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In an intrinsic approach to three-dimensional linearized elasticity, the unknown is the

linearized strain tensor field (or equivalently the stress tensor field by means of the con-
stitutive equation), instead of the displacement vector field in the classical approach.
We consider here the pure traction problem and the pure displacement problem and
we show that, in each case, the intrinsic approach leads to a quadratic minimization

problem constrained by Donati-like relations (the form of which depends on the type of
boundary conditions considered). Using the Babuška-Brezzi inf-sup condition, we then

show that, in each case, the minimizer of the constrained minimization problem found in
an intrinsic approach is the first argument of the saddle-point of an ad hoc Lagrangian,
so that the second argument of this saddle-point is the Lagrange multiplier associated
with the corresponding constraints. Such results have potential applications to the nu-
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merical analysis and simulation of the intrinsic approach to three-dimensional linearized
elasticity.

Keywords: Linearized elasticity; intrinsic elasticity; Babuška-Brezzi inf-sup condition;

Lagrange multipliers; constrained quadratic optimization.
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1. Introduction

All notions, notations, etc., not defined here are defined in the next section.
Classically, the displacement vector field u : Ω → R3 of the reference configura-

tion Ω of an elastic body is the unknown of choice appearing in the mathematical
models of linearized and nonlinear three-dimensional elasticity. The minimization
of the associated energy over an ad hoc function space (or the solution of the as-
sociated variational equations in the linear case), then provides a weak solution.
When the data are smooth enough and the boundary condition is of the same type
along the entire boundary of the reference configuration, the weak solution is also
a classical solution of the associated boundary value problem.

In linearized elasticity, mixed models, where both the displacement vector field
and the stress tensor field are unknowns, are also often used. One major reason is
that their finite element discretizations provide approximations of the stress tensor
field, the knowledge of which is of primary importance in computational mechanics.

Be that as it may, the displacement vector field is always the unknown, or one
of the unknowns, in the classical approach.

Yet another approach is slowly coming of age, where the strain tensor field, or
equivalently the stress tensor field by means of the constitutive equation, is the only
unknown. The idea of such an approach, which bears the name of intrinsic approach,
is not new: in nonlinear three-dimensional elasticity, it was first suggested, albeit
only briefly, by Antman 3 in 1977; a similar idea for shells goes back even earlier
to Synge & Chien 25 (see also Chien 7), who already in 1941 advocated using the
change of metric and change of curvature tensors as the primary unknowns. But it is
only recently that the mathematical analysis and numerical analysis of the intrinsic
approach to three-dimensional elasticity were undertaken, by Ciarlet & Ciarlet, Jr.
8,9, Ciarlet, Ciarlet, Jr. & Vicard 12 and Amrouche, Ciarlet, Gratie & Kesavan 2

in the linear case, and by Ciarlet & Mardare 13,14 in the nonlinear case. For elastic
shells, see Opoka & Pietraszkiewicz 23.

Let us recall some terminology: In a pure displacement problem, the unknown
displacement field u : Ω → R3 is subjected to the boundary condition of place u = 0
along the entire boundary Γ = ∂Ω (we only consider here homogeneous boundary
conditions), whereas in a pure traction problem, no boundary condition of place is
imposed on the field u.

As shown in Section 3, one intrinsic approach to the pure traction problem of
linearized elasticity takes the following form. Let

M = {µ ∈ L2
s(Ω); div µ = 0 in H−1(Ω), γµ = 0 in H−1/2(Γ)},
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where L2
s(Ω) denotes the space of all 3×3 symmetric tensor fields with components

in L2(Ω). Then one seeks a linearized strain tensor field ε = (εij) that satisfies

ε ∈ E = {e = (eij) ∈ L2
s(Ω);

∫
Ω

eijµij dx = 0 for all µ = (µij) ∈ M},

j(ε) = inf
e∈E

j(e), with j(e) =
1
2

∫
Ω

Aijk`ek`eij dx− `(e),

where (Aijk`) is the uniformly positive-definite elasticity tensor of the elastic body,
and ` is a continuous linear form over the space E that takes into account the
applied body and surface forces.

As shown in Ref. 2, the pure displacement problem of linearized elasticity is
likewise amenable to an intrinsic approach. This approach now takes the following
form: Let

M0 = {µ ∈ L2
s(Ω); div µ = 0 in H−1(Ω)}.

Then one now seeks a linearized strain tensor ε = (εij) that satisfies

ε ∈ E0 = {e = (eij) ∈ L2
s(Ω);

∫
Ω

eijµij dx = 0 for all µ = (µij) ∈ M0},

j0(ε) = inf
e∈E0

j0(e), with j0(e) =
1
2

∫
Ω

Aijk`ek`eij dx− `0(e),

where `0 is a continuous linear form over the space E0 that takes into account the
applied body forces.

Each one of the above problems thus provides an example of a quadratic mini-
mization problem (“quadratic” because the functional to be minimized is quadratic),
subjected to linear constraints (in the sense of optimization theory), which take the
form

∫
Ω

eijµij dx = 0 for all µ = (µij) in an ad hoc subspace of the space L2
s(Ω).

Note that an important feature of an intrinsic approach is the following: since the
unknown stresses σij inside the elastic body are given by means of the constitutive
equation

σij = Aijk`εk`, 1 ≤ i, j ≤ 3,

each one of the above minimization problems provides a direct way of computing
the stresses.

The objective of this paper consists in identifying the Lagrange multiplier λ

(again in the sense of optimization theory) that is in each case associated with
the minimizer ε of the associated constrained minization problem. To this end, an
essential usage is made of the Babuška-Brezzi inf-sup condition, so named after
Babuška 4 and Brezzi 5, which allows to identify (ε,λ) as the saddle-point of an ad
hoc Lagrangian (these results are reviewed in Section 2).

As indicated in Section 7, such results have potential applications for the nu-
merical analysis and simulation of the intrinsic approach.

The results of this paper were announced in Ref. 11.
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2. Notations and Preliminaries

Throughout this article, Latin indices vary in the set {1, 2, 3}, save when they are
used for indexing sequences, and the summation convention with respect to repeated
indices is systematically used in conjunction with this rule.

All the vector spaces, matrices, etc., considered in this article are real. Let V

denote a normed vector space with norm ‖·‖V . Given a closed subspace Z of V , the
equivalence class of v ∈ V in the quotient space V̇:= V/Z is denoted v̇ and its norm
is defined by ‖v̇‖V̇ := infz∈Z ‖v + z‖V . The notation V ∗ designates the dual space
of V and V ∗〈·, ·〉V denotes the duality bracket between V ∗ and V .

Let U and V denote two vector spaces and let A : U → V be a linear operator.
Then KerA ⊂ U and Im A ⊂ V respectively designate the kernel and the image of
A.

Let Ω be an open subset of R3 and let x = (xi) designate a generic point in Ω.
Partial derivative operators of the first, second, and third order are then denoted
∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj , and ∂ijk := ∂3/∂xi∂xj∂xk. The same symbols also
designate partial derivatives in the sense of distributions.

Spaces of functions, vector fields in R3, and 3×3 matrix fields, defined over Ω are
respectively denoted by italic capitals, boldface Roman capitals, and special Roman
capitals. The space of all symmetric matrices of order 3 is denoted S3. The subscript
s appended to a special Roman capital denotes a space of symmetric matrix fields.

Notations such as Cm(Ω), m ≥ 0, and C∞(Ω) denote the usual spaces of con-
tinuously differentiable functions. The notation D(Ω) denotes the space of func-
tions that are infinitely differentiable in Ω and have compact supports in Ω. The
notation D′(Ω) denotes the space of distributions defined over Ω. The notations
Hm(Ω), m ∈ Z, with H0(Ω) = L2(Ω), and Hm

0 (Ω), m ≥ 1, designate the usual
Sobolev spaces.

Combining the above rules, we shall thus encounter spaces such as
D′(Ω), D′(Ω), D′(Ω), L2

s(Ω), H1
0,s(Ω), etc.

The notation (v)i designates the i-th component of a vector v ∈ R3 and the
notation v = (vi) means that vi = (v)i. The notation (A)ij designates the element
at the i-th row and j-th column of a square matrix A of order three and the notation
A = (aij) means that aij = (A)ij . The inner-product and vector product of a ∈ R3

and b ∈ R3 are denoted a · b and a ∧ b. The notation s : t := sijtij designates the
matrix inner-product of two matrices s := (sij) and t := (tij) of order three.

The divergence operator div : D′(Ω) → D′(Ω) is defined by

div v := ∂ivi for any v = (vi) ∈ D′(Ω).

The matrix gradient operator ∇ : D′(Ω) → D′(Ω) is defined by

(∇v)ij := ∂jvi for any v = (vi) ∈ D′(Ω).

For any vector field v = (vi) ∈ D′(Ω), the associated linearized strain tensor is
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the symmetric matrix field ∇sv ∈ D′s(Ω) defined by

∇sv :=
1
2
(∇vT + ∇v),

or equivalently, by

(∇sv)ij =
1
2
(∂ivj + ∂jvi).

When Ω is connected, the kernel of the operator ∇s has the well-known char-
acterization (see, e.g., Theorem 6.3-4 in Ref. 8), viz.,

Ker∇s = {v ∈ D′(Ω); ∇sv = 0 in D′(Ω)} = {v = a + b ∧ idΩ; a ∈ R3, b ∈ R3},

where idΩ denotes the identity mapping of the set Ω.
The vector divergence operator div : D′(Ω) → D′(Ω) is defined by

(div µ)i := ∂jµij for any µ = (µij) ∈ D′(Ω).

The matrix Laplacian ∆ : D′(Ω) → D′(Ω) is defined by

(∆e)ij := ∆eij for any e = (eij) ∈ D′(Ω).

Finally, a domain in R3 is a bounded, connected, open subset of R3 whose
boundary is Lipschitz-continuous, the set Ω being locally on a single side of its
boundary (see, e.g., Nečas 20).

To conclude these preliminaries, we state the well-known Babuška-Brezzi inf-sup
theorem, so named after Babuška 4 and Brezzi 5 (a proof is also found in Brezzi &
Fortin 6). Together with two corollaries (Theorems 2.2 and 2.3) this fundamental
result will pervade the rest of this article. For convenience, we state these results in
a form and with notations that are directly adapted to our purposes. The inequality
involving the constant β constitutes the Babuška-Brezzi inf-sup condition.

Theorem 2.1. Let V and M be two Hilbert spaces, let ` : V → R be a continuous
linear form, and let a(·, ·) : V × V → R and b : V × M → R be two continuous
bilinear forms with the following properties: There exist constants α > 0 and β > 0
such that

a(e, e) ≥ α ‖e‖2
V for all e ∈ E := {e ∈ V; b(e,µ) = 0 for all µ ∈ M},

inf{
µ∈M
µ 6=0

sup{
e∈V
e6=0

|b(e,µ)|
‖e‖V ‖µ‖M

≥ β.

Then the variational problem: Find (ε,λ) ∈ V×M such that

a(ε, e) + b(e,λ) = `(e) for all e ∈ V,

b(ε,µ) = 0 for all µ ∈ M,

has one and only one solution.
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Under a mild additional assumption on the bilinear form a(·, ·), Theorem 2.1
provides a way to solve a specific class of constrained quadratic minimization prob-
lems, precisely of the form considered here (for a proof, see Brezzi & Fortin 6 or
Girault & Raviart 18).

Theorem 2.2. Let the assumptions be as in Theorem 2.1, and assume in addition
that the bilinear form a(·, ·) is symmetric, i.e., a(ε, e) = a(e, ε) for all ε, e ∈ V.

Then (ε,λ) ∈ V×M is the unique solution to the variational problem of Theo-
rem 2.1 if and only if ε ∈ E and ε is the unique solution to the constrained quadratic
minimization problem

j(ε) = inf
e∈E

J(e), where j(e) :=
1
2
a(e, e)− `(e) for all e ∈ V.

Under a slightly stronger assumption on the bilinear form a(·, ·), the solution
(ε,λ) ∈ V×M to the variational problem of Theorem 2.1 can be also characterized
as the saddle-point of an appropriate Lagrangian L (for a proof, see again Brezzi
& Fortin 6 or Girault & Raviart 18).

Theorem 2.3. Let the assumptions be as in Theorem 2.1, and assume in addition
that the bilinear form a(·, ·) is symmetric and nonnegative-definite on V, i.e.,

a(ε, e) = a(e, ε) and a(e, e) ≥ 0 for all ε, e ∈ V.

Then the unique solution (ε,λ) ∈ V×M to the variational problem of Theorem
2.1 is the unique saddle-point of the Lagrangian L : V×M → R defined by

L (e,µ) :=
1
2
a(e, e)− `(e) + b(e,µ) for all (e,µ) ∈ V×M,

i.e.,

inf
e∈V

sup
µ∈M

L (e,µ) = sup
µ∈M

L (ε,µ) = L (ε,λ) = inf
e∈V

L (e,λ) = sup
µ∈M

inf
e∈V

L (e,µ).

In the language of optimization theory, λ ∈ M is the Lagrange multiplier asso-
ciated with the constrained quadratic minimization problem of Theorem 2.2. The
object of this paper is to identify such Lagrange multipliers, associated with con-
strained quadratic minimization problems that arise in intrinsic three-dimensional
linearized elasticity.

3. An Intrinsic Approach to the Pure Traction Problem

Let a domain Ω in R3, with boundary Γ, be the reference configuration of a linearly
elastic body, characterized by its elasticity tensor field A = (Aijk`) with components
Aijk` ∈ L∞(Ω). It is assumed as usual that these components satisfy the symmetry
relations Aijk` = Ajik` = Ak`ij , and that there exists a constant α > 0 such that

A(x)t : t ≥ αt : t for almost all x ∈ Ω and all matrices t = (tij) ∈ S3,
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where (A(x)t)ij := Aijk`(x)tk`. The body is subjected to applied body forces
with density f ∈ L6/5(Ω) in its interior and to applied surface forces of den-
sity g ∈ L4/3(Γ) on its boundary. Finally, it is assumed that the linear form
L ∈ L (H1(Ω); R) defined by

L(v) :=
∫

Ω

f · vdx +
∫

Γ

g · vdΓ for all v ∈ H1(Ω)

vanishes for all v ∈ Ker∇s, where

Ker∇s := {v ∈ H1(Ω); ∇sv = 0 in L2
s(Ω)}.

Then the corresponding pure traction problem of three-dimensional linearized
elasticity classically consists in finding u̇ ∈ Ḣ1(Ω) := H1(Ω)/Ker∇s such that

J(u̇) = inf
v̇∈Ḣ

1
(Ω)

J(v̇), where J(v̇) :=
1
2

∫
Ω

A∇sv̇ : ∇sv̇dx− L(v̇).

As is well known (see, e.g., Theorem 3.4 in Duvaut & Lions 15), this minimization
problem has one and only one solution.

An intrinsic approach to the above pure traction problem consists in considering
the linearized strain tensor field ε := ∇su̇ : Ω → S3 as the primary unknown,
instead of the displacement field u : Ω → R3 itself (u̇ ∈ Ḣ1(Ω) is unique; hence
u ∈ H1(Ω) is unique up to the addition of any vector field in Ker∇s) in the
“classical” approach.

Accordingly, one first needs to characterize those 3× 3 matrix fields e ∈ L2
s(Ω)

that can be written as e = ∇sv for some vector fields v ∈ H1(Ω). The character-
ization given in the next theorem is not the only possible one; others, which are
briefly reviewed in Section 7, are equally possible, but, as explained in ibid., they
do not seem to be suitable for our purposes.

To begin with, we recall some functional analytic preliminaries due to Geymonat
& Krasucki 16,17, which are the “matrix analogs” of results of Girault & Raviart 18

for spaces of vector fields (see Section 2.2 in Chapter 1 in ibid.). Given a domain Ω
in R3, define the space

H(div; Ω) := {µ ∈ L2
s(Ω); div µ ∈ L2(Ω)},

which is thus the matrix analog of the familiar space H(div; Ω) := {v ∈
L2(Ω);div v ∈ L2(Ω)} (in this definition div µ is of course to be understood in
the sense of distributions). Equipped with the norm defined by

‖µ‖H(div;Ω) :=
(
‖µ‖2

L2
s(Ω) + ‖div µ‖2

L2(Ω)

)1/2

for all µ ∈ H(div; Ω),

the space H(div; Ω) is a Hilbert space. Let ν : Γ → R3 denote the unit outer normal
vector field along the boundary of Ω (such a field is thus defined dΓ-everywhere).
The set Ω being a domain, the density of the space C∞s (Ω) in the space H(div; Ω)



September 21, 2010 WSPC/INSTRUCTION FILE CCISZ10

8 Philippe G. Ciarlet, Patrick Ciarlet, Oana Iosifescu, Stefan Sauter

then implies that the mapping µ ∈ C∞s (Ω) → µν|Γ can be extended to a continuous
linear mapping

γ : H(div; Ω) → H−1/2(Γ).

Note that the notations M and E used below are the same as those used in
Theorem 2.1, but they now designate specific function spaces. Note also that the
next result was already alluded to in Ref. 10.

Theorem 3.1. Let Ω be a domain in R3 and let there be given a matrix field
e ∈ L2

s(Ω). Then there exists a vector field v ∈ H1(Ω) such that e = ∇sv if and
only if ∫

Ω

e : µdx = 0 for all µ ∈ M,

where the space M is defined as

M := {µ ∈ L2
s(Ω);div µ = 0 in H−1(Ω), γµ = 0 in H−1/2(Γ)}.

All other vector fields ṽ ∈ H1(Ω) that satisfy e = ∇sṽ are of the form ṽ =
v + a + b ∧ idΩ for some vectors a ∈ R3 and b ∈ R3.

Proof. Geymonat & Krasucki 16 have shown that the space

V := {µ ∈ Ds(Ω);div µ = 0 in Ω}

is dense in the space M with respect to the norm of the space L2
s(Ω) (this result is

the matrix analog of Theorem 2.8, Chapter 1, of Ref. 18). Hence the space

W := {µ ∈ H1
0,s(Ω);div µ = 0 in L2(Ω)}

is likewise dense in the space M with respect to the norm of the space L2
s(Ω), since

V ⊂ W ⊂ M.
If a tensor field e ∈ L2

s(Ω) satisfies
∫
Ω

e : µ dx = 0 for all µ ∈ M, it thus
a fortiori satisfies

∫
Ω

e : µ dx = 0 for all µ ∈ W . The existence of v ∈ H1(Ω)
such that e = ∇sv then follows from Theorem 4.3 of Amrouche, Ciarlet, Gratie &
Kesavan 2.

If conversely, a tensor field e ∈ L2
s(Ω) is of the form e = ∇sv for some v ∈

H1(Ω), then the Green’s formula (see Ref. 16)∫
Ω

µ : ∇svdx +
∫

Ω

(div µ) · vdx =H−1/2(Γ) 〈γµ,v〉H1/2(Γ),

which holds for all µ ∈ H(div; Ω) and all v ∈ H1(Ω), shows that∫
Ω

e : µdx =
∫

Ω

∇sv : µdx = 0 for all µ ∈ M.

The characterization of Ker∇s (Section 2) shows that all the other solutions
ṽ ∈ H1(Ω) to the equation e = ∇sṽ are indeed of the announced form.
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Thanks to Theorem 3.1, the pure traction problem of three-dimensional elasticity
can be recast as a constrained quadratic minimization problem, with ε := ∇su̇ ∈
L2

s(Ω) as the primary unknown. Note that this minimization problem could be in
turn immediately recast as yet another one, this time with the linearized stress
tensor Aε as the primary unknown, since the elasticity tensor field A is invertible
almost everywhere in Ω.

Theorem 3.2. Let Ω be a domain in R3, and let the space M be defined as in
Theorem 3.1. Define the Hilbert space

E := {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈ M},

and, for each e ∈ E, let F(e) denote the unique element in the quotient space Ḣ1(Ω)
that satisfies ∇sF(e) = e (Theorem 3.1). Then the mapping F : E → Ḣ1(Ω)
defined in this fashion is an isomorphism between the Hilbert spaces E and Ḣ1(Ω).

The minimization problem: Find ε ∈ E such that

j(ε) = inf
e∈E

j(e), where j(e) :=
1
2

∫
Ω

Ae : edx− L ◦F(e),

has one and only one solution ε, and this solution satisfies ε = ∇su̇, where u̇ is
the unique minimizer of the functional J in the space Ḣ1(Ω).

Proof. By Theorem 3.1, the mapping F is a bijection between the Hilbert spaces
E and Ḣ1(Ω). Furthermore, its inverse is continuous since there evidently exists a
constant c such that

‖∇s(v + r)‖L2
s(Ω) ≤ c ‖v + r‖H1(Ω)

for any v ∈ H1(Ω) and any r ∈ Ker∇s, so that

‖∇s(v̇)‖L2
s(Ω) ≤ c inf

r∈Ker ∇s

‖v + r‖H1(Ω) = c ‖v̇‖
Ḣ1(Ω)

for all v̇ ∈ Ḣ1(Ω).
Hence F : E → H1(Ω) is an isomorphism by the Banach open mapping theorem.
The bilinear form (e, ẽ) ∈ E × E →

∫
Ω

Ae : ẽ dx ∈ R and the linear form
Λ := L ◦F : E → R thus satisfy all the assumptions of the Lax-Milgram lemma (Λ
is continuous since F is an isomorphism). Consequently, there exists one, and only
one, minimizer ε of the functional j over E(Ω). That u̇ minimizes the functional J

over Ḣ1(Ω) implies that ∇su̇ minimizes the functional j over E. Hence ε = e(u̇)
since the minimizer is unique.

Remark 3.1. A proof similar to that of the corollary to Theorem 4.1 in Ref. 8
shows that the Korn inequality in the space H1(Ω) can then be recovered as a
simple corollary to Theorem 3.2, which thus provides an entirely new proof of this
classical inequality.
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4. A Lagrangian Approach to the Pure Traction Problem

We now identify the Lagrangian, and consequently the Lagrange multiplier (as the
second argument of the saddle-point of the Lagrangian), associated with the con-
strained quadratic minimization problem of Theorem 3.2. The spaces M and E
defined in the next theorem are those defined in Theorems 3.1 and 3.2.

Theorem 4.1. Define the spaces

V := L2
s(Ω) and M := {µ ∈ L2

s(Ω);div µ = 0 in H−1(Ω), γµ = 0 in H−1/2(Γ)},

and the Lagrangian

L(e,µ) :=
1
2

∫
Ω

Ae : edx− `(e) +
∫

Ω

e : µdx for all (e,µ) ∈ V×M,

where ` : L2
s(Ω) → R is any continuous linear extension of the continuous linear

form L ◦ F : E → R, where

E := {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈ M}.

Then the Lagrangian L has a unique saddle-point (ε,λ) ∈ V×M over the space
V × M. Besides, the first argument ε of the saddle-point is the unique solution of
the minimization problem of Theorem 3.2, i.e.,

ε ∈ E(Ω) and j(ε) = inf
e∈E

j(e),

and the second argument λ ∈ M of the saddle-point is a Lagrange multiplier asso-
ciated with this minimization problem.

Proof. To start with, it is clear that both V and M are Hilbert spaces.
Define two bilinear forms a : V× V → R and b : V×M → R by

a(ε, e) :=
∫

Ω

Aε : edx for all (ε, e) ∈ V× V,

b(e,µ) :=
∫

Ω

e : µdx for all (e,µ) ∈ V×M.

Clearly, both bilinear forms are continuous. Besides, the bilinear form a(·, ·) is sym-
metric on V, and V-coercive since

a(e, e) =
∫

Ω

Ae : edx ≥ α ‖e‖2
V for all e ∈ V

(the constant α > 0 is that appearing in the uniform positive-definiteness of the
elasticity tensor field A).

Finally, the Babuška-Brezzi inf-sup condition follows from the inclusion M ⊂ V,
which implies that, for each µ ∈ M,

sup{
e∈V
e6=0

∫
Ω

e : µdx

‖e‖L2(Ω) ‖µ‖L2(Ω)

≥
∫
Ω

µ : µdx

‖µ‖2
L2(Ω)

= 1.

Hence all the announced assertions follows from Theorems 2.1 to 2.3.
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5. An Intrinsic Approach to the Pure Displacement Problem

Consider now the pure displacement problem of three-dimensional linearized elas-
ticity, which classically consists in finding u ∈ H1

0(Ω) such that

J(u) = inf
v∈H1

0(Ω)
J(v), where J(v) :=

1
2

∫
Ω

A∇sv : ∇svdx− L(v),

where

L(v) :=
∫

Ω

f · vdx for all v ∈ H1
0(Ω)

for some given body force density f ∈ L6/5(Ω) (no extra condition needs to be
imposed on the linear form L in this case, since Ker∇s = {0} in H1

0(Ω)).
An intrinsic approach to the above pure displacement problem consists again

in considering the linearized strain tensor ε := ∇su : Ω → S3 as the primary
unknown, instead of the displacement vector field u : Ω → R3. Accordingly, we
need to characterize those 3 × 3 matrix fields e ∈ L2

s(Ω) that can be written as
e = ∇sv for some vector field v ∈ H1

0(Ω). The following result, established in
Theorem 4.2 of Ref. 2, constitutes such a characterization.

Theorem 5.1. Let Ω be a domain in R3 and let there be given a matrix field
e ∈ L2

s(Ω). Then there exists a vector field v ∈ H1
0(Ω) such that e = ∇sv if and

only if ∫
Ω

e : µdx = 0 for all µ ∈ M0,

where the space M0 is defined as

M0 := {µ ∈ L2
s(Ω);div µ = 0 in H−1(Ω)}.

If this is the case, the vector field v is unique.

Thanks to Theorem 5.1, this problem can be again recast as a constrained
quadratic minimization problem with ε := ∇su ∈ L2

s(Ω) as the primary unknown:

Theorem 5.2. Let Ω be a domain in R3, and let the space M0 be defined as in
Theorem 5.1. Define the Hilbert space

E0 := {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈ M0},

and, for each e ∈ E0, let F0(e) denote the unique element in the space H1
0(Ω) that

satisfies ∇sF0(e) = e (Theorem 5.1). Then the mapping F0 : E0 → H1
0(Ω) defined

in this fashion is an isomorphism between the Hilbert spaces E0 and H1
0(Ω).

The minimization problem: Find ε ∈ E0 such that

j0(ε) = inf
e∈E0

j0(e), where j0(e) :=
1
2

∫
Ω

Ae : edx− L ◦F0(e),
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has one and only one solution ε, and this solution satisfies ε = ∇su, where u is
the unique minimizer of the functional J in the space H1

0(Ω).

Proof. The proof is similar to that of Theorem 3.2 and, for this reason, omitted.

6. A Lagrangian Approach to the Pure Displacement Problem

We now identify the Lagrangian and Lagrange multiplier associated with the con-
strained quadratic minimization problem of Theorem 5.2. The spaces M0 and E0

defined in the next theorem are those defined in Theorems 5.1 and 5.2.

Theorem 6.1. Define the spaces

V := L2
s(Ω) and M0 := {µ ∈ L2

s(Ω);div µ = 0 in H−1(Ω)},

and the Lagrangian

L0(e,µ) :=
1
2

∫
Ω

Ae : edx− `0(e) +
∫

Ω

e : µdx for all (e,µ) ∈ V×M0,

where `0 : L2
s(Ω) → R is any continuous linear extension of the continuous linear

form L ◦ F0 : E0 → R, where

E0 := {e ∈ L2
s(Ω);

∫
Ω

e : µdx = 0 for all µ ∈ M0}.

Then the Lagrangian L0 has a unique saddle-point (ε,λ) ∈ V×M0 over the space
V × M0. Besides, the first argument ε of the saddle-point is the unique solution of
the minimization problem of Theorem 5.2, i.e.,

ε ∈ E0(Ω) and j0(ε) = inf
e∈E0

j0(e),

and the second argument λ ∈ M0 of the saddle-point is a Lagrange multiplier asso-
ciated with this minimization problem.

Proof. The proof is similar to that of Theorem 4.1 and for this reason, only
sketched. Let again the spaces V and M0 be both equipped with the norm of the
space L2

s(Ω). Hence both V and M0 are Hilbert spaces (it is clear that M0 is closed
in V).

Define two bilinear forms a : V× V → R and b : V×M0 → R by

a(ε, e) :=
∫

Ω

Aε : edx for all (ε, e) ∈ V× V,

b(e,µ) :=
∫

Ω

e : µdx for all (e,µ) ∈ V×M0.

Then both bilinear forms are continuous. Besides, the bilinear form a(·, ·) is symmet-
ric on V, and V-coercive. Finally, the Babuška-Brezzi condition holds since M0 ⊂ V.
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7. Miscellaneous Remarks

(a) Let Ω be an open subset of R3. The question of characterizing those sym-
metric matrix fields e = (eij) that can be written over Ω as e = ∇sv for some
vector field v, has been arousing considerable interest for quite a long time. Indeed
A.J.C.B. de Saint Venant announced as early as 1864 what is since then known as
Saint Venant’s theorem (in fact, it was not until 1886 that E. Beltrami provided a
rigorous proof of this result): Assume that the open set Ω is simply-connected. Then
there exists a vector field v ∈ C3(Ω) such that e = ∇sv in Ω if (and clearly only
if, even if Ω is not simply-connected) the functions eij are in the space C2(Ω) and
they satisfy

Rijk`(e) := ∂`jeik + ∂kiej` − ∂`iejk − ∂kjei` = 0 in Ω for all i, j, k, ` ∈ {1, 2, 3}.

For any matrix field e = (eij) ∈ D′(Ω), the matrix field CURLCURL e ∈ D′(Ω)
is defined by

(CURLCURL e)ij := εik`εjmn∂`nekm,

where (εijk) denotes the orientation tensor.
It is then easily seen that the Saint Venant compatibility conditions Rijk`(e) = 0

in Ω are equivalent to the relations

CURLCURL e = 0 in Ω;

besides the matrix field CURLCURL e is always symmetric. Hence the eighty-one
relations Rijk`(e) = 0 reduce in effect to six relations only.

The Saint Venant compatibility conditions have been recently shown to remain
sufficient under substantially weaker regularity assumptions. More specifically, Cia-
rlet & Ciarlet, Jr. 8 have established the following Saint Venant theorem in L2

s(Ω):
Let Ω be a simply-connected domain in R3 and let e ∈ L2

s(Ω) be a matrix field that
satisfies the Saint Venant compatibility conditions CURLCURL e = 0 in H−2

s (Ω).
Then there exists a vector field v ∈ H1(Ω) such that e = ∇sv in L2

s(Ω). Further
extensions, to Sobolev spaces of weaker regularity, have since then been given, in
Refs. 1 and 2.

A natural question arises as to whether a Lagrange multiplier can be associated
with the constraint CURLCURL e = 0 in H−2

s (Ω). In this direction, one can prove
(cf. Theorem 2.3 in Ref. 10), that given µ ∈ M, there exists a symmetric tensor
potential w ∈ H2

0,s(Ω), such that µ = CURLCURLw in Ω. Therefore, in the
case of the pure traction problem, a Lagrange multiplier can be associated with the
constraint CURLCURL e = 0 in H−2

s (Ω). Let us denote by K the kernel of the
operator CURLCURL : H2

0,s(Ω) → L2
s(Ω).

With the same space V = L2
s(Ω) and bilinear form a : V × V → R as in

Theorem 4.1, natural candidates for the Lagrange multiplier space M̃ and bilinear
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form b : V× M̃ → R are then:

M̃ = H2
0,s(Ω)/K and b(e,µ) =

∫
Ω

e : CURLCURLµdx for all (e,µ) ∈ L2
s(Ω)×M̃.

Let K0 denote the kernel of the operator CURLCURL : L2
s(Ω) → H−2(Ω)

and let K⊥
0 denote its orthogonal complement in L2

s(Ω). Then we can define the
operators B∗ := CURLCURL : M̃ → Im B∗ ⊂ L2

s(Ω), and B := CURLCURL :
K⊥

0 → M̃′. Thanks to the Saint Venant theorem in L2
s(Ω) and to the existence of

potentials, we obtain K0 = Im B∗. Hence the Babuška-Brezzi inf-sup condition is
equivalent to the condition that B∗ is an isomorphism between M and K⊥

0 . But,
according to the above, B∗ is clearly a linear, one-to-one and surjective operator
(by construction), which is continuous, so we conclude that B∗ is an isomorphism.

(b) In 1890, L. Donati proved that, if Ω is an open subset of R3 and the com-
ponents eij of a symmetric matrix field e = (eij) are in the space C2(Ω) and they
satisfy:∫

Ω

eijµij dx = 0 for all µ = (µij) ∈ Ds(Ω) such that div µ = 0 in Ω,

then CURLCURL e = 0 in Ω. This result, known as Donati’s theorem, thus
provides, once combined with Saint Venant’s theorem, another characterization of
symmetric matrix fields as linearized strain tensor fields for simply-connected open
subsets Ω of R3.

A first extension of Donati’s theorem was given in 1974 by Ting 26: Let Ω be a
domain in R3. If a tensor field e ∈ L2

s(Ω) satisfies∫
Ω

e : µdx = 0 for all µ ∈ Ds(Ω) such that div µ = 0 in Ω,

then there exists v ∈ H1(Ω) such that e = ∇sv in L2
s(Ω).

Then Moreau 19 showed in 1979 that Donati’s theorem holds even in the sense
of distributions, according to the following theorem, where Ω is now an arbitrary
open subset of R3: If the components eij of a tensor field e ∈ D′s(Ω) satisfy

D′(Ω)〈eij , sij〉D(Ω) = 0 for all s = (sij) ∈ Ds(Ω) such that div s = 0 in Ω,

then there exists a vector field v ∈ D′(Ω) such that e = ∇sv in the sense of
distributions. Note that Ting’s and Moreau’s extensions, or more generally, the
other extensions of Donati’s theorem considered here, do not require that Ω be
simply-connected.

A further extension of Donati’s theorem was given in Theorem 4.3 in Ref. 2,
where it was shown that, given e ∈ L2

s(Ω), there exists v ∈ H1(Ω) such that
e = ∇sv in L2

s(Ω) if and only if∫
Ω

e : µdx = 0 for all µ ∈ H1
0,s(Ω) such that div µ = 0 in L2(Ω).

By contrast with that of Theorem 6.1, this extension does not seem to be amenable
to a Lagrangian approach, however.
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Note that Theorems 3.1 and 5.1 likewise constitute yet other extensions of Do-
nati’s theorem, the latter producing a vector field v in the space H1

0(Ω).

(c) Regarding the mechanical interpretation of the Lagrange multipliers, we
refer to Podio-Guidugli24, where it is shown that they are in effect “reactive stress”
fields. This means that the various types of constraints that have been imposed
there on the tensor fields e ∈ L2

s(Ω) can be regarded as “internal constraints” on
the admissible strains, and that these constraints are precisely maintained by such
reactive stress fields.

(d) A key issue consists in devising efficient numerical approximation to intrinsic
elasticity problems. One approach, which was first analyzed in Ref. 9 and then
successfully implemented in Ref. 12 for problems of planar elasticity, consists in
constructing “edge” finite elements (in the sense of Nédélec 21,22), in such a way
that the Saint-Venant compatibility conditions are exactly satisfied in the resulting
finite element space.

The present paper should thus pave the way for a different class of approaches,
where the unknown to be approximated is the saddle-point found in either Theorem
4.1 or Theorem 6.1.
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20. J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, 1967.
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