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Analysis of the Scott-Zhang interpolation in the
fractional order Sobolev spaces

Patrick Ciarlet, Jr.

Abstract. Since it was originally designed, the Scott-Zhang interpolation operator has
been very popular. Indeed, it possesses two keys features: it can be applied to fields
without pointwise values and it preserves the boundary condition. However, no approx-
imability properties seem to be available in the literature when the regularity of the field is
weak. In this Note, we provide some estimates for such weakly regular fields, measured
in Sobolev spaces with fractional order between 0 and 1.
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1 Introduction

Let Ω be a (polyhedral) domain, that is a bounded, open, connected subset of Rd

with (polyhedral) Lipschitz boundary ∂Ω. Here, d = 1, 2, 3. The unit outward
normal vector field to the boundary is called n.
Let Th be a triangulation of Ω, made up of (closed) simplices, with meshsize
defined by h := maxK∈Th hK . The family of triangulations (Th)h is chosen to be
shape regular, in the sense that

∃σ > 0, ∀h, ∀K ∈ Th,
hK

ρK
≤ σ.

Above, hK and ρK are respectively the diameter of the simplex K, and the diam-
eter of the largest ball contained in K. For all simplices K, we define its neigh-
borhood SK := int(∪Ki,Ki∩K �=∅Ki). We use the notation L

p(K), respectively
H

s(K), and
�
K

dx etc. in lieu of Lp(int(K)), resp. Hs(int(K)), and
�
int(K) dx

etc.
Now we introduce the H

1-conforming finite element spaces consisting of piece-
wise polynomials:

Vh := {v ∈ C
0(Ω) : v|K ∈ Pr(K), ∀K ∈ Th}, V

0
h

:= Vh ∩H
1
0 (Ω).

Above, Pr is the vector space of polynomials of degree at most r (in d variables).
Given K ∈ Th, we denote by (K,ΣK , PK) the associated Lagrange finite element,
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and by (K̂, Σ̂, P̂ ) the reference element.
In this Note, we assume that the field to be approximated belongs to H

s(Ω), for
some order s >

1
2 , which allows one to consider traces on the boundary of sim-

plices1. On the other hand, if the order is greater than or equal to 1, the theory
developed by Scott and Zhang [6] applies, so we focus here on the case s ∈]1

2 , 1[.
We also introduce an order t ∈ [0, s]: the approximation properties of the interpo-
lation operator shall be measured in H

t(Ω)-norm. We follow below the structure
of [6]: definition of the interpolation operator, stability estimates and approxima-
bility results. Finally, for 1 < p < ∞ and order s ∈] 1

p
, 1[, we briefly outline how

similar results can be obtained for fields of W
s,p(Ω) in W

t,p(Ω)-norm, where
t ∈ [0, s].
We use the notation A � B for A ≤ CB, where A and B are scalar quantities,
and C is a generic positive constant which is independent of the meshsize, the
simplices and the quantities of interest.

2 Definition of the Scott-Zhang interpolation operator

Let us briefly recall how the interpolation operator is defined in [6], and check that
it is indeed well-defined from H

s(Ω) to Vh. Classically, an order s larger than 1
2 is

required to define the trace on the boundary. Moreover, cf. [1, §7], in a domain ω

of Rd, the trace mapping is continuous from H
s(ω) to L

1(∂ω). Let (Mi)i=1,··· ,N
be the set of interpolation nodes of Th, and (φi)i=1,··· ,N a basis of Vh such that
φi(Mj) = δij , with δij the Kronecker symbol. Let us now define the interpolation
operator Πh.
For each node Mi, choose a control simplex Ki as follows: either there exists K � ∈
Th such that Mi ∈ int(K �); otherwise, there exists a (d− 1)-simplex K

� such that
Mi ∈ int(K �), or Mi belongs to a (d− 2)-simplex, so that there exists a (d− 1)-
simplex K

� such that Mi ∈ ∂K
�; then, set Ki = K

�. In the latter cases, K � is the
“face” of a d-simplex K, and (K �

,ΣK� , PK�) := (K,ΣK , PK)|K� defines a finite
element. Then, one introduces an L

2(Ki)-dual basis (ψi

�
)� of the nodal basis of

the finite element (Ki,ΣKi , PKi); the nodal basis includes in particular φi|Ki
. One

chooses the element of the dual basis ψi ∈ {ψi

�
, �} such that

�
Ki

ψi(y)φi(y) dy =

1. By construction, for all j, one has
�
Ki

ψi(y)φj(y) dy = δij .
Given v such that for all i, v|Ki

∈ L
1(Ki), one defines Πhv ∈ Vh by

Πhv =
�

i

��

Ki

ψi(y) v(y) dy

�
φi in Ω. (1)

1 There exist other interpolation operators in the literature, which do not require the use of traces
(see for instance [2, 4]).
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From the above, we conclude that the operator Πh is well-defined for elements of
H

s(Ω). Finally, to enforce the boundary condition, one chooses a control simplex
Ki ⊂ ∂Ω when Mi ∈ ∂Ω.

Proposition 2.1. For s ∈] 1
2 , 1[ and v ∈ H

s(Ω), Πhv ∈ Vh is well defined. If

v ∈ H
s
0 (Ω), then Πhv ∈ V

0
h

. Finally, for all vh ∈ Vh, one has Πhvh = vh.

3 Stability estimates and approximability results

To obtain stability estimates, one has first to provide bounds on
�
Ki

ψi(y) v(y) dy

in (1). Note that one has |
�
Ki

ψi(y) v(y) dy| ≤ �ψi�L∞(Ki) �v�L1(Ki).
First, estimates have been provided in [6, Lemma 3.1], namely �ψi�L∞(Ki) �
h
−dim(Ki)
K

, where dim(Ki) is the dimension of the simplex Ki (either d or d− 1),
and K ∈ Th is such that Ki ⊂ K.
Second, to bound �v�L1(Ki) for v with appropriate smoothness, one proceeds as
follows.
If Ki = K for some K ∈ Th, then one has obviously �v�L1(Ki) ≤ h

d/2
K

�v�L2(K).
If Ki is the face of some K ∈ Th, one uses the trace theorem on the reference
element, see below.
Let us recall classical finite element estimates, which can be found for instance in
[3]. If we introduce the affine mappings x̂ �→ FK(x̂) = BK x̂ + bK , which maps
the reference element K̂ on K, resp. x̂ �→ BF x̂ + bF , which maps the reference
face F̂ on a face F (for instance Ki) of K, there holds

|BK | � h
d

K , �BK� � hK , |B−1
K

| � ρ
−d

K
, �B−1

K
� � ρ

−1
K

and |BF | � h
d−1
K

.

Due to the shape regularity assumption, one can replace ρ
−d

K
(resp. ρ

−1
K

) by h
−d

K

(resp. h−1
K

).
Then, given v ∈ L

2(K), resp. v ∈ H
s(K), let v̂ ∈ L

2(K̂), resp. v̂ ∈ H
s(K̂)

be defined by v̂(x̂) = v ◦ FK(x̂), x̂ ∈ K̂. Starting from the expressions of the
L

2-norm or the Ht-semi-norm (t ∈]0, s]), one finds easily by direct computations
the useful bounds

�v�L2(K) ≤ |BK |1/2�v̂�
L2(K̂) � h

d/2
K

�v̂�
L2(K̂),

|v|Ht(K) ≤ �B−1
K

�d/2+t |BK ||v̂|
Ht(K̂) � h

d/2−t
K

|v̂|
Ht(K̂);

�v̂�
L2(K̂) ≤ |B−1

K
|1/2�v�L2(K) � h

−d/2
K

�v�L2(K),

|v̂|
Ht(K̂) ≤ �BK�d/2+t |B−1

K
||v|Ht(K) � h

t−d/2
K

|v|Ht(K).

Note that these estimates can be aggregated for t ∈ [0, s], with the notation |·|H0(·)
in lieu of � · �L2(·).
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Proposition 3.1. For given s ∈] 1
2 , 1[, let v ∈ H

s(K): if Ki is a face of K, then

�v�L1(Ki) � {hd/2−1
K

�v�L2(K) + h
d/2+s−1
K

|v|Hs(K)}.

Proof. Using first a change of variables and then the trace theorem on the
reference element K̂ and finally the bounds that we recalled above with F = Ki,
one finds successively

�v�2
L1(Ki)

≤ |BF |2�v̂�2
L1(F̂ )

� |BF |2�v̂�2
Hs(K̂)

� h
2d−2
K

(�v̂�2
L2(K̂)

+ |v̂|2
Hs(K̂)

)

� h
d−2
K

�v�2
L2(K) + h

d+2s−2
K

|v|2
Hs(K). �

It is now possible to derive the stability estimates. Let us call ΠK the local
interpolation operator, restricted to a simplex K. According to (1), ΠKv =�

i s.t.Mi∈K(
�
Ki

ψi(y) v(y) dy)φi; in the summation, the number of interpolation
nodes that belong to K is uniformly bounded.

Theorem 3.2. For given s ∈]1
2 , 1[ and t ∈ [0, s], one has the stability estimate:

∀h, ∀K ∈ Th, ∀v ∈ H
s(SK), |ΠKv|Ht(K) � h

−t
K

�v�L2(SK) +h
s−t
K

|v|Hs(SK).

Proof. Given φi a basis function, φ̂i(x̂) = φi ◦ FK(x̂), x̂ ∈ K̂, defines an
element of the generic finite element basis on K̂. Hence, |φ̂i|Ht(K̂) � 1. Then,
one finds

|ΠKv|Ht(K) ≤
�

i s.t.Mi∈K
�ψi�L∞(Ki)�v�L1(Ki) |φi|Ht(K)

� h
d/2−t
K

�

i s.t.Mi∈K
�ψi�L∞(Ki)�v�L1(Ki).

Two instances may occur, depending on whether each Ki is a d-simplex or a (d−
1)-simplex.
If Ki is a d-simplex then by definition K = Ki: �ψi�L∞(Ki) � h

−d

K
and, by the

Cauchy-Schwarz inequality,

h
d/2−t
K

�ψi�L∞(Ki)�v�L1(Ki) � h
−d/2−t
K

h
d/2
K

�v�L2(K) = h
−t
K

�v�L2(K).

If Ki is a (d− 1)-simplex, then �ψi�L∞(Ki) � h
1−d

K
. Moreover, by definition, Ki

is a face of either K � = K, or of one of its neighbors K � ∈ SK . With the help of
Proposition 3.1, it follows that

h
d/2−t
K

�ψi�L∞(Ki)�v�L1(Ki) � h
1−d/2−t
K

{hd/2−1
K� �v�L2(K�)+h

d/2+s−1
K� |v|Hs(K�)}.
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Now, a regular family of triangulations is locally quasi-uniform (cf. [3]), i.e.
for K

� ∈ SK , one has hK� � hK � hK� . We end the proof by noting that
card({i s.t.Mi ∈ K}) � 1. �
Let us conclude by the approximability results.

Theorem 3.3. For given s ∈]1
2 , 1[ and t ∈ [0, s], the following local approxima-

bility result holds:

∀h � 1, ∀K ∈ Th, ∀v ∈ H
s(SK), �v − Πhv�Ht(K) � h

s−t
K

|v|Hs(SK). (2)

Proof. We consider first the case t = s, then the case t = 0, and we conclude
by interpolation.
Let p ∈ P0: in this case, one has |v − p|Hs(SK) = |v|Hs(SK). Now, thanks to
Proposition 2.1 and Theorem 3.2 (t = 0 ; t = s), one obtains

�v − Πhv�Hs(K) ≤ �v − p�Hs(K) + �Πh(v − p)�Hs(K)

≤ �v − p�L2(K) + |v|Hs(K)

+�Πh(v − p)�L2(K) + |Πh(v − p)|Hs(K)

� (1 + h
−s
K

)�v − p�L2(SK) + (1 + h
s
K)|v|Hs(SK).

This is true for all p ∈ P0, so one can consider the infimum over P0. On the other
hand, we recall that the Bramble-Hilbert lemma (similarly to [6, §4], for fractional
s) yields infp∈P0 �v − p�L2(SK) � h

s
K
|v|Hs(SK). Hence, (2) holds for t = s.

Now, using again the Bramble-Hilbert lemma and Theorem 3.2 (t = 0), one finds

�v − Πhv�L2(K) � h
s
K |v|Hs(SK),

i.e. (2) holds for t = 0.
To end the proof, we recall that, thanks to interpolation theory in Hilbert spaces [5,
Ch. 1, §2], one has the uniform bound

∀ŵ ∈ H
s(K̂)/R, |ŵ|

Ht(K̂) � (|ŵ|
Hs(K̂))

t/s(�ŵ�
L2(K̂))

1−t/s
.

Applied to w = v − Πhv, we find that (2) holds for t ∈]0, s[. Indeed, ŵ belongs
to H

s(K̂)/R, so

�w�Ht(K) � h
d/2−t
K

(|ŵ|
Hs(K̂))

t/s(�ŵ�
L2(K̂))

1−t/s

� h
d/2−t
K

(hs−d/2
K

|w|Hs(K))
t/s(h−d/2

K
�w�L2(K))

1−t/s

� (|v − Πhv|Hs(K))
t/s(�v − Πhv�L2(K))

1−t/s � h
s−t
K

|v|Hs(K).
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To reach the last inequality, we applied (2) for t = s and t = 0. �
As a by-product, one obtains the result below. Indeed, one can check that the
shape regularity assumption implies that the minimal value of the solid angles
at the vertices of the simplices is strictly positive, and similarly for the minimal
value of the dihedral angles at the edges of the simplicies. This implies in turn that
maxK�∈Th card({K s.t.K

� ⊂ SK}) � 1.

Corollary 3.4. For given s ∈]1
2 , 1[ and t ∈ [0, s], the following global approxima-

bility result holds:

∀h � 1, ∀v ∈ H
s(Ω), �v − Πhv�Ht(Ω) � h

s−t|v|Hs(Ω).

4 Extension

Let 1 < p < ∞ (p �= 2) and s ∈] 1
p , 1[ be given. For fields in W

s,p(Ω), let us
briefly outline how one can obtain stability estimates and approximability results
in W

t,p(Ω), with order t ∈ [0, s]. The main differences with the previous sections
are twofold: obviously, exponents change from 2 to p ; W s,p are Banach spaces,
whereas Hs are Hilbert spaces. We keep the same notations as before.
First, one can define the Scott-Zhang interpolation operator, the trace mapping
being continuous from W

s,p(ω) to L
1(∂ω) [1, §7]. As a consequence, the results

of Proposition 2.1 hold, for fields v ∈ W
s,p(Ω), respectively v ∈ W

s,p
0 (Ω).

Then, if one recalls that the W
t,p-semi-norm reads

|v|W t,p(ω) =

��

ω

�

ω

|v(x)− v(y)|p

|x− y|d+tp dx dy

�1/p

,

one finds by direct computations the bounds

�v�Lp(K) � h
d/p
K

�v̂�
Lp(K̂), |v|W t,p(K) � h

d/p−t
K

|v̂|
W t,p(K̂);

�v̂�
Lp(K̂) � h

−d/p
K

�v�Lp(K), |v̂|
W t,p(K̂) � h

t−d/p
K

|v|W t,p(K).

Given v ∈ W
s,p(K) and Ki a face of K, the face-to-simplex estimate becomes

�v�L1(Ki) � {h
d( p−1

p
)−1

K
�v�Lp(K) + h

d( p−1
p

)+s−1
K

|v|W s,p(K)}.

Hence, given v ∈ W
s,p(SK), one derives a stability estimate:

|ΠKv|W t,p(K) � h
−t
K

�v�Lp(SK) + h
s−t
K

|v|W s,p(SK).
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Using now interpolation theory for Banach spaces [1, §7], one finds the bound

∀ŵ ∈ W
s,p(K̂)/R, |ŵ|

W t,p(K̂) � (|ŵ|
W s,p(K̂))

t/s(�ŵ�
Lp(K̂))

1−t/s
.

This allows us to generalize the local approximability result:

∀h � 1, ∀K ∈ Th, ∀v ∈ W
s,p(SK), �v − Πhv�W t,p(K) � h

s−t
K

|v|W s,p(SK).

Finally, one obtains a global approximability result:

∀h � 1, ∀v ∈ W
s,p(Ω), �v − Πhv�W t,p(Ω) � h

s−t|v|W s,p(Ω).
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