Domain decomposition for the neutron Sk
equations
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Abstract Studying numerically the steady state of a nuclear coreoe&expen-
sive, in terms of memory storage and computational timeréieioto address both
requirements, one can use a domain decomposition methpterimented on a par-
allel computer. We present here such a method applied togbhzanSR, equa-
tions, which are an approximation of the transport neutiquiaéion. This method
is based on the Schwarz iterative algorithm with optimizethiR interface condi-
tions to handle communications. From a computational pfiniew, this method is
rather easy to implement. We give some numerical resultgimyhheterogeneous
3D configurations. Computations are carried out with the MINS®®&er, which is
a multigroupSR; solver of the APOLLO®? neutronics code. Numerical experi-
ments show that the method is robust and efficient, and thrathmice of the Robin
parameters is satisfactory.
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1 Introduction

The neutron transport equation allows to describe the ardlux density in a re-
actor core. It depends on 7 variables: 3 for the space, 2 éombtion direction, 1
for the energy (or the speed), and 1 for the time. The energghle is discretized
using the multigroup theory [4]. Th@\ transport equations are obtained by devel-
oping the neutron flux on the spherical harmonics from ord&y OrderN. This
approach is very time-consuming. The simplifigd (SR) transport theory [14]
was developed to address this issue. The two fundamentatlingges to obtain the
SR, equations are that locally, the angular flux has a planar sstnysrand that the
axis system evolves slowly. The neutron flux and the scatjesioss sections are
then developped on the Legendre polynomials. The ddderodd, and the number
of SR, odd (resp. even) momentslﬂgﬁ.

Let #, the domain of studies, be a bounded, open subsBEpWith a piecewise
smooth boundary. LéB + 1 be the number of energy groups, andjet {0, .., G}.

In the time-independent case, the multigr@&@R equations read i:

T3pd-+grad (He?) = 5 5§,
. #9
Solve in(pY, ¢?) | 1 &
HTdivp9+Te¢® = 5 S2%7 + Txg 5 MY ¢°
/ A / — |
979 g=0
For each energy group:
o ¥ =(¢f, ¢ . .)TeR"Z (respp?=(p?,pd,..)T € (R3)"2") denotes the vector
containing all the even (resp. odd) moments of the neutron flu
T (resp.T§) € R":'*":" denotes the even (resp. odd) removal matrix, such that:
TY = diag (oﬁo, 0, ) T3 = diag (oﬁl, 0, ) whered} are proportional to
the macroscopic removal cross sections.
S (resp S89) ¢ R"7* %" denotes the even (resp. odd) scattering matrix, such
that:Sg° = diag (og 5% 05,79, ) 549 = diag (O’g %0979, ) WhereogI 9
are proportlonal to the macroscopic group-transfer cressans.
oM € R "3 is such thatM{ x| = 608 .0Vg07 (With & the Kronecker sym-
bol), so thatl\/JIg(pg = (vga qﬁ,O,...)T. v9 is the number of neutrons emitted per
fission andcr%J the macroscopic fission cross sectiggis the fission spectrum.

o H c R is such thattlly| = &) + O 1.

We must fix boundary conditions (BC) @, such as Dirichlet BCp? = 0 (zero
flux), Neumann BCp9.n = 0 (reflection), or Robin BC (void or isotropic albedo,
[2]). From now on, we set zero flux BC.

For simplicity reasons, we will focus on the one-sp&&y approximationG+ 1=

1). From this study, one can easily deduce the multigi®Rpcase [4], for which
we use the Gauss-Seidel method on the energy groups. Thp-ttemsfer terms
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disappear and we can skip thgesuperscript. We havgo = 1. The linear system
(1) corresponds to a set of coupled diffusion equafioh®reover, Egs (1) can be
written in a primal form, with the even moments of the neutilar as unknowns:

~H"div (T, grad (He)) +Tep= )\le ®,iNZ,p=0,0n0%. 2)

Due to the structure of Eqs (2), we remark that Egs (1) agtealirespond to a gen-
eralized eigenproblem, whehleacts as the inverse of an eigenvalue with associated
eigenfluxg. One can apply the Krein-Rutman theorem [9] to Eqgs (1): thesjalal
solution is necessarily positive, and it is the eigenfunttissociated to the largest
eigenvalueke s = max, A, which is in addition simple. More precisekgs char-
acterizes the physical state of the core reactor:

o if ketf = 1: The nuclear chain reaction is self-sustaining. The mgastcritical;

e if kerf > 1: The chain reaction races. The reactor is supercritical;

e if ket < 1: The chain reaction vanishes. The reactor is subcritical.

2 The one-domain algorithm

As we look for the smallest eigenval(ie.+¢) 1, it can be computed by the inverse
power iteration algorithm. After some initial guess is pd®d, at iteratiorm—+ 1,
we deducép™t, ™1 KTHL) from (p™, ™, KT}() by solving Egs (1) with a source
term. Set in a domai#, the inverse power iteration algorithm reads:

Set(pov q)oa kgff)' m=0.
Until convergence, dan<+ m+1

Solve in(p™?, @™ 1):

Top™*+grad (He™!) =0,inZ,
HT divp™ !+ Te ™! = (KT} () ~IM @™, in Z, (3)
@™ =0,0n0%.

ComputekTt =Kk / (voy qoé“*l)z// (vor @ tvor ).
i R
End
Above, the Egs (3) with unknowr(pm”, @™ 1) model the so-called source solver,
with a source term equal (&7} ) ~*sT', wheres]' = vor . The updated value'*
is inferred as follows: assuming that convergenceis aeligve H' divp™ 1+ Te @™ 1 =
(K ~1sPtL one can write(KTYH) 1Mt = (KT )~*sP and, multiplying this
equation bys'fn+1 and integrating over the domain of computati@h we obtain
the equation below (3). The convergence criterion is uglsst 0n|kemf+f1 LATIE

2 Note that theéSR equations are similar to the neutron mixed diffusion equti
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and||sf" — &7||. The inverse power iterations are called the outer itematas op-
posed to the inner iterations, which correspond to thetitera of the source solver,
with a sources. It reads:

Top+grad (He) =0, inZ,
Solve in(p, @) : H"divp+Teq = S, in %, (4)
¢ =0,0n0%.

In the MINOS solver [1, 2], these equations are solved witlvi&&Thomas-
Nédélec FE (RTN FE) on a Cartesian or hexagonal mesh. kr todeduce memory
size and time computation, we encoded a DD method to solyst(#ied below.

3 Optimized Schwar z method

In order to use non overlapping subdomains, we chose the &8ezhterative al-
gorithm with Robin interface conditions to exchange infation [11]. Let us
split 2 in two non-overlapping subdomairg; and %,: # = %1 U %> such that
PN %> = 0. We define the interfacE = %1 N %». Let n; be the outward unit
normal vector t@%;, and(pi, @) = (p, ®),% - The Schwarz algorithm reads [5]:

Set(p?, @°)i=12,n=0.
Until convergence, dan«+n+1

Solve in(pf*™, @ Vi1

Top*+grad (Hg"™) =Q,in %, i=1,2,

HT divp™ i+ Teg™! =S in%,i=1,2,

@t =0,0n0%N0%,i=1,2, )
p?+1.n1+01(0f+1 — —pg.nz—i-al(ll;, Onr,
pyrlny+ @l tt = —P2<+1)-”1+02‘Pf(+1)* onfl".

End

Here, the Robin parameters are matriaes R *"*: hence the Robin interface
condition can couple all harmonics. The discretization g £5) with RTN FE is
described in [7] for thé&sR case. Compared to the Schur complement method [10],
this method requires less modifications, and rather easypteiment, provided one
has at hand a subdomain solver for the source problem. Onerihyado ensure
the data transfer between the subdomains given by the actedonditions. The
n(+1) superscript indicates that we can use either the additiev&z method
(ASM), or the multiplicative Schwarz method (MSM). We shalva [7, 6] the
convergence of the sequem{eﬁ*l, qq”*l)izlvz, n>0to(p,®)s-12 (in the case
o1 = ap). It is well known that the convergence rate depends highlyhe Robin
matrices(d;)i—1,2. In order to choose them optimally and automatically, weiedr
out an asymptotic study, a la Nataf and Nier [12]. For 87 case, we obtained
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thata; = (Ur,O‘(@j)1/2(0},1‘(@])71/2 [7]. We refer to [6] for the computations of the
SRy caseN > 1. In this case, the Robin matricés;)i—1 2 are symmetric positive
definite, and they depend on the removal cross sectionss/alez;)—2 1. In the
multigroup case, the cross sections depend moreover ondngyegroups and so do
the (ai)i—1,2. Let us see next how this algorithm modifies the eigenvalgerahm.

4 The multi-domains algorithm

Applying the Schwarz iterative method to algorithm (3), @rationm+ 1, we
should compute the solution to the source solver iteratiwehich yields in prin-
ciple nested outemf <+ m+ 1) and inner (index) iterations. However, numerical
experiments show that the inverse power algorithm leadglitieal convergence:
a single inner iteration is sufficient. So, the resultingoaiidym contains only one
level of iteration (with indexm). The inverse power algorithm with DD reads then:

Set((p|07 qqo)i:j.,Za kgff)l m= 0.
Until convergence, dan<+ m+1

Solve in(p™, @™ 1)i_q o, with j = 2,1

Top™?!+grad (Hg™?!) = 0,in%,
HT divp™ !+ Teg™? = (KT} ¢) "Mt g™, in i,
p™Lni+aig™t = —pl Y nj+aig™ Y, onr,

@™t =0,0n0% NO%.

(6)

2 2 .
C t m+1_|m mH142 mH-1 my
omputekgry ffi;'/%(vo-f @o ) /i;'/%(vaf @o "vordo)

End

At iteration m+ 1, convergence is measured on the source, expressed as a vec-
tors¢: " = maxgor (ST — Sdot| / (§ Saot! (ST Haot|). Iterations stop when

e?‘“ < &¢, whereg; is given by the user. Let us test our method.

5 Results

To perform computations, we use the MINOS solver [1, 2] ofAROLLO3® neu-
tronics code. The cross sections come from experimentasunements. They take
constant values per unit mesh which can be very different fsoe mesh to another:
we face highly heterogeneous problems. We use the follomatations:

e Nc: The number of cores.

e Npp: The D cartesian i3, Nbp ,N3p) decomposition.
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e Noyt: The number of outer iterations to achieve convergence.

e Err.: The (unsigned) difference between the computed and thescged eigen-
values, either sequentially or in parallel, times 10

e CPU: The CPU time spent within the MINOS solver, given in seconds

e Eff. (Tab. 3 and 2 only): The efficiency (in %): namely/ (Ncx Tn), whereT;
is the total sequential CPU time with a single domain, &qds the parallel CPU
time onNc cores withNc subdomains.

For Tab. 1 and 3, we used Intel Xeon L5640 processors with fariband net-
work. For Tab. 2, computations were carried out on the Titaraputer, hosted by
the CCRT (the CEA Supercomputing Center). For each testepert, adjacent to
the results Tables, a resultifig y) normalized power distribution map of the calcu-
lation (Fig. 1, 2, 3).

The results presented in Tab. 1 conceran3odel of a pressurized water reactor
core of capacity 900 MWe (civilian use). We performed corafiohs on a mono-
core, on the diffusion approximation, with two energy gre(@+ 1 = 2) andRT Ny
FE. The mesh is of siz€289x 289x 60), which yields more than 40M unknowns.
We setes = 107°. In order to validate our optimization choice, we ran the MSM
(with N subdomains), from 1 up to 17340 subdomains.

N |Nop (XY, 2)|Nout|Err.f]CPU
1 (1,1,1) |381/0.0| 230
17 | (17,1,1) |382/0.0| 199
289 | (17,17,1) |393/0.0{ 210
1156| (17,17, 4) |392/0.0( 252
2890((17,17,10){390|0.0| 382
4335((17,17,15)|394(0.0| 499
(

(

8670((17,17,30)|405|0.0| 660
17340(17,17,60)|450/0.1|1255

Fig. 1: Power distribution map. Table 1: Results with the MSM.
ForN <4335, the number of outer iterations does not increase namchmoreover
the accuracy is steady. FNr> 1156, theCPU time increase is probably caused by
the use of a table to store the subdomains, for which the snbuioaccess is not
optimized yet. On the other hand, the method seems robusteheur optimized
choice of the Robin parameters is validated in the diffusiase.

We consider now al3 model of a plate-fuel nuclear core, used for nuclear marine
propulsion. We performed computations on 8ig approximation, with 4 energy
groups G+1=4)andRTN FE. The mesh is of size 364364 x 100, which yields
638M unknowns. We set = 510°. We ran the ASM oiNc cores withNc subdo-
mains.
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apoLLo; BEEE Nc| Npp |Now|Err| CPU | Eff.
- lgg. T |(1, 1, 1)|649]0.0|12 274100%
B 2 [(2,1,1)[645]0.0] 6468 95%
=Eggg%%5==i 4((2, 2, 1)|644[0.0| 3783| 81%

0,

BeT OO e 8 |(2, 2, 2)[649[0.0] 2269| 67%
D EEEREnL 16((2,2,4)|649/0.0| 1045| 73%
I:IMDDBI:I 32((4, 4, 2)[654]0.4] 504 | 76%
-.g%%:!- 64 (4, 4, 4)[643]0.3] 303 | 63%
R 1248, 8, 2)[649/0.2| 123 |155%

Fig. 2: Power distribution map. Table 2:SR case.

Our DD method converges nicely to the sequential solutimTesthe error on the
eigenvalue is always smaller than 5POMoreover, the number of outer iterations
is quite steady: the optimized choice of the Robin paramdgwalidated in the
SR, case. The method scales quite well, from 67% up to 155% effigien 128
cores. To explain this last result, we suppose that the camwation traffic was low,
second that some computations were performed in the memachec

In[7, 6], we give results which show that choosing randomiRatatrices leads
to worse results: the number of outer iterations increaasterf, and the accuracy
deteriorates: in practice, it is important to optimize trebid matrices.

The last results concern @2model of the Jules Horowitz reactor cérgHR
case), dedicated to research, which is currently underticart®n. We performed
computations on th8R approximation, with 6 energy groupS ¢ 1 = 6), andRT,
FE. The mesh is of size $& 10%, which represents more than 72M unknowns. We
sete; = 51074,

Nc| Nop [Nout|Err.| CPU| Eff.

11(1,1)[639/0.0|{1487100%
2 {(2,1)|653|0.4| 777 | 96%
41(2,2)[643]0.5| 352|106%
8 ((2,4)|653|0.1| 256 | 73%
16((2, 8)|656/0.2| 97 | 96%
32|(4,8)|664|0.6| 64 | 73%
64((8,8)[653/0.9] 29 | 80%

Fig. 3: Power distribution map. Table 3: Results with the JHR case.

For this last test, the physical geometry is not Cartesigprdbably explains why
the accuracy is not as good as for the other tests. The nurhbeter iterations is
quite steady while the efficiency is excellent. In the casé oéres, the superlinear
efficiency is probably again a consequence of the amount mipatations in the
memory cache.

3 http://www.cad.cea.fr/rih/index.html
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6 Conclusions and per spectives

We presented a domain decomposition method based on tieizgdi Schwarz iter-
ative algorithm, to solve the mixed neutrd®®, equations with RTN FE. Numerical
experiments carried out with the MINOS solver show that tle¢had is robust and
efficient both sequentially and in parallel, and that ouiirojzted choice of the pa-
rameters of the Schwarz algorithm is satisfactory. Notettfmnumber of iterations
to solve our problem increases only slightly with the nuntdfesubdomains.

Let us finally mention some potential new research direstion

e The use of Ventcell interface conditions: introducing tamigal derivatives in the
Robin interface condition [12, 8].

e The use of an overlapping DD method with a coarse grid soasedone in [13].
Finally, let us mention that the MINOS solver can also solgarse and kinetic
problems [3].
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