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Abstract. In this paper, we study the time-harmonic Maxwell problem with sign-changing permittivity
and/or permeability, set in a domain of R3. We prove, using the T-coercivity approach, that the well-posedness
of the two canonically associated scalar problems, with Dirichlet and Neumann boundary conditions, implies
the well-posedness of the Maxwell problem. This allows us to give simple and sharp criteria, obtained in
the study of the scalar cases, to ensure that the Maxwell transmission problem between a classical dielectric
material and a negative metamaterial is well-posed.
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1 Introduction
We investigate the time-harmonic Maxwell problem in a composite material surrounded by a perfect conduc-
tor. A composite material is modeled by non constant electric permittivity ε and magnetic permeability µ.
It is well-known that some materials, like metals at optical frequencies, are almost dissipationless and have
a dielectric permittivity whose real part is negative. More surprising is the possibility of realizing materials,
called negative metamaterials, which exhibit both negative real valued permittivity and permeability in some
appropriate range of frequencies. The association of classical dielectrics and such negative materials has
very exciting potential applications such as plasmonic waveguides, perfect lenses [36, 26, 32], photonic traps,
subwavelength cavities [20] ... From a mathematical point of view, the change of sign of the coefficients ε
and/or µ in the medium raises a lot of original questions for the corresponding electromagnetic model, both
for the mathematical analysis and the numerical simulation [31, 33, 21]. Indeed, standard theorems proving
the well-posedness of the problem and the convergence of conventional numerical methods are no-longer valid
in such situations. Consequently, and generally speaking, the questions we have to address are the following.
Can we extend the classical theory to configurations with sign-changing coefficients? And if not, is there a
new functional framework in which well-posedness and stability properties can be recovered?

For 2D configurations, the corresponding electromagnetic model reduces to a scalar problem involving the
operators −div (σ∇·) with Dirichlet or Neumann boundary condition, σ being equal to ε−1 or µ−1. Those
scalar problems have been thoroughly investigated [7, 40, 9, 29, 3, 14, 5, 12, 15] and sharp results have
been recently obtained thanks to the simple variational method of the T-coercivity. This technique consists
in constructing explicit operators which realize the so-called inf-sup Banach-Nečas-Babuška condition [2].
One of its main interests is that it can be used to justify the convergence of finite element methods. It is
necessary to emphasize that this approach is nothing else but a reformulation of the inf-sup condition and
all the work lies in the definition of the operator T. The above scalar problems are proved to be of Fredholm
type in the classical functional framework if the contrasts (ratios of the values of σ across the interface
between the dielectric and the negative material) are outside some critical interval, which always contains
the value −1. This interval reduces to {−1} if (and only if) the interface is smooth (see also [18, 30, 25] for
approaches relying on integral equations). For a contrast equal to −1, the problems are severely ill-posed
(not Fredholm) in H1. The influence of corners in the interface, noticed for instance in [35, 37], has been
clarified in [19, 10, 34]. When the interface has a corner, depending on the value of the contrast in σ, the
scalar problems can be ill-posed (not Fredholm) in H1, even for contrasts different from −1, because of the
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onset of “strong” singularities at the corner. Well-posedness can be recovered by working in a new functional
framework in which a radiation condition at the corner is imposed [6].

For scalar problems, the theory is now quite mature. We wish to obtain such results for Maxwell problems,
and first, the results of well-posedness using variational techniques (for results obtained with volume and
surface integral equations, we refer the reader to [16, 24, 17]). These variational methods are interesting
because they allow one to consider rather general configurations: non smooth interface between the positive
and the negative material and L∞ coefficients ε, ε−1, µ, µ−1. However, it appears that the geometric
approach followed for studying the scalar problems is difficult to apply because of the nature of functional
spaces used for Maxwell problems. Therefore, we will proceed differently. Again, we will use the T-coercivity
technique but in a different form. We will prove that one can construct T-coercivity operators as soon as
the associated 3D scalar problems are well-posed. This will provide very simple criteria (those of the scalar
problems) to ensure that Maxwell problems are well-posed. When the contrasts in ε and/or µ lie inside the
critical intervals, the definition of a new functional framework taking into account the gradients of the strong
singularities, is still an open question.

The outline of the paper is the following. The definition of the problem and the notations are introduced
in Section 2. In Section 3, we give equivalent formulations of the problem, using some classical functional
spaces for the study of Maxwell problems: VN (ε; Ω) for the electric field and VT (µ; Ω) for the magnetic
field; some divergence free condition is included in their definition. Section 4 expresses the main idea of the
paper: how to build a T-coercivity operator for the Maxwell problems when the associated scalar problems are
well-posed. Then, we use these results and a technique due to [23] to prove some result of compact embedding
of VN (ε; Ω) and VT (µ; Ω) in L2(Ω) := L2(Ω)3, extending [8] where additional assumptions on ε, µ and on
the geometry were needed (in particular, the interface has to be smooth). Again, let us underline that these
results are not classical in the literature when the coefficients ε and µ change sign. In Section 6, we state the
main theorem of this work, summing up the previous results: electric and magnetic Maxwell transmission
problems are well-posed as soon as the associated 3D scalar problems are well-posed. We illustrate this result
on a series of canonical geometries. Finally, we present some generalizations in Section 8. First, we are
interested in configurations where the scalar problems are well-posed in the Fredholm sense with a non-trivial
kernel. Second, we consider the case of a non-simply connected domain whose boundary is not connected4.
This study covers the case of non simply connected domains with connected boundary and the case of simply
connected domains with non connected boundary.

2 Setting of the problem
Let Ω be a domain in R3, i.e. an open, connected and bounded subset of R3 with a Lipschitz-continuous
boundary ∂Ω. For some ω 6= 0 (ω ∈ C), the time harmonic Maxwell’s equations are given by

curlE − iωµH = 0 and curlH + iωεE = J in Ω. (1)

Above, E and H are respectively the electric and magnetic components of the electromagnetic field. The
source term J is the current density. We suppose that the medium Ω is surrounded by a perfect conductor
and we impose the boundary conditions

E × n = 0 and µH · n = 0 on ∂Ω, (2)

where n denotes the unit outward normal vector to ∂Ω. We assume that the dielectric permittivity ε and
the magnetic permeability µ are real valued functions which belong to L∞(Ω), with ε−1, µ−1 ∈ L∞(Ω). Let
us introduce some classical spaces in the study of Maxwell’s equations:

L2(Ω) = L2(Ω)3

H(curl ; Ω) =
{
u ∈ L2(Ω) | curlu ∈ L2(Ω)

}
HN (curl ; Ω) = {u ∈ H(curl ; Ω) |u× n = 0 on ∂Ω}
VN (ξ; Ω) = {u ∈ H(curl ; Ω) | div (ξ u) = 0, u× n = 0 on ∂Ω}
VT (ξ; Ω) = {u ∈ H(curl ; Ω) | div (ξ u) = 0, ξu · n = 0 on ∂Ω} ,

where ξ refers to a function of L∞(Ω) such that ξ−1 ∈ L∞(Ω). For simplicity, the current density J will be
chosen in L2(Ω) with divJ = 0 5. We denote indistinctly (·, ·) the inner products of L2(Ω) and L2(Ω) and
‖ ·‖ the associated norms. The spaces H(curl ; Ω), HN (curl ; Ω), VN (ξ; Ω) and VT (ξ; Ω) are endowed with
the inner product

(·, ·)curl = (·, ·) + (curl ·, curl ·).
4The Figure 2 at the end of this paper gives an example of such a geometry.
5The case divJ 6= 0 can be handled similarly with the tools that we propose, see Remark 6.2 below.
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Let us recall some well-known properties for the particular spaces VN (1; Ω) and VT (1; Ω) (cf. [38, 1]).
– The embeddings of VN (1; Ω) in L2(Ω) and of VT (1; Ω) in L2(Ω) are compact.
– Furthermore, when ∂Ω is connected (resp. when Ω is simply connected), the map (u,v) 7→ (curlu, curl v)
defines an inner product on VN (1; Ω) (resp. on VT (1; Ω)) and the associated norm is equivalent to the
canonical norm u 7→ (u,u)

1/2
curl .

Classically, we prove that if {E,H} satisfies (1)-(2), E and H are respectively solutions of the problems

Find E ∈ H(curl ; Ω) such that:
curl µ−1curlE − ω2εE = iωJ in Ω
E × n = 0 on ∂Ω

, (3)

Find H ∈ H(curl ; Ω) such that:
curl ε−1curlH − ω2µH = curl ε−1J in Ω
µH · n = 0 on ∂Ω
ε−1(curlH − J)× n = 0 on ∂Ω

. (4)

As already announced in the introduction, we want to find criteria for ε and µ to ensure that problems
(3) and (4) are well-posed in the Fredholm sense. Classically, for the study of Maxwell’s equations, our
strategy will consist in working in the space VN (ε; Ω) for the electric field and in the space VT (µ; Ω) for
the magnetic field. Indeed, for example, if E satisfies (3) and if ω 6= 0, then div (εE) = 0, so E belongs to
the space VN (ε; Ω). Therefore, the Fredholm property for the problem (3) will rely on two arguments: first
the compact embedding of VN (ε; Ω) in L2(Ω), secondly, the isomorphism property for the principal part
curl µ−1curl · : VN (ε; Ω) → VN (ε; Ω)∗. In a symmetric way, the Fredholm property for the magnetic field
relies on the compact embedding of VT (µ; Ω) in L2(Ω) and on the isomorphism property for the principal
part curl ε−1curl · : VT (µ; Ω) → VT (µ; Ω)

∗.

3 Equivalent formulations
Let us first give equivalent formulations to problem (1)-(2) in the spaces VN (ε; Ω) and VT (µ; Ω).

3.1 Problem for the electric field
For the study of the electric field, we introduce the Sobolev space with Dirichlet boundary condition H1

0(Ω) :=
{ϕ ∈ H1(Ω) |ϕ = 0 on ∂Ω}. On H1

0(Ω), we use the norm ‖·‖H1
0(Ω) = ‖∇ · ‖. With the Riesz representation

theorem, we define the bounded operators Aε : H1
0(Ω) → H1

0(Ω) and AN (ω) : VN (ε; Ω) → VN (ε; Ω), ω ∈ C,
such that

(∇(Aεϕ),∇ϕ′) = (ε∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ H1
0(Ω)

(AN (ω)E,E′)curl = (µ−1curlE, curlE′)− ω2(εE,E′), ∀E,E′ ∈ VN (ε; Ω). (5)

Theorem 3.1 Assume that ω 6= 0.
1) If {E,H} satisfies (1)-(2) then E is a solution of the problem

Find E ∈ VN (ε; Ω) such that for all E′ ∈ VN (ε; Ω):

(AN (ω)E,E′)curl = iω (J ,E′).
(6)

2) Assume that Aε is an isomorphism. If E satisfies (6) then the pair {E, (i ωµ)−1curlE} satisfies (1)-(2).

Proof. 1) If {E,H} satisfies (1)-(2), then E is a solution of (3). On the other hand, since ω 6= 0, there
holds div (εE) = 0. This allows us to show that E verifies (6).

2) Now, let us prove that if E ∈ VN (ε; Ω) ⊂ HN (curl ; Ω) satisfies (6) then E is a solution of the problem

Find E ∈ HN (curl ; Ω) such that for all E′ ∈ HN (curl ; Ω):

(µ−1curlE, curlE′)− ω2(εE,E′) = iω (J ,E′).
(7)

If Aε is an isomorphism, then for all E′ in HN (curl ; Ω) we can build ϕ ∈ H1
0(Ω) such that (ε∇ϕ,∇ϕ′) =

(εE′,∇ϕ′) for all ϕ′ ∈ H1
0(Ω). The element E′ −∇ϕ belongs to VN (ε; Ω). Taking E′ −∇ϕ as a test-field in

(6) and observing that (εE,∇ϕ) = 0 and (J ,∇ϕ) = 0 (recall that divJ = 0), one obtains

(µ−1curlE, curlE′)− ω2(εE,E′) = iω (J ,E′).

But (3) and (7) are equivalents. Therefore, if E satisfies (6) then E is a solution of (3). There just remains
to notice that in this case, the pair {E, (i ωµ)−1curlE} satisfies (1)-(2).
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Remark 3.2 In Section 7, we will give examples of configurations, depending on the values of ε and on the
geometry of the domain, where Aε is an isomorphism and where ε changes sign on Ω. However, we refer the
reader to [3] (see also [18]) for a general study of this question.

3.2 Problem for the magnetic field
For the study of the magnetic field, we introduce the space

H1
#(Ω) :=

{
ϕ ∈ H1(Ω) |

∫
Ω

ϕ = 0

}
.

Since Ω is connected, the map (ϕ,ϕ′) 7→ (∇ϕ,∇ϕ′) is an inner product on H1
#(Ω). The associated norm is

denoted ‖·‖H1
#(Ω). Define the bounded operators Aµ : H1

#(Ω) → H1
#(Ω) and AT (ω) : VT (µ; Ω) → VT (µ; Ω),

ω ∈ C, such that

(∇(Aµϕ),∇ϕ′) = (µ∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ H1
#(Ω)

(AT (ω)H,H ′)curl = (ε−1curlH, curlH ′)− ω2(µH,H ′), ∀H,H ′ ∈ VT (µ; Ω). (8)

Adapting the proof of Theorem 3.1, one obtains the

Theorem 3.3 Assume that ω 6= 0.
1) If {E,H} satisfies (1)-(2) then H is a solution of the problem

Find H ∈ VT (µ; Ω) such that for all H ′ ∈ VT (µ; Ω):

(AT (ω)H,H ′)curl = (ε−1J , curlH ′).
(9)

2) Assume that Aµ is an isomorphism. If H satisfies (9) then the pair {i (ωε)−1(curlH − J),H} satisfies
(1)-(2).

Remark 3.4 Again, in Section 7, we will provide examples of configurations, depending on the values of µ
and on the geometry of the domain, where Aµ is an isomorphism and where µ changes sign on Ω.

4 T-coercivity operators for the Maxwell problem
The proof of the following lemma contains the main idea of the paper: we explain how to build T-coercivity
operators for the Maxwell problem.

Lemma 4.1 Let Ω be a simply connected domain such that ∂Ω is connected. Assume that Aε and Aµ are
isomorphisms. Then:
• There exists a bounded operator Tε of VN (ε; Ω) such that, for all u,v ∈ VN (ε; Ω),

(µ−1curlu, curlTεv) = (µ−1curlTεu, curl v) = (curlu, curl v). (10)

• There exists a bounded operator Tµ of VT (µ; Ω) such that, for all u,v ∈ VT (µ; Ω),

(ε−1curlu, curlTµv) = (ε−1curlTµu, curl v) = (curlu, curl v). (11)

Proof. Below, we focus our attention on the construction of the operator Tε. Consider v ∈ VN (ε; Ω).
i) Introduce ϕ the unique element of H1

#(Ω) such that

(µ∇ϕ,∇ϕ′) = (µ curl v,∇ϕ′), ∀ϕ′ ∈ H1
#(Ω).

The function ϕ is well-defined since we have assumed that Aµ is an isomorphism.
ii) Remark next that µ(curl v−∇ϕ) is a divergence free element of L2(Ω) such that µ(curl v−∇ϕ) ·n = 0
on ∂Ω. Since Ω is simply connected and since ∂Ω is connected, according to theorem 3.17 in [1] (see also
theorem 3.6 in [22]), there exists a unique potential ψ ∈ VN (1; Ω) such that curlψ = µ(curl v −∇ϕ).
iii) Consider ζ the unique element of H1

0(Ω) such that

(ε∇ζ,∇ζ ′) = (εψ,∇ζ ′), ∀ζ ′ ∈ H1
0(Ω).

The function ζ is well-defined since we have assumed that Aε is an isomorphism.
iv) Finally, define the bounded operator Tε : VN (ε; Ω) → VN (ε; Ω) such that Tεv = ψ − ∇ζ for v ∈
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VN (ε; Ω).
For all u,v ∈ VN (ε; Ω), we then compute

(µ−1curlu, curlTεv) = (µ−1curlu, curl (ψ −∇ζ))

= (µ−1curlu, curlψ)

= (µ−1curlu, µ(curl v −∇ϕ)) = (curlu, curl v),

because u× n = 0 on ∂Ω. Observing that there also holds (µ−1curlTεu, curl v) = (curlu, curl v), we are
led to (10). Using the same approach, one can construct a bounded operator Tµ : VT (µ; Ω) → VT (µ; Ω)
such that (11) holds. This ends the proof.

From this lemma, in order to prove that AN (0) : VN (ε; Ω) → VN (ε; Ω) (resp. AT (0) : VT (µ; Ω) →
VT (µ; Ω)) is an isomorphism when Aε and Aµ are isomorphisms, we still need to show that (u,v) 7→
(curlu, curl v) defines an inner product on VN (ε; Ω) (resp. VT (µ; Ω)). This is the goal of the next section.

5 Compactness results
For ξ ∈ L∞(Ω) such that ξ−1 ∈ L∞(Ω), define

XN (ξ; Ω) :=
{
u ∈ H(curl ; Ω) | div (ξ u) ∈ L2(Ω), u× n = 0 on ∂Ω

}
;

XT (ξ; Ω) :=
{
u ∈ H(curl ; Ω) | div (ξ u) ∈ L2(Ω), ξu · n = 0 on ∂Ω

}
.

Theses spaces are equipped with the norm u 7→ (‖u‖2 + ‖div (ξ u)‖2 + ‖curlu‖2)1/2. In this paragraph, we
prove that XN (ε; Ω) and XT (µ; Ω) are compactly embedded in L2(Ω) when Aε and Aµ are isomorphisms,
extending the classical theorems of [38, 23, 28] (for another approach, based on the study of the regularity
of fields, in 2D, when ε, µ change sign, see [13]). This constitutes a more general result than the one we
actually need for our study, namely the compact embedding of VN (ε; Ω) and VT (µ; Ω) in L2(Ω). We start
by studying the space of electric fields.

Theorem 5.1 Let Ω be a simply connected domain such that ∂Ω is connected. Assume that Aε is an iso-
morphism. Then the embedding of XN (ε; Ω) in L2(Ω) is compact.

Proof. Let (un) be a bounded sequence of XN (ε; Ω). Define fn := div (εun) and F n := curlun. The
sequences (fn) and (F n) are respectively bounded in L2(Ω) and in L2(Ω). Since Aε is an isomorphism, there
exists, for all n ∈ N, ϕn ∈ H1

0(Ω) such that div (ε∇ϕn) = div (εun). Then, we notice that ε(un −∇ϕn) is a
divergence free element of L2(Ω). Since ∂Ω is connected, there exists (see [1], theorem 3.12) wn ∈ VT (1; Ω)
such that curlwn = ε(un −∇ϕn). Thus, for all n ∈ N, one has un = ∇ϕn + ε−1curlwn. Let us show now
we can extract sequences from (∇ϕn) and (curlwn) which converge in L2(Ω).

Since Aε is an isomorphism, (ϕn) and (Aεϕn) remain bounded in H1
0(Ω). But H1

0(Ω) is compactly embedded in
L2(Ω). Therefore, we can extract a subsequence from (ϕn) (still denoted (ϕn)) such that (Aεϕn) converges in
L2(Ω). Introduce ϕnm = ϕn−ϕm and fnm = fn−fm. By linearity, there holds: −(ε∇ϕnm,∇ϕ′) = (fnm, ϕ′),
for all ϕ′ ∈ H1

0(Ω). Taking ϕ′ = Aεϕnm, one obtains

‖(Aε)−1‖−2 ‖ϕnm‖2H1
0(Ω) ≤ |(∇(Aεϕnm), ∇(Aεϕnm))| = |(ε∇ϕnm, ∇(Aεϕnm))| = |(fnm, Aεϕnm)| .

This shows that (∇ϕn) is a Cauchy sequence in L2(Ω), and so, that it converges.

Now, let us work on the sequence (curlwn). We know that w 7→ ‖curlw‖ defines a norm on VT (1; Ω).
Consequently, the sequence (wn) is bounded in VT (1; Ω). By the compact embedding of VT (1; Ω) in L2(Ω),
we can extract a subsequence, still denoted (wn), which converges in L2(Ω). According to Lemma 4.1 (remark
that Aµ with µ = 1 is indeed an isomorphism), there exists an operator T1 of VT (1; Ω) such that∣∣(ε−1curlw, curlT1w)

∣∣ = ‖curlw‖2 , ∀w ∈ VT (1; Ω).

Since T1 is continuous, the sequence (T1wn) is bounded in VT (1; Ω). So, we can extract a subsequence
from (wn), still denoted (wn), such that (T1wn) converges in L2(Ω). Since curl ε−1curlwn = F n in Ω
and (ε−1curlwn)× n = 0 on ∂Ω, one has (ε−1curlwnm, curlw′) = (F nm,w′), for all w′ ∈ VT (1; Ω) with
wnm = wn −wm and F nm = F n − Fm. Testing with w′ = T1wnm leads to:

‖curlwnm‖2 =
∣∣(F nm,T1wnm)

∣∣ .
This estimate proves that (curlwn) is a Cauchy sequence in L2(Ω). Consequently, it converges.
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Corollary 5.2 Let Ω be a simply connected domain such that ∂Ω is connected. Assume that Aε is an
isomorphism. Then, there exists a constant C > 0 such that

‖u‖2 ≤ C ‖curlu‖2 , ∀u ∈ VN (ε; Ω). (12)

Thus, the map (u,v) 7→ (curlu, curl v) defines an inner product on VN (ε; Ω) and the associated norm is
equivalent to the canonical norm u 7→ (u,u)

1/2
curl .

Proof. To prove this corollary, it is sufficient to show (12). Let us proceed by contradiction assuming there
exists a sequence (un) of elements of VN (ε; Ω) such that

∀n ∈ N, ‖un‖ = 1 and lim
n→∞

‖curlun‖ = 0.

According to Theorem 5.1, we can extract a sequence from (un) (still denoted (un)) which converges to
u in L2(Ω). By construction, we have ‖u‖ = 1. Then, one can check easily that (un) converges to u in
HN (curl ; Ω) with curlu = 0 a.e. in Ω. Since ∂Ω is connected, one deduces (see [11], chapter 2, theorem 8)
that there exists a scalar potential ϕ ∈ H1

0(Ω) such that u = ∇ϕ in Ω. Finally, we notice that div (εu) = 0
and so Aεϕ = 0. This implies ϕ = 0 so u = 0. This leads to a contradiction because we must have ‖u‖ = 1.

Analogously, we can prove successively the following results for the space of magnetic fields.

Theorem 5.3 Let Ω be a simply connected domain such that ∂Ω is connected. Assume that Aµ is an
isomorphism. Then, the embedding of XT (µ; Ω) in L2(Ω) is compact.

Corollary 5.4 Let Ω be a simply connected domain such that ∂Ω is connected. Assume that Aµ is an
isomorphism. Then, there exists a constant C > 0 such that

‖u‖2 ≤ C ‖curlu‖2 , ∀u ∈ VT (µ; Ω).

Thus, the map (u,v) 7→ (curlu, curl v) defines an inner product on VT (µ; Ω) and the associated norm is
equivalent to the canonical norm u 7→ (u,u)

1/2
curl .

6 Well-posedness of Maxwell’s equations
We now have all the tools to prove the main result of this paper.

Theorem 6.1 Let Ω be a simply connected domain such that ∂Ω is connected. Assume that Aε and Aµ are
isomorphisms. Then, the following results hold.

• The operator for the electric field AN (ω) : VN (ε; Ω) → VN (ε; Ω), defined in (5), is an isomorphism for
all ω ∈ C\S, where S ⊂ R is a discrete set.

• The operator for the magnetic field AT (ω) : VT (µ; Ω) → VT (µ; Ω), defined in (8), is an isomorphism for
all ω ∈ C\S, where S ⊂ R is a discrete set.

• Maxwell’s equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S, where S ⊂ R is a discrete set.

Proof. Let us begin with the first point. Lemma 4.1 ensures the existence of a bounded map Tε : VN (ε; Ω) →
VN (ε; Ω) such that, for all u,v ∈ VN (ε; Ω),

(AN (0)(Tεu),v)curl = (µ−1curlTεu, curl v) = (curlu, curl v).

According to Corollary 5.2, (u,v) 7→ (curlu, curl v) defines an inner product on VN (ε; Ω). Consequently,
the operator AN (0) ◦ Tε is an isomorphism of VN (ε; Ω). Since AN (0) is selfadjoint, we deduce that AN (0)
and Tε are isomorphisms. On the other hand, Theorem 5.1 guarantees that VN (ε; Ω) is compactly embedded
in L2(Ω). As a consequence, AN (ω)−AN (0) is a compact operator of VN (ε; Ω) for all ω ∈ C. The analytic
Fredholm theorem then allows us to conclude. The second point can be proven in the same way while one
shows the third statement thanks to Theorems 3.1 and 3.3.

Remark 6.2 If in Eq. (1) one considers J such that divJ 6= 0, it follows that div (εE) = (iω)−1divJ 6= 0.
However, if one assumes that Aε is an isomorphism, one can solve the problem “Find ϕ ∈ H1

0(Ω) such
that (ε∇ϕ,∇ϕ′) = (iω)−1(J ,∇ϕ′), for all ϕ′ ∈ H1

0(Ω)”. Then, one can proceed exactly as before with
{J − iωε∇ϕ,E −∇ϕ} replacing {J ,E} in Eq. (1).
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Remark 6.3 One can also prove the following “reciprocal” assertions.
- If there exists an isomorphism T1 of VN (1; Ω) such that (µ−1curlu, curlT1u) ≥ ‖curlu‖2 for all u ∈
VN (1; Ω), then Aµ is an isomorphism.
- If there exists an isomorphism T1 of VT (1; Ω) such that (ε−1curlu, curlT1u) ≥ ‖curlu‖2 for all u ∈
VT (1; Ω), then Aε is an isomorphism.

7 Illustrations

Figure 1: Canonical geometries: symmetric domain, prismatic edge, Fichera’s corner, non symmetric cavity.

We apply Theorem 6.1 in a few simple geometries. We focus on situations where the medium consists of
two different materials. To model this problem, we assume that Ω is divided into two sub-domains Ω1 and
Ω2 with Ω = Ω1 ∪ Ω2 et Ω1 ∩ Ω2 = ∅. We denote Σ := ∂Ω1 \ ∂Ω = ∂Ω2 \ ∂Ω. Let us introduce ε1 and µ1

(resp. ε2 and µ2) two elements of L∞(Ω1) (resp. L∞(Ω2)). Define the functions ε and µ such that ε|Ωk
= εk

and µ|Ωk
= µk for k = 1, 2. We assume that Ω1 is filled with a positive material and that Ω2 is filled with a

possibly negative material (for ε and/or µ). For that, we make the following assumptions:
– there exists a constant C s.t. ε1 ≥ C > 0 and µ1 ≥ C > 0 a.e. in Ω1;
– there exists a constant C s.t. ε2 ≥ C > 0 a.e. in Ω2 or ε2 ≤ −C < 0 a.e. in Ω2 ;
– there exists a constant C s.t. µ2 ≥ C > 0 a.e. in Ω2 or µ2 ≤ −C < 0 a.e. in Ω2.

In particular, notice that ε−1 ∈ L∞(Ω) and µ−1 ∈ L∞(Ω). Then, we define

σ+
1 := sup

Ω1

σ1, σ+
2 := sup

Ω2

|σ2|, σ−
1 := inf

Ω1

σ1 and σ−
2 := inf

Ω2

|σ2|, for σ = ε, µ.

Generally speaking, if v is a measurable function on Ω, we use the notation vk := v|Ωk
, k = 1, 2. For the first

three examples, to obtain criteria on ε, µ ensuring that Aε and Aµ are isomorphisms, we use the geometric
version of the T-coercivity as in [3]. More precisely, thanks to simple geometric transformations, we construct
isomorphisms Tε : H1

0(Ω) → H1
0(Ω) (resp. Tµ : H1

#(Ω) → H1
#(Ω)) such that Aε ◦ Tε (resp. Aµ ◦ Tµ) is an

isomorphism. Observe that this indeed implies that Aε (resp. Aµ) is an isomorphism.

Remark 7.1 We wish to emphasize that in this section, our goal is just to give a flavour of the results
existing for the scalar problems (which lead directly to results for the Maxwell problem) as well as an idea
of how to prove them. General statements cannot be presented without introducing rather heavy notations to
specify the geometry of the domain and the features of the parameters ε, µ. For a more complete description
of the properties of Aε and Aµ, we refer the reader to [3].

7.1 Symmetric domain
Let Ω be a symmetric domain, in the sense that Ω1 and Ω2 can be mapped from one to the other with the
help of a reflection symmetry. Without loss of generality, we assume that the interface Σ is included in the
plane z = 0 (see Figure 1, left, for an example). Consider the operators R1 and R2 respectively defined by
(R1ϕ1)(x, y, z) = ϕ1(x, y,−z) and (R2ϕ2)(x, y, z) = ϕ2(x, y,−z) for ϕ ∈ H1(Ω), where (x, y, z) denote the
cartesian coordinates. Define the operators T1 and T2 such that:

T1ϕ =

{
ϕ1 in Ω1

−ϕ2 + 2R1ϕ1 in Ω2
; T2ϕ =

{
ϕ1 − 2R2ϕ2 in Ω1

−ϕ2 in Ω2
.

By construction, T1ϕ and T2ϕ belong to H1(Ω). As T1 ◦ T1 = T2 ◦ T2 = Id, we deduce that T1 and T2 are
isomorphisms of H1(Ω). The restrictions Tε1 and Tε2 of T1 and T2 to H1

0(Ω) are isomorphisms of H1
0(Ω).

Let us introduce the linear form γ : H1(Ω) → R such that γ(ϕ) =
∫
Ω
ϕ/

∫
Ω
1. Note that ker(γ) = H1

#(Ω).
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Then, we define the operators T
µ
1 and T

µ
2 such that, for all ϕ ∈ H1

#(Ω), T
µ
1ϕ = T1ϕ − γ(T1ϕ) and T

µ
2ϕ =

T2ϕ− γ(T2ϕ). Notice that Tµ1ϕ and T
µ
2ϕ are elements of H1

#(Ω). Moreover, we have

T
µ
1 (T

µ
1ϕ) = T

µ
1 (T1ϕ− γ(T1ϕ)) = T1(T1ϕ− γ(T1ϕ))− γ(T1(T1ϕ− γ(T1ϕ)))

= ϕ− T1(γ(T1ϕ))− γ(ϕ− T1(γ(T1ϕ)))
= ϕ− T1(γ(T1ϕ)) + γ(T1(γ(T1ϕ))) = ϕ.

Thus, Tµ1 ◦ Tµ1 = Id. In the same way, we find T
µ
2 ◦ Tµ2 = Id. Hence T

µ
1 and T

µ
2 are isomorphisms of H1

#(Ω).

Proposition 7.2 (Symmetric domain)
Assume that ε satisfies ε ≥ C > 0 a.e. in Ω or max(ε−1 /ε

+
2 , ε

−
2 /ε

+
1 ) > 1.

Assume that µ satisfies µ ≥ C > 0 a.e. in Ω or max(µ−
1 /µ

+
2 , µ

−
2 /µ

+
1 ) > 1.

Then, Maxwell’s equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set.

Proof. Apply Theorem 6.1. To check that Aε and Aµ are isomorphisms, use the following table [3].

For ε ≥ C > 0 ε−1 /ε
+
2 > 1 ε−2 /ε

+
1 > 1

Take Tε equal to Id Tε1 Tε2

For µ ≥ C > 0 µ−
1 /µ

+
2 > 1 µ−

2 /µ
+
1 > 1

Take Tµ equal to Id T
µ
1 T

µ
2

In the case where ε and µ are constant on each side of the interface, the statement of Proposition 7.2 can be
further simplified.

Proposition 7.3 (Symmetric domain: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Then, if ε2/ε1, µ2/µ1 ∈ R∗\{−1}, Maxwell’s equations
(1)-(2) are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set.

7.2 Prismatic edge
Consider the geometry of Figure 1, middle-left. Introduce the cylindrical coordinates (r, θ, z) centered on the
edge, so that the cartesian coordinates are mapped as (x, y, z) = (r cos θ, r sin θ, z). Let H > 0 denote the
height of the cylinder, R > 0 its radius. Given 0 < α < 2π, define

Ω1 := {(r cos θ, r sin θ, z) | 0 < r < R, 0 < θ < α, 0 < z < H} ;
Ω2 := {(r cos θ, r sin θ, z) | 0 < r < R, α < θ < 2π, 0 < z < H} .

Introduce the two operators R1 and R2 such that (R1ϕ1)(r, θ, z) = ϕ1(r,
α

α−2π (θ−2π), z) and (R2ϕ2)(r, θ, z) =

ϕ2(r,
α−2π

α θ + 2π, z) for ϕ ∈ H1(Ω).
Proceeding as for the case of the symmetric domain, one obtains the

Proposition 7.4 (Prismatic edge)
Define Iα := max( α

2π−α ,
2π−α

α ).
Assume that ε satisfies ε ≥ C > 0 a.e. in Ω or max(ε−1 /ε

+
2 , ε

−
2 /ε

+
1 ) > Iα.

Assume that µ satisfies µ ≥ C > 0 a.e. in Ω or max(µ−
1 /µ

+
2 , µ

−
2 /µ

+
1 ) > Iα.

Then, Maxwell’s equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set.

Proposition 7.5 (Prismatic edge: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Define Iα := max( α

2π−α ,
2π−α

α ). Then, if ε2/ε1, µ2/µ1 ∈
R∗\[−Iα;−1/Iα], Maxwell’s equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete
set.
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7.3 Fichera corner
Consider the geometry of Figure 1, middle-right. More precisely, define Ω := (−1; 1)3, Ω1 := (0; 1)3 and
Ω2 := Ω\Ω1. Introduce the operators R1, R2, such that, for ϕ ∈ H1(Ω),

(R1ϕ1)(x, y, z) =



ϕ1(−x, y, z) in Ω1
2 := (−1; 0)× (0; 1)2

ϕ1(x,−y, z) in Ω2
2 := (0; 1)× (−1; 0)× (0; 1)

ϕ1(x, y,−z) in Ω3
2 := (0; 1)2 × (−1; 0)

ϕ1(−x,−y, z) in Ω4
2 := (−1; 0)2 × (0; 1)

ϕ1(−x, y,−z) in Ω5
2 := (−1; 0)× (0; 1)× (−1; 0)

ϕ1(x,−y,−z) in Ω6
2 := (0; 1)× (−1; 0)2

ϕ1(−x,−y,−z) in Ω7
2 := (−1; 0)3

;

(R2ϕ2)(x, y, z) = ϕ1
2(−x, y, z) + ϕ2

2(x,−y, z) + ϕ3
2(x, y,−z)

−ϕ4
2(−x,−y, z)− ϕ5

2(−x, y,−z)− ϕ6
2(x,−y,−z)

+ϕ7
2(−x,−y,−z).

Above, for ` = 1 . . . 7, ϕ`
2 is the restriction of ϕ2 to Ω`

2.
Again, proceeding as for the case of the symmetric domain, one obtains the

Proposition 7.6 (Fichera’s corner)
Assume that ε satisfies ε ≥ C > 0 a.e. in Ω or max(ε−1 /ε

+
2 , ε

−
2 /ε

+
1 ) > 7.

Assume that µ satisfies µ ≥ C > 0 a.e. in Ω or max(µ−
1 /µ

+
2 , µ

−
2 /µ

+
1 ) > 7.

Then, Maxwell’s equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set.

Proposition 7.7 (Fichera’s corner: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Then, if ε2/ε1, µ2/µ1 ∈ R∗\[−7;−1/7], Maxwell’s
equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set.

7.4 Non symmetric cavity
Let us consider the non symmetric cavity of Figure 1. More precisely, define Ω := {(x, y, z) ∈ (−a; b) ×
(0; 1) × (0; 1)}, Ω1 := (−a; 0) × (0; 1) × (0; 1) and Ω2 := (0; b) × (0; 1) × (0; 1) with a > 0 and b > 0. The
interface Σ is then equal to {0} × (0; 1)× (0; 1). Assume that ε1, ε2, µ1 and µ2 are constant numbers.

For this particular geometry, we know (see [3]) that the operator Aε (resp. Aµ) is Fredholm of index 0
(see Definition 8.1 below) if and only if ε2/ε1 6= −1 (resp. µ2/µ1 6= −1). To apply Theorem 6.1, we need
Aε and Aµ to be isomorphisms. Therefore, it is necessary to study the question of the injectivity of Aε and
Aµ. Let us start with Aε. Consider ϕ an element of H1

0(Ω) such that Aεϕ = 0. The pair (ϕ1, ϕ2) satisfies
the equations

∆ϕ1 = 0 in Ω1;
∆ϕ2 = 0 in Ω2;

ϕ1 − ϕ2 = 0 on Σ;
ε1∂xϕ1 − ε2∂xϕ2 = 0 on Σ.

Decomposing ϕ1 and ϕ2 in Fourier series (the family {(y, z) 7→ sin(mπy) sin(nπz)}∞m,n=1 is a basis of
L2((0; 1) × (0; 1))) and writing the transmission conditions on Σ, one finds that Aε : H1

0(Ω) → H1
0(Ω) is

injective if and only if ε2/ε1 is not an element of

Sε := {− tanh(
√
m2 + n2πb)/ tanh(

√
m2 + n2πa), (m,n) ∈ N∗ × N∗}. (13)

Following the same approach, exchanging the “sin” by “cos” to satisfy the Neumann condition, one can prove
that Aµ : H1

#(Ω) → H1
#(Ω) is injective if and only if µ2/µ1 is not an element of

Sµ := {− tanh(
√
m2 + n2πa)/ tanh(

√
m2 + n2πb), (m,n) ∈ N∗ × N∗} = {1/ρ, ρ ∈ Sε}. (14)

Remark 7.8 The map g : z 7→ − tanh(zπb)/ tanh(zπa) is continuous, strictly decreasing if a > b and strictly
increasing if a < b. Besides, we have limz→+∞ g(z) = −1. As a consequence, −1 is an accumulation point
of both sets Sε and Sµ.

Remark 7.9 For this particular 3D geometry, we obtain a result specific to 2D configurations (see [5]): the
problem with Dirichlet boundary condition for the coefficient ε is well-posed if and only if the problem with
Neumann boundary condition is well-posed for the coefficient µ := ε−1.
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We deduce the

Proposition 7.10 (Non symmetric cavity: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Assume that ε2/ε1 ∈ R∗\{Sε ∪ {−1} } and µ2/µ1 ∈
R∗\{Sµ ∪ {−1} }, with Sε and Sµ respectively defined in (13) and (14). Then, Maxwell’s equations (1)-(2)
are uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set.

8 Relaxing the main hypotheses
To prove the previous results, we rely extensively on two types of hypotheses. On the one hand, we assume
that Aε and Aµ are isomorphisms. On the other hand, the domain Ω is supposed to be simply connected,
with a connected boundary. We would like now to relax these assumptions.

Concerning the hypotheses on the geometry, the difficulty is well-known (see for instance [11]). For in-
stance, if the boundary ∂Ω is not connected, the space VN (ε; Ω) contains non-trivial curl free fields ∇ϕ, so
that u 7→ (u,u)

1/2
curl is not a norm on VN (ε; Ω) anymore. The same occurs for VT (µ; Ω) when Ω is not

simply connected.
At first glance, relaxing the assumptions on Aε and Aµ has similar consequences. For example, suppose that
there is a non-trivial function ϕ̃ in the kernel of Aε. In such a situation, the non-trivial curl free field ∇ϕ̃

belongs to VN (ε; Ω). Once more, u 7→ (u,u)
1/2
curl is not a norm on VN (ε; Ω).

However, we observe a fundamental difference between the scalar potentials which are built in the two
cases: ϕ /∈ H1

0(Ω), whereas ϕ̃ ∈ H1
0(Ω). As a consequence, the field Ẽ = ∇ϕ̃ verifies

(εẼ,E′) = 0, ∀E′ ∈ VN (ε; Ω),

which is not true for E = ∇ϕ. So, Ẽ is a solution of the homogeneous problem (J = 0) for the electric field
(6) stated in VN (ε; Ω) but not to the homogeneous problem (3) stated in HN (curl ; Ω). In other words, when
the scalar problems have non-trivial kernels, Theorems 3.1 and 3.3 (equivalence with the original Maxwell’s
problem) are no longer true.

Summing up, we see that the difficulties which occur when relaxing either hypotheses on the geometry
or hypotheses on the scalar problem present some similarities (existence of admissible fields which are both
divergence free and curl free) but also some fundamental differences (formulations in VN (ε; Ω) and VT (µ; Ω)
are no longer equivalent to the original problem when the scalar problem have non-trivial kernels).
Since the non-injectivity of the scalar problems is a difficulty which is specific to the presence of sign-changing
coefficients ε and/or µ, it will be treated first in Subsection 8.1. Then, in Subsection 8.2, we shall check that
the usual treatment for non-trivial geometries can be extended to sign-changing coefficients.

8.1 Extension to non injective scalar problems
We have introduced the bounded operators

Aε : H1
0(Ω) → H1

0(Ω) s.t. (∇(Aεϕ),∇ϕ′) = (ε∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ H1
0(Ω);

and Aµ : H1
#(Ω) → H1

#(Ω) s.t. (∇(Aµϕ),∇ϕ′) = (µ∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ H1
#(Ω).

Theorem 6.1 indicates that Maxwell’s equations (1)-(2) are well-posed in the Fredholm sense when Aε and
Aµ are isomorphisms. In this section, we wish to consider situations where the physical parameters ε, µ and
the geometry are such that

(H ε) | The operator Aε : H1
0(Ω) → H1

0(Ω) is Fredholm of index 0 and non injective;

(H µ) | The operator Aµ : H1
#(Ω) → H1

#(Ω) is Fredholm of index 0 and non injective.

For ease of reading, we recall the definition of a Fredholm operator (see [39, 27]).

Definition 8.1 Let X and Y be two Banach spaces, and let L : X → Y be a continuous linear map. The
operator L is said to be a Fredholm operator if and only if the following two conditions are fulfilled

i) dim(kerL) < ∞ and rangeL is closed;

ii) dim(cokerL) < ∞ where cokerL :=
(
Y/rangeL

)
.

Besides, the index of a Fredholm operator L is defined by indL = dim(kerL)− dim(cokerL).
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Regarding the non symmetric cavity described in §7.4, this corresponds to considering the case where κε ∈ Sε

and κµ ∈ Sµ. For the sake of brevity, we will focus on configurations where Aε and Aµ both have a kernel
non reduced to zero. When only one of these two operators is not injective, the study of the Maxwell’s
equations can be easily inferred from the one we present below.

Let us introduce {λε
i}N

ε

i=1 a basis of ker Aε such that (∇λε
i ,∇λε

j) = δij and {λµ
i }N

µ

i=1 a basis of ker Aµ such
that (∇λµ

i ,∇λµ
j ) = δij . Define the spaces Sε and Sµ such that

H1
0(Ω) = ker Aε

⊥
⊕ Sε and H1

#(Ω) = ker Aµ
⊥
⊕ Sµ.

Consider the operators

Ãε : Sε → Sε s.t. (∇(Ãεϕ),∇ϕ′) = (ε∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ Sε;

and Ãµ : Sµ → Sµ s.t. (∇(Ãµϕ),∇ϕ′) = (µ∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ Sµ.

Classically (see [27]), one has the

Proposition 8.2 The operators Ãε : Sε → Sε and Ãµ : Sµ → Sµ are isomorphisms.

As mentioned in the introduction of Section 8, Theorems 3.1 and 3.3 do not hold anymore. Indeed,
span(∇λε

1, . . . ,∇λε
Nε) is included in the kernel of problem (6), stated in VN (ε; Ω), but not in the kernel

of the original problem (3), stated in HN (curl ; Ω). Our objective is therefore to write variational formu-
lations of Maxwell’s problems in some spaces different from VN (ε; Ω) and VT (µ; Ω) in order to eliminate
these artificial kernels. A way to achieve that aim is to enrich the usual spaces by setting

ṼN (ε; Ω) := {u ∈ HN (curl ; Ω) | (εu,∇ϕ) = 0, ∀ϕ ∈ Sε} ;
ṼT (µ; Ω) := {u ∈ H(curl ; Ω) | (µu,∇ϕ) = 0, ∀ϕ ∈ Sµ} . (15)

Notice that we have VN (ε; Ω) ⊂ ṼN (ε; Ω) and VT (µ; Ω) ⊂ ṼT (µ; Ω). Let us clarify the relation between
these spaces. For the proof of the following result, we refer the reader to [4, lemma 8.3].

Lemma 8.3 • For i = 1 . . . Nε, there exists Λε
i ∈ ṼN (ε; Ω) such that (εΛε

i ,∇λε
j) = δij, for j = 1 . . . Nε.

We deduce
ṼN (ε; Ω) = VN (ε; Ω) ⊕ span(Λε

i )
Nε

i=1.

• For i = 1 . . . Nµ, there exists Λµ
i ∈ ṼT (µ; Ω) such that (µΛµ

i ,∇λµ
j ) = δij, for j = 1 . . . Nµ. We deduce

ṼT (µ; Ω) = VT (µ; Ω) ⊕ span(Λµ
i )

Nµ

i=1.

Adapting the proof of Theorem 3.1, we can give equivalent formulations to problem (1)-(2) in the spaces
ṼN (ε; Ω) and ṼT (µ; Ω).

Theorem 8.4 Assume (H ε) and that ω 6= 0. Let ṼN (ε; Ω) be defined as in (15).
1) If {E,H} satisfies (1)-(2) then E is a solution of the problem

Find E ∈ ṼN (ε; Ω) such that for all E′ ∈ ṼN (ε; Ω):

(µ−1curlE, curlE′)− ω2(εE,E′) = iω (J ,E′).
(16)

2) If E satisfies (16) then the pair {E, (i ωµ)−1curlE} satisfies (1)-(2).

Theorem 8.5 Assume (H µ) and that ω 6= 0. Let ṼT (µ; Ω) be defined as in (15).
1) If {E,H} satisfies (1)-(2) then H is a solution of the problem

Find H ∈ ṼT (µ; Ω) such that for all H ′ ∈ ṼT (µ; Ω):

(ε−1curlH, curlH ′)− ω2(µH,H ′) = (ε−1J , curlH ′).
(17)

2) If H satisfies (17) then the pair {i (ωε)−1(curlH − J),H} satisfies (1)-(2).

To study formulations (16) and (17), we need some new compactness results. The latter can be shown working
as in the proof of Theorem 5.1 with the help of Lemma 8.3 (see [4, theorem 8.8] for the details).

Theorem 8.6 Let Ω be a simply connected domain such that ∂Ω is connected.

• Assume (H ε). Then the embedding of ṼN (ε; Ω) in L2(Ω) is compact.

• Assume (H µ). Then the embedding of ṼT (µ; Ω) in L2(Ω) is compact.
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Using the Riesz representation theorem, introduce the bounded operators ÃN (ω) : ṼN (ε; Ω) → ṼN (ε; Ω) and
ÃT (ω) : ṼT (µ; Ω) → ṼT (µ; Ω), ω ∈ C, such that for all E,E′ ∈ ṼN (ε; Ω) and for all H,H ′ ∈ ṼT (µ; Ω),

(ÃN (ω)E,E′)curl = (µ−1curlE, curlE′)− ω2(εE,E′),

(ÃT (ω)H,H ′)curl = (ε−1curlH, curlH ′)− ω2(µH,H ′).

Now, we state the main result when the geometry and the physical coefficients ε, µ are such that the scalar
problems are well-posed in the Fredholm sense with a non-trivial kernel.

Theorem 8.7 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (H ε) and (H µ).
Consider J ∈ L2(Ω) such that divJ = 0. Then, the following results hold.

• For all ω ∈ C, the operator ÃN (ω) : ṼN (ε; Ω) → ṼN (ε; Ω) is a Fredholm operator of index 0. Moreover,
for ω ∈ C∗, E ∈ ṼN (ε; Ω) satisfies (ÃN (ω)E,E′)curl = iω(J ,E′), for all E′ ∈ ṼN (ε; Ω), if and only if the
pair {E, (i ωµ)−1curlE} satisfies the Maxwell’s equations (1)-(2).

• For all ω ∈ C, ÃT (ω) : ṼT (µ; Ω) → ṼT (µ; Ω) is a Fredholm operator of index 0. Moreover, for ω ∈ C∗,
H ∈ ṼT (µ; Ω) satisfies (ÃT (ω)H,H ′)curl = (ε−1J , curlH ′), for all H ′ ∈ ṼT (µ; Ω), if and only if the pair
{i (ωε)−1(curlH − J),H} satisfies the Maxwell’s equations (1)-(2).

Proof. Let us prove that ÃN (ω) is a Fredholm operator of index 0. For all ω ∈ C, using Theorem 8.6, we
can prove that ÃN (ω)− ÃN (0) is a compact operator of ṼN (ε; Ω). Consequently, according to [27, theorem
2.26], ÃN (ω) is a Fredholm operator of index 0 if and only if ÃN (0) is a Fredholm operator of index 0. In
the sequel, we work on ÃN (0). We build a bounded operator T̃ε : ṼN (ε; Ω) → ṼN (ε; Ω) to restore some
positivity up to a compact perturbation. Let us consider u ∈ ṼN (ε; Ω).
i) First, define ϕ the unique element of Sµ such that

(µ∇ϕ,∇ϕ′) = (µ (curlu−
Nµ∑
i=1

βiΛ
µ
i ),∇ϕ′), ∀ϕ′ ∈ Sµ,

where βi = (µ curlu,∇λµ
i ). The function ϕ is well-defined since Ãµ : Sµ → Sµ is an isomorphism.

ii) Then, notice that µ(curlu−
∑Nµ

i=1 βiΛ
µ
i −∇ϕ) is a divergence free element of L2(Ω) such that µ(curlu−∑Nµ

i=1 βiΛ
µ
i −∇ϕ) ·n = 0 on ∂Ω. Since Ω is simply connected and since ∂Ω is connected, according to theorem

3.17 in [1], there exists a unique potential ψ ∈ VN (1; Ω) such that curlψ = µ(curlu−
∑Nµ

i=1 βiΛ
µ
i −∇ϕ).

iii) Consider ζ the unique element of Sε such that

(ε∇ζ,∇ζ ′) = (εψ,∇ζ ′), ∀ζ ′ ∈ Sε.

The function ζ is well-defined since Ãε : Sε → Sε is an isomorphism.
iv) Finally, define the operator T̃ε : ṼN (ε; Ω) → ṼN (ε; Ω) such that T̃εu = ψ − ∇ζ and the operator
K̃ε : ṼN (ε; Ω) → ṼN (ε; Ω) such that

(K̃εu,v)curl = (u,v) +
Nµ∑
i=1

(µ curlu,∇λµ
i )(Λ

µ
i , curl v), ∀v ∈ ṼN (ε; Ω).

According to Theorem 8.6, we know that the embedding of ṼN (ε; Ω) in L2(Ω) is compact. Consequently,
K̃ε is the sum of a compact operator and a finite rank operator. Therefore, it is a compact operator. Now,
for all u,v ∈ ṼN (ε; Ω), we obtain

(ÃN (0)(T̃εu),v)curl = (µ−1curl (T̃εu), curl v)

= (curlu, curl v) + (u,v)− (K̃εu,v)curl .

We deduce ÃT (0) ◦ T̃ε + K̃ε = Id. This proves that T̃ε is a right parametrix for ÃN (0). Thus, the selfadjoint
operator ÃN (0) is Fredholm of index 0 (use [27, lemma 2.23]). In the same way, we prove that ÃT (ω) :
ṼT (µ; Ω) → ṼT (µ; Ω) is a Fredholm operator of index 0 for all ω ∈ C. Finally, the equivalence with
Maxwell’s equations (1)-(2) comes from Theorems 8.4 and 8.5.

Remark 8.8 To apply the analytic Fredholm theorem to prove that Maxwell’s equations (1)-(2) are uniquely
solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set, it remains to show that there exists ω ∈ C such that
ÃN (ω) or ÃT (ω) is invertible. However, we have not been able to prove this result.
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Figure 2: An example of domain which is not simply connected and whose boundary is not connected. The
domain is made of the torus without the dark grey inclusions. It is not simply connected because of the
toroidal structure. The boundary is not connected because the boundary of the torus and the ones of the
spheres are not connected. The grey disk represents a cut Σ1 which is such that Ω \Σ1 is simply connected.

8.2 Extension to a non-trivial geometry
Classical configurations for Maxwell’s equations include non-topologically trivial domains, and/or domains
with a non-connected boundary. We study these configurations here. To avoid multiple sub-cases, we focus
our work on the case of a non simply connected domain whose boundary is not connected. Figure 2 presents
an example of such a geometry. In these geometries, the functions u of VN (ε; Ω) (resp. VT (µ; Ω)) may not
necessarily be written in the form u = ε−1curlψ (resp. u = µ−1curlψ) where ψ belongs to VT (1; Ω) (resp.
VN (1; Ω)). However, imposing more restrictive conditions to the functions of VN (ε; Ω) and VT (µ; Ω), we
can recover these results of existence for the potentials.
To introduce the spaces adapted to the study of Maxwell’s equations in this kind of domains, we use the
notations of [1].

Notations for domains with a non connected boundary. We denote Γi, i = 0 . . . I, the connected
components of the boundary ∂Ω. Since we assume that ∂Ω is not connected, we have I ≥ 1. Let us introduce

H1
Γ(Ω) :=

{
ϕ ∈ H1(Ω) |ϕ|Γ0

= 0, ϕ|Γi
= cst, i = 1 . . . I

}
.

We start by characterizing this space. Using a lifting function, we prove the

Proposition 8.9 Assume that Aε is an isomorphism. Then, for i = 1 . . . I, there exists a unique solution pi
of the problem

Find pi ∈ H1
Γ(Ω) such that:

div (ε∇pi) = 0 in Ω
pi = δik on Γk, k = 1 . . . I.

Then, we have H1
Γ(Ω) = H1

0(Ω) ⊕ span(pi)
I
i=1.

Define
V̂N (ε; Ω) :=

{
u ∈ HN (curl ; Ω) | (εu,∇ϕ) = 0, ∀ϕ ∈ H1

Γ(Ω)
}
.

Notice that V̂N (ε; Ω) ⊂ VN (ε; Ω). The following result (see the proof in [4, lemma 8.13]) clarifies the link
between these two spaces.

Lemma 8.10 Assume that Aε is an isomorphism. For i = 1 . . . I, there exists P i ∈ VN (ε; Ω) such that
(εP i,∇pk) = δik, for k = 1 . . . I. We deduce

VN (ε; Ω) = V̂N (ε; Ω) ⊕ span(P i)
I
i=1

and HN (curl ; Ω) = V̂N (ε; Ω) ⊕ span(P i)
I
i=1 ⊕ ∇H1

0(Ω).

Notations for non simply connected domains. We will assume that there exist connected open
surfaces Σj , j = 1 . . . J called “cuts” such that:

i) each surface Σj is an open subset of a smooth variety;
ii) the boundary of Σj is contained in ∂Ω, j = 1 . . . J ;
iii) the intersection Σj ∩ Σk is empty for j 6= k;
iv) the open set Ω̇ := Ω \

∪J
i=1 Σj is pseudo-lipschitz [1] and simply connected.

The domain Ω is said topologically trivial when we can take J = 0. The extension operator from L2(Ω̇) to
L2(Ω) is denoted ·̃ whereas [·]Σj denotes the jump through Σj , j = 1 . . . J . In this definition of the jump,
we assume that a convention has been established for the sign. We also assume that a unit vector n normal
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to Σj , j = 1 . . . J , is chosen, consistent with the choice of the sign of the jump. Define the space of scalar
potentials

Θ(Ω̇) :=

{
ϕ ∈ H1(Ω̇) |

∫
Ω

ϕ̃ = 0 and [ϕ]Σj = cst, j = 1 . . . J

}
.

Let us present a result of decomposition of this space.

Proposition 8.11 Assume that Aµ is an isomorphism. Then for j = 1 . . . J , there exists a unique solution
qj of the problem

Find qj ∈ Θ(Ω̇) such that:
div (µ∇qj) = 0 in Ω̇

µ∂nqj = 0 on ∂Ω
[qj ]Σk

= δjk, k = 1 . . . J

[µ∂nqj ]Σk
= 0, k = 1 . . . J.

(18)

We then have Θ(Ω̇) = H1
#(Ω) ⊕ span(qj)

J
j=1.

Proof. Since we have assumed that Aµ is an isomorphism, problem (18) has at most one solution. Let us
build it. For 1 ≤ j ≤ J , let rj ∈ Θ(Ω̇) be a function such that [rj ]Σk

= δjk for k = 1 . . . J . Then, let us define
qj = rj − ϕ where ϕ is the unique element of H1

#(Ω) such that

(µ∇ϕ,∇ϕ′) = (µ∇̃rj ,∇ϕ′), ∀ϕ′ ∈ H1
#(Ω).

One easily checks that qj satisfies problem (18). This allows us to obtain the result of decomposition of the
space Θ(Ω̇).

Let us introduce
V̂T (µ; Ω) :=

{
u ∈ H(curl ; Ω) | (εu, ∇̃ϕ) = 0, ∀ϕ ∈ Θ(Ω̇)

}
.

Observe that we have V̂T (µ; Ω) ⊂ VT (µ; Ω). More precisely, there holds the following decomposition.

Lemma 8.12 Assume that Aµ is an isomorphism. For j = 1 . . . J , there exists Qj ∈ VT (µ; Ω) such that
(µQj , ∇̃qk) = δjk, for k = 1 . . . J . We deduce

VT (µ; Ω) = V̂T (µ; Ω) ⊕ span(Qj)
J
j=1

and H(curl ; Ω) = V̂T (µ; Ω) ⊕ span(Qj)
J
j=1 ⊕ ∇H1

#(Ω).

Remark 8.13 Theorem 3.12 in [1] states that every element u of V̂N (ε; Ω) can be written as u = ε−1curlψ

with ψ belonging to V̂T (1; Ω). Similarly, theorem 3.17 of [1] ensures that for every u ∈ V̂T (µ; Ω), there
exists a unique ψ ∈ V̂N (1; Ω) such that u = µ−1curlψ. In the sequel, we will adapt the proofs of the
previous sections using these results of existence of vector potentials.

Assume that Aε and Aµ are isomorphisms. Remark that Theorems 3.1, 3.3 which prove the equivalence
between initial Maxwell’s equations and formulations in VN (ε; Ω), VT (µ; Ω) do not require any assumption
concerning the topology of the domain. Therefore, they are true for the geometry we are considering. In the
sequel, we will work with these formulations set in VN (ε; Ω), VT (µ; Ω).

Remark 8.14 Can we work with formulations set in V̂N (ε; Ω), V̂T (µ; Ω)? A priori, the electric field which
satisfies Maxwell’s equations has no reason to belong to the space V̂N (ε; Ω). To see this, we use Lemma 8.10
and we decompose E under the form

E = Ê +
I∑

i=1

αiP i,

with Ê ∈ V̂N (ε; Ω) and (α1, . . . , αI) ∈ CI . For i = 1 . . . I, testing with ∇pi in (6), we find

αi = (εE,∇pi) = (iω)−1(J ,∇pi) = (iω)−1〈J · n, 1〉Γi ,

where 〈·, ·〉Γi denotes the duality product between H1/2(Γi) and its dual space. Above, we have used the
properties divJ = 0 in Ω and pi = δik on Γk, k = 1 . . . I. Thus, if there exists 0 ≤ i ≤ I such that
〈J · n, 1〉Γi 6= 0, then E does not belong to V̂N (ε; Ω). But this also proves that to know the field E, it is
sufficient to determine Ê. On the other hand, following the same reasoning, we can check that the magnetic
field is always an element of V̂T (µ; Ω), regardless of the source term J .
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The following theorem ensures that the compactness results of Theorems 5.1, 5.3 are also valid in the case
where Ω is not simply connected with a non connected boundary. For the proof, which is very similar to the
one of Theorem 5.1, we refer the reader to [4, theorem 8.18].

Theorem 8.15 Let Ω be a bounded connected open subset of R3 with a Lipschitz-continuous boundary.

• Assume that Aε is an isomorphism. Then the embedding of VN (ε; Ω) in L2(Ω) is compact.

• Assume that Aµ is an isomorphism. Then the embedding of VT (µ; Ω) in L2(Ω) is compact.

Let us state now the main result of this section concerning the well-posedness of Maxwell’s equations in
non-trivial geometries. The proof follows the same lines as the one of Theorem 8.7. Nevertheless, we chose
to present it to point out where the material specific to non-trivial geometries is needed in the analysis.

Theorem 8.16 Let Ω be a bounded connected open subset of R3 with a Lipschitz-continuous boundary. Con-
sider J ∈ L2(Ω) such that divJ = 0. Assume that Aε and Aµ are isomorphisms. Then, we have the following
results.

• For all ω ∈ C, the operator for the electric field AN (ω) : VN (ε; Ω) → VN (ε; Ω) defined in (5) is a
Fredholm operator of index 0. Moreover, for ω ∈ C∗, E ∈ VN (ε; Ω) satisfies (AN (ω)E,E′)curl = iω(J ,E′),
for all E′ ∈ VN (ε; Ω), if and only if the pair {E, (i ωµ)−1curlE} satisfies the Maxwell’s equations (1)-(2).

• For all ω ∈ C, AT (ω) : VT (µ; Ω) → VT (µ; Ω) defined in (8) is a Fredholm operator of index 0. Moreover,
for ω ∈ C∗, H ∈ VT (µ; Ω) satisfies (AT (ω)H,H ′)curl = (ε−1J , curlH ′), for all H ′ ∈ VT (µ; Ω), if and
only if the pair {i (ωε)−1(curlH − J),H} satisfies the Maxwell’s equations (1)-(2).

Proof. Let us prove that AN (ω) is a Fredholm operator of index 0. For all ω ∈ C, using Theorem 8.15, one
can prove that AN (ω) − AN (0) is a compact operator of VN (ε; Ω). So, it is sufficient to show that AN (0)
is Fredholm of index 0. Again, we are going to build a right parametrix Tε : VN (ε; Ω) → VN (ε; Ω) for the
operator AN (0). Consider u ∈ VN (ε; Ω).
i) First, define ϕ the unique element of H1

#(Ω) such that

(µ∇ϕ,∇ϕ′) = (µ curlu,∇ϕ′), ∀ϕ′ ∈ H1
#(Ω).

The function ϕ is well-defined because we have assumed that Aµ is an isomorphism.
ii) Defining βj := (µ curlw, ∇̃qj) for j = 1 . . . J , notice that we have (µ(curlw−

∑J
j=1 βjQj−∇ϕ), ∇̃ϕ′) = 0

for all ϕ′ ∈ Θ(Ω̇). Therefore, according to theorem 3.17 in [1], there exists a unique potential ψ ∈ V̂N (1; Ω)

such that curlψ = µ(curlw −
∑J

j=1 βjQj −∇ϕ).
iii) Consider ζ the unique element of H1

0(Ω) such that

(ε∇ζ,∇ζ ′) = (εψ,∇ζ ′), ∀ζ ′ ∈ H1
0(Ω).

The function ζ is well-defined because we have assumed that Aε is an isomorphism.
iv) Finally, let us define the operator Tε : VN (ε; Ω) → VN (ε; Ω) such that Tεu = ψ−∇ζ and the operator
Kε : VN (ε; Ω) → VN (ε; Ω) such that

(Kεu,v)curl = (u,v) +
J∑

j=1

(µ curlu, ∇̃qj)(Qj , curl v), ∀v ∈ VN (ε; Ω).

According to Theorem 8.15, we know that the embedding of VN (ε; Ω) in L2(Ω) is compact. Consequently,
Kε is the sum of a compact operator and a finite rank operator. Therefore, it is a compact operator. Now,
for all v ∈ VN (ε; Ω), we find

(AN (0)(Tεu),v)curl = (µ−1curl (Tεu), curl v)

= (curlu, curl v) + (u,v)− (Kεu,v)curl .

Thus, we have AT (0) ◦ Tε +Kε = Id. This proves that the selfadjoint operator AN (0) is Fredholm of index
0. Similarly, we prove that AT (ω) : VT (µ; Ω) → VT (µ; Ω) is a Fredholm operator of index 0 for all ω ∈ C.
Finally, the equivalence with Maxwell’s equations (1)-(2) comes from Theorems 3.1 and 3.3.

Remark 8.17 Again, to apply the analytic Fredholm theorem to prove that Maxwell’s equations (1)-(2) are
uniquely solvable for all ω ∈ C∗\S where S ⊂ R is a discrete set, it remains to show that there exists ω ∈ C
such that AN (ω) or AT (ω) is invertible. This results does not seem simple to obtain. However, according to
Remark 8.14, we observe that the elements of ker AN (ω) (resp. ker AT (ω)) always belong to V̂N (ε; Ω) (resp.
V̂T (µ; Ω)). On the other hand, the map u 7→ ‖curlu‖ defines a norm on V̂N (ε; Ω) and on V̂T (µ; Ω). But
one ingredient is still missing to achieve the injectivity of AN (ω) or AT (ω).
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