symmetric polynomials P
⊥,refl
n,n−1(T̂ ) in

Sec. 5.3.3.
We start by introducing, for functions on triangles, the notation of total

symmetry. For an arbitrary triangle T with vertices A0, A1, A2, we introduce
the set of permutations Π = {(i, j, k) : i, j, k ∈ {0, 1, 2} pairwise disjoint}. For
π = (i, j, k) ∈ Π, define the affine mapping χπ : T → T by

χπ(x) = Ai + x1(Aj − Ai) + x2(Ak − Ai). (44)

We say a function u, defined on T , has total symmetry if

u = u ◦ χπ ∀π ∈ Π.

The space of totally symmetric orthogonal polynomials is

P
⊥,sym
n,n−1(T̂ ) :=

{
u ∈ P⊥

n,n−1(T̂ ) : u has total symmetry
}
. (45)

The construction of a basis of P
⊥,sym
n,n−1(T̂ ) requires some algebraic tools which we

develop in the following.
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5.3.1. The decomposition of P⊥
n,n−1(T̂ ) or Pn([0, 1])

into irreducible S3 modules

We use the operator γI (cf. (39)) to set up an action of the symmetric group S3

on Pn([0, 1]) by transferring its action on P⊥
n,n−1(T̂ ) on the basis {bn,k}. It suffices

to work with two generating reflections. On the triangle χ{0,2,1}(x1, x2) = (x2, x1)
and thus bn,k ◦ χ{0,2,1} = (−1)kbn,k (this follows from (37)). The action of χ{0,2,1}
is mapped to

∑n
k=0 αkbI

n,k �→∑n
k=0(−1)kαkbI

n,k, and denoted by R. For the other
generator we use χ{1,0,2}(x1, x2) = (1 − x1 − x2, x2). Under γI this corresponds to
the map

∑n
k=0 αkbI

n,k(x) �→ ∑n
k=0 αkbI

n,k(1 − x) which is denoted by M . We will
return later to transformation formulae expressing

bn,k ◦ χ{1,0,2}(x1, x2) = (1 − x1)kP
(0,2k+1)
n−k (1 − 2x1)P

(0,0)
k

(
1 − x1 − 2x2

1 − x1

)
in the {bn,k}-basis. Observe that (MR)3 = I because χ{1,0,2} ◦ χ{0,2,1}(x1, x2) =
(1 − x1 − x2, x1) and this mapping is of period 3. It follows that each of {M, R}
and {χ{1,0,2}, χ{0,2,1}} generates (an isomorphic copy of) S3. It is a basic fact that
the relations M2 = I, R2 = I and (MR)3 = I define S3. The representation theory
of S3 informs us that there are three nonisomorphic irreducible representations:

τtriv : χ{0,2,1} → 1, χ{1,0,2} → 1;

τsign : χ{0,2,1} → −1, χ{1,0,2} → −1;

τrefl : χ{0,2,1} → σ1 :=

[−1 0

0 1

]
, χ{1,0,2} → σ2 :=


1
2

1

3
4

−1
2


(The subscript “refl” designates the reflection representation). Then the eigenvec-
tors of σ1, σ2 with −1 as eigenvalue are (−1, 0)ᵀ and (2,−3)ᵀ respectively; these two
vectors are a basis for R2. Similarly the eigenvectors of σ1 and σ2 with eigenvalue
+1, namely (0, 1)ᵀ, (2, 1)ᵀ, form a basis. Form a direct sum

P⊥
n,n−1(T̂ ) :=

⊕
j≥0

E
(triv)
j

⊕
⊕

j≥0

E
(sign)
j

⊕
⊕

j≥0

E
(refl)
j

,

where the E
(triv)
j , E

(sign)
j , E

(refl)
j are S3-irreducible and realizations of the representa-

tions τtriv, τsign, τrefl respectively. Let dtriv(n), dsign(n), drefl(n) denote the respective
multiplicities, so that dtriv(n)+ dsign(n)+2drefl(n) = n+1. The case n even or odd
are handled separately. If n = 2m is even then the number of eigenvectors of R hav-
ing −1 as eigenvalue equals m (the cardinality of {1, 3, 5, . . . , 2m − 1}). The same
property holds for M since the eigenvectors of M in the basis {x2m(x−1)2m−j} are
explicitly given by {x2m−2�(x − 1)2� − x2�(x − 1)2m−2� : 0 ≤ � ≤ m}. Each E

(refl)
j

contains one (−1)-eigenvector of χ{1,0,2} and one of χ{0,2,1} and each E
(sign)
j consists

of one (−1)-eigenvector of χ{0,2,1}. This gives the equation drefl(n) + dsign(n) = m.
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Each E
(refl)
j contains one (+1)-eigenvector of χ{1,0,2} and one of χ{0,2,1} and each

E
(triv)
j consists of one (+1)-eigenvector of χ{0,2,1}. There are m + 1 eigenvectors

with eigenvalue 1 of each of χ{1,0,2} and χ{0,2,1} thus drefl(n) + dtriv(n) = m + 1.
If n = 2m+1 is odd then the eigenvector multiplicities are m+1 for both eigen-

values +1,−1. By similar arguments we obtain the equations drefl(n) + dsign(n) =
m+1, drefl(n)+dtriv(n) = m+1. It remains to find one last relation for both, even
and odd cases.

To finish the determination of the multiplicities dtriv(n), dsign(n), drefl(n) it suf-
fices to find dtriv(n). This is the dimension of the space of polynomials in P⊥

n,n−1(T̂ )
which are invariant under both χ{0,2,1} and χ{1,0,2}. Since these two group elements
generate S3 this is equivalent to being invariant under each element of S3 .This
property is called totally symmetric. Under the action of γI this corresponds to
the space of polynomials in Pn([0, 1]) which are invariant under both R and M .
We appeal to the classical theory of symmetric polynomials: suppose S3 acts on
polynomials in (y1, y2, y3) by permutation of coordinates then the space of sym-
metric (invariant under the group) polynomials is exactly the space of polynomials
in {e1, e2, e3} the elementary symmetric polynomials, namely e1 = y1 + y2 + y3,
e2 = y1y2 + y1y3 + y2y3, e3 = y1y2y3. To apply this we set up an affine map from T̂

to the triangle in R3 with vertices (2,−1,−1), (−1, 2,−1), (−1,−1, 2). The formula
for the map is

y(x) = (2 − 3x1 − 3x2, 3x1 − 1, 3x2 − 1).

The map takes (0, 0), (1, 0), (0, 1) to the three vertices, respectively. The result is

e1(y(x)) = 0,

e2(y(x)) = −9(x2
1 + x1x2 + x2

2 − x1 − x2) − 3,

e3(y(x)) = (3x1 − 1)(3x2 − 1)(2 − 3x1 − 3x2).

Thus any totally symmetric polynomial on T̂ is a linear combination of ea
2e

b
3 with

uniquely determined coefficients. The number of linearly independent totally sym-
metric polynomials in (⊕n

j=1P⊥
n,n−1(T̂ )) ⊕ P0(T̂ ) equals the number of solutions of

0 ≤ 2a + 3b ≤ n with a, b = 0, 1, 2, . . .. As a consequence dtriv(n) = card{(a, b) :
2a + 3b = n}. This number is the coefficient of tn in the power series expansion of

1
(1 − t2)(1 − t3)

= (1 + t2 + t3 + t4 + t5 + t7)(1 + 2t6 + 3t12 + · · · ).

From dtriv(n) = card({0, 2, 4, . . .}∩{n, n−3, n−6, . . .}) we deduce the formula (cf.
(16))

dtriv(n) =
⌊n

2

⌋
−
⌊

n − 1
3

⌋
.

As a consequence: if n = 2m then dsign(n) = dtriv(n)− 1 and drefl(n) = m + 1−
dtriv(n); if n = 2m+1 then dsign(n) = dtriv(n) and drefl(n) = m+1−dtriv(n). From
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this the following can be derived: dsign(n) = �n−1
2 � − �n−1

3 � and drefl(n) = �n+2
3 �.

Here is a table of values in terms of n mod6:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n dtriv(n) dsign(n) drefl(n)

6m m + 1 m 2m

6m + 1 m m 2m + 1

6m + 2 m + 1 m 2m + 1

6m + 3 m + 1 m + 1 2m + 1

6m + 4 m + 1 m 2m + 2

6m + 5 m + 1 m + 1 2m + 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

5.3.2. Construction of totally symmetric polynomials

Let M and R denote the linear maps Mp(x1, x2) := p(1 − x1 − x2, x2) and
Rp(x1, x2) := p(x2, x1) respectively. Both are automorphisms of P⊥

n,n−1(T̂ ). Note
Mp = p ◦ χ{1,0,2} and Rp = p ◦ χ{0,2,1} (cf. Sec. 5.3.1).

Proposition 15. Suppose 0 ≤ k ≤ n then

Rbn,k = (−1)kbn,k; (46)

Mbn,k = (−1)n
n∑

j=0

4F3

(−j, j + 1,−k, k + 1
−n, n + 2, 1

; 1
)

2j + 1
n + 1

bn,j. (47)

Proof. The 4F3-sum is understood to terminate at k to avoid the 0/0 ambiguities
in the formal 4F3-series. The first formula was shown in Sec. 5.3.1. The second
formula is a specialization of transformations in [13, Theorem 1.7(iii)]: this paper
used the shifted Jacobi polynomial R

(α,β)
m (s) = m!

(α+1)m
P

(α,β)
m (1 − 2s). Setting α =

β = γ = 0 in the formulas in [13, Theorem 1.7(iii)] results in bn,k = (−1)k θn,k

k!(n−k)!

and Mbn,k = φn,k

k!(n−k)! , where θn,k, φn,k are the polynomials introduced in [13,
p. 690]. More precisely, the arguments v1, v2, v3 in θn,k and φn,k are specialized to
v1 = x1, v2 = x2 and v3 = 1 − x1 − x2.

It is worthwhile to mention at this point that the transformation technique
in [13] has been further developed in [16], where the connection coefficients for
general d-variate Jacobi polynomials have been considered on the simplex for bases
generated by elements of the symmetric group.

Proposition 16. The range of I + RM + MR is exactly the subspace {p ∈
P⊥

n,n−1(T̂ ) : RMp = p}.

Proof. By direct computation (MR)3 = I (cf. Sec. 5.3.1). This implies (RM)2 =
MR. If p satisfies RMp = p then Mp = Rp and p = MRp. Now suppose RMp = p
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then (I + RM + MR)1
3p = p; hence p is in the range of I + RM + MR. Conversely

suppose p = (I+RM+MR)p′ for some polynomial p′, then, RM(I+RM+MR)p′ =
(RM + (RM)2 + I)p′ = p.

Let M
(n)
i,j , R

(n)
i,j denote the matrix entries of M, R with respect to the basis

{bn,k : 0 ≤ k ≤ n}, respectively (that is Mbn,k =
∑n

j=0 bn,jM
(n)
j,k ) . Let S

(n)
i,j denote

the matrix entries of MR + RM + I. Then

R
(n)
i,j = (−1)iδi,j ; M

(n)
i,j = (−1)n

4F3

(−i, i + 1,−j, j + 1
−n, n + 2, 1

; 1
)

2i + 1
n + 1

;

S
(n)
i,j = ((−1)j + (−1)i)M (n)

i,j + δi,j .

Thus S
(n)
i,j = 2M

(n)
i,j + δi,j if both i, j are even, S

(n)
i,j = −2M

(n)
i,j + δi,j if both i, j are

odd, and S
(n)
i,j = 0 if i − j ≡ 1 mod2.

Corollary 17. For 0 ≤ k ≤ n
2 each polynomial rn,2k := 2

∑
0≤j≤n/2 M

(n)
2j,2kbn,2j +

bn,2k is totally symmetric and for 0 ≤ k ≤ n−1
2 each polynomial rn,2k+1 =

−2
∑

0≤j≤(n−1)/2 M
(n)
2j+1,2k+1bn,2j+1 + bn,2k+1 satisfies Mp = −p = Rp (the sign

representation).

Proof. The pattern of zeroes in [M (n)
i,j ] shows that rn,2k = (MR + RM + I)bn,2k ∈

span{bn,2j} and thus satisfies Rrn,2k = rn,2k; combined with RMrn,2k = rn,2k

this shows rn,2k is totally symmetric. A similar argument applies to (MR + RM +
I)bn,2k+1.

Theorem 18. The functions bsym
n,k , 0 ≤ k ≤ dtriv(n)− 1, as in (17) form a basis for

the totally symmetric polynomials in P⊥
n,n−1(T̂ ).

Proof. We use the homogeneous form of the bn,m as in [13], that is, set

b′n,2m(v) = (v1 + v2 + v3)nbn,2m

(
v1

v1 + v2 + v3
,

v2

v1 + v2 + v3

)
= (v1 + v2 + v3)n−2mP

(0,4m+1)
n−2m

(
v1 + v2 − v3

v1 + v2 + v3

)
× (v1 + v2)2mP

(0,0)
2m

(
v1 − v2

v1 + v2

)
.

Formally b′n,j(v) = (−1)j(j!(n−j)!)−1θn,j(v) with θn,j as in [13, p. 690]. The expan-
sion of such a polynomial is a sum of monomials vn1

1 vn2
2 vn3

3 with
∑3

i=1 ni = n. Sym-
metrizing the monomial results in the sum of vm1

1 vm2
2 vm3

3 where (m1, m2, m3) ranges
over all permutations of (n1, n2, n3). The argument is based on the occurrence of
certain indices in bn,m. For a more straightforward approach to the coefficients we
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use the following expansions (with � = n − 2k, β = 2k + 1):

(v1 + v2 + v3)�P
(0,β)
�

(
v1 + v2 − v3

v1 + v2 + v3

)
= (−1)�(v1 + v2 + v3)�P

(β,0)
�

(−v1 − v2 + v3

v1 + v2 + v3

)

= (−1)� (β + 1)�

�!

�∑
i=0

(−�)i(� + β + 1)i

i!(β + 1)i

× (v1 + v2)i(v1 + v2 + v3)�−i; (48)

and

(v1 + v2)2kP
(0,0)
2k

(
v1 − v2

v1 + v2

)
=

1
(2k)!

2k∑
j=0

(−2k)j(−2k)j(−2k)2k−j

j!
vj
2v

2k−j
1 .

First let n = 2m. The highest power of v3 that can occur in b′2m,2m−2k is 2k,

with corresponding coefficient (4m−4k+1)2k

(2k)!

∑2m−2k
j=0 cjv

j
2v

2m−j
1 for certain coeffi-

cients {cj}. Recall that dtriv(n) is the number of solutions (i, j) of the equa-
tion 3j + 2i = 2m (with i, j = 0, 1, 2, . . .). The solutions can be listed as
(m, 0), (m − 3, 2), (m − 6, 4) · · · (m − 3�, 2�) where � = dtriv(n) − 1. By hypothesis
(m−3k, 2k) occurs in the list and thus m−3k ≥ 0 and m−k ≥ 2k. There is only one
possible permutation of vm−k

1 vm−k
2 v2k

3 that occurs in b′2m,2m−2k and its coefficient

is (2k−2m)3m−k

(2m−2k)! �= 0. Hence there is a triangular pattern for the occurrence of vm
1 vm

2 ,
vm−1
1 vm−1

2 v2
3 , vm−2

1 vm−2
2 v4

3 , . . . in the symmetrizations of b′2m,2m, b′2m,2m−2, . . . with
nonzero numbers on the diagonal and this proves the basis property when n = 2m.

Now let n = 2m + 1. The highest power of v3 that can occur in b′2m+1,2m−2k

is 2k + 1, with coefficient (4m−4k+1)2k+1
(2k+1)!

∑2m−2k
j=0 cjv

j
2v

2m−j
1 for certain coefficients

{cj}. The solutions of 3j + 2i = 2m + 1 can be listed as (m− 1, 1), (m− 4, 3), (m−
7, 5) · · · (m−1−3�, 2�+1) where � = dtriv(n)−1. By hypothesis (m−1−3k, 2k+1)
occurs in this list, thus m − k ≥ 2k + 1. There is only one possible permutation of
vm−k
1 vm−k

2 v2k+1
3 that occurs in b′2m+1,2m−2k and its coefficient is (2k−2m)3m−k

(2m−2k)! �= 0.
As above, there is a triangular pattern for the occurrence of vm

1 vm
2 v3, vm−1

1 vm−1
2 v3

3 ,
vm−2
1 vm−2

2 v5
3 , . . . in the symmetrizations of b′2m+1,2m, b′2m+1,2m−2, . . . with nonzero

numbers on the diagonal and this proves the basis property when n =2m +1.

The totally symmetric orthogonal polynomials can be lifted to a general trian-
gle T .

Definition 19. Let T denote a triangle. The space of totally symmetric, orthogonal
polynomials of degree n is

P
⊥,sym
n,n−1(T ) :=

{
u ∈ P⊥

n,n−1(T ) : u has total symmetry
}

(49)

= span{bT,sym
n,m : 0 ≤ m ≤ dtriv(n) − 1}, (50)
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where the lifted symmetric basis functions are given by bT,sym
n,m := bsym

n,m ◦ χ−1
T for

bsym
n,m as in Theorem 18 and an affine pullback χT : T̂ → T .

5.3.3. A basis for the τrefl component of P⊥
n,n−1(T )

As explained in Sec. 5.3.1 the space P⊥
n,n−1(T̂ ) can be decomposed into the τtriv-,

the τsign- and the τrefl-component. A basis for the τtriv component are the fully
symmetric basis functions (cf. Sec. 5.3.2).

Next, we will construct a basis for all of P⊥
n,n−1(T̂ ) by extending the totally

symmetric one. It is straightforward to adjoin the dsign(n) basis, using the same
technique as for the fully symmetric ones: the monomials which appear in p with
Rp = −p = Mp must be permutations of vn1

1 vn2
2 vn3

3 with n1 > n2 > n3. As in
Theorem 18 for n = 2m argue on monomials vm−k

1 vm−1−k
2 v2k+1

3 and the polyno-
mials b′2m,2m−2k−1 with 0 ≤ k ≤ dsign(n) − 1 = dtriv(n) − 2, and for n = 2m + 1
use the monomials vm+1−k

1 vm−k
2 v2k

3 and b2m+1,2m−2k with 0 ≤ k ≤ dtriv(n) − 1 =
dsign(n) − 1.

As we will see when constructing a basis for the non-conforming finite element
space, the τsign component of P⊥

n,n−1(T̂ ) is not relevant, in contrast to the τrefl

component. In this section, we will construct a basis for the τrefl polynomials in
P⊥

n,n−1(T̂ ). Each such polynomial is an eigenvector of RM + MR with eigenvalue
−1. We will show that the polynomials

brefl
n,k =

1
3
(2I − RM − MR)bn,2k, 0 ≤ k ≤ n − 1

3
, (51)

are linearly independent (and the same as introduced in (21)) and, subsequently,
that the set {

RMbrefl
n,k,MRbrefl

n,k : 0 ≤ k ≤ n − 1
3

}
(52)

is a basis for the τrefl subspace of P⊥
n,n−1(T̂ ). (The upper limit of k is as in (52)

drefl(n) − 1 (cf. (22)).) Note that

RMbrefl
n,k =

1
3
(2RM − MR − I)bn,2k, MRbrefl

n,k =
1
3
(2MR − I − RM)bn,2k, (53)

because (RM)2 = MR. Thus the calculation of these polynomials follows directly
from the formulae for [Mij ] and [Rij ]. The method of proof relies on complex
coordinates for the triangle.

Lemma 20. For k = 0, 1, 2, . . .

P
(0,0)
2k (s) = (−1)k

(
k +

1
2

)
k

k!

k∑
j=0

(−k)2j

j!
(

1
2
− 2k

)
j

(1 − s2)k−j ,
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(v1 + v2)2kP
(0,0)
2k

(
v1 − v2

v1 + v2

)
= (−1)k

(
k +

1
2

)
k

k!

×
k∑

j=0

(−k)2j

j!
(

1
2
− 2k

)
j

4k−j(v1v2)k−j(v1 + v2)2j .

Proof. Start with the formula (specialized from a formula for Gegenbauer polyno-
mials [17, 18.5.10])

P
(0,0)
2k (s) = (2s)2k

(
1
2

)
2k

(2k)! 2F1

−k,
1
2
− k

1
2
− 2k

;
1
s2

.

Apply the transformation (cf. [17, 15.8.1])

2F1

(−k, b

c
; t
)

= (1 − t)k
2F1

(−k, c − b

c
;

t

t − 1

)
with t = 1/s2; then t

t−1 = 1
1−s2 and s2k(1− 1

s2 )k = (−1)k(1−s2)k. Also 22k ( 1
2 )2k

(2k)! =
( 1
2 )2k

k!( 1
2 )k

= (k+ 1
2 )k

k! . This proves the first formula. Set s = v1−v2
v1+v2

then 1−s2 = 4v1v2
(v1+v2)2

to obtain the second one.

Introduce complex homogeneous coordinates:

z = ωv1 + ω2v2 + v3,

z = ω2v1 + ωv2 + v3,

t = v1 + v2 + v3.

Recall ω = e2πi/3 = − 1
2 + i

2

√
3 and ω2 = ω. The inverse relations are

v1 =
1
3
(−(ω + 1)z + ωz + t),

v2 =
1
3
(ωz − (ω + 1)z + t),

v3 =
1
3
(z + z + t).

Suppose f(z, z, t) is a polynomial in z and z̄ then Rf(z, z, t) = f(z, z, t) and
Mf (z, z, t) = f(ωz, ω2z, t). Thus RMf (z, z, t) = f(ω2z, ωz, t) and MRf (z, z, t) =
f(ωz, ω2z, t). The idea is to write bn,2k in terms of z, z, t and apply the projection
Π := 1

3 (2I − MR − RM). To determine linear independence it suffices to consider
the terms of highest degree in z, z thus we set t = v1 + v2 + v3 = 0 in the formula
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for bn,2k (previously denoted b′n,2k using the homogeneous coordinates, see proof of
Theorem 18). From formula (48) and Lemma 20

b′n,2k(v1, v2, 0) = (n − 2k + 2)n−2k(v1 + v2)n−2k(−1)k

(
k +

1
2

)
k

k!

×
k∑

j=0

(−k)2j

j!
(

1
2
− 2k

)
j

4k−j(v1v2)k−j(v1 + v2)2j .

The coefficient of (v1v2)k(v1 + v2)n−2k in b′n,2k(v1, v2, 0) is nonzero, and this is the
term with highest power of v1v2. Thus {b′n,2k(v1, v2, 0) : 0 ≤ k ≤ n−2

3 } is a basis
for span{(v1v2)k(v1 + v2)n−2k : 0 ≤ k ≤ n−2

3 }. The next step is to show that the
projection Π has trivial kernel. In the complex coordinates v1+v2 = − 1

3 (z+z−t) =
− 1

3 (z + z) and v1v2 = 1
9 (z2 − zz + z2) (discarding terms of lower-order in z, z, that

is, set t = 0).

Proposition 21. If Π
∑
(n−1)/3�

k=0 ck(z + z)n−2k(z2 − zz + z2)k = 0 then ck = 0 for
all k.

Proof. For any polynomial f(z, z) we have Πf(z, z) = 1
3 (2f(z, z) − f(ω2z, ωz) −

f(ωz, ω2z)). In particular

Π(z + z)n−2k(z2 − zz + z2)k = Π(z + z)n−3k(z3 + z3)k

=
1
3
{2(z + z)n−3k − (ω2z + ωz)n−3k

− (ωz + ω2z)n−3k}(z3 + z3)k.

By hypothesis n − 3k ≥ 1. Evaluate the expression at z = eπi /6 + ε where ε is real
and near 0. Note eπi /6 = 1

2 (
√

3 + i). Then

z + z =
√

3 + 2ε,

ω2z + ωz = −ε,

ωz + ω2z = −
√

3 − ε,

z3 + z3 = 3ε + 3
√

3ε2 + 2ε3,

and
1
3
{2(z + z)n−3k − (ω2z + ωz)n−3k − (ωz + ω2z)n−3k}(z3 + z3)k

=
1
3
{(2 − (−1)n−3k) × 3(n−3k)/2 − (−ε)n−3k + Cε + O(ε2)}

× εk(3 + 3
√

3ε + 2ε2)k,

where C = 3(n−3k+1)/2(n − 3k)(4 − 2(−1)n−3k) (binomial theorem). The dom-
inant term in the right-hand side is (2 − (−1)n−3k)3(n−k)/2−1εk. Now suppose
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Π
∑
(n−1)/3�

k=0 ck(z + z)n−2k(z2 − zz + z2)k = 0. Evaluate the polynomial at
z = eπi /6 + ε. Let ε → 0 implying c0 = 0. Indeed write the expression as


(n−1)/3�∑
k=0

ck(2 − (−1)n−3k)3(n−k)/2−1εk(1 + O(ε)) = 0.

Since 2 − (−1)n−3k ≥ 1 this shows ck = 0 for all k.

We have shown:

Proposition 22. Suppose Π
∑
(n−1)/3�

k=0 ckbn,2k = 0 then ck = 0 for all k; the
cardinality of the set (52) is drefl(n).

Theorem 23. (a) The polynomials {Πbn,2k : 0 ≤ k ≤ n−1
3 } are linearly indepen-

dent.
(b) The set {RMΠbn,2k,MRΠbn,2k : 0 ≤ k ≤ n−1

3 } is linearly independent and
defines a basis for the τrefl component of P⊥

n,n−1(T̂ ).

Proof. In general Πzazb = zazb if a − b ≡ 1, 2 mod3 and Πzazb = 0 if a − b ≡
0 mod3. Expand the polynomials wk(z, z) := Π(z+z)n−3k(z3+z3)k by the binomial
theorem to obtain

Π(z + z)n−3k(z3 + z3)k =
n−3k∑
j=0

n−2j≡1,2 mod3

(
n − 3k

j

)
zn−3k−jzj(z3 + z3)k.

Then

RMwk(z, z) =
n−3k∑

j=0,n−2j≡1,2 mod 3

(
n − 3k

j

)
ω2j−nzn−3k−jzj(z3 + z3)k,

MRwk(z, z) =
n−3k∑

j=0,n−2j≡1,2 mod 3

(
n − 3k

j

)
ωn−2jzn−3k−jzj(z3 + z3)k.

Firstly we show that {RMwk,MRwk} is linearly independent for 0 ≤ k ≤ n−1
3 .

For each value of n mod3 we select the highest degree terms from RMwk and
MRwk: (i) n = 3m+1, ω2z3m+1 +ωz3m+1 and ωz3m+1 +ω2z3m+1, (ii) n = 3m+2,

ωz3m+2+ω2z3m+2 and ω2z3m+2+ωz3m+2, (iii) n = 3m, (n−3k)(ω2z3mz+ωzz3m)
and (n − 3k)(ωz3mz + ω2zz3m) (by hypothesis n − 3k ≥ 1). In each case the
two terms are linearly independent (the determinant of the coefficients is ±(ω −
ω2) = ∓i

√
3). Secondly the same argument as in the previous theorem shows that∑
(n−1)/3�

k=0 {ckRMwk + dkMRwk} = 0 implies ckRMwk + dkMRwk = 0 for all k.
By the first part it follows that ck = 0 = dk. This completes the proof.

Remark 24. The basis bn,k for P⊥
n,n−1(T̂ ) in (35) is mirror symmetric with respect

to the angular bisector in T̂ through the origin for even k and is mirror skew-
symmetric for odd k. This fact makes the point 0 in T̂ special compared to the
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other vertices. As a consequence the functions defined in Theorem 23(a) reflects the
special role of 0. Part (b) shows that it is possible to define a basis with functions
which are either symmetric with respect to the angle bisector in T̂ through (1, 0)ᵀ

or through (0, 1)ᵀ by “rotating” the functions Πbn,2k to these vertices:

RM(Πbn,2k)(x1, x2) = (Πbn,2k)(x2, 1 − x1 − x2) and

MR(Πbn,2k)(x1, x2) = (Πbn,2k)(1 − x1 − x2, x1).

Since the dimension of E(refl) is 2drefl(n) = 2�n+2
3 � is not (always) a multiple of 3,

it is, in general, not possible to define a basis where all three vertices of the triangle
are treated in a symmetric way.

Definition 25. Let

P
⊥,refl
n,n−1(T̂ ) := span

{
RMΠbn,2k,MRΠbn,2k : 0 ≤ k ≤ n − 1

3

}
. (54)

This space is lifted to a general triangle T by fixing a vertex P of T and setting

P
⊥,refl
n,n−1(T ) :=

{
u ◦ χ−1

P,T : u ∈ P
⊥,refl
n,n−1

(
T̂
)}

, (55)

where the lifting χP,T is an affine pullback χP,T : T̂ → T which maps 0 to P.
The basis brefl

n,k to describe the restrictions of facet-oriented, non-conforming finite
element functions to the facets is related to a reduced space and defined as in (51)
with lifted versions

bP,T
n,k := brefl

n,k ◦ χ−1
P,T , 0 ≤ k ≤ n − 1

3
. (56)

Remark 26. The construction of the spaces P
⊥,sym
p,p−1 (T ) and P

⊥,refl
p,p−1(T ) (cf. Defini-

tions 19 and 25) implies the direct sum decomposition

span
{
bp,2k ◦ χ−1

P,T : 0 ≤ k ≤ �p/2�
}

= P
⊥,sym
p,p−1 (T ) ⊕ P

⊥,refl
p,p−1(T ). (57)

It is easy to verify that the basis functions bP,T
p,k are mirror symmetric with respect

to the angle bisector in T through P. However, the space P
⊥,refl
n,n−1(T ) is independent

of the choice of the vertex P.
In Appendix A, we will define further sets of basis functions for the τrefl com-

ponent of P⊥
n,n−1(T̂ ) — different choices might be preferable for different kinds of

applications.

5.4. Simplex-supported and facet-oriented

non-conforming basis functions

In this section, we will define non-conforming Crouzeix–Raviart type functions
which are supported either on one single tetrahedron or on two tetrahedrons which
share a common facet. As a prerequisite, we study in Sec. 5.4.1 piecewise orthog-
onal polynomials on triangle stars, i.e. on a collection of triangles which share a
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common vertex and cover a neighborhood of this vertex (see Notation 27). We will
derive conditions such that these functions are continuous across common edges
and determine the dimension of the resulting space. This allows us to determine
the non-conforming Courzeix–Raviart basis functions which are either supported on
a single tetrahedron (see Sec. 5.4.2) or on two adjacent tetrahedrons (see Sec. 5.4.3)
by “closing” triangle stars either by a single triangle or another triangle star.

5.4.1. Orthogonal polynomials on triangle stars

The construction of the functions BK,nc
p,k and BT,nc

p,k as in (20) and (24) requires some
results of continuous, piecewise orthogonal polynomials on triangle stars which we
provide in this section.

Notation 27. A subset C ⊂ Ω is a triangle star if C is the union of some, say
mC ≥ 3, triangles T ∈ FC ⊂ F , i.e. C =

⋃
T∈FC

T and there exists some vertex
VC ∈ V such that

VC is a vertex of T ∀T ∈ FC ,

∃ a continuous, piecewise affine mapping χ : DmC → C such that χ(0) = VC .

(58)

Here, Dk denotes the regular closed k-gon (in R2).

For a triangle star C, we define

P⊥
p,p−1(C) :=

{
u ∈ C0(C) | ∀T ∈ FC : u|T ∈ P⊥

p,p−1(T )
}
.

In the next step, we will explicitly characterize the space P⊥
p,p−1(C) by defining a set

of basis functions. Set A := VC (cf. (58)) and pick an outer vertex in FC , denote it
by A1, and number the remaining vertices A2, . . . ,AmC in FC counterclockwise. We
use the cyclic numbering convention AmC+1 := A1 and also for similar quantities.

For 1 ≤ � ≤ mC , let e� := [A,A�] be the straight line (convex hull) between
and including A, A�. Let T� ∈ FC be the triangle with vertices A, A�, A�+1. Then
we choose the affine pullbacks to the reference element T̂ by

χ�(x1, x2) :=

{
A + x1(A� − A) + x2(A�+1 − A) if � is odd,

A + x1(A�+1 − A) + x2(A� − A) if � is even.

In this way, the common edges e� are parametrized by χ�−1(t, 0) = χ�(t, 0) if
3 ≤ � ≤ mC is odd and by χ�−1(0, t) = χ�(0, t) if 2 ≤ � ≤ mC is even. The final edge
e1 is parametrized by χ1(t, 0) = χmC (t, 0) if mC is even and by χ1(t, 0) = χmC (0, t)
(with interchanged arguments!) otherwise. We introduce the set

Rp,C :=

{0, . . . , p} if mC is even,{
2� : 0 ≤ � ≤

⌊p
2

⌋}
if mC is odd
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and define the functions (cf. (49), (55), (57))

bC
p,k|T�

:= bp,k ◦ χ−1
� , ∀ k ∈ Rp,C . (59)

Lemma 28. For a triangle star C, a basis for P⊥
p,p−1(C) is given by bC

p,k, k ∈ Rp,C .
Further

dim P⊥
p,p−1(C) =

p + 1 if mC is even,⌊p
2

⌋
+ 1 if mC is odd.

(60)

Proof. We show that (bC
p,k)k∈Rp,C is a basis of P⊥

p,p−1(C) and the dimension
formula.

Continuity across e� for odd 3 ≤ � ≤ mC .
The definition of the lifted orthogonal polynomials (see (49), (55), (57)) implies

that the continuity across e� for odd 3 ≤ � ≤ mC is equivalent to
p∑

k=0

α
(�−1)
p,k bI

p,k =
p∑

k=0

α
(�)
p,kbI

p,k.

From Lemma 12 we conclude that the continuity across such edges is equivalent to

α
(�−1)
p,k = α

(�)
p,k ∀ 0 ≤ k ≤ p. (61)

Continuity across e� for even 2 ≤ � ≤ mC .
Note that χ2(0, t) = χ3(0, t). Taking into account (49), (55), (57) we see that

the continuity across e� is equivalent to
p∑

k=0

α
(2)
p,kbII

p,k =
p∑

k=0

α
(3)
p,kbII

p,k.

From Lemma 12 we conclude that the continuity across e� for even 2 ≤ � ≤ mC

is again equivalent to

α
(�−1)
p,k = α

(�)
p,k ∀ 0 ≤ k ≤ p. (62)

Continuity across e1

For even mC the previous argument also applies for the edge e1 and the functions
bC
p,k, 0 ≤ k ≤ p, are continuous across e1. For odd mC , note that χ1(t, 0) =

χmC (0, t). Taking into account (49), (55), (57) we see that the continuity across
e1 is equivalent to

p∑
k=0

α
(1)
p,kbI

p,k =
p∑

k=0

α
(mC)
p,k bII

p,k.

Using the symmetry relation (37) we conclude that this is equivalent to
p∑

k=0

α
(1)
p,kbI

p,k =
p∑

k=0

α
(mC)
p,k (−1)kbI

p,k.
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From Lemma 12, we conclude that this, in turn, is equivalent to

α
(1)
p,k = α

(mC)
p,k k is even,

α
(1)
p,k = −α

(mC)
p,k k is odd.

(63)

From the above reasoning, the continuity of bC
p,k across e1 follows if α

(�)
n,k = 0 for

odd k and all 1 ≤ � ≤ mC .
The proof of the dimension formula (60) is trivial.

5.4.2. A basis for the symmetric non-conforming space Sp
K,nc

In this section, we will prove that Sp
K,nc (cf. (20)) satisfies

Sp
K,nc ⊕ Sp

K,c = Sp
K := {u ∈ Sp

G : suppu ⊂ K},
where Sp

G is defined in (4) and, moreover, that the functions BK,nc
p,k , k =

0, 1, . . . , dtriv(p) − 1, as in (18), (20) form a basis of Sp
K,nc.

Let T denote one facet of K and let C := ∂K\
◦
T . Since C is a triangle star with

mC = 3, we can apply Lemma 28 to obtain that

Sp
K |C := {u|C : u ∈ Sp

K} ⊂ span
{
bC
p,2k : 0 ≤ k ≤

⌊p
2

⌋}
.

The continuity of bC
p,2k implies that the restriction b∂T

p,2k := bC
p,2k|∂T is continuous.

From (42) we conclude that

b∂T
p,2k|E = PE

2k ∀E ⊂ ∂T, (64)

where PE
2k is the Legendre polynomial of even degree 2k scaled to the edge E with

endpoint values +1 and symmetry with respect to the midpoint of E. Hence, we
are looking for orthogonal polynomials P⊥

p,p−1(T ) whose traces on ∂T are linear
combination of b∂T

p,2k, 0 ≤ k ≤ �p
2�. From (37) we deduce that they have total

symmetry, i.e. belong to the space P
⊥,sym
p,p−1 (T ) (cf. Definition 19). For 0 ≤ m ≤

dtriv(p) − 1, let b∂K,sym
p,m : ∂K → R be defined facet-wise for any T ⊂ ∂K by

b∂K,sym
p,m |T := bT,sym

p,m 0 ≤ m ≤ dtriv(p) − 1. (65)

Finally, we extend the function b∂K,sym
p,m to the total simplex K by polynomial

extension (cf. (18), (19))

BK,nc
p,m =

∑
N∈Np∩∂K

b∂K,sym
p,m (N)BG

p,N|K 0 ≤ m ≤ dtriv(p) − 1. (66)

These functions are the same as those introduced in Definition 5. The above rea-
soning leads to the following Proposition.

Proposition 29. For a simplex K, the space of non-conforming, simplex-supported
Crouzeix–Raviart finite elements can be chosen as in (20) and the functions
BK,nc

p,k , 0 ≤ k ≤ dtriv(p) − 1 are linearly independent.
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5.4.3. A basis for Sp
T,nc

Let T ∈ FΩ be an inner facet and K1, K2 ∈ G such that T = K1 ∩ K2 and
ωT = K1 ∪ K2 (cf. (9)) with the convention that the unit normal nT points into
K2. In this section, we will prove that a space S̃p

T,nc which satisfies

S̃p
T,nc ⊕

(
2⊕

i=1

Sp
Ki,nc

)
⊕
(

2⊕
i=1

Sp
Ki,c

)
⊕ Sp

T,c = Sp
T := {u ∈ Sp

G : suppu ⊂ ωT } (67)

can be chosen as S̃p
T,nc := Sp

T,nc (cf. (25)) and, moreover, that the functions BT,nc
p,k ,

k = 0, 1, . . . , drefl(p) − 1, as in (24) form a basis of Sp
T,nc.

Let Ci := (∂Ki)\
◦
T , i = 1, 2, denote the triangle star (cf. Notation 27) formed by

the three remaining triangles of ∂Ki. We conclude from Lemma 28 that a basis for
P⊥

p,p−1(Ci) is given by bCi

p,2k, 0 ≤ k ≤ �p
2� (cf. (59)). Any function u in Sp

T satisfies

γKiu ∈ Pp(Ki) i = 1, 2,

(γKiu)|T ′ ∈ P⊥
p,p−1(T

′) ∀T ′ ⊂ Ci, i = 1, 2,

[u]T ∈ P⊥
p,p−1(T ).

(68)

Since any function in Sp
T is continuous on Ci, we conclude from Lemma 28 (with

mCi = 3) that

u|Ci ∈ P⊥
p,p−1(Ci) and γKiu|∂T ∈ span

{
b∂T
p,2k : 0 ≤ k ≤

⌊p
2

⌋}
i = 1, 2 (69)

with b∂T
p,2k as in (64).

To identify a space S̃p
T,nc which satisfies (67) we consider the jump condition in

(68) restricted to the boundary ∂T . The symmetry of the functions b∂T
p,2k implies

that [u]T ∈ P
⊥,sym
p,p−1 (T ), i.e. there is a function q1 ∈ Sp

K1,nc(see (20)) such that
[u]T = q1|T and ũ, defined by ũ|K1 = u1 +q1 and ũ|K2 = u2, is continuous across T .
On the other hand, all functions u ∈ Sp

T whose restrictions u|ωT are discontinuous
can be found in Sp

K1,nc ⊕ Sp
K2,nc. In view of the direct sum in (67) we may thus

assume that the functions in S̃p
T,nc are continuous in ωT .

To finally arrive at a direct decomposition of the space in the right-hand side of
(67) we have to split the spaces P⊥

p,p−1(Ci) into a direct sum of the spaces of totally
symmetric orthogonal polynomials and the spaces introduced in Definition 25 and
glue them together in a continuous way. We introduce the functions bCi,sym

p,k :=
b∂Ki,sym
p,k |Ci , 0 ≤ k ≤ dtriv(p) − 1, with b∂Ki,sym

p,k as in (65) and define bCi,refl
p,k , 0 ≤

k ≤ drefl(p)− 1, piecewise by bCi,refl
p,k |T ′ := bAi,T

′
p,k for T ′ ⊂ Ci with bAi,T

′
p,k as in (56).

The mirror symmetry of bAi,T
′

p,k with respect to the angular bisector in T ′ through
Ai implies the continuity of bCi,refl

p,k . Hence,

P⊥
p,p−1(Ci) = span

{
bCi,sym
p,k

∣∣∣
Ci

: 0 ≤ k ≤ dtriv(p) − 1
}

⊕ span
{
bCi,refl
p,k : 0 ≤ k ≤ drefl(p) − 1

}
. (70)
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Since the traces of bCi,sym
p,k and bCi,refl

p,k at ∂T are continuous and are, from both sides,
the same linear combinations of edge-wise Legendre polynomials of even degree, the
gluing b∂ωT ,sym

p,k |Ci := bCi,sym
p,k and b∂ωT ,refl

p,k |Ċi
:= bCi,refl

p,k , i = 1, 2, defines continuous
functions on ∂ωT . Since the space Sp

T,nc must satisfy a direct sum decomposition
(cf. (67)), it suffices to consider the functions b∂ωT ,refl

p,k for the definition of Sp
T,nc. The

resulting non-conforming facet-oriented space Sp
T,nc was introduced in Definition 7

and S̃p
T,nc can be chosen to be Sp

T,nc.

Proposition 30. For any u ∈ Sp
T,nc, the following implication holds

u|T ∈ Sp
T,nc

∣∣∣
T
∩ P⊥

p,p−1(T ) ⇒ u = 0.

Proof. Assume there exists u ∈ Sp
T,nc with u|T ∈ Sp

T,nc|T ∩ P⊥
p,p−1(T ). Let K be a

simplex adjacent to T . Then uK = u|K satisfies uK |T ′ ∈ P⊥
p,p−1(T

′) for all T ′ ⊂ ∂K

and, thus, uK ∈ Sp
K,nc. Since Sp

K,nc|T ′ ∩ Sp
T,nc|T ′ = {0} for T ′ ∈ ∂K\

◦
T we conclude

that uK = 0.

Note that Definition 7 and Proposition 30 neither imply a priori that the
functions

BT,nc
p,k

∣∣∣
K

, ∀T ⊂ ∂K, k = 0, . . . , drefl(p) − 1

are linearly independent nor that

∀T ⊂ ∂K it holds
∑

T ′⊂C

BT ′,nc
p,m

∣∣∣
T

= P
⊥,refl
p,p−1(T ) for the triangle star C = ∂K\

◦
T

(71)

holds. These properties will be proved next. Recall the projection Π = 1
3 (2I−MR−

RM) from Proposition 21. We showed (Theorem 23(a)) that {brefl
p,k : 0 ≤ k ≤ p−1

3 }
is linearly independent, where brefl

p,k := Πbp,2k. Additionally Rbrefl
p,k = brefl

p,k which
implies brefl

p,k(0, x1) = brefl
p,k(x1, 0), and the restriction x1 �→ brefl

p,k(x1, 1−x1) is invariant
under x1 �→ 1 − x1. For four non-coplanar points A0, A1, A2, A3 let K denote the
tetrahedron with these vertices. For any k such that 0 ≤ k ≤ p−1

3 define a piecewise
polynomial on the faces of K as follows: choose a local (x1, x2)-coordinate system
for A0A1A2 so that the respective coordinates are (0, 0), (1, 0), (0, 1), and define
Q

(0)
k on the facet equal to brefl

p,k . Similarly define Q
(0)
k on A0A2A3 and A0A3A1 (with

analogously chosen local (x1, x2)-coordinate systems), by the property brefl
p,k(0, x1) =

brefl
p,k(x1, 0). Q

(0)
k is continuous at the edges A0A1, A0A2, and A0A3. The values at

the boundary of the triangle star equal brefl
p,k(x1, 1−x1); note the symmetry and thus

the orientation of the coordinates on the edges A1A2, A2A3, A3A1 is immaterial.
The value of Q

(0)
k on the triangle A1A2A3 is taken to be a degree p polynomial,

totally symmetric, with values agreeing with brefl
p,k(x1, 1 − x1) on each edge.

Similarly Q
(1)
k , Q

(2)
k , Q

(3)
k are defined by taking A1, A2, A3 as the center of the

construction, respectively.
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Theorem 31. (a) The functions Q
(i)
k , 0 ≤ k ≤ drefl(p)− 1, i = 0, 1, 2, 3 are linearly

independent.
(b) Property (71) holds.

The proof involves a series of steps. The argument will depend on the values
of the functions on the three rays A0A1, A0A2, A0A3, each one of them is given
coordinates t so that t = 0 at A0 and t = 1 at the other end-point. For a fixed k

let q(t) = brefl
p,k(t, 0), q̂(t) = brefl

p,k(1 − t, 0) and q̃(t) = brefl
p,k(t, 1 − t).

Lemma 32. Suppose 0 ≤ k ≤ p−1
3 and 0 ≤ t ≤ 1 then q(t) + q̂(t) + q̃(t) = 0.

Proof. The actions of RM and MR on polynomials f(x1, x2) are given by
MRf (x1, x2) = f(1 − x1 − x2, x1) and RMf (x1, x2) = f(x2, 1 − x1 − x2). Poly-
nomials of τrefl-type satisfy f + RMf + MRf = 0. Apply this relation to brefl

p,k with
x1 = t and x2 = 0 with the result

brefl
p,k(t, 0) + brefl

p,k(1 − t, t) + brefl
p,k(0, 1 − t) = 0.

The fact that brefl
p,k(x1, x2) = brefl

p,k(x2, x1) finishes the proof.

Proof of Theorem 31. Consider the contribution of Q
(1)
k to the values on the

ray A0A1: because Q
(1)
k is constructed taking the origin at A1 and because of the

reverse orientation of the ray we see that the value of Q
(1)
k is given by q̂. The value

of Q
(1)
k on the ray A0A2 is q̃ (by the symmetry of q̃ the orientation of the ray does

not matter). The other functions are handled similarly, and the contributions to
the three rays are given in this table:∣∣∣∣∣∣∣∣∣∣∣

Q
(0)
k Q

(1)
k Q

(2)
k Q

(3)
k

A0A1 q q̂ q̃ q̃

A0A2 q q̃ q̂ q̃

A0A3 q q̃ q̃ q̂

∣∣∣∣∣∣∣∣∣∣∣
.

We use qk, q̃k, q̂k to denote the polynomials corresponding to brefl
p,k . Suppose that

the linear combination
∑
(p−1)/3�

k=0

∑3
i=0 ck,iQ

(i)
k = 0. Evaluate the sum on the three

rays to obtain the equations:

0 =

(p−1)/3�∑

k=0

{ck,0qk + ck,1q̂k + (ck,2 + ck,3)q̃k}

=

(p−1)/3�∑

k=0

{(ck,1 − ck,0)q̂k + (ck,2 + ck,3 − ck,0)q̃k},
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0 =

(p−1)/3�∑

k=0

{ck,0qk + ck,2q̂k + (ck,1 + ck,3)q̃k}

=

(p−1)/3�∑

k=0

{(ck,2 − ck,0)q̂k + (ck,1 + ck,3 − ck,0)q̃k},

0 =

(p−1)/3�∑

k=0

{ck,0qk + ck,3q̂k + (ck,1 + ck,2)q̃k}

=

(p−1)/3�∑

k=0

{(ck,3 − ck,0)q̂k + (ck,1 + ck,2 − ck,0)q̃k}.

We used Lemma 32 to eliminate qk from the equations. In Theorem 23(b) we
showed the linear independence of {RMbrefl

p,k,MRbrefl
p,k : 0 ≤ k ≤ p−1

3 }, and in
Lemma 12 that the restriction map f �→ f(x1, 0) is an isomorphism from the
orthogonal polynomials P⊥

p,p−1 to Pp([0, 1]). Thus the projection of the set is also
linearly independent, that is, {q̃k, q̂k : 0 ≤ k ≤ p−1

3 } is a linearly independent set of
polynomials on 0 ≤ t ≤ 1. This implies all the coefficients in the above equations
vanish: the q̂k terms show ck,0 = ck,1 = ck,2 = ck,3 and then the q̃k-terms show
2ck,0 − ck,0 = ck,0 = 0.

To prove (71) it suffices to transfer the statement to the reference element T̂ .
The pullbacks of the restrictions BT ′,nc

p,m |T , T ′ ⊂ C, are given by

brefl
n,k = Πbn,2k, b̃refl

n,k := RMΠbn,2k, b̂refl
n,k := MRΠbn,2k, k = 0, . . . drefl(n) − 1.

(72)

Since brefl
n,k ∈ P

⊥,refl
n,n−1(T̂ ) (cf. (A.1)) it follows

P
⊥,refl
n,n−1(T̂ )

(54)
= span

{
b̃refl
n,k, b̂refl

n,k : 0 ≤ k ≤ drefl(n) − 1
}

= span
{
brefl
n,k, b̃refl

n,k, b̂refl
n,k : 0 ≤ k ≤ drefl(n) − 1

}
.

6. Properties of Non-Conforming Crouzeix–Raviart
Finite Elements

The non-conforming Crouzeix–Raviart finite element space Sp
G,nc satisfies Sp

G,c �

Sp
G,nc ⊂ Sp

G (cf. Sec. 4.2). In this section, we will present a basis for Sp
G,nc and

discuss whether the inclusion Sp
G,nc ⊂ Sp

G , in fact, is an equality.

6.1. A basis for non-conforming Crouzeix–Raviart finite elements

We have defined conforming and non-conforming sets of functions which are
spanned by functions with local support. In this section, we will investigate the
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linear independence of these functions. We introduce the following spaces

Sp
sym,nc :=

⊕
K∈G

Sp
K,nc, Sp

refl,nc :=
⊕

T∈FΩ

Sp
T,nc,

where Sp
K,nc and Sp

T,nc are as in Definitions 5 and 7. For some 0 ≤ k ≤ drefl(p) − 1,
we introduce the subspace Sp,k

refl,nc ⊂ Sp
refl,nc by

Sp,k
refl,nc :=

⊕
T∈FΩ

{
BT,nc

p,m : 0 ≤ m ≤ k
}
.

Further we will need the conforming finite element space (cf. (4), Definition 1),
where the vertex-oriented functions are removed, i.e.

S̃p
G,c :=

(⊕
E∈EΩ

Sp
E,c

)
⊕
( ⊕

T∈FΩ

Sp
T,c

)
⊕
(⊕

K∈G
Sp

K,c

)
.

Theorem 33. The sums

Sp
G,c ⊕ Sp

sym,nc, Sp
sym,nc ⊕ Sp

refl,nc (73)

are direct. The sum

Sp
G,c + Sp

refl,nc (74)

is not direct. The sum

S̃p
G,c ⊕ Sp

sym,nc ⊕ Sp,0
refl,nc (75)

is direct.

Proof. Part 1. We prove that the sum Sp
sym,nc ⊕ Sp

refl,nc is direct.
From Proposition 30 we know that the sum Sp

T,nc|T ⊕ P⊥
p,p−1(T ) is direct. Let

ΠT : L2(T ) → Pp−1(T ) denote the L2(T ) orthogonal projection. Since Pp−1(T ) is
the orthogonal complement of P⊥

p,p−1(T ) in Pp(T ) and since P⊥
p,p−1(T ) ∩ Sp

T,nc|T =
{0}, the restricted mapping ΠT : Sp

T,nc|T → Pp−1(T ) is injective and the functions
qT
p,k := ΠT (BT,nc

p,k |T ), 0 ≤ k ≤ drefl(p) − 1, are linearly independent and belong to
Pp−1(T ). We define the functionals

JT
p,k(w) :=

∫
T

wqT
p,k 0 ≤ k ≤ drefl(p) − 1.

Next we consider a general linear combination and show that the condition

∑
K⊂G

dtriv(p)−1∑
i=0

αK
i BK,nc

p,i +
∑
K⊂G

∑
T ′⊂∂K

drefl(p)−1∑
j=0

βT ′
j BT ′,nc

p,j
!= 0 (76)

implies that all coefficients are zero.
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We apply the functionals JT
p,k to (76) and use the orthogonality between

P⊥
p,p−1(T ) and qT

p,k to obtain

∑
K⊂G

∑
T ′⊂∂K

drefl(p)−1∑
j=0

βT ′
j JT

p,k(BT ′,nc
p,j ) != 0. (77)

For T ′ �= T it holds JT
p,k(BT ′,nc

p,i ) = 0 since BT ′,nc
p,i |K |T is an orthogonal polynomial.

Thus, Eq. (77) is equivalent to

drefl(p)−1∑
j=0

βT
j JT

p,k

(
BT,nc

p,j

)
!= 0. (78)

The matrix (JT
p,k(BT,nc

p,j ))drefl(p)−1
k,j=0 is regular because

JT
p,k

(
BT,nc

p,j

)
=
∫

T

BT,nc
p,j qT

p,k =
∫

T

BT,nc
p,j ΠT

(
BT,nc

p,k

∣∣∣
T

)
=
∫

T

BT,nc
p,j BT,nc

p,k

and (BT,nc
p,k |T )k are linearly independent. Hence we conclude from (78) that all

coefficients βT
j are zero and the condition (76) reduces to

∑
K⊂G

dtriv(p)−1∑
i=0

αK
i BK,nc

p,i
!= 0.

The left-hand side is a piecewise continuous function so that the condition is equiv-
alent to

∑dtriv(p)−1
i=0 αK

i BK,nc
p,i

!= 0 for all K ∈ G. Since BK,nc
p,i is a basis for Sp

K,nc|K
we conclude that all αK

i are zero.

Part 2. Next we prove that (Sp
sym,nc ⊕ Sp,0

refl,nc) ∩ S̃p
G,c = {0} and we show this by

contradiction. Let u ∈ (Sp
sym,nc⊕Sp,0

refl,nc)∩S̃p
G,c which satisfies u �= 0. We decompose

u = usym + urefl with usym ∈ Sp
sym,nc and urefl ∈ Sp

refl,nc. We prove by contradiction
that usym ∈ C0(Ω). Assume that usym /∈ C0(Ω). Then, there exists a facet T ⊂ FΩ

such that [usym]T �= 0. Then, [urefl]T = −[usym]T is a necessary condition for the
continuity of u. However, [usym]T ∈ P

⊥,sym
p,p−1 (T ) while [urefl]T ∈ P

⊥,refl
p,p−1(T ) and there

is a contradiction because P
⊥,sym
p,p−1 (T )∩P

⊥,refl
p,p−1(T ) = {0}. Hence, usym ∈ C0(Ω) and,

in turn, urefl ∈ C0(Ω).
Since u �= 0, at least, one of the functions usym and urefl must be different from

the zero function.

Case (a) We show usym = 0 by contradiction: Assume usym �= 0. Then, usym|T �= 0
for all facets T ∈ F . (Proof by contradiction: If usym|T = 0 for some T ∈ F ,
we pick some K ∈ F which has T as a facet. Since usym|K ∈ Sp

K,nc|K we have
usym|T ′ = 0 for all facets T ′ of K and usym|K = 0. Since usym is continuous in
Ω, the restriction usym|K′ is zero for any K ′ ∈ G which shares a facet with K.
This argument can be applied inductively to show that usym = 0 in Ω. This is
a contradiction.) We pick a boundary facet T ∈ F∂Ω. The condition u ∈ S̃p

G,c

implies u = 0 on ∂Ω and, in particular, u|T = usym|T + urefl|T = 0. We use again
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the argument P
⊥,sym
p,p−1 (T ) ∩ P

⊥,refl
p,p−1(T ) = {0} which implies usym = 0 and this is a

contradiction to the assumption usym �= 0.

Case (b) From Case (a) we know that usym = 0, i.e. urefl = u, and it remains to
show urefl = 0. The condition urefl ∈ S̃p

G,c implies urefl|∂Ω = 0 and urefl(V) = 0 for
all vertices V ∈ V .

The proof of Case (b) is similar than the proof of Case (a) and we start by
showing for a tetrahedron, say K, with a facet on the boundary that urefl|K = 0
and employ an induction over adjacent tetrahedrons to prove that urefl = 0 on every
tetrahedron in G.

We consider a boundary facet T0 ∈ F∂Ω with adjacent tetrahedron K ⊂ G. We
denote the three other facets of K by Ti, 1 ≤ i ≤ 3, and for 0 ≤ i ≤ 3, the vertex
of K which is opposite to Ti by Ai.

Case (b1) First we consider the case that there is one and only one other facet, say,
T1 which lies in ∂Ω. Then urefl|T = u2|T +u3|T for some ui ∈ Sp,0

Ti,nc := span{BTi,nc
p,0 },

i = 2, 3. From Theorem 23(b) we conclude that the sum Sp,0
T2,nc|T ⊕ Sp,0

T3,nc|T is
direct. The condition urefl|T = 0 then implies u2 = u3 = 0. Thus, we have proved
urefl|K = 0.

Case (b2) The case that there are exactly two other facets which are lying in ∂Ω
can be treated in a similar way.

Case (b3) Next, we consider the case that Ti ∈ FΩ for i = 1, 2, 3. Note that
urefl|T =

∑3
i=1 ui|T for some ui ∈ Sp,0

Ti,nc. On T we choose a local (x1, x2)-coordinate
system such that A1 = 0, A2 = (1, 0)ᵀ, A3 = (0, 1)ᵀ. From (51) and (53) we
conclude that

brefl
n,k + RMbrefl

n,k + MRbrefl
n,k = 0.

This implies u2|T = RM(u1|T ) = u1|T ◦ χ{3,2,1} and u3|T = MR(u1|T ) = u1|T ◦
χ{2,3,1} (cf. (44)) and, in turn, that the restrictions uE

i of ui to the edge Ei = Ti ∩T0,
1 ≤ i ≤ 3, are the “same”, more precisely, the affine pullbacks of uE

i to the interval
[0, 1] are the same. From Lemma 13, we obtain that

u1|T1 ◦ χ1 = u2|T2 ◦ χ2 = u3|T3 ◦ χ3, (79)

where χi : T̂ → Ti are affine pullbacks to the reference triangle such that χi(0)=A0.
This implies that the functions ui at A0 have the same value (say w0) and, from

the condition urefl(A0) = 3w0 = 0, we conclude that ui(A0) = 0. The values of ui

at the vertex Ai of K (which is opposite to Ti) also coincide and we denote this
value by v0. Since urefl|T = 0 it holds urefl(Ai) = 2w0 + v0 = 0. From w0 = 0 we
conclude that also v0 = 0. Let χi,T0 : T̂ → T0 denote an affine pullback with the
property χi,T0(0) = Ai. Hence,

ûi := ui|T0 ◦ χ−1
i,T0

∈ span{brefl
p,0} (80)
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with values zero at the vertices of T̂ . Note that

bp,0(0, 0) = (−1)p(p + 1) and bp,0(1, 0) = bp,0(0, 1) = 1. (81)

The vertex properties (81) along the definition of brefl
p,k (cf. (51)) imply that

brefl
p,0(1, 0) = brefl

p,0(0, 1) =
1
3
(1 − (−1)p(p + 1)) = cp,

brefl
p,0(0, 0) = −2brefl

p,0(1, 0).
(82)

Since cp �= 0 for p ≥ 1 we conclude that ûi = 0 holds. Relation (80) implies ui|T0 = 0
and thus ui = 0. From urefl|T =

∑3
i=1 ui|T we deduce that urefl|K = 0.

The Cases (b1)–(b3) allow to proceed with the same induction argument as for
Case (a) and urefl = 0 follows by induction.

Part 3. An inspection of Part 2 shows that, for the proof of Case (a), it was never
used that the vertex-oriented basis functions have been removed from Sp

G,c and
Case (a) holds verbatim for Sp

G,c. This implies that the first sum in (73) is direct.

Part 4. The fact that the sum Sp
G,c + Sp

refl,nc is not direct is postponed to Propo-
sition 34.

Proposition 34. For any vertex V ∈ VΩ it holds BG
p,V ∈ Sp

sym,nc ⊕ Sp,0
refl,nc ⊕ S̃p

G,c.

Proof. We will show the stronger statement BG
p,V ∈ Sp,0

refl,nc ⊕ S̃p
G,c. It suffices to

construct a continuous function uV ∈ Sp
refl,nc which coincides with BG

p,V at all
vertices V′ ∈ V and vanishes at ∂Ω; then, BG

p,V − uV ∈ S̃p
G,c and the assertion

follows. Recall the known values of brefl
p,0 at the vertices of the reference triangle and

the definition of cp as in (82). Let K ∈ G be a tetrahedron with V as a vertex. The
facets of K are denoted by Ti, 0 ≤ i ≤ 3, and the vertex which is opposite to Ti is
denoted by Ai. As a convention we assume that A0 = V. For every Ti, 1 ≤ i ≤ 3,
we define the function uTi ∈ Sp

Ti,nc by setting (cf. (56))

uTi |T0 = brefl
p,0 ◦ χ−1

Ai,T0
,

where χAi,T0 : T̂ → T0 is an affine pullback which satisfies χAi,T0(0) = Ai. (It is
easy to see that the definition of uTi is independent of the side of Ti, where the
tetrahedron K is located.) From (51) and (53) we conclude that

∑3
i=1 uTi |T0 = 0

holds. We proceed in the same way for all tetrahedrons K ∈ GV (cf. (9)). This
implies that

ũV :=
∑

T∈FΩ
V∈T

uT (83)

vanishes at Ω\ ◦
ωV (cf. (9)). By construction the function ũV is continuous. At V,

the function uTi has the value (cf. (82))

uTi(V) = cp
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so that ũV(V) = Ccp, where C is the number of terms in the sum (83). Since
cp > 0 for all p ≥ 1, the function uV := 1

Ccp
ũV is well defined and has the desired

properties.

Remark 35. We have seen that the extension of the basis functions of Sp
G,c by the

basis functions of Sp
refl,nc leads to linearly depending functions. On the other hand, if

the basis functions of the subspace Sp,0
refl,nc are added and the vertex-oriented basis

functions in Sp
G,c are simply removed, one arrives at a set a linear independent

functions which span a larger space than Sp
G,c. Note that Sp,0

refl,nc = Sp
refl,nc for

p = 1, 2, 3.
One could add more basis functions from Sp

refl,nc but then has to remove further
basis functions from S̃p

G,c or formulate side constraints in order to obtain a set of
linearly independent functions.

We finish this section by an example which shows that there exist meshes with
fairly special topology, where the inclusion

Sp
G,c + Sp

sym,nc + Sp
refl,nc ⊂ Sp

G (84)

is strict. We emphasize that the left-hand side in (84), for p ≥ 4, defines a larger
space than the space in (75) since it contains all non-conforming functions of reflec-
tion type.

Example 36. Let us consider the octahedron Ω with vertices A± := (0, 0,±1)ᵀ

and A1 := (1, 0, 0)ᵀ, A2 := (0, 1, 0)ᵀ, A3 := (−1, 0, 0)ᵀ, A4 := (0,−1, 0)ᵀ. Ω is
subdivided into a mesh G := {Ki : 1 ≤ i ≤ 8} consisting of eight congruent
tetrahedrons sharing the origin 0 as a common vertex. The six vertices at ∂Ω have
the special topological property that each one belongs to exactly four surface facets.

Note that the space defined by the left-hand side of (84) does not contain func-
tions whose restriction to a surface facet, say T , belongs to the τsign component of
P⊥

n,n−1(T ). Hence, the inclusion in (84) is strict if we identify a function in Sp
G whose

restriction to some surface facet is an orthogonal polynomial of “sign type”. Let
q̂ �= 0 be a polynomial which belongs to the τsign component of P⊥

n,n−1(T ) on the
reference element. Denote the (eight) facets on ∂Ω with the vertices A±, Ai, Ai+1

by T±
i for 1 ≤ i ≤ 4 (with cyclic numbering convention) and choose affine pullbacks

χ±,i : T̂ → T±
i as χ±,i(x) := A± + x1(Ai −A±)+ x2(Ai+1 −A±). Then, it is easy

to verify (use Lemma 28 with even mC) that the function q : ∂Ω → R, defined by
q|T±

i
:= q̂ ◦ χ−1

±,i is continuous on ∂Ω. Hence the “finite element extension” to the
interior of Ω via

Q :=
∑

N∈Np∩∂Ω

q(N)BG
p,N

defines a function in Sp
G which is not in the space defined by the left-hand side

of (84).
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We state in passing that the space Sp
G does not contain any function whose

restriction to a boundary facet, say T , belongs to the τsign component of P⊥
p,p−1(T )

if there exists at least one surface vertex which belongs to an odd number of surface
facets. In this sense, the topological situation considered in this example is fairly
special.

7. Conclusion

In this paper, we developed explicit representation of a local basis for non-
conforming finite elements of the Crouzeix–Raviart type. As a model problem we
have considered Poisson-type equations in three-dimensional domains; however, this
approach is by no means limited to this model problem. Using theoretical condi-
tions in the spirit of the second Strang lemma, we have derived conforming and
non-conforming finite element spaces of arbitrary order. For these spaces, we also
derived sets of local basis functions. To the best of our knowledge, such explicit rep-
resentation for general polynomial order p is not available in the existing literature.
The derivation requires some deeper tools from orthogonal polynomials of triangles,
in particular, the splitting of these polynomials into three irreducible S3 modules.

Based on these orthogonal polynomials, simplex- and facet-oriented non-
conforming basis functions are defined. There are two types of non-conforming
basis functions: those whose supports consist of one tetrahedron and those whose
supports consist of two adjacent tetrahedrons. The first type can be simply added
to the conforming hp basis functions. It is important to note that the span of the
functions of the second type contains also conforming functions and one has to
remove some conforming functions in order to obtain a linearly independent set of
functions. We have proposed a non-conforming space which consists of (a) all basis
functions of the first type and (b) a reduced set of basis functions of the second
type and (c) of the conforming basis functions without the vertex-oriented ones.
This leads to a set of linearly independent functions and is in analogy to the well
known lowest-order Crouzeix–Raviart element.

It is interesting to compare these results with high-order Crouzeix–Raviart finite
elements for the two-dimensional case which have been presented in [9]. Facets T

of tetrahedrons in 3D correspond to edges E of triangles in 2D. As a consequence
the dimension of the space of orthogonal polynomials P⊥

p,p−1(E) equals one. For
even degree p, one has only non-conforming basis functions of “symmetric’ type
(which are supported on a single triangle) and for odd degree p, one has only
non-conforming basis functions of “reflection” type (which are supported on two
adjacent triangles). It turns out that adding the non conforming symmetric basis
function to the conforming hp finite element space leads to a set of linearly indepen-
dent functions which is the analogue of the first sum in (73). If the non-conforming
basis functions of reflection type are added, the set of vertex-oriented conforming
basis functions have to be removed from the conforming space. This is in analogy
to the properties (74) and (75).
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Finally, we compare some non-conforming elements from the literature with
our family of finite elements (14): In the original paper [12], the definition of non-
conforming Crouzeix–Raviart spaces is not identical to our definition (14): the con-
dition γKu ∈ Pp(K) in (14) is replaced by the condition γKu ∈ PK for some space
which satisfies Pp(K) ⊂ PK . For two-dimensional problems, the following space for
p = 3 has been introduced in the original paper [12]:

PK := P3(K) ⊕ span{λ2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3},

where λi are the barycentric coordinates; PK contains some polynomials of degree
4 and this space is different from (75) for p = 3. In [14] a three-dimensional version
of the non-conforming quadratic Fortin–Soulie element [15] is presented which is
exactly our space in (75) for p = 2. The construction of this element in [14] employs
a different theory which might be the reason that it was restricted to p = 2. In 2D,
basis functions for Crouzeix–Raviart elements are known for general polynomial
order p: for p = 1, this is the standard P1 Crouzeix–Raviart element, for p = 2
it is the quadratic Fortin–Soulie element, for p = 3, this is the Crouzeix–Falk
element [11], while the family of Gauss–Legendre elements is a 2D element for
general polynomial degree p (see [1]). To the best of our knowledge there is no
analogue for these elements in three spatial dimension.

Future research is devoted on numerical experiments and the application of
these functions to system of equations such as, e.g., Stokes equation and the Lamé
system.
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Appendix A. Alternative Sets of “Reflection-Type”
Basis Functions

In this Appendix, we define further sets of basis functions for the τrefl component of
P⊥

n,n−1(T̂ ) — different choices might be preferable for different kinds of applications.
All these sets have in common that two vertices of T̂ are special — any basis function
is symmetric/skew symmetric with respect to the angular bisector of one of these
two vertices.

Remark A.1. The functions bn,2k can be characterized as the range of I + R. We
project these functions onto τrefl, that is, the space E(refl) := {p : RMp + MRp =
−p}. Let

T1 := I − MR and T2 := I − RM.

The range of both is E(refl). We will show that {T1bn,2k, T2bn,2k, 0 ≤ k ≤ (n− 2)/3}
is a basis for E(refl). Previously we showed {RMqk,MRqk} is a basis, where
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qk =(2I − MR − RM)bn,2k = (T1 + T2)bn,2k (cf. (51)). Observe that

RM(2I − MR − RM) = 2RM − I − MR = T1 − 2T2,

MR(2I − MR − RM) = 2MR − RM − I = −2T1 + T2

hold, so the basis is made up out of linear combinations of {T1bn,2k, T2bn,2k, 0 ≤
k ≤ (n − 1)/3}. These can be written as elements of the range of T1(I + R) and
T2(I+R). Different linear combinations will behave differently under the reflections
R, M, RMR (that is (x, y) → (y, x), (1− x− y, y), (x, 1− x− y) respectively). After
some computations we find

R(T1 + T2)(I + R) = (T1 + T2)(I + R),

R(T1 − T2)(I + R) = −(T1 − T2)(I + R),

M(T1 − 2T2)(I + R) = (T1 − 2T2)(I + R),

MT1(I + R) = −T1(I + R),

RMR(2T1 − T2)(I + R) = (2T1 − T2)(I + R),

RMRT2(I + R) = −T2(I + R).

(A.1)

Any two of these types can be used in producing bases from the bn,2k. Also each
pair (first two, second two, third two) are orthogonal to each other. Note R fixes
(0, 0) and reflects in the line x = y, M fixes (0, 1), reflects in 2x+ y = 1, and RMR

fixes (1, 0), reflects in x + 2y = 1.

If we allow for a complex valued basis, the three vertices of T̂ can be treated
more equally as can be seen from the following remark.

Remark A.2. The basis functions can be complexified: set ω = e2π i /3; any poly-
nomial in E(refl) can be expressed as p = p1 + p2 such that MRp = ωp1 + ω2p2

(consequently RMp = ω2p1 + ωp2 ), then

−1
3
(ωT1 + ω2T2)p = p1,

−1
3
(ω2T1 + ωT2)p = p2.

These lead to another basis built up from the bn,2k. Let

S1 = −1
3
(ωT1 + ω2T2)(I + R),

S2 = −1
3
(ω2T1 + ωT2)(I + R).
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Applying these operators to bn,2k produces a basis {S1bn,2k, S2bn,2k : 0 ≤ k ≤
(n − 1)/3} satisfying

RS1bn,2k = S2bn,2k, RS2bn,2k = S1bn,2k,

MS 1bn,2k = ωS2bn,2k, MS 2bn,2k = ω2S1bn,2k,

RMRS1bn,2k = ω2S2bn,2k, RMRS2bn,2k = ωS1bn,2k.

This is a basis which behaves similarly at each vertex.
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