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Abstract

Studying numerically the steady state of a nuclear core reactor is expensive,
in terms of memory storage and computational time. In order to address both
requirements, one can use a domain decomposition method, implemented on
a parallel computer. We present here such a method for the mixed neu-
tron diffusion equations, discretized with Raviart-Thomas-Nédélec finite ele-
ments. This method is based on the Schwarz iterative algorithm with Robin
interface conditions to handle communications. We analyse this method
from the continuous point of view to the discrete point of view, and we give
some numerical results in a realistic highly heterogeneous 3D configuration.

Computations are carried out with the MINOS solver of the APOLLO3r1

neutronics code.

Keywords: nuclear core reactor, mixed neutron diffusion equations,
Raviart-Thomas-Nédélec finite elements, domain decomposition methods,
Robin interface conditions, Schwarz iterative method, fast solvers

Introduction

A nuclear reactor produces thermal energy, which is released from in-
duced nuclear fission on fissile atoms, such as uranium. The fission produces
kinetic energy, γ radiation, lighter atomic nuclei, and free neutrons. These
neutrons may lead to other fissions: this process is known as the nuclear

1APOLLO3 is a registered trademark in France.
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chain reaction. In order to compute the power of a nuclear reactor, one stud-
ies the steady state of its core, which is the place where fission occurs.
The behaviour of a nuclear core reactor depends on the nuclear chain reac-
tion, which is described by the neutron balance equation, or more simplified
models. We refer to [11, 7] for a general description of nuclear core reactors.
In practice, it is advised to implement fast numerical methods to reduce
the overall computational cost. To that aim, we choose a discretization of
an approximate model, the neutron diffusion equation, by well-known finite
elements and use a domain decomposition method, suitable for high perfor-
mance computing.
Note that domain decomposition methods are often used in core solvers. For
instance, in [23, 1], a Schur complement method is used to accelerate the
SPN core solver developed at EDF (Electricité de France). In [38, 37], the
Schwarz iterative algorithm with Robin interface conditions is applied to the
PN core solver PARAFISH. Whereas, in [39, 40], L. N. Zaslavsky proposes a
multigrid solver, using the finite difference method for the diffusion equation.
Finally, the response matrix method, [26, 32, 8] which implements a two-level
model, helps reduce the computational time.
The diffusion approximation is widely studied for both physical and numer-
ical reasons. From a physical point of view, it is well suited to model ho-
mogeneous core reactors. The multigroup diffusion equations are cheaper
to solve than the neutron transport equation. Moreover, until recently, the
two-group diffusion equations was the only way to compute the neutrons flux
of the whole core reactor. From a numerical point of view, it leads to the
introduction of the Simplified PN equations (the so-called SPN equations)
which can be written as a coupled set of diffusion equations [30, 2, 3]. These
equations can be further simplified, leading to the neutron diffusion equation.
In this paper, we present a domain decomposition method used to acceler-
ate the numerical solution of the mixed formulation of the neutron diffusion
equation.
In the next part, we provide some physical background. In the second part,
we detail the algorithm that has to be implemented to solve the model, and
we define the problem from a mathematical point of view. In the third part,
we study an equivalent variational formulation and its discretization. Then
in the fourth part, we describe the non-overlapping Schwarz domain decom-
position we implemented, and furthermore we prove its convergence under
suitable assumptions. We detail its discretization in the fifth part: we show
that the method corresponds to either a block Jacobi, or a block Gauss-Seidel
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method. In the last part, we give some numerical results on a realistic highly
heterogeneous 3D numerical experiment.

1. Background

For simplicity reasons, we will study in this paper the one-speed diffusion
approximation. From this study, one can easily deduce the multigroup dif-
fusion case [7, 11]. In the time independent case, the balance of the neutron
flux is governed by these equations, where the 2-tuple (p(x), φ(x)) represents
the neutron current and the neutron flux:






1

D
p + gradφ = 0

div p + Σa φ =
1

λ
Σf φ

. (1)

Above, if we let Σt(x) be the total cross section and Σs(x) the scattering
cross section, then Σa = Σt − Σs is the absorption cross section. On the
other hand, the diffusion coefficient D(x) can be derived in two ways:

• using the spherical harmonics:

D(x) =
1

3(Σt(x)− µ0 Σs(x))
, (2)

where µ0 is the average scattering angle cosine [11].

• Under some additional physical assumptions: ie. that the medium
is homogeneous, the variations of the flux are small, and the spatial
dependence of the flux is linear, computing the neutrons flux across a
small surface yields Fick’s law [7] with another coefficient:

D(x) =
1

3 Σt(x)
. (3)

Actually, it is better to choose (2), which is usually called the diffusion coef-
ficient with transport correction. On the other hand, it is more costly, since
one must compute µ0.
Eqs. (1) can be reduced to a primal form, depending only on the neutron
flux φ, which is governed by:

−div (D gradφ ) + Σa φ =
1

λ
Σf φ. (4)
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Due to the structure of Eq. (4), we remark that Eqs. (1) actually cor-
respond to an eigenproblem, where λ acts as the inverse of an eigenvalue,
with associated eigenflux φ. One can apply the Krein-Rutman theorem [22]
to problem (1): the physical solution is necessarily positive, and it is the
eigenfunction associated to the largest eigenvalue keff = maxλ λ, which is in
addition simple. More precisely, keff characterizes the physical state of the
core reactor:

• if keff = 1: the core reactor is in a steady state and the nuclear chain
reaction is self-sustaining. The reactor is said to be critical ;

• if keff > 1: there are more neutrons which are produced than neutrons
which disappear. The chain reaction races. The reactor is said to be
supercritical ;

• if keff < 1: there are less neutrons which are produced than neutrons
which disappear. The chain reaction vanishes. The reactor is said to
be subcritical.

We consider from now on that the current p is such that

∫

R

|p|2dx <∞.

Different conditions on the boundary can be taken into account, such as: zero
flux: φ = 0 ; reflection: p · n = 0 ; albedo: p · n = αφ, with α > 0 ; vacuum:
p · n = 1

2
φ. In terms of the flux φ, the first three conditions correspond

respectively to:

• a Dirichlet boundary condition: φ = 0 ;

• a Neumann boundary condition: D
∂φ

∂n
= 0 ;

• a Robin boundary condition:

(
D
∂φ

∂n
+ αφ

)
= 0.

2. The neutron diffusion equation

2.1. Inverse power algorithm for the eigenvalue problem

As we look for the smallest eigenvalue keff of Equation (1), the solu-
tion (p, φ, keff) can be computed by the inverse power iteration algorithm.
After some initial guess is provided, at iteration number m + 1, we de-
duce (pm+1, φm+1, km+1

eff ) from (pm, φm, kmeff) by solving Equations (1) with
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a source term. Set in a domain R, the inverse power iteration algorithm2

reads (we choose zero flux boundary conditions on ∂R):

Set (p0, φ0, k0
eff), m = 0.

Until convergence, do: m← m+ 1

Solve:




1

D
pm+1 + grad φm+1 = 0 in R,

div pm+1 + Σa φ
m+1 =

1

kmeff
Σf φ

m in R,

φm+1 = 0 on ∂R.

(5)

Compute: km+1
eff = kmeff

∫

R

( Σf φ
m+1 )2

∫

R

( Σf φ
m+1 Σf φ

m )
.

End

Above, the Eqs. (5) with unknowns (pm+1, φm+1) model the so-called
source solver (here, the right-hand side is a function of φm). The updated
value km+1

eff is inferred as follows: assuming that div pm+1 + Σa φ
m+1 =

(km+1
eff )−1Σf φ

m+1, one can write (km+1
eff )−1Σf φ

m+1 = (kmeff)
−1Σf φ

m and, mul-
tiplying this equation by Σf φ

m+1 and integrating over the domain of com-
putation R, we obtain the last equation of (5). The convergence criterion is
usually set on |km+1

eff − kmeff | and
∫
R
( Σf φ

m+1 − Σf φ
m )2. The inverse power

iterations are called the outer iterations in opposition to the inner iterations,
which correspond to the iterations of the source solver. As a matter of fact,
one can choose an iterative source solver. See Subsection 4.3 for a motivation
of such a choice.

2.2. Setting of the problem

First, we consider equations (1), with a source term Sf , namely we focus
on the linear system solver step of the above algorithm. We let R be a
bounded, connected and open subset of Rd, d = 1, 2, 3, having a Lipschitz

2This algorithm is described as well in [1] (algorithm 1, p. 2007).
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boundary ∂R which is piecewise smooth. We split the boundary into three
disjoint, open parts such that: ∂R = ΓD ∪ ΓN ∪ ΓR. The mixed neutrons
diffusion equations read:
Find (p, φ) such that:





1

D
p + gradφ = 0 in R,
div p + Σaφ = Sf in R,

φ = 0 on ΓD,
p .n = 0 on ΓN ,

−p .n + αφ = 0 on ΓR.

(6)

Let L∞(R) be the space of measurable bounded functions, and L2(R) be the
space of measurable and square integrable functions. We suppose that we
satisfy the following assumptions on the data: D ∈ L∞(R), with 0 < D∗ <
D < D∗ almost everywhere, Σa ∈ L∞(R) with 0 ≤ Σa ≤ (Σa)

∗ ae., α ∈ R∗
+,

Sf ∈ L2(R). Note that the current p is such that p ∈ L2(R)d. We introduce
the following Sobolev spaces:

Hm(R) :=





u ∈ L2(R) |



∑

|j|≤m

∫

R

|∂jxu|2dx




1/2

<∞





(m ≥ 0) ,

H(div ,R) := {q ∈ L2(R)d | div q ∈ L2(R)},
with norms (L2(R) = H0(R)):

‖u‖m :=



∑

|j|≤m

∫

R

|∂jxu|2dx




1/2

(m ≥ 0), ‖q‖H(div ,R) :=
(
‖q‖20 + ‖div q‖20

)1/2
.

We will need the semi-norms:

|u|m :=




∑

|j|=m

∫

R

|∂jxu|2dx




1/2

(m ≥ 0).

We will need as well the Hs Sobolev spaces with s = m + σ, m ∈ N and
0 < σ < 1: Hs(R) = {u ∈ Hm(R) | |u|s < ∞}, where the semi-norm | · |s is
defined by:

|u|s =




∑

|j|=m

∫

R

∫

R

|∂jxu(x)− ∂jxu(y)|2
|x− y|d+2σ

dxdy




1/2

.
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2.3. The primal neutron diffusion equation

Define H1
0,ΓD

(R) := {ψ ∈ H1(R) |ψ|ΓD
= 0}. Recall that (p, φ) is gov-

erned by (6): as p ∈ L2(R)d, we deduce that φ ∈ H1
0,ΓD

(R). Furthermore,
we can rewrite equivalently equations (6) with the flux φ ∈ H1

0,ΓD
(R) as the

only variable, governed by:





−div (D gradφ ) + Σaφ = Sf in R,
D∂nφ = 0 on ΓN ,

D∂nφ + αφ = 0 on ΓR.
(7)

Then, we recover p using the relation p = −D grad φ. About Eqs. (6) and
(7), one has the elementary results below (see for instance [9]).

Theorem 1. There exists a unique solution φ ∈ H1
0,ΓD

(R) to equations (7).

2.4. The mixed neutron diffusion equations

Define H0,ΓN
(div ,R) := {q ∈ H(div ,R) |q ·n|ΓN

= 0}. By construction,
we have that p ∈ H0,ΓN

(div ,R) and also p ·n|ΓR
∈ L2(ΓR). So, we introduce

the natural functional space and related norm for the currents

Q := {q ∈ H0,ΓN
(div ,R) |q·n|ΓR

∈ L2(ΓR)}, ‖q‖Q :=

(
‖q‖2H(div ,R) +

∫

ΓR

(q · n)2

)1/2

.

Since (6) is equivalent to (7), we infer from Theorem 1 the second result
below.

Theorem 2. There exists a unique (p, φ) ∈ Q×H1
0,ΓD

(R) to equations (6),
such that φ satisfies (7).

3. Discretization of the mixed neutron diffusion equations

3.1. The mixed variational formulation

In order to obtain a mixed variational formulation, we multiply the first
equation of (6) by a test function q ∈ Q, and the second equation by a test
function ψ ∈ L2(R), and we integrate the two equations on R to reach:

∫

R

(
− 1

D
p · q− gradφ · q + ψ div p + Σaφψ

)
=

∫

R

Sfψ.
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One integrates by parts to remove the first order derivatives of φ, so that the
only regularity requirement on the flux will be φ ∈ L2(R). Using Green first
identity, we have:
∫

R

(gradφ′ · q + φ′ div q) = 〈φ′,q · n〉 , ∀(q, φ′) ∈ H(div ,R)×H1(R) (8)

where 〈·, ·〉 denotes the duality pairing on H ′ × H , with H = H1/2(∂R).
In our case, we have at hand some additional regularity on the boundary,
which allows one to replace the duality product 〈φ′,q · n〉 by some integral.
Proceeding similarly to [4, 5], one obtains the density result hereafter. The
functional space

Q∞ = {q ∈ C∞(R)d | supp(q) is compact in R∪ ΓD ∪ ΓR}
is dense in Q. With this result, one can replace q ∈ Q by smooth fields of
Q∞ and then pass to the limit, to reach
∫

R

(gradφ′ · q + φ′ div q) =

∫

ΓR

φ′(q · n) , ∀(q, φ′) ∈ Q×H1
0,ΓD

(R). (9)

Using finally the boundary condition on ΓR in (6), one reaches a mixed
variational formulation governing (p, φ):
Find (p, φ) ∈ Q× L2(R) such that ∀(q, ψ) ∈ Q× L2(R):

∫

R

(
− 1

D
p · q + φ div q + ψ div p + Σaφψ

)

−
∫

ΓR

1

α
(p · n)(q · n) =

∫

R

Sfψ . (10)

Theorem 3. Assume that 0 < (Σa)∗ ≤ Σa ≤ (Σa)
∗ almost everywhere.

Then, there exists a unique solution (p, φ) ∈ Q× L2(R) of the mixed varia-
tional formulation (10), and moreover this solution satisfies (6).

In D. Schneider’s PhD thesis [35], the proof of Thm. 3 is carried out in a
classical way [6], in the case of Dirichlet boundary conditions on the whole
boundary (ie. ΓR = ∅). In Appendix A, we propose another proof, based on
an alternative formulation that can be be found for instance in [12], which
applies to the more general case of mixed Dirichlet and Robin boundary
conditions. Moreover, this proof allows us to derive easily error estimates for
a piecewise continuous neutron flux, which occurs if the coefficient D is itself
piecewise constant (heterogeneous case, cf. Subsection 6.2).
We assume from now on that 0 < (Σa)∗ ≤ Σa ≤ (Σa)

∗ almost everywhere.
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3.2. Discretization

We study the 3D case. The reactor is modeled by a rectangular cuboid
R, which is discretized by cartesian meshes (Rh)h, h denoting the mesh size,
which goes to zero. A cartesian mesh is made of N distinct rectangular
cuboids, such that Rh = ∪Nn=1Rn. We set: Rn ∩Rm = Γnm when Rn and Rm

are neighbours. As we already mentioned, the cross sections can be highly
heterogeneous, see Subsection 6.2. To simplify the presentation, we assume
that the cross sections D and Σa are piecewise constant, and that the meshes
are such that in every cuboid Rn the cross sections are constant.

The discretized space of the current (resp. flux) is embedded in H(div ,R)
(resp. L2(R)). Let’s detail the choices of these spaces.

Let P (Rn) be the set of polynomials of Rn. We consider Ql,m,p(Rn) the
following subspace of P (Rn):

Ql,m,p(Rn) =

{
q(x, y, z) ∈ P (Rn) | q(x, y, z) =

l,m,p∑

i,j,k=0

ai,j,k x
i yj zk, ai,j,k ∈ R

}
.

We introduce as well the 3D polynomial space Dk(Rn):

Dk(Rn) = [Qk,k−1,k−1(Rn)×0×0]⊕[0×Qk−1,k,k−1(Rn)×0]⊕[0×0×Qk−1,k−1,k(Rn)].

We are now in a position to define the so-called Raviart-Thomas-Nédélec (or
RTN) finite element, cf. [33, 29]: consider Qk

h ⊂ H(div ,R) (resp. V k
h ⊂

L2(R)) the discretized spaces (recall that h is the mesh size). We set:

Qk
h =

{
q ∈ H(div ,Rh) | ∀n ∈ {1, ..., N}, q|Rn

∈ Dk(Rn)
}
,

V k
h =

{
ψ ∈ L2(Rh) | ∀n ∈ {1, ..., N}, ψ|Rn

∈ Qk−1,k−1,k−1(Rn)
}
.

(11)

Remark 1. Note that the Neumann boundary condition corresponds to es-
sential boundary conditions for the discrete vector fields, so that we will have
to eliminate the degrees of freedom on ΓN if it exists. By construction, for
all q ∈ Qk

h, one has automatically that q · n|∂R ∈ L2(∂R), and it follows
that Qk

h ⊂ Q. In other words, the discretization Qk
h × V k

h is conforming in
Q× L2(R). Moreover, we have div Qk

h ⊂ V k
h : consistency is ensured.

The discrete variational formulation reads:
Find (ph, φh) ∈ Qk

h × V k
h such that ∀(qh, ψh) ∈ Qk

h × V k
h :

∫

R

(
− 1

D
ph · qh + φh div qh + ψh div ph + Σaφh ψh

)
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−
∫

ΓR

1

α
(ph · n) (qh · n) =

∫

R

Sf,h ψh. (12)

Theorem 4. The discrete solution converges to the exact solution as h goes
to zero. Moreover, if φ ∈ Hf(R), p ∈ Hp(R)d and div p ∈ Hp′(R) with
f, p, p′ ≥ 1, there holds

‖p − ph‖H(div ,R) +‖φ − φh‖0 ≤ C hmin(k,f,p,p′) (|φ|f + |p|p + |div p|p′) , (13)

with C > 0 independent of h.

To our knowledge this error estimate is new compared to the classical one
given in [10]. We prove Thm. 4 in Appendix B.
Several illuminating comments can be made about these convergence results:
• One has always φ ∈ H1(R).
• On the other hand, if Sf belongs to L2(R) (minimal regularity), then
div p = Sf − Σaφ ∈ L2(R) according to (7).
• Suppose that D = 1 over R: as a consequence, the relation between φ and
p reads p = −grad φ. It follows that the regularity of the vector field p is
always equal to that of the scalar field φ minus one: p = f − 1.
• Suppose still that D = 1 over R: then p ∈ L2(R)d, rotp = 0 and
div p ∈ L2(R). In addition, the boundary conditions yield p × n|ΓD

= 0
(because φ|ΓD

= 0), p · n|ΓN
= 0, and p · n|ΓR

∈ H1/2(ΓR). According
to [15, 16], one has p ∈ Hp(R)d, with p > 1/4 in all configurations, and
p > 1/2 provided that ΓD is perpendicular to ΓN and ΓR.
• The estimate (13) can be generalized in the following way. Following the
proofs given in [34], one finds that the regularity assumptions on φ, p and
div p need only to be local. In other words, only piecewise regularity of the
solution is required for (13) to hold, which can be of great importance if the
coefficients D and Σa are themselves piecewise constant coefficients.

3.3. The linear system

Let’s split Qk
h and V k

h into the following basis:

Qk
h = vect

(
( qx,i x )1≤i≤Nx

, ( qy,j y )1≤j≤Ny
, ( qz,k z )1≤k≤Nz

)
,

V k
h = vect

(
(ψl )1≤l≤Nφ

)
,
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so that: ph =
∑

d=x,y,z

Nd∑

i=1

pd,i qd,i d, and φh =

Nφ∑

l=1

φl ψl. We set p = (p
x
,p

y
,p

z
)T ,

with (for d = x, y, z): p
d

= (pd,1, ..., pd,Nd
)T , and φ = (φ1, ..., φNφ

)T .
Suppose (for simplicity) that ΓD = ∂R. The linear system, our discrete

source solver , corresponding to the variational formulation (12) reads:

(
−A B

BT T

)(
p
φ

)
=

(
0
Sf

)
, (14)

with the following matrices:

• A ∈ RN×N , N =
∑

d=x,y,z

Nd is a block-diagonal matrix with diagonal blocks

Ad ∈ RNd×Nd. d = x, y, z such that: (Ad)i,j =

∫

Rh

1

Dh

qi,d qj,d. The current

mass matrices (Ad)d are symmetric positive definite matrices.

• B = (Bx,By,Bz)
T ∈ RN×Nφ , such that Bd ∈ RNd×Nφ (Bd)i,j =

∫

Rh

∂dqd,i ψj ,

• T ∈ RN×Nφ, such that: Ti,j =

∫

Rh

Σa,hψi ψj . The flux mass matrix T is a

symmetric positive definite matrix.

• Sf ∈ RNφ such that: (Sf)i =

∫

Rh

Sf,h ψi.

When using RTN finite elements, T is diagonal, the (Ad)d are block-diagonal
matrices (there are only local couplings), and the coupling matrices (Bd)d are
very simple, containing 1 or −1 terms. The linear system (14) can be read
this way:






Wd pd +
∑

d′ 6=d

BdT
−1

B
T
d′pd′ = BdT

−1Sf ,

Tφ = Sf −
∑

d

B
′
dpd′ ,

(15)

with Wd = Ad + BdT
−1BT

d . (Wd)d are symmetric positive definite matrices,
with the same structure than the one of (Ad)d.
In the MINOS solver, our (discrete) source solver is implemented by means
of a block Gauss-Seidel method (it corresponds to an alternating direction
algorithm). In practice, the inverse power iteration leads convergence, so
that a single inner iteration is actually required. This interesting property
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will be used throughout the paper to simplify the algorithms and their im-
plementation. A Cholesky algorithm is applied to solve each diagonal block
Wd pd = RHS. Finally, the matrices BdT

−1BT
d′ are not build explicitly, to

save memory (the drawback being that we cannot use an external solver).

4. Domain decomposition with the Schwarz iterative algorithm

4.1. Presentation

Schwarz iterative algorithm was designed in 1869 [36] in order to study
the Laplace operator on irregular domains: Hermann Schwarz’s original idea
was to split the original domain into overlapping regular subdomains (such as
rectangles or disks) and to write an iterative solver using solutions on the reg-
ular subdomains to converge to the global solution on the irregular domain.
In our case, we choose a nonoverlapping splitting into NDD subdomains,
namely R =

∑
I=1,···,NDD

RI , with RI ∩RI′ = ∅ for I 6= I ′. The non-empty

interfaces are denoted by ΓIJ = int
(
RI ∩RJ

)
. For I = 1, · · · , NDD, we let nI

be the outward unit normal vector to ∂RI and we set ΓI = int (∂R ∩ ∂RI).
Without loss of generality, in this rest of the paper, we consider the case
of two subdomains, that is NDD = 2. We then use the following notations:
interface Γ = int

(
R1 ∩R2

)
(note that n1 = −n2 on Γ), whereas the in-

dex I spans {1, 2}, and the associated indices J are such that (I, J) spans
{(1, 2), (2, 1)} (which corresponds to the oriented interface Γ, equal to Γ12 or
Γ21).

4.2. The Schwarz iterative algorithm

Let’s detail this algorithm for the mixed neutrons diffusion equations,
where we assume for simplicity zero flux boundary condition on ∂R: namely,
ΓN = ΓR = ∅. We consider equations (6). Let us set (pI , φI) = (p, φ)|RI

,
where (p, φ) is the unique solution to (6). Then, (pI , φI)I are governed by:
Find (pI , φI) ∈ H(div ,RI)×H1

0,ΓI
(RI), such that:






1

D
pI + gradφI = 0, in RI ,

div pI + Σa φI = Sf,I , in RI ,
φ1 = φ2, on Γ,

−p1 · n1 = p2 · n2, on Γ.

(16)
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On the other hand, if (pI , φI)I solve (16), then

(p, φ) =

{
(p1, φ1) in R1

(p2, φ2) in R2
(17)

obviously solves (6). We provide in Appendix C an alternate proof of this
result, based on energy estimates.

We remark that the interface conditions in (16), namely φ1 = φ2 and
−p1 · n1 = p2 · n2 on Γ, can be equivalently replaced by the following Robin
interface conditions:

{
−p1 · n1 + α1φ1 = p2 · n2 + α1φ2 on Γ,
−p2 · n2 + α2φ2 = p1 · n1 + α2φ1 on Γ,

(18)

with α1, α2 > 0. Indeed, the difference of these two conditions returns the
Dirichlet interface condition, and one recovers then the Neumann interface
condition.

We want to compute (p1, φ1) and (p2, φ2) separately. As we do not know
the value of the unknowns on Γ, we can either use a Lagrange multiplier to
dualize the interface conditions on Γ [23]; or solve this problem iteratively,
using some interface conditions to exchange informations. In the latter case,
if one uses only the Dirichlet or the Neumann interface condition as in (16),
one needs an overlap between the subdomains to recover information [24].
On the other hand, Robin interface conditions allow convergence without
overlap [25, 31]. Thus, we shall use the following Schwarz iterative algorithm
[17]:
Setting (p0

I , φ
0
I) ∈ H(div ,RI)×H1

0,ΓI
(RI),

Find (pn+1
I , φn+1

I ) ∈ H(div ,RI)×H1
0,ΓI

(RI), ∀n ∈ N, such that:





1

D
pn+1
I + gradφn+1

I = 0, in RI ,

div pn+1
I + Σa φ

n+1
I = Sf,I , in RI ,

−pn+1
1 · n1 + α1φ

n+1
1 = pn2 · n2 + α1φ

n
2 , on Γ,

−pn+1
2 · n2 + α2φ

n+1
2 = p

n(+1)
1 · n1 + α2φ

n(+1)
1 , on Γ.

(19)

From a computational point of view, this method is rather easy to implement,
provided one has subdomain solvers for the problems

13



Find (p′
I , φ

′
I) ∈ H(div ,RI)×H1

0,ΓI
(RI), such that:





1

D
p′
I + gradφ′

I = 0, in RI ,

div p′
I + Σa φ

′
I = S ′, in RI ,

−p′
I · nI + αIφ

′
I = s′, on Γ,

at hand. We just have to ensure the data transfer between the subdomains
given by the interface conditions. Note that setting at each iteration step
n: −pn+1

2 · n2 + α2φ
n+1
2 = pn1 · n1 + α2φ

n
1 , the Schwarz iterative algorithm

is parallel: we can solve the problems on R1 and R2 simultaneously. This
algorithm is known as the additive Schwarz method (ASM). We will see that
after discretization, from an algebraic point of view, it corresponds to a block
Jacobi algorithm. On the contrary, setting at each iteration n: −pn+1

2 · n2 +
α2φ

n+1
2 = pn+1

1 ·n1+α2φ
n+1
1 , the Schwarz iterative algorithm is sequential: we

must solve first the problem onR1, then the problem onR2. This algorithm is
known as the multiplicative Schwarz method (MSM). After discretization, it
corresponds to a block Gauss-Seidel algorithm. Let us see how this algorithm
modifies the eigenvalue algorithm described in Section 2.1.

4.3. The inverse power algorithm with domain decomposition

Applying Schwarz iterative method to algorithm (5), at iteration number
m+1, we should compute the solution to the source solver iteratively, which
yields in principle nested outer (m← m+ 1) and inner (index n) iterations.
However, as we already mentioned, numerical experiments show that the in-
verse power algorithm leads the global convergence: a single inner iteration is
sufficient. Hence, the resulting algorithm contains only one level of iteration
(with index m). The inverse power algorithm with domain decomposition
reads then:

Set (p0
I , φ

0
I)I , k

0
eff , m = 0.

Until convergence, do: m← m+ 1

14



Solve:





1

D
pm+1
I + gradφm+1

I = 0, in RI ,

div pm+1
I + Σa φ

m+1
I =

1

kmeff
Σf φ

m
I , in RI ,

−pm+1
I · nI + αIφ

m+1
I = p

m(+1)
J · nJ + αIφ

m(+1)
J , on Γ,

φm+1
I = 0, on ∂R∩ ∂RI ,

(20)

Compute km+1
eff = kmeff

2∑

I=1

∫

RI

( Σf φ
m+1
I )2

2∑

I=1

∫

RI

( Σf φ
m+1
I Σf φ

m
I )

.

End

Compared with algorithm (5), we handle a Robin interface condition.

4.4. Convergence

We show the convergence of (19) with3 α1 = α2 = α > 0.

Proposition 5. Assume that the solution to (6) is such that p ·n|Γ ∈ L2(Γ).
Choose (p0, φ0) ∈ Q×H1

0 (R), with p0 · n|Γ ∈ L2(Γ).
We set (p0

2, φ
0
2) = (p0, φ0)|R2

for the MSM, and (p0
I , φ

0
I) = (p0, φ0)|RI

for
the ASM. We consider the sequences (pnI , φ

n
I )n∈N in H(div ,RI) × H1(RI)

satisfying (19). Then the sequences (pnI , φ
n
I )n∈N tend to (pI , φI) satisfying

(16), in H(div ,RI)×H1(RI).

Remark 2. The assumption on p is not very restrictive. Indeed, in the
same spirit as the comments of Subsection 3.2, consider the case D = 1 over
R. Then, p = −grad φ, with φ ∈ H1

0 (R) and ∆φ ∈ L2(R). As we know
from [15, 16], one has φ ∈ Hf(R) for some f > 3/2, so p ∈ Hp(R)d for
p = f − 1 > 1/2, and in particular p · n|Γ ∈ L2(Γ). In the more general
cases (ΓN 6= ∅ and/or ΓR 6= ∅), one recovers a similar result. For that, it is
enough to choose an interface Γ whose boundary ∂Γ does not meet ΓD ∩ ΓN ,
ΓN ∩ΓR, or ΓR ∩ΓD, that is where the change of boundary condition occurs.

The proof of Prop. 5 is given in Appendix D.

3To our knowledge, there is no available proof in the case where α1 6= α2.
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4.5. Optimizing the α parameter

In order to choose the α parameter, we study the following asymptotic
problem, as in [27]: Let R = R2 be split between two subdomains R1 =
]−∞, 0[×R and R2 = ]0,+∞[×R, so that the interface is Γ : {(x, y)|x = 0}.
We have n1 = x and n2 = −x. Given φ0, we set φ0

I = (φ0)|RI
. In each

subdomain RI , we suppose that the diffusion coefficient DI = D|RI
and the

absorption cross section Σa,I = Σa|RI
are constant. The Schwarz additive

iterative algorithm for the primal neutron diffusion equation, with Robin
interface conditions reads:
find φn+1

I ∈ H1(RI), ∀n ∈ N, such that:





−∆φn+1
I +

Σa,I

DI
φn+1
I =

1

DI
Sf,I , in RI ,

D1 ∂xφ
n+1
1 + α1 φ

n+1
1 = D2 ∂xφ

n
2 + α1 φ

n
2 , on Γ,

−D2 ∂xφ
n+1
2 + α2 φ

n+1
2 = −D1 ∂xφ

n
1 + α2 φ

n
1 , on Γ.

(21)

Let us study the errors with the help of the partial Fourier transform along
the y axis, which is defined by, for f ∈ L1(R):

∀(x, k) ∈ R̂ := R
2, f̂(x, k) :=

∫

R

exp(−ıky) f(x, y) dy. (22)

Suppose that f is smooth enough. After integrating by parts twice, we have:

∆̂f =

∫

R

exp(−ıky)∆f(x, y)dy = −∂2
xxf̂ + k2 f̂ . (23)

Let ênI be the partial Fourier transform in the y direction of enI . The Fourier
transform of (21), with unknowns enI (and no source terms) reads:
∀n ∈ N:




−∂2
xxê

n+1
I +

(
k2 +

Σa,I

DI

)
ên+1
I = 0, in R̂I ,

D1 ∂xê
n+1
1 + α1 ê

n+1
1 = D2 ∂xê

n
2 + α1 ê

n
2 , on Γ,

−D2 ∂xê
n+1
2 + α2 ê

n+1
2 = −D1 ∂xê

n
1 + α2 ê

n
1 , on Γ.

(24)

We set: λI := λI(k) =

√
k2 +

Σa,I

DI
. According to the first equation of (24),

and in order to have vanishing errors at ±∞, one finds that:

∀n ∈ N
∗, ên1 (x, k) = Bn

1 exp (λ1 x ) and ên2 (x, k) = Bn
2 exp (−λ2 x ). (25)
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Above, Bn
1 := Bn

1 (k) and Bn
2 := Bn

2 (k) are constant coefficients. Obviously,
one looks for coefficients such that lim

n→∞
Bn
I = 0, with the ”fastest” possible

convergence rate.
Their values can be derived by writing the interface conditions explicitly.
Indeed, for all n ∈ N∗, one finds Bn+1

I (αI + DI λI ) = Bn
J (αJ − DI λI ). By

induction, this yields:

I = 1, 2, ∀n ∈ N
∗, Bn+2

I = ρBn
I , with ρ =

(α1 −D2 λ2)

(α1 +D1 λ1)

(α2 −D1 λ1)

(α2 +D2 λ2)
. (26)

As αI > 0, DI > 0 and λI > 0, one has 0 ≤ ρ < 1. The smaller ρ, the
better the convergence rate. In the limit cases where both αI = 0 (Neumann
interface condition only) or both αI → +∞ (Dirichlet interface condition
only), one finds ρ = 1: the coefficients (Bn

I )n do not go to zero, ie. the
non-overlapping Schwarz method does not converge.

As φ0 is not the exact solution, the errors of the first step e11 and e12 are
not zeros, so that B1

I 6= 0, cf. (25). On the other hand, one has Bn+2
I = ρBn

I

for n > 0, cf. (26). So, if ρ = 0, convergence is achieved at the second step.
In the more general case of N subdomains built as strips, one can check that
convergence can not be achieved in less than N steps [27].
In order to reduce ρ, we need to have αI ≈ DJ λJ . At the order 0 in k, it
means that the optimal parameters are governed by the relation:

αI =
√

Σa,J DJ . (27)

A better choice is to take αI as a function of k2. Taking the inverse Fourier
transform, this corresponds to have second order derivatives along the y axis
in the interface conditions (ie. second order tangential derivatives). This
kind of interface conditions are known as Ventcell interface conditions. They
can be used when the solution is smooth enough, and their use improves the
convergence rate [20].
Note that the condition (27) targets the damping of slow variations along
the interface. In order to damp (roughly) all frequencies, one can choose
αI = αopt defined as in [13, 20]:

αopt = min
α1,α2

max
k

(α1 − D2 λ2(k) ) (α2 − D1 λ1(k) )

(α1 + D1 λ1(k) ) (α2 + D2 λ2(k) )
. (28)

Suppose that Σa,1 = Σa,2 and D1 = D2, so that we can set α = α1 = α2.
Notice that numerically we have |k| ≤ π/h, where h is the mesh step. Hence,
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one can restrict the set of relevant values of α to the following interval:

[
√

ΣaD,

√
ΣaD + D2

π2

h2

]
. (29)

This approach is extensively studied in [13]. At order 0 in k, the solution is
then the geometrical mean between the maximal and the minimal values of
α, namely:

α =

(
√

ΣaD

√
ΣaD +D2

π2

h2

)1/2

(30)

Remark 3. In our numerical experiments, the neutrons flux is quite smooth:
we can stick to the Robin boundary conditions (18), with αI =

√
Σa|RJ

D|RJ
,

so that one can have α1 6= α2. Also, if Σa|RI
and/or D|RI

change from one
cuboid to the other, so does the value of αJ at the corresponding part of the
interface. When solving the multigroup diffusion equations, we have different
αg-parameters for each group, since the macroscopic cross sections and the
diffusion coefficient change from one group to another. We have for each

group αgI =
√

Σg
a|RJ

Dg
|RJ

.

5. The discretization of the Schwarz iterative algorithm

5.1. The variational formulation

In order to write the H(div ,RI)×L2(RI)-conforming variational formu-
lation of equations (19), we introduce

Q+
I := {q ∈ H(div ,RI) |q · n|Γ ∈ L2(Γ)}

together with the following bilinear and continuous forms:
• the symmetric and positive definite forms aI : Q+

I ×Q+
I → R, defined by:

aI(pI ,qI) =

∫

RI

1

D
pI · qI +

∫

Γ

1

αJ
(pI · nI) (qI · nI) ;

• the symmetric and positive definite forms tI : L2(RI) × L2(RI) → R,
defined by:

tI(φI , ψI) =

∫

RI

Σa φIψI ;
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• the forms bI : Q+
I × L2(RI)→ R, defined by:

bI(qI , ψI) =

∫

RI

ψIdiv qI .

We choose (p0
I , φ

0
I) ∈ Q+

I × L2(RI). Using the interface conditions on Γ,
integrating by parts and bearing in mind that n2 = −n1 there, we write the
variational formulation of equations (19) as follows:
Find (pnI , φ

n
I ) ∈ Q+

I × L2(RI), ∀n ∈ N∗ such that ∀(qI , ψI) ∈ Q+
I × L2(RI):

−aI(pn+1
I ,qI) + bI(qI , φ

n+1
I ) + bI(p

n+1
I , ψI) + t(φn+1

I , ψI)

= 〈φnJ ,qI · nI〉 −
∫

Γ

1

αI
(pnJ · nI) (qI · nI) +

∫

RI

Sf ψI .

Remark 4. This formulation clearly applies to the additive algorithm. It
also applies to the multiplicative version, but only for (I, J) = (1, 2), whereas
for (I, J) = (2, 1), one has to increment the index n at the right-hand side,
so the data is actually (φn+1

J ,pn+1
J ).

However, this formulation remains formal, because the term 〈φnJ ,qI · nI〉 is
meaningless when one assumes only that φnJ belongs to L2(RJ), as we do in
the above variational formulation. If one keeps the interface integral term
〈φnJ ,qI · nI〉, this leads to an unstable numerical scheme. Therefore, we have
to write it as a volume integral. Moreover, since this involves the quantity
φnJ defined over the neighbouring subdomain RJ , the volume integral is over
RJ . So we have to extend qI · nI |Γ there. Mathematically, we recall that
φnJ ∈ H1

0,ΓJ
(RJ) in (19), so its trace φnJ |Γ belongs to the space of traces on Γ

of elements of H1
0,ΓJ

(RJ), which we denote by HΓ. One can write

〈φnJ , qI · nJ〉(HΓ)′,HΓ
=

∫

RJ

gradφnJ · q̃J +

∫

RJ

φnJ div q̃J ,

= −aJ(pnJ , q̃J) + bJ (q̃J , φ
n
J).

Above, q̃J = Lν(qI · nJ |Γ), where Lν is any continuous lifting operator of
the normal trace on Γ, from (HΓ)′ to H(div ,RJ). We conclude that the
variational formulation of (19) reads (recall that nJ = −nI on Γ):
Find (pnI , φ

n
I ) ∈ Q+

I × L2(RI), ∀n ∈ N∗ such that ∀(qI , ψI) ∈ Q+
I × L2(RI):

−aI(pn+1
I ,qI) + bI(qI , φ

n+1
I ) + bI(p

n+1
I , ψI) + t(φn+1

I , ψI)

= −
∫

Γ

1

αI
(pnJ · nI) (qI · nI) + aJ(p

n
J , q̃J)− bJ(q̃J , φnJ) +

∫

RI

Sf ψI . (31)
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As noticed above, for the multiplicative version and (I, J) = (2, 1), the data
(φn1 ,p

n
J) is replaced by (φn+1

1 ,pn+1
J ). From there, discretization follows the

guidelines already provided in Subsection 3.2. From a numerical point of
view, this allows us to obtain a stable numerical scheme.

5.2. Schwarz iterative algorithms from an algebraic point of view

We suppose here, to simplify the notations, that Γ is orthogonal to x.
We will denote by Mi the discretization nodes of the flux, and Pd,i the dis-
cretization nodes of the d-component of the current.
Let’s set Id := {1, ..., Nd}, d = x, y, z, and Iφ := {1, ..., Nφ}. We split Id and
Iφ into the following disjoint subsets:

• Iφ = I1
φ ∪ I2

φ, such that IIφ = {i ∈ Iφ |Mi ∈
◦

Rh,I},
• For d = y, z, Id = I1

d ∪ I2
d , such that IId = {i ∈ Id |Pd,i ∈

◦

Rh,I},
• Ix = I1

x ∪ I2
x ∪ IΓ

x , such that IIx = {i ∈ Ix |Px,i ∈
◦

Rh,I} and IΓ
x := {i ∈

Ix |Px,i ∈ Γ}.

Below d = y, z, with indices I, J as usual.

5.2.1. Back to the linear system (14)

First, we can split the matrices appearing in (14) between these different
subsets:
• Splitting of Ax:

Ax =




◦

A
1
x

( ◦

A
1
Γ

)T
0

◦

A
1
Γ AΓ

◦

A
2
Γ

0
( ◦

A
2
Γ

)T ◦

A
2
x


 with :





◦

A
I
x = ( Ax )( k , l )∈II

x×II
x
,

AΓ = ( Ax )( k , l )∈IΓ
x×IΓ

x
,

◦

A
I
Γ = ( Ax )( k , l )∈IΓ

x×II
x
.

AΓ is a diagonal matrix such that AΓ = A1
Γ+A2

Γ, with:
(

AI
Γ

)
k,k

=

∫

Rh,I

1

Dh

q2
x,k.

• Splitting of Ad: Ad =

(
A1
d 0

0 A2
d

)
with: AI

d = ( Ad )( k, l )∈II
d
×II

d
.

• Splitting of Bx: Bx =




◦

B
1
x 0

B1
Γ B2

Γ

0
◦

B
2
x


 with:

{ ◦

B
I
x = ( Bx )( k, l )∈II

x×II
φ
,

BI
Γ = ( Bx )( k, l )∈IΓ

x×II
φ
.

.
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• Splitting of Bd: Bd =

(
B

1
d 0

0 B2
d

)
with: B

I
d = ( Bd )( k, l )∈II

d
×II

φ
.

• Splitting of T: T =

(
T1 0
0 T2

)
with: TI = ( T )( k , l )∈II

φ
×II

φ
. TI are sym-

metric positive-definite matrices.

Second, we split the current, the flux and the source vectors as well, so
that:

• p
x

=
(

◦
p 1
x, pΓ

,
◦
p 2
x

)T
, with:

◦
p I
x =

(
p
x

)

k∈II
x

, p
Γ

=
(

p
x

)

k∈IΓ
x

,

• p
d

=
(

p1
d
, p2

d

)T
, with: pI

d
=
(

p
d

)
k∈II

d

,

• φ =
(
φ

1
, φ

2

)
, with: φ

I
=
(
φ
)
k∈II

φ

,

• Sf =
(
S1
f , S

2
f

)
, with: SIf =

(
Sf
)
k∈II

φ

.

Let’s duplicate p
Γ
, setting p

Γ
= p1

Γ
= p2

Γ
.

Let βI ∈ RNΓ×RNΓ be the diagonal matrices such that βI
k,k = α−1

I,k, αI,k > 0.
We can write the line −Ax p

x
+ Bxφ = 0 of the block linear system (14) this

way:





−
◦

A
I
x

◦
p I
x −

( ◦

A
I
Γ

)T
pI

Γ
+

◦

B
I
x φI = 0 ,

−
◦

A
I
Γ

◦
p I
x −

(
AI

Γ + βI

)
pI

Γ
+ BI

Γ φI =
◦

A
J
Γ

◦
p J
x +

(
AJ

Γ − βI

)
pJ

Γ
− BJ

Γ φJ .

Whereas the lines −Ad pd + Bdφ = 0 of (14) write: −AI
d p

I
d
+ BI

d φI = 0.

Finally, the line Tφ+ BTp = Sf of (14) writes:

TI φI +
( ◦

B
I
x

)T ◦
p I
x +

(
B
I
Γ

)T
pI

Γ
+
(

B
I
y

)T
pI
y

= SIf .

Third, introduce:
• The matrices AII and AIJ :

AII =




◦

A
I
x

( ◦

A
I
Γ

)T
0

◦

A
I
Γ

(
AI

Γ + βI

)
0

0 0 AI
y


 and AIJ =




0 0 0
◦

A
J
Γ

(
AJ

Γ − βI

)
0

0 0 0





AII are symmetric positive-definite matrices.
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Remark 5. The terms (βI)I=1,2 play an important role: if either β1 = β2 =
0 (Dirichlet interface conditions) or β1 = β2 → +∞ (Neuman interface

conditions), then the matrix

(
A11 A12

A21 A22

)
of the linear system stemming

from the Schwarz iterative algorithm is either not invertible, or very ill-
conditioned. On the other hand, in other cases, it stabilizes the linear system.

• The matrices BII , and BIJ :

BII =




◦

B
I
x

BI
Γ

B
I
y


 , BIJ =




0
BJ

Γ

0


 . (32)

• The vectors p
I

=
(
pI
x
, pI

y

)T
, with: pI

x
=
(

◦
p I
x , p

I
Γ

)T
.

Finally, we can rewrite equivalently the linear system (14) of the discrete
variational formulation as the linear systems below:

(
−AII BII

B
T
II TI

)(
p
I

φ
I

)
=

(
AIJ p

J
− BIJ φJ
SIf

)
. (33)

5.2.2. Schwarz iterative algorithms (31)

On the other hand, let’s consider PI =
(

p
I
, φ

I

)T
, and Q

I
=
(
0, SIf

)T

and set:

HII =

(
−AII BII

BT
II TI

)
and HIJ =

(
−AIJ BIJ

0 0

)
.

The linear systems (33) read now: HIIPI = Q
I
−HIJPJ .

Classically, one can solve these systems iteratively by means of a block Jacobi,
or a block Gauss-Seidel, method. Let’s set P0

I := (p0
I
, φ0

I
). The iterative

resolution of (33) then writes:
for n ∈ N, find Pn+1

I := (pn+1
I

, φn+1

I
) such that:

H11P
n+1
1 = Q

1
− H12P

n
2 ,

H22P
n+1
2 = Q

2
− H21P

n(+1)
1 .

(34)

This linear system corresponds exactly to the discretization of the variational
formulations of the Schwarz iterative algorithms (31): block Jacobi for the
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additive algorithm, and block Gauss-Seidel for the multiplicative algorithm.
Note that we solve iteratively each equation on Pn+1

I , using an alternating

direction algorithm. Indeed, we recall that PI =
(

p
I
, φ

I

)T
, with p

I
=

(
pI
x
, pI

y

)T
, so that each equation on Pn+1

I corresponds to the block linear

system (15). Finally, we remind that the solution of (34) is embedded into
the inverse power iteration algorithm.

6. Numerical results and parallel implementation

6.1. The solver

To perform computations, we use some components of the APOLLO3r1

code, the latest neutronics code of CEA/DEN (Commissariat à l’Énergie
Atomique et aux Énergies Alternatives, Direction de l’Énergie Nucléaire),
developped in collaboration with EDF and AREVA [14]. In particular, we
use the MINOS solver, one of the deterministic solvers, to compute numer-
ically keff . More specifically, the MINOS solver [2, 17, 3, 19] is a 3D, SPN
solver on structured cartesian and hexagonal grids, which is based on the
inverse power algorithm (5).

6.2. Presentation of the industrial case

The results presented here concern a pressurized water reactor core of
capacity 900 MWe (3D PWR 900 MWe core). The cross sections that we
use come from experimental results [21]. A diagram in the (x, y)-plane (a top
view) of this reactor core is given on fig. 1(a). The fuel assemblies (yellow
squares) are surrounded by water (in blue), which acts as both coolant and
neutron moderator. The neutrons are reflected back by the core barrel (in
red). By misuse of language, we will call the environment of the fuel area
the reflector.
The geometry of the fuel assemblies is cartesian. There are 23 fuel assemblies
of height 15.6 cm along the z axis (the total height of the fuel area is of size
360 cm). There are 157 fuel assemblies in the (x, y)-plane. A fuel assembly
has a square (x, y) section of sidelength 21.6 cm.
On fig. 1(b), the (x, y) geometry of the core model is shown. The orange
squares represent the reflector, the green (resp. purple) squares represent the
UOX (resp. MOX) fuel assemblies. There are 16 (resp. 23) different kinds
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of UOX (resp. MOX) assemblies.
Finally, the computational domain is of total size 367×367×400 cm3. Indeed,
to account for the fact that the reflector must surround the fuel (in particular
above and below the assemblies), the fuel is actually put between heights
20 cm to 380 cm.

(a) PWR core diagram (b) PWR core model

Figure 1: (x, y) core diagram and (x, y) core model of a 3D PWR 900MWe core.

On fig. 2(a), a diagram of the (x, y)-cut of an assembly is given. Each
assembly is made of 289 (ie. 17 × 17) squared cells. A UOX (resp. MOX)
assembly is made of cells containing either a cylindrical pin of UOX (resp.
MOX) fuel, or a control rod; surrounded by water. Computationally, in
each cell, the cross sections of the fuel (or the control rod) and the water
are homogenized. Hence, their values can be very different from one cell
to the other: in the present case, one ends up with 125 (resp. 32) cross
section values for the UOX (resp. MOX) fuel. We have to solve a highly
heterogeneous problem. On fig. 2(b) (resp. 2(c)), we give a model of the
(x, y)-cut of a UOX (resp. MOX) assembly. The different colors correspond
to different values of the homogenized cross sections (one value per cross
section and per cell).

(a) Assembly (b) MOX model (c) UOX model

Figure 2: (x, y) assembly diagram; (x, y) MOX or UOX assembly model.
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6.3. The algorithm

We perform a cell-by-cell computation, i.e. with one (x, y) unit mesh per
assembly cell, on the diffusion approximation, with two energy groups. As
already mentioned, in the inverse power algorithm, the outer iterations lead
the convergence, so we can approximate the source solver by a single inner
iteration: we end up with a single level of iteration (indexed by m). Now,
compared with (20), we have an additional Gauss-Seidel iteration on the en-
ergy groups, so that the full algorithm reads:

Set (p0
g,I , φ

0
g,I)g,I , k

0
eff , m = 0.

Compute S0
f,I =

2∑

g=1

Σg
f φg,I .

Until convergence, do: m← m+ 1

For g = 1, 2, g′ = 2, 1, do:

Solve:




1

Dg
pm+1
g,I + gradφm+1

g,I = 0, in RI ,

div pm+1
g,I + Σg

a φ
m+1
g,I =

1

kmeff
χg Smf,I + Σg′→g

s,0 φ
m(+1)
g′,I , in RI ,

−pm+1
g,I · nI + αg,Iφ

m+1
g,I = p

m(+1)
g,J · nJ + αg,Iφ

m(+1)
g,J , on Γ,

φm+1
g,I = 0, on ∂R ∩ ∂RI ,

End

Compute Sm+1
f,I =

2∑

g′=1

Σg′

f φ
m+1
g′,I .

Compute km+1
eff = kmeff

2∑

I=1

∫

RI

(Sm+1
f,I )2

2∑

I=1

∫

RI

(Sm+1
f,I Smf,I)

.

End
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At iteration m+1, the accuracy is measured on the fission source, expressed
as a vector4 Sf :

εm+1
f = Nφ

max
i∈Iφ

∣∣(Sm+1
f − Smf )i

∣∣
∑

i∈Iφ

|(Sm+1
f )i|

,

The inverse power iteration algorithm is stopped when εmf < 10−5. The
mesh is of size 289× 289× 60 (≈ 5M unit meshes): for each energy group,
there are about 15M (resp. 5M) unknowns for the current (resp. the flux).
The converged eigenvalue keff is 1.230157. For each group, we chose αg =√

Σg
aDg, with piecewise constant cross sections along the interfaces, which

can be highly heterogeneous. Computations were carried out on the Titane
computer, hosted by the CCRT (the CEA Supercomputing Center).

6.4. Numerical results

On Fig. 3, we report some resulting (x, y) normalized power distribution
maps of these calculations. The normalized power distribution is defined by:

P = P
R

RF
1

R

RF
P

, where RF is the fuel volume, and P is defined on each discrete

mesh Rm by: P(Rm) :=
∑

g

κgm

∫

Rm

φg, κgm being the energy released by

fission and capture for the group g in the mesh Rm. The green area represents
the reflector where P = 0. In the core (the place where fission occurs), the
color coding runs from blue (0 < P . 1) to white (1 . P . 1.4) then red
(1.4 . P . 3.7). Note that it is only a shape representation, since we solve
an eigenvalue problem.
In table 1, we present the results for computations of the MINOS solver from
1 to 128 computational cores with RT0 finite elements. The data of table 1
is:
• Nc: The number of cores (ie. the number of subdomains).
• NDD: The 3D Cartesian (Nx

DD, Ny
DD ,N z

DD) decomposition.
• Nout: The number of outer iterations to achieve convergence.
• Err.: The (unsigned) difference between the computed and the converged
eigenvalues, either sequentially or in parallel, times 10−5.

4
Sf is the discretization representation of the source Sf :=

2∑

g=1

Σg
f φg.
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(a) z = 23.3 (b) z = 56.7 (c) z = 96.7

(d) z = 136.7 (e) z = 203.3 (f) z = 290.0

Figure 3: Power distribution maps of the neutron flux at different heights (in cm).

• CPU : The CPU time spent within the MINOS solver, given in seconds.
• Eff.: The efficiency (in %): namely, T1/(NDD×TN ), where T1 (resp. TN )
is the total sequential (resp. parallel, on NDD cores) CPU time.

As we can see, the method scales relatively well: its efficiency ranges from
67% to 88%. The number of outer iterations does not increase much, and
accuracy is steady.

6.5. Influence of the partitioning

We consider the same computations as before, but we use a different
splitting, along the z-axis only. We obtain the following results (table 2).
As long as 32 or less cores are used, accuracy is steady and the number of
outer iterations increases slowly. For 8 or more cores, the efficiency is worse
than in Table 2. This is probably due to the fact that, with a splitting
along the z-axis only, one increases the amount of transferred data. As a
consequence the communication time also increases. Finally, for 48 or more
cores, the accuracy deteriorates and the number of iterations grows: it seems
better to divide the domain into several directions than along a single one
only (in slices).
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Nc NDD (x, y, z) Nout Err. 10−5 CPU (s) Eff. (%)
1 (1, 1, 1) 380 0 284 100
2 (2, 1, 1) 380 0 166 85
4 (2, 2, 1) 379 0 105 67
8 (2, 2, 2) 377 0 53 67
16 (4, 4, 1) 377 0 25 71
32 (4, 4, 2) 385 0 10 88
64 (8, 8, 1) 393 0 5 88
128 (8, 8, 2) 393 0 2.6 85

Table 1: Computations results with the proposed numerical scheme.

Nc NDD (x, y, z) Nout Err. 10−5 CPU (s) Eff. (%)
1 (1, 1, 1) 380 0 284 100
2 (1, 1, 2) 381 0 166 85
4 (1, 1, 4) 382 0 109 65
8 (1, 1, 8) 383 0 60 59
16 (1, 1, 16) 384 0 30 59
32 (1, 1, 32) 396 0 14 63
48 (1, 1, 48) 876 0.4 30 19
56 (1, 1, 56) 558 0.2 19 27

Table 2: Splitting along the z-axis.

Hence, one has to balance the transferred data versus the overall cost of the
communications.

6.6. Influence of the α-parameter

In P. Guérin’s PhD thesis [17], the α-parameter is tuned carefully. On
the other hand, in S. Van Criekingen et al paper [38], the Schwarz iterative
algorithm with Robin transmission conditions is applied to the PN equations
(discretized with non conforming finite elements). In which case, ”no theo-
retical result appears efficiently applicable” [37] to optimize the α-parameter.
We will see that in our case, the choice of the α-parameterer has a great
influence on the convergence.
In Section 4.5, we carried out some computations in order to optimize the
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choice of α. Let’s try other α-parameters. In the next computations, we are
mainly interested in the accuracy and the number of outer iterations.
In table 3 we give numerical results for αg = 1 and αg = 0.5 for both energy
groups, with the same splittings as those reported in table 1.

αg = 1 αg = 0.5
Nc NDD (x, y, z) Nout Err. 10−5 Nout Err. 10−5

1 (1, 1, 1) 380 0 380 0
2 (2, 1, 1) 462 0.2 621 0.4
4 (2, 2, 1) 501 0.2 756 0.3
8 (2, 2, 2) 558 0.2 931 0.4
16 (4, 4, 1) 549 0.2 891 0.3
32 (4, 4, 2) 622 0.2 1053 0.4
64 (8, 8, 1) 705 0.2 1184 0.4
128 (8, 8, 2) 790 0.3 1382 0.5

Table 3: Computations with αg = 1 and αg = 0.5.

In both cases, we note that the number of iterations increases faster than
in table 1. Also, the accuracy is not as good as it is in table 1. Based on
these experiments, it appears that the optimized choice of the α-parameter
that we implemented is a good compromise, which in addition allows one to
automate the method.

7. Conclusions

We analyzed a domain decomposition method based on the Schwarz it-
erative algorithm, to solve the mixed neutrons diffusion equations, from the
continuous problem to its discretization with Raviart-Thomas finite elements.
We developed an asymptotic method in order to optimize the choice of the
α-parameter appearing in the interface conditions of Robin type. Numerical
experiments carried out with the MINOS solver show that the method is
robust and efficient both sequentially and in parallel, and that our choice of
the α-parameter is satisfactory. Note that the number of iterations to solve
our problem increases only slightly with the number of subdomains.
We believe we could improve the method along the following axes:
• We could use Ventcell interface conditions: in other words, enhancing the
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efficiency of the Robin interface condition with the introduction of tangential
derivatives [27, 20].
•We could compare our method with an overlapping domain decomposition
method (ie. Dirichlet or Neumann interface conditions), with a coarse grid
solver, as done in [28].

We also encoded the domain decomposition method for the SPN equa-
tions with N ≥ 2 on a cartesian mesh. In that case, the Robin interface
conditions are written in a matricial form, the α-parameter becomes a square
matrix, whose coefficients can be optimized as well [18].

Appendix A. Proof of Thm. 3

Proof. According to Theorem 2, we already know that there exists a so-
lution (p, φ) ∈ Q × H1

0,ΓD
(R) to (6), which in turns solves the variational

formulation (10). Hence, we only have to establish uniqueness of the solution
to (10) to conclude the proof. Classically, one looks for some inf-sup condi-
tion (for more details about the general framework, we refer to [6, 12]) to
ensure uniqueness. For that, let us endow Q × L2(R) with the graph norm

|||(q, ψ)||| =
(
‖q‖2Q + ‖ψ‖20

)1/2
, and rewrite the variational formulation (10)

– with obvious notations – as:
Find (p, φ) ∈ Q× L2(R) such that ∀(q, ψ) ∈ Q× L2(R):

c ((p, φ), (q, ψ)) = ℓ ((q, ψ)) .

In this setting, the inf-sup condition writes

∃η > 0, inf
(p,φ)∈Q×L2(R)

sup
(q,ψ)∈Q×L2(R)

c ((p, φ), (q, ψ))

|||(p, φ)||| |||(q, ψ)||| ≥ η.

Given (p, φ) ∈ Q× L2(R), let us consider the two cases below.
Assume first that divp = 0 in Ω, then

c ((p, φ), (q, ψ)) =

∫

R

(
− 1

D
p · q + φ div q + Σaφψ

)
−
∫

ΓR

1

α
(p · n)(q · n).

By choosing (q, ψ) = (−p, φ) ∈ Q × L2(R), one has |||(q, ψ)||| = |||(p, φ)|||
and moreover the expression of c ((p, φ), (q, ψ)) involves only positive terms,
which yields easily the bound in this divergence-free case:

c ((p, φ), (q, ψ)) =

∫

R

(
1

D
|p|2 + Σa(φ)2

)
+

∫

ΓR

1

α
(p · n)2
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≥ min((D∗)−1, α−1)‖p‖2Q + (Σa)∗‖φ‖20
≥ min((D∗)−1, α−1, (Σa)∗)|||(p, φ)|||2
= min((D∗)−1, α−1, (Σa)∗)|||(p, φ)||| |||(q, ψ)|||.

In the general case (div p 6= 0), one can still proceed along the same lines,
as soon as the terms in φ div p cancel out. A possible choice is (q, ψ) =
(−p, 1

2
φ+ 1

2
(Σa)

−1div p) ∈ Q× L2(R). Indeed, one obtains the bounds:

|||(q, ψ)|||2 ≤ ‖p‖2Q +
1

2
‖φ‖20 +

1

2
‖(Σa)

−1div p‖20
≤ max(1 +

1

2
((Σa)∗)

−2,
1

2
)|||(p, φ)|||2, and

c ((p, φ), (q, ψ)) =

∫

R

(
1

D
|p|2 +

1

2Σa
(div p)2 +

Σa

2
(φ)2

)
+

∫

ΓR

1

α
(p · n)2

≥ min((D∗)−1, (2(Σa)
∗)−1, α−1,

(Σa)∗
2

)|||(p, φ)|||2.

This concludes the proof.

Appendix B. Proof of Thm. 4

Proof. Proving the first result is classical, see for instance [34, 12]: one has
to obtain a uniform (ie. independent of h) discrete inf-sup condition. To that
aim, one applies the construction of Theorem 3 to the discrete case, using
the consistency property of the finite element spaces Qk

h and V k
h .

The improved convergence result can be found in [34] (see theorem 13.2, p.
582, and (6.19-6.20) pp. 553-554). It makes use of local estimates.

Appendix C. Proof of Eq. (17)

This proof will be useful to show Prop. 5 (Subsection 4.4). Consider a
priori that the solutions to (6) and (16) are independent one from the others,
and set (eI , εI) = (pI , φI)− (p, φ)|RI

. These errors satisfy





1

D
eI + grad εI = 0, in RI ,

div eI + Σa εI = 0, in RI ,
ε1 = ε2, on Γ,

−e1 · n1 = e2 · n2, on Γ.

(C.1)
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Let us multiply the first (resp. second) equation by eI (resp. εI), and
integrate over RI . We obtain that:





∫

RI

1

D
|eI |2 +

∫

RI

grad εI · eI = 0,
∫

RI

div eI εI +

∫

RI

Σa ε
2
I = 0.

(C.2)

Using Green’s first identity (8) and the second equation of (C.2), the first
equation of (C.2) becomes:

∫

RI

1

D
|eI |2 +

∫

RI

Σa ε
2
I + 〈εI , eI〉 = 0, (C.3)

where eI = eI · nI |Γ. We sum the two equations over R1 and R2:

2∑

I=1

∫

RI

1

D
|eI |2 +

∫

RI

Σa ε
2
I = −

2∑

I=1

〈εI , eI〉,

= −〈ε1, e1 + e2〉, since ε1 = ε2,
= 0, since e1 = −e2.

Under the assumptions on D and Σa, we conclude that eI = 0 in L2(RI)
d

and εI = 0 in L2(RI). Thanks to the first two equations in (C.1), this
is also true in H(div ,RI) × H1(RI). In other words, we have that the
solutions to (6) and (16) necessarily coincide, that is (pI , φI) = (p, φ)|RI

in
H(div ,RI)×H1(RI).

Appendix D. Proof of Prop. 5

Proof. We will proceed as in Subsection 4.2 and use similar notations to
compute the errors between two successive iterations. Note that as p0 ·n|Γ ∈
L2(Γ), it follows easily by induction in (19) that pn+1 · n|Γ ∈ L2(Γ), ∀n ∈ N.
As p · n|Γ ∈ L2(Γ), there holds en+1

I ∈ L2(Γ), ∀n ∈ N, so brackets can be
replaced by integrals over the interface. Then, the errors satisfy, ∀n ∈ N∗:

∫

RI

1

D
| en+1

I |2 +

∫

RI

Σa| εn+1
I |2 +

∫

Γ

en+1
I εn+1

I = 0. (D.1)

We sum the equations (D.1) over the two domains:

2∑

I=1

(∫

RI

1

D
| en+1

I |2 +

∫

RI

Σa | εn+1
I |2

)
+

2∑

I=1

∫

Γ

en+1
I εn+1

I = 0. (D.2)
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We use the identity: AB =
1

4α

(
(A + αB)2 − (−A+ αB)2

)
, so that:

∫

Γ

en+1
1 εn+1

1 =
1

4α

∫

Γ

(
(en+1

1 + αεn+1
1 )2 − (−en+1

1 + αεn+1
1 )2

)
,

∫

Γ

en+1
2 εn+1

2 =
1

4α

∫

Γ

(
(en+1

2 + αεn+1
2 )2 − (−en+1

2 + αεn+1
2 )2

)
,

=
1

4α

∫

Γ

(
(−en+2

1 + αεn+2
1 )2 − (e

n(+1)
1 + αε

n(+1)
1 )2

)
.

(D.3)
For the last equality, we used the interface conditions in (18) and (19), whose
differences yield respectively

{ −en+2
1 + αεn+2

1 = en+1
2 + αεn+1

2 on Γ,

−en+1
2 + αεn+1

2 = e
n(+1)
1 + αε

n(+1)
1 on Γ,

Equation (D.2) writes now in the case of the MSM:

2∑

I=1

(∫

RI

1

D
|en+1
I |2 +

∫

RI

Σa|εn+1
I |2

)

+
1

4α

∫

Γ

[
(−en+2

1 + αεn+2
1 )2 − (−en+1

1 + αεn+1
1 )2

]
= 0

(D.4)

In the case of the ASM, we have two more terms:

2∑

I=1

(∫

RI

1

D
|en+1
I |2 +

∫

RI

Σa|εn+1
I |2

)

+
1

4α

∫

Γ

[
(−en+2

1 + αεn+2
1 )2 − (−en+1

1 + αεn+1
1 )2

]

+
1

4α

∫

Γ

[
(en+1

1 + αεn+1
1 )2 − (en1 + αεn1)

2
]

= 0

(D.5)

When we sum these norms of errors from n = 0 to N , the boundary terms
cancel each other out but the first and the last terms. We have for the MSM:

N∑

n=0

{
2∑

I=1

(∫

RI

1

D
|en+1
I |2 +

∫

RI

Σa|εn+1
I |2

)}

+
1

4α

∫

Γ

(−eN+2
1 + αεN+2

1 )2 =
1

4α

∫

Γ

(−e1
1 + αε1

1)
2.

(D.6)
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In the case of the ASM, we obtain two more terms:

N∑

n=0

{
2∑

I=1

(∫

RI

1

D
|en+1
I |2 +

∫

RI

Σa|εn+1
I |2

)}

+
1

4α

∫

Γ

[
(−eN+2

1 + αεN+2
1 )2 + (eN+1

1 + αεN+1
1 )2

]
=

1

4α

∫

Γ

[
(−e1

1 + αε1
1)

2 + (e0
1 + αε0

1)
2
]
.

(D.7)

We conclude that the series

∞∑

n=0

{
2∑

I=1

(∫

RI

1

D
|enI |2 +

∫

RI

Σa|εnI |2
)}

are convergent. Moreover, under the assumptions onD and Σa, the sequences
(enI , ε

n
I )n tend to zero in L2(RI)

d × L2(RI). Going back to the first two
equations of (C.1) written here with unknowns (enI , ε

n
I ), we conclude that the

sequences (enI , ε
n
I ) converge to zero in H(div ,RI)×H1(RI).
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PN neutron transport solver based on domain decomposition. Annals of
Nuclear Energy, 38(1):145–150, 2011.

[39] L. Y. Zaslavsky. An adaptative algebraic multigrid for multigroup neu-
tron diffusion reactor core calculations. Appl. Math. Comput., 53:13–26,
1993.

[40] L. Y. Zaslavsky. An adaptative algebraic multigrid for reactor criticality
calculations. SIAM J. Sci. Comput., 16(4):840–847, 1995.

38


