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Abstract A few years ago, Costabel and Dauge proposed a variational setting, which

allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral

geometries, with the help of a continuous approximation of the electromagnetic field.

In order to remove spurious eigenmodes, their method required a parameterization of

the variational formulation. In order to avoid this difficulty, we use a mixed variational

setting instead of the parameterization, which allows us to handle the divergence-free

constraint on the field in a straightforward manner. The numerical analysis of the

method is carried out, and numerical examples are provided to show the efficiency of

our approach.

Introduction

In a landmark paper [19], Costabel and Dauge proposed a method, which allowed one

to discretize the electromagnetic field with a continuous approximation, in 3D, convex

or non-convex, polyhedra. In this way, they provided a generalization of the method

earlier developed by Heintzé et al [26,6], which relied also on a continuous approxima-

tion of the field, but worked only in 3D, convex polyhedra.

As a matter of fact, in order to be able to solve Maxwell’s equations in a non-convex

polyhedron with a continuous and conforming discretization, one has to overcome a
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École Nationale Supérieure de Techniques Avancées,
32, boulevard Victor, 75739 Paris Cedex 15, France
E-mail: erell.jamelot@ensta.org



2 A. Buffa, P. Ciarlet, Jr., E. Jamelot

very difficult mathematical problem. It turns out that the discretized spaces are always

included in a closed, strict subspace – sometimes called the subspace of regular fields –

of the space of all possible fields. In other words, one cannot hope to approximate the

part of the field, if it exists, which belongs to the orthogonal of the subspace of regular

fields.

Over the past decade, several methods have been devised to address this problem.

Apart from the method considered by Costabel and Dauge [19,20], at least two other

remedies can be used. First, the singular complement method, in which one approxi-

mates explicitly the remaining part of the field. It works well in 2D geometries (see [5,

4,25,23,27]), and 21
2D geometries (see [14,29,3]). Second, one can relax the boundary

condition, and compute the field in a larger space: this allows one to recover the desired

density property, since the sum of all discretized spaces is again dense in the space of

possible fields. This approach has been studied recently [13,28]. Then, one can use

a weaker norm to measure the divergence of the field: one replaces the L2-norm by a

weighted L2-norm. This weighted approach, introduced by Costabel and Dauge [19,20],

leads again to a larger space for the fields, where once again the density property is

recovered. We focus hereafter on the weighted approach. Note however that all results

remain valid, should one prefer to use the singular complement method in 2D and 21
2D

geometries (see the concluding remarks).

In order to solve the time-harmonic Maxwell equations, Costabel and Dauge then

proceeded by adding a regularization term, with a parameter s: this resulted in the

weighted regularization method, refered too as WRM later on. The drawback of this

technique is that the regularized operator has two sequences of eigenvalues: one is cor-

rect and the other is spurious. This is a feature of the problem reformulation and has

nothing to do with pollution of numerical schemes. The spurious eigenvalues vary with

the parameter s and can be recognized performing the eigenvalue computation with

several values of the parameter. The difficulty is that one has to deal with a 3D cloud

of points, i. e. eigenvalues sorted by increasing magnitude, for given values of s and a

given meshsize. Then, one has to keep all the right modes and, correlatively, reject all

the spurious ones.

To get around this difficulty, we propose to use a constrained formulation, namely we

add a constraint on the divergence of the field. This approach has been presented for

the continuous problem in the Annex of [13]. Our aim here is to carry out the numer-

ical analysis of the constrained formulation. For that, we rely mainly on the general

approximation theory for this kind of problem, which can be found in [10].

The outline of the paper is as follows. In the next Section, we recall the time-

harmonic Maxwell equations, which we express as a set of second-order PDEs. In

Section 2, we introduce the functional framework. Then, we build the continuous vari-

ational formulations to be solved in Section 3. In Section 4, we prove the convergence

of the discretized eigenmodes towards the exact eigenmodes. And, in Section 5, we pro-

pose some numerical examples to illustrate the behavior of our method. Concluding

remarks follow.
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1 Setting of the problem

Hereafter, we consider the case of a resonator cavity Ω, bounded by a perfect con-

ductor. The domain Ω ⊂ R
3 is a bounded, simply connected, open polyhedron with

a Lipschitz, connected, boundary ∂Ω. Let n be the unit outward normal to ∂Ω. The

goal is to find eigenmodes of electromagnetic oscillations. Let c be the light velocity.

The electromagnetic eigenmodes are non-zero solutions to the time-harmonic Maxwell

equations

ıωE − c2curlB = 0 in Ω, (1)

ıωB + curl E = 0 in Ω, (2)

div E = 0 in Ω, (3)

divB = 0 in Ω, (4)

E × n = 0 on ∂Ω, (5)

B · n = 0 on ∂Ω. (6)

Above, E and B are respectively the electric field and magnetic induction, and ω is the

time-frequency. When ω 6= 0, equations (3)-(4) are clearly redundant, being straightfor-

ward consequences of equations (1)-(2). However, since we want to investigate methods

which include explicitly (3)-(4) as constraints, we have to mention them.

It is well known that one of the fields can be eliminated. Multiplying (1) by ıω

and adding curl of (2) we get a vector wavelike equation for E , which reads −ω2E +

c2curl curl E = 0 in Ω. Similarly, there holds −ω2B + c2curl curlB = 0 in Ω. Then,

each system of equations below is equivalent to (1)-(6).

The electric eigenvalue problem (PE):

Find E and ω such that

c2curl curl E = ω2E in Ω, (7)

div E = 0 in Ω, (8)

E × n = 0 on ∂Ω. (9)

The magnetic eigenvalue problem (PB):

Find B and ω such that

c2curl curlB = ω2B in Ω, (10)

divB = 0 in Ω, (11)

B · n = 0 and curlB × n = 0 on ∂Ω. (12)

From now on, we consider the eigenvalue problem in E (PE).

2 Functional spaces

Recall that our aim is to discretize the field with a continuous, conforming approxima-

tion. As we mentioned already, the correct functional spaces will be different, depending

on the convexity of the domain [19,20].
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Let us begin with Lebesgue and Sobolev spaces, which are needed both in the convex

and in the non-convex cases. Let L2(Ω) be the usual Lebesgue space of measurable

and square integrable functions over Ω. Its canonical norm and scalar product are

respectively denoted by ‖ · ‖0 and (·, ·)0. Then, H1(Ω) will denote the space of L2(Ω)

functions with gradients in L2(Ω)3. We then introduce

H(curl , Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3} ,

H0(curl , Ω) := {F ∈ H(curl , Ω) | F × n|∂Ω = 0} .

When Ω is convex, we introduce also

X := {F ∈ H0(curl , Ω) |divF ∈ L2(Ω)}.

According to the set of equations governing the behavior of E , there holds E ∈ X .

According to Costabel [18], the graph norm and the semi-norm: ||F||2X := ||curlF||20 +

||divF||20 are equivalent norms on X . Also (see [1]), X is a subset of H1(Ω)3: X ∩

H1(Ω)3 and X coincide.

On the other hand, when Ω is non-convex, X ∩H1(Ω)3 is a strict, closed subspace

[1] of X : X ∩H1(Ω)3 is not dense in X anymore. Therefore the need of another choice

of functional space.

Stating that the domain Ω is non-convex amounts to considering that ∂Ω includes

a set of reentrant edges E, with dihedral angles (π/αe)e∈E such that 1/2 < αe < 1.

Let d denote the distance to the set of reentrant edges E: d(x) = dist(x,∪e∈E ē). We

define the notation dO := inf{d(x), x ∈ O}, for any subset O of Ω.

Introduce the weight wγ , a smooth non-negative function of x. It behaves locally as

dγ in the neighborhood of reentrant edges and corners (we shall write wγ ' dγ), and

is bounded above and below by a strictly positive constant outside a neighborhood of

E (this corresponds to the simplified weights of [19], Subsection 4.5).

Let L2
γ(Ω) be the following weighted space, with ||.||0,γ norm:

L2
γ(Ω) := {v ∈ L2

loc(Ω) |wγ v ∈ L2(Ω)} , ||v||0,γ := ||wγ v||0.

We then define

Xγ := {F ∈ H0(curl , Ω) |divF ∈ L2
γ(Ω)}.

In the non-convex case, it is easy to see that X ⊂ Xγ . The advantage of using a weaker

topology has been pointed out by Costabel and Dauge in [19]. Their results read as

follows1 : there exists γmin ∈]0, 1/2[ such that for all γ ∈]γmin, 1[:

– on Xγ , the graph norm and the semi-norm:

||F||2Xγ
:= ||curlF||20 + ||divF||20,γ

are equivalent norms ;

1 More precisely, one has γmin := 2 − σD
∆ , where σD

∆ ∈] 3
2
, 2[ is the minimum singularity

exponent for the Laplace problem with homogeneous Dirichlet boundary condition:

{φ ∈ H1(Ω) |∆φ ∈ L2(Ω), φ|∂Ω = 0} ⊂
T

s<σD
∆

Hs(Ω),

{φ ∈ H1(Ω) |∆φ ∈ L2(Ω), φ|∂Ω = 0} 6⊂ HσD
∆ (Ω).
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– Xγ ∩ H1(Ω)3 is dense in Xγ .

Finally, we introduce two functional spaces, which will be useful to characterize La-

grange multipliers. So, let

V
1
γ := {v ∈ L2

loc(Ω) |wγ−1v ∈ L2(Ω), wγ∇v ∈ L2(Ω)3} ,
◦
V

1
γ := closure of D(Ω) in V

1
γ .

It can be proved [19] that there holds
◦
V

1
γ = {v ∈ V

1
γ | v|∂Ω = 0}. Note that given

v ∈ V
1
γ , one has ∇(wγv) ∈ L2(Ω)3. Moreover, on

◦
V

1
γ , the graph norm and the

semi-norm ||v||V = ||∇(wγv)||0 are equivalent norms. This implies2 in particular the

orthogonal decomposition

L2(Ω)3 = H(div 0, Ω)
⊥
⊕ ∇(wγ

◦
V

1
γ), (13)

where H(div 0, Ω) := {v ∈ L2(Ω)3 |div v = 0}. Finally, in the absence of weights

(w0 ≡ 1), one recovers that
◦
V

1
0 = H1

0 (Ω).

In the following, we shall keep the index γ everywhere, to emphasize the use of the

weighted norms in the non-convex case. However, it is clear that all results are valid

in the convex case with the stronger norms (see Section 6).

3 Variational formulations

Set λ = ω2/c2. Since the electric field belongs to

Kγ := {F ∈ Xγ | divF = 0},

one can rewrite (PE) as

Find (E , λ) ∈ Kγ × R
+ such that

curl curl E = λE in Ω. (14)

It is common knowledge that the equivalent variational formulation is

Find (E , λ) ∈ Kγ × R
+ such that

(curl E , curlF)0 = λ(E ,F)0, ∀F ∈ Kγ . (15)

However, since it is difficult to build a conforming discretization in Kγ , the divergence-

free condition on the field is usually prescribed as a natural condition. This is the

reason why one solves the eigenproblem in Xγ (or in H0(curl , Ω), but this is another

story...). We report below two possible approaches (see [19,20,13]).

2 Given f ∈ L2(Ω)3, solve

Find u ∈
◦
V

1
γ such that

(∇(wγu),∇(wγu′))0 = (f,∇(wγu′))0, ∀u′ ∈
◦
V

1

γ .

Thanks to the equivalence of norms, this problem is well-posed and admits a unique solution.
Taking u′ ∈ D(Ω) yields wγ(∆(wγu) − div f) = 0 in the sense of distributions, so that
∆(wγu) = div f . Now, ∇(wγu) is in L2(Ω)3, and ζ = f − ∇(wγu) moreover belongs to

H(div 0, Ω). The orthogonality of H(div 0, Ω) and ∇(wγ

◦
V

1
γ) is straightforward.
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First approach. One remarks that if (E , λ) solves (14), then one can take the L2 scalar

product between curl curl E and a test field F of Xγ and integrate by parts, and then

add the weighted L2
γ scalar product between div E and the divergence of the test field

divF , to reach

(curl E ,curlF)0 + (div E ,divF)0,γ = λ(E ,F)0.

Therefore, the eigenpair (E , λ) also solves

Find (E , λ) ∈ Xγ × R
+ such that

(E ,F)Xγ
= λ(E ,F)0 ∀F ∈ Xγ . (16)

Unfortunately, the reciprocal assertion is not true: in other words, the fact that (E , λ)

is a solution to (16) does not guarantee that it is an eigenpair of the original problem

(14). The reason is that there exist solutions to (16) which are not divergence-free: in

this sense we call these eigenpairs spurious.

To address this problem, Costabel and Dauge [19,20] chose to consider instead the

parameterized eigenproblem

Find (Es, λs) ∈ Xγ × R
+ such that

(curl Es, curlF)0 + s (div Es, divF)0,γ = λs(Es,F)0 ∀F ∈ Xγ , (17)

where s > 0 is a parameter. In this way, the equivalence with the original problem

can be restored. As a matter of fact, if one lets s vary, the true eigenpairs will be

independent of s (they are divergence-free), whereas the spurious solutions will vary

with s (they have a non-vanishing divergence).

Second approach. As it is advocated in [13], one can take into account the constraint

on the divergence of the field, via the introduction of a Lagrange multiplier. In this

way, one recovers the equivalence with the original problem (14) (see the Annex of

[13]). The mixed eigenproblem to be solved reads

Find (E , p, λ) ∈ Xγ × L2
γ(Ω) × R

+ such that


(E ,F)Xγ
+ (p,divF)0,γ = λ(E ,F)0 ∀F ∈ Xγ

(q, div E)0,γ = 0, ∀q ∈ L2
γ(Ω).

(18)

To prove the equivalence with the original problem, one follows the construction below.

Notice that if (E , p, λ) is a solution to (18), then div E = 0 according to (18b). Moreover,

the field3 Fp = ∇(∆D
−1p) belongs to Xγ , since by construction Fp ∈ H0(curl , Ω),

curlFp = 0 and divFp = p. As a consequence it can be put in (18a) to reach

||p||20,γ = λ(E ,∇(∆D
−1p))0 = 0 by integration by parts.

Therefore, any solution to (18) is such that p = 0 and E ∈ Kγ . This proves the

equivalence with the original problem, since (E , λ) is an eigenpair of (14).

In what follows, we focus on the discretization and on the numerical analysis of the

second approach.

3 Here, ∆D
−1 : L2

γ(Ω) → H1

0
(Ω) is such that, for any q ∈ L2

γ(Ω), φ = ∆D
−1q is the

solution to the Laplace problem with homogeneous Dirichlet boundary condition:
Find φ ∈ H1

0
(Ω) such that

∆φ = q in Ω.

This problem is well-posed since L2
γ(Ω) ⊂ H−1(Ω).
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4 Discretization and convergence results

4.1 Abstract theory

We recall here the general theory (see [10]), which allows one to prove convergence

results, for eigenvalue problems set in a mixed variational framework. So, consider

– V and Q two Hilbert spaces, with norms ‖ · ‖V and ‖ · ‖Q ;

– a a bilinear, continuous, symmetric, positive, semidefinite form on V × V ;

– b a bilinear, continuous form on V × Q ;

– (f, g) an element of V ′ × Q′.

Introduce the abstract mixed variational problem:

Find (u, p) ∈ V × Q such that


a(u, v) + b(v, p) = 〈f, v〉, ∀v ∈ V

b(u, q) = 〈g, q〉, ∀q ∈ Q.
(19)

For this problem, we make two assumptions:

(A1) inf-sup condition: ∃β > 0 such that

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β.

(A2) coercivity on the kernel : ∃α > 0 such that

a(v, v) ≥ α‖v‖2
V , ∀v ∈ K,

where the kernel K is equal to {v ∈ V | b(v, q) = 0, ∀q ∈ Q}.

Theorem 4.1 (Babuska-Brezzi)[24,12] Assume that (A1) and (A2) are fulfilled.

There exists one, and only one, solution (u, p) to the mixed variational problem (19),

which depends continuously on the data (f, g).

Note that if (A1) and (A2) hold, we can introduce the continuous and linear mapping

T from V ′ to V , such that Tf is the first element (called u above) of the unique solution

to problem (19), with data (f, 0). Since a is symmetric, T is selfadjoint.

Then, one can consider the conforming discretization of (19). To that aim, let Vh

and Qh be two finite dimensional subspaces of V and Q respectively, and introduce

the discrete mixed variational problem:

Find (uh, ph) ∈ Vh × Qh such that


a(uh, vh) + b(vh, ph) = 〈f, vh〉, ∀vh ∈ Vh

b(uh, qh) = 〈g, qh〉, ∀qh ∈ Qh.
(20)

For this discrete problem, we make two assumptions:

(DA1) discrete inf-sup condition: ∀h, ∃β(h) > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ β(h).
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(DA2) coercivity on the discrete kernel: ∃α′ > 0 such that

∀h, a(vh, vh) ≥ α′‖vh‖
2
V , ∀vh ∈ Kh,

with the discrete kernels Kh := {vh ∈ Vh | b(vh, qh) = 0, ∀qh ∈ Qh}.

Theorem 4.2 (Babuska-Brezzi)[24,12] Assume that (A1), (A2), (DA1) and (DA2)

are fulfilled. There exists one, and only one, solution (uh, ph) to the discrete mixed vari-

ational problem (20), with the error estimate below: ∃C > 0 such that

‖u − uh‖V ≤ C

„
1 +

1

β(h)

«
inf

vh∈Vh

‖u − vh‖V + inf
qh∈Qh

‖p − qh‖Q

ff
.

Assume that (A1), (A2), (DA1) and (DA2) hold. For a given h, we can also introduce

the discrete, continuous and linear mapping Th from V ′ to V , such that Thf is the

first element of the unique solution to problem (20), with data (f, 0).

We then consider the eigenproblem, set in a mixed variational framework. We need

a third Hilbert space, called L, such that V ⊂ L algebraically and topologically, and

moreover V is a dense subset of L. The scalar product of L and its norm are respectively

denoted by (·, ·, )L and ‖ · ‖L. Hereafter, we identify L′ with L. The eigenproblem to

be solved reads:

Find (u, p, λ) ∈ V × Q × R such that


a(u, v) + b(v, p) = λ(u, v)L, ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q.
(21)

Note that, according to the definition of the operator T, (21) can be rewritten equiv-

alently λTu = u, where T is considered from L to V . For this eigenproblem, we make

one additional assumption:

(E) The operator T : L → V is compact (and nonnegative).

The discrete approximation of (21) is:

Find (uh, ph, λh) ∈ Vh × Qh × R such that


a(uh, vh) + b(vh, ph) = λh(uh, vh)L, ∀vh ∈ Vh

b(uh, qh) = 0, ∀qh ∈ Qh.
(22)

The discrete eigenproblem can be rewritten equivalently λhThuh = uh. So, to establish

the convergence of the solution of the discrete eigenproblem towards the solution of

the exact eigenproblem, one has to prove that

lim
h→0+

sup
f∈L

‖(T − Th)f‖V

‖f‖L
= 0. (23)

Indeed, this uniform convergence in L(L, V ) implies convergence of eigenvectors and

eigenvalues, for T selfadjoint and compact [7]. Moreover, the (uniform) rate of conver-

gence on the eigenvectors and eigenvalues is bounded by the rate of convergence in

(23). From [10], we introduce sufficient conditions that ensure (23). A few additional

definitions are needed, before these conditions are stated. Let S0 denote the subspace
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of V ×Q, made of solutions to problem (19) with right-hand sides (f, 0), where f ∈ L.

Then, consider

V0 = {v ∈ V : ∃q ∈ Q s.t. (v, q) ∈ S0},

Q0 = {q ∈ Q : ∃v ∈ V s.t. (v, q) ∈ S0}.

These two spaces are endowed with their natural norms, that is ‖v‖V0
(resp. ‖q‖Q0

) is

equal to ‖f‖L (resp. ‖f‖L), with f such that (f, 0) is the right-hand side of (19) with

solution (v, qf ) (resp. solution (vf , q)).

The first condition is the weak approximability of Q0.

Definition 4.1 The weak approximability of Q0 is verified provided there exists r1 :

R
+ → R

+, such that limh→0+ r1(h) = 0 and

sup
vh∈Kh

b(vh, q0)

‖vh‖V
≤ r1(h)‖q0‖Q0

, ∀q0 ∈ Q0. (24)

Inequality (24) actually corresponds to an approximability property, since one has

b(vh, qI) = 0, ∀qI ∈ Qh and ∀vh ∈ Kh.

The second condition is the strong approximability of V0.

Definition 4.2 The strong approximability of V0 is verified provided there exists r2 :

R
+ → R

+, such that limh→0+ r2(h) = 0 and

∀v0 ∈ V0, ∃vI ∈ Kh s.t. ‖v0 − vI‖V ≤ r2(h)‖v0‖V0
. (25)

We note that, according to Theorem 4.2, provided the weak approximability is fulfilled,

it is sufficient that

lim
h→0+

(
1

β(h)
sup

v0∈V0

inf
vh∈Vh

„
‖v0 − vh‖V

‖v0‖V0

«)
= 0, (26)

to ensure the strong approximability. Indeed, the solution to the discrete mixed prob-

lem with g = 0 automatically belongs to the discrete kernel Kh and, as such, it can

play the role of vI in (25).

Then, the following convergence result holds [10].

Theorem 4.3 Assume that T is a (selfadjoint) compact operator from L to V (E).

Assume moreover that the weak approximability of Q0 (24), the strong approximability

of V0 (25) and the coercivity on the discrete kernel (DA2) are verified. Then, there

exists r3 : R
+ → R

+, such that limh→0+ r3(h) = 0 and

sup
f∈L

‖(T − Th)f‖V

‖f‖L
≤ r3(h). (27)

Proof According to [10], the result is true, with

r3(h) =

„
1 +

‖a‖

α′

«
r2(h) +

1

α′ r1(h).ut
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Once the convergence in operator norm is established, one can obtain error bounds

on the eigenvalues and eigenspaces, thanks to techniques à la Babuska-Osborn (see [7,

9] for details). Let λ be an eigenvalue, and Eλ be the eigenspace associated to it. Let

λh be the average of the discrete eigenvalues converging to λ, and Eλh
the sum of the

discrete eigenspaces associated to λh. One wants to measure the error |λ − λh|. As far

as the eigenspaces are concerned, one wants to bound the gap between them. It can be

defined mathematically as follows: given V1 and V2 two subspaces of V , introduce

δ̂(V1, V2) = max(δ(V1, V2), δ(V2, V1)), where δ(V1, V2) = sup
v1 ∈ V1

‖v1‖V = 1

inf
v2∈V2

‖v1 − v2‖V .

One can prove the

Theorem 4.4 There exists C > 0 such that

|λ − λh| < C ελ(h)2 and δ̂(Eλ, Eλh
) < C ελ(h), (28)

with the approximation error

ελ(h) = sup
v ∈ Eλ

‖v‖V = 1

inf
vh∈Vh

‖v − vh‖V . (29)

4.2 Continuous and conforming discretization

Here, we describe briefly the discretization method that we use, together with some

accompanying error estimates.

We consider a series of regular triangulations (Th)h of Ω, indexed by the meshsizes

h, and made of tetrahedra. We use the conforming, continuous4 Pk Lagrange finite

element (k ≥ 1) to discretize elements of Xγ . Then, we choose the Zero Near Singularity

Pk+1 − Pk Finite Element of Ciarlet, Jr. and Hechme [16] to discretize the mixed

variational formulation in Xγ × L2
γ(Ω). The choice of this Finite Element is justified

later on. So, consider

(
Xh := {Fh ∈ C0(Ω̄)3 | Fh × n|∂Ω = 0, Fh|K ∈ Pk+1(K)3, ∀K ∈ Th}

Mh := {qh ∈ C0(Ω̄) |w2γqh|K ∈ Pk(K), ∀K ∈ Th, qh|Eh
= 0}

. (30)

Here, we set Eh = ∪T∈Th,∂T∩E 6=∅T . In other words, imposing qh|Eh
= 0 means that

the discrete multipliers vanish on tetrahedra that neighbor the reentrant edges and

corners. Moreover, given (Fh, qh) ∈ Xh × Mh, if we let q
h

= w2γqh, we note the

identity (qh, divFh)0,γ = (q
h
, divFh)0.

4 By construction, the discretized field and the test-fields are continuous, and piecewise
smooth. So, they belong naturally to H1(Ω)3. Since the discretization method is conforming,
they also belong to Xγ . Then, in order to be able to apply the classical Galerkin theory, a
necessary condition is that Xγ ∩ H1(Ω)3 be dense in Xγ , which is precisely the result proven
by Costabel and Dauge [19], when γ ∈]γmin, 1[.
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Remark 4.1 Costabel and Dauge [19,20] noted a number of restrictions on the use of –

lower degree – nodal finite elements to approximate the electric field. Foremost, there

must be ”enough” gradients (i.e. Fh = ∇ϕh) in Xh. It turns out that this problem can

be addressed thanks to the construction of the so-called C1 interpolants in Computer

Aided Design. We refer for instance to [31], and to [16] and Refs therein for examples.

In particular, the use of the lower degree P1 or P2 finite elements is possible, in 2D

and in 3D.

The discrete approximation (22) reads:

Find (Eh, ph, λh) ∈ Xh × Mh × R
+ such that


(Eh,Fh)Xγ

+ (ph, divFh)0,γ = λh(Eh,Fh)0 ∀Fh ∈ Xh

(qh, div Eh)0,γ = 0, ∀qh ∈ Mh.
(31)

We recall below error estimates from [19,16], when one solves the static version of

problem (7)-(9). It will be useful to establish the convergence result for the eigenprob-

lem. The static problem amounts to solving

curl curl E = J in Ω, (32)

div E = 0 in Ω, (33)

E × n = 0 on ∂Ω. (34)

Above, one considers J ∈ L2(Ω)3 such that divJ = 0.

First, consider the plain variational formulation

Find E ∈ Xγ such that

(E ,F)Xγ
= (J ,F)0 ∀F ∈ Xγ . (35)

To approximate (35), one uses the Pk Lagrange finite element (k ≥ 1) and builds a

discretized variational formulation, with solution E0
h. Costabel and Dauge [19] proved

the worst case estimate

||E − E0
h||Xγ

≤ Cεh
τ−ε||J ||0, ∀ε > 0.

where τ = min(γ − γmin, σN
∆ − 1), and σN

∆ ∈]32 , 2[ is the minimum singularity expo-

nent for the Laplace problem with homogeneous Neumann boundary condition5. It is

common knowledge that this estimate improves when one uses graded meshes (cf. [2]),

or provided E is smoother (when k increases).

From now on, we replace the exponent (τ − ε) ∈]0, τ [ by µ. The previous estimate is

reformulated as

||E − E0
h||Xγ

≤ Cµhµ||J ||0, ∀µ ∈]0, τ [. (36)

However, one wants to approximate E by an element of the discrete kernel, i. e. some

E1
h ∈ Xh such that (qh, div E1

h)0,γ = 0, for all qh ∈ Mh. To that aim, consider the mixed

variational formulation

Find (E , p) ∈ Xγ × L2
γ(Ω) such that


(E ,F)Xγ

+ (p,divF)0,γ = (J ,F)0 ∀F ∈ Xγ

(q, div E)0,γ = 0, ∀q ∈ L2
γ(Ω).

(37)

5 When Ω ⊂ R2, σN
∆ = σD

∆ , so that τ = γ − γmin. When Ω ⊂ R3, it can happen that

σN
∆ < σD

∆ .
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Using the Pk+1 −Pk Finite Element of [16] on a series of triangulations (Th)h, one can

build a discretized variational formulation with solution (E1
h, ph). Then, one can apply

Theorem 4.2, to reach the error estimate

||E − E1
h||Xγ

≤ Cµ

„
1 +

1

β(h)

«
hµ||J ||0, (38)

where β(h) is the ’constant’, which appears in the discrete inf-sup condition (DA1).

To bound β(h) from below, we refer to [16] for an extended discussion. In particular,

the ”obvious” choice of the Taylor-Hood Finite Element is ill-advised in our case, and

a condition like qh|Eh
= 0 must be imposed to the discrete multipliers. One finds

Proposition 4.1 There exists Cis > 0, such that β(h) ≥ Cis for all h.

Next, we establish an approximability property for the Lagrange multiplier. To that

aim, we introduce

Qγ := {q0 ∈ L2
γ(Ω) |wγ q0 ∈

◦
V

1
γ}.

Proposition 4.2 There exists Capp > 0, such that

inf
qh∈Mh

||q0 − qh||0,γ ≤ Capp h1−γ‖q0‖Qγ
, ∀q0 ∈ Qγ . (39)

Proof We follow the guidelines of the proof of Proposition 8.3 of [19], but we have to

use Clément type interpolation operators since functions q ∈ Qγ are not, in general,

continuous. Note that q ∈ Qγ , means that w2γ−1q ∈ L2(Ω) and w2γ∇q ∈ L2(Ω)3. For

all T ∈ Th, let eT be the set of tetrahedra T ′ such that T ∩ T ′ 6= ∅ (We recall here that

the tetrahedra are closed subsets of R
3). Let Vh := {q

h
∈ C0(Ω̄) | q

h|K ∈ P1(K), ∀K ∈

Th}. It is known [30] that there exists a projection Πh : L2
loc(Ω) → Vh such that:

‖q − Πhq‖L2(T ) ≤ Ch|q|
H1( eT). (40)

We construct a cut-off function χh such that:

0 ≤ χh ≤ 1 χh(x) = 1 if d(x) ≤ 4h, χh(x) = 0 if d(x) ≥ 8h,

where one recalls that d denotes the distance from the set of reentrant edges.

For any T ∈ Th, without loss of generality, we suppose that if χh(x) = 0, ∀x ∈ T ,

then d eT
≥ h. Given q0 ∈ Qγ , we set qh = w−2γΠh(1 − χh)w2γq0, and we prove

(39), with ‖q0‖
2
Qγ

' ‖q0‖
2
0,2γ−1 + ‖∇q0‖

2
0,2γ . We have that qh|Eh

= 0 and moreover

qh ∈ Mh. We have also:

‖q0 − qh‖
2
0,γ ≤ 2‖χhq0‖

2
0,γ + 2‖(1 − χh)q0 − qh‖

2
0,γ = 2(I + II).

and we estimate the two terms separately. We compute:

I =
X

T∈Th

Z

T
w2γ |χhq0|

2 =
X

T∈Th : dT <8h

Z

T
w2γ |χhq0|

2 ≤
X

T∈Th : dT <8h

Z

T
w2γ |q0|

2

≤ C
X

T∈Th : dT <8h

h2−2γ
Z

T
w4γ−2|q0|

2 ≤ Ch2(1−γ)‖q0‖
2
0,2γ−1. (41)
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Before we estimate the second term II , let us make some preliminary (elementary)

computations. Set q = (1 − χh)w2γq0:

II = ‖(1 − χh)q0 − qh‖
2
0,γ = ‖wγ(1 − χh)q0 − w−γΠh(1 − χh)w2γq0‖

2
0

= ‖w−γ
`
w2γ(1 − χh)q0 − Πh(1 − χh)w2γq0

´
‖2
0 = ‖w−γ (q − Πhq) ‖2

0

=
X

T∈Th

‖w−γ (q − Πhq) ‖2
L2(T ).

Thanks to the definition of the cut-off function, we know that (1 − χh)(x) = 0 if

d(x) ≤ 4h. As a consequence, in the above summation, one can exclude tetrahedra T

such that dT ≤ h or, equivalently, tetrahedra of Eh. Now, on a tetrahedron T of Th\Eh,

we have ‖w−γ‖L∞(T ) ≤ C h−γ . So, we can write, using the rule ‖f g‖L2 ≤ ‖f‖L∞‖g‖L2

and with the help of (40),

II =
X

T∈Th\Eh

‖w−γ (q − Πhq) ‖2
L2(T ) ≤ C h−2γ

X

T∈Th\Eh

‖q − Πhq‖2
L2(T )

≤ C h2−2γ
X

T∈Th\Eh

|q|2
H1( eT ).

(42)

Next, we develop the expression of ∇q, which writes

∇q = (1 − χh)∇(w2γq0) + w2γq0∇(1 − χh).

We then evaluate the norm of each term.

For the first term, since ‖1 − χh‖∞ ≤ 1, one has

‖(1 − χh)∇(w2γq0)‖
L2( eT) ≤ ‖∇(w2γq0)‖

L2( eT).

For the second term, we note that the support of ∇(1 − χh) is included in {x | 4h ≤
d(x) ≤ 8h}, and that ‖∇(1 − χh)‖L∞ ≤ C h−1. Furthermore, in this region, one has

‖w1‖L∞ ≤ C h. One gets

‖w2γq0∇(1 − χh)‖
L2( eT) = ‖w2γ−1q0w1∇(1 − χh)‖

L2( eT)

≤ C ‖w2γ−1q0‖L2( eT) = C ‖q0‖L2
2γ−1( eT).

Using (42), we then reach an estimate of II :

II ≤ C h2−2γ
X

T∈Th

„
‖∇(w2γq0)‖

2
L2( eT) + ‖q0‖

2
L2

2γ−1( eT)

«

≤ Ch2(1−γ)
“
‖∇(w2γq0)‖2

0 + ‖q0‖
2
0,2γ−1

”
.

(43)

The last inequality is obtained thanks to the following observation. Since the series of

triangulations is regular, there exists an upper bound (independent of h) to the number

of times any given tetrahedron T ′ occurs in the sets eT , when T spans Th.

Adding up (41) and (43) ends the proof. ut
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4.3 Convergence results

In this last Subsection, we verify that we can apply the abstract theory [10] (reported

in Subsection 4.1) to our situation. We add ?s to highlight the ad hoc functional spaces,

the forms, etc. that we consider specifically. We have:

– V ? := Xγ with norm || · ||V ? := || · ||Xγ
.

– Q? := L2
γ(Ω) with norm || · ||Q? := || · ||0,γ .

– a?(u, v) := (u, v)Xγ
; b?(v, q) := (div v, q)0,γ .

– The kernel K
? := Kγ .

– The (selfadjoint) operator T
? : (V ?)′ → V ?, which associates to any f the first

element of the unique solution to problem (19)?, with data (f, 0).

– L? := L2(Ω)3 with norm || · ||L? := || · ||0 ; V ? ⊂ L? and V ? is dense in L?.

The inf-sup condition (A1)? holds with β? = 1. As a matter of fact, given q ∈ Q?,

consider vq = ∇(∆D
−1q) ∈ V ?, such that b?(vq , q) = ||q||Q? ||vq ||V ? . The coercivity on

the kernel (A2)? is clear, since a? is the scalar product of X?.

The proof that the (restriction of) the operator T
? is compact from L? to V ?, that

is (E)?, is postponed until Corollary 4.2. Before that, we characterize the subspaces

V ?
0 and Q?

0. Given f ∈ L?, we thus study the solution to the problem

Find (u, p) ∈ Xγ × L2
γ(Ω) such that


(u, v)Xγ

+ (p, div v)0,γ = (f, v)0 ∀v ∈ Xγ

(q, div u)0,γ = 0, ∀q ∈ L2
γ(Ω).

(44)

There holds

Theorem 4.5 Let (u, p) be the solution to (44).

On the one hand, div u = 0 and curl curl u ∈ L2(Ω)3.

On the other hand, wγp ∈
◦
V

1
γ .

Proof According to (44b) div u = 0, so that u ∈ Kγ and (44a) reduces to

(curl u, curl v)0 + (p, div v)0,γ = (f, v)0 ∀v ∈ Xγ .

To proceed, let us apply to f the not so standard orthogonal decomposition (13) of

L2(Ω)3: ∃!(ζ, q) ∈ H(div 0, Ω)×
◦
V

1
γ such that f = ζ +∇(wγq). Then, wγp + q belongs

to L2(Ω), and one can solve the auxiliary problem

Find z ∈
◦
V

1
γ such that

(∇(wγz),∇(wγz′))0 = −(wγp + q, z′)0, ∀z′ ∈
◦
V

1
γ .

By construction, wγ∆(wγz) = wγp + q. Thus, if we let v = ∇(wγz), we have v ∈ Xγ ,

with curl v = 0 and wγdiv v = wγp + q. Using this test-field in the reduced version of

(44a) yields

(wγp,wγp + q)0 = (f,∇(wγz))0
⊥
= (∇(wγq),∇(wγz))0

z′=q
= −(wγp + q, q)0.

In other words, ||wγp + q||20 = 0, i.e. wγp = −q (in L2(Ω)): this proves the improved

regularity of the Lagrange multiplier p.
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Now, let us take a test-field v of D(Ω)3 in the reduced version of (44a), with f replaced

again by ζ + ∇(wγq):

〈curl curl u − ζ, v〉 = (∇(wγq), v)0 − (wγp, wγdiv v)0

= −(wγq, div v)0 − (wγp, wγdiv v)0 by integration by parts

= −(q + wγp, wγdiv v)0 = 0.

In other words, curl curl u = ζ, so the conclusion follows. ut

Remark 4.2 One can characterize the spaces V ?
0 and Q?

0 completely. After some ele-

mentary computations, one reaches

V ?
0 = {v ∈ Kγ | curl curl v ∈ L2(Ω)3}, Q?

0 = {q ∈ L2
γ(Ω) |wγq ∈

◦
V

1
γ}.

Now, it is possible to measure elements of V ?
0 and Q?

0. Using the definition of the

norms, one gets immediately the

Corollary 4.1 On V ?
0 and Q?

0, the norms are respectively

||v||V ?
0

=
“
||curl v||2 + ||curl curl v||2

”1/2
, (45)

||q||Q?
0

= ||∇(w2γq)||0. (46)

This last result allows us to prove the compactness result (E)?.

Corollary 4.2 The restriction of the operator T
? from L? to V ? is compact.

Proof Consider a bounded sequence (fn)n in L2(Ω)3. The corresponding solutions

(un, pn) are bounded in V ?
0 × Q?

0. In particular, thanks to the identification (45), the

sequence (yn)n, with yn = curl un, is bounded in the space

Y := {F ∈ H(curl , Ω) | divF ∈ L2(Ω), F · n|∂Ω = 0}.

According to the fundamental result of Weber [32] on vector fields with vanishing

normal trace, Y is compactly imbedded in L2(Ω)3. In other words, there exists y ∈

L2(Ω)3 such that limn→+∞ yn = y in L2(Ω)3 (we identify the subsequence of (yn)n
with (yn)n itself).

Obviously, the sequence (un)n is bounded in X : according to the second fundamental

result of Weber [32] on vector fields with vanishing tangential trace, X is also compactly

imbedded in L2(Ω)3. Therefore, there exists u ∈ L2(Ω)3 such that limn→+∞ un = u

in L2(Ω)3. Since div un = 0, for all n, one has div u = 0 thanks to the uniqueness of

the limit. Moreover, yn = curl un converges to y in L2(Ω)3, and, by identification,

curl u = y. Then, the subsequence (un)n converges to u in H(curl , Ω), so that u ∈
H0(curl , Ω). Finally one concludes first that u belongs to Xγ , and second that the

subsequence (un)n converges to u in Xγ , which is the desired result. ut

To be able to conclude favorably, there remains to study the weak approximability

(24)? of Q?
0, and the strong approximability (25)? of V ?

0 . Here, we use the discretiza-

tion described in Subsection 4.2.
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Let us start with the weak approximability of Q?
0. Consider vh, a non-zero ele-

ment of the discrete kernel K
?
h, and q0 an element of Q?

0. We estimate the quotient

|(div vh, q0)0,γ |/||vh||Xγ
in the following way:

(div vh, q0)0,γ = (div vh, q0 − qI)0,γ , ∀qI ∈ Q?
h ;

|(div vh, q0)0,γ | ≤ ||div vh||0,γ ||q0 − qI ||0,γ ≤ ||vh||Xγ
||q0 − qI ||0,γ , ∀qI ∈ Q?

h ;

|(div vh, q0)0,γ |

||vh||Xγ

≤ inf
qI∈Q?

h

||q0 − qI ||0,γ .

Recall that q0 belongs to Q?
0, which is a subset of Qγ . The weak approximability

(24)? of Q?
0 is therefore a consequence of Proposition 4.2 and of the above, with

r?
1(h) = Capph1−γ .

Let us turn now to the strong approximability of V ?
0 . Comparing (26) to (38) and

noting that ‖J ‖0 = ‖E‖V ?
0

, one finds that r?
2(h) ≤ Cµ(1 + β(h)−1)hµ, for µ ∈]0, τ [.

According to Proposition 4.1, β(h) is bounded from below by Cis, so one can actually

consider r?
2(h) = C′

µhµ.

We conclude with the error estimates. From (36), we know that the bound in the

approximation error (29) behaves like ε?(h) = Cµhµ, for µ ∈]0, τ [ (it can be better

– smaller – provided the eigenfield is smooth). Therefore, we have the following error

bounds for the discretization of the electric eigenproblem (PE):

– Approximation of the eigenvalue: |λ − λh| < C2
µh2µ,

– Gap: δ̂(Eλ, Eλh
) < Cµhµ.

5 Numerical tests

Here, we highlight our convergence results on a practical example, taken from the

benchmark of Monique Dauge (see [22]). The domain Ω2 we consider is L-shaped,

with straight sides and corners in (0,0), (1,0), (1,1), (-1,1), (-1,-1), (0,-1). It possesses a

single reentrant corner, located at the origin. Below, we reproduce the values of the first

five eigenvalues (with repetition), up to seven digits (which is well below the 11-digit

claimed accuracy of the benchmark). The values are

λ1 = 1.475622, λ2 = 3.534031, λ3 = 9.869604, λ4 = 9.869604, and λ5 = 11.38948.

In addition, it is reported that the first eigenvector has the strong unbounded sin-

gularity, which means that it does not belong to H1(Ω2)2.

According to the theory, the weight w can be chosen as w = rγ , with r the distance

to the origin, and γ ∈]1/3, 1[. We compute the solution using a value of the parameter

γ set to γ = .95, on a series of quasi-uniform meshes. To discretize the problem, we

consider the P2−P1 Zero Near Singularity finite element pair, cf. (30). The meshes are

respectively made of 738, 2952 and 11808 triangles, with 410, 1557 and 6065 vertices.

The corresponding meshsizes are h = 7.84 10−2, h = 3.92 10−2 and h = 1.96 10−2. The

computation of the first five eigenvalues (λk,h)1≤k≤5 is carried out with the help of

Matlab. The relative errors rk,h = |λk,h − λk|/λk, 1 ≤ k ≤ 5, are reported on Table 1.

We note that on the coarsest mesh, all eigenvalues are already very well-approximated,

with the exception of the first one, for which convergence is in addition slower.
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Fig. 1 Coarsest quasi-uniform mesh.

mesh r1,h r2,h r3,h r4,h r5,h

uniform1 1.3e − 2 3.3e − 4 9.4e − 5 1.1e − 4 9.9e − 3
uniform2 8.0e − 3 6.2e − 5 2.3e − 5 2.5e − 5 1.3e − 5
uniform3 4.4e − 3 1.2e − 5 5.5e − 6 6.2e − 6 5.3e − 6

Table 1 Relative errors on quasi-uniform meshes with γ = 0.95.
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Fig. 2 Coarsest graded mesh.

To improve the convergence towards the first eigenvalue, we then make some com-

putations, on a series of suitably graded meshes6, with the same value of the parameter

γ, that is γ = 0.95. See [11] for a rigorous study of the benefit of graded meshes for

the computation of Maxwell eigenvalues. It is important to note that the number of

triangles and vertices are similar, since the graded meshes are respectively made of

648, 2664 and 10728 triangles, with 362, 1410 and 5522 vertices. The results on these

graded meshes are reported on Table 2.

To complete this series of experiments, let us emphasize the crucial importance of

the weight wγ . Without the weight, it is expected that the eigenvalue(s) corresponding

6 Generated by Beate Jung, from the University of Chemnitz, Germany, with a grading
parameter µ = 1/3 (see [2]). According to the same Ref., the grading is isotropic, and as a
consequence the series of triangulations is regular.
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mesh r1,h r2,h r3,h r4,h r5,h

graded1 2.4e − 3 7.9e − 5 2.1e − 4 2.5e − 4 1.9e − 4
graded2 5.4e − 4 1.8e − 5 4 .7e − 1 5.1e − 5 8 .5e − 2

graded3 1.6e − 4 4.5e − 6 2 .0e − 2 1.3e − 5 4 .6e − 2

Table 2 Relative errors on graded meshes with γ = 0.95.

mesh λ′
1,h λ′

2,h λ′
3,h λ′

4,h λ′
5,h

graded1 3.553 6.073 9.872 9.872 11.40
graded2 3.535 6.068 9.870 9.870 11.39
graded3 3.534 6.071 9.870 9.870 11.39

Table 3 Computed eigenvalues on graded meshes with γ = 0.

to singular eigenvector(s) are not captured numerically (in our case, the first one). So

let us choose γ = 0: the values for the smallest five computed eigenvalues (λ′
k,h)1≤k≤5

are reported on Table 3. Note that we use in this case the well-known Taylor-Hood

finite element, since it satisfies a uniform discrete inf-sup condition in the absence of

weights [8,15]. We obtain the expected result, if one notices that the values of λ′
1,h of

Table 3 actually converge to λ2. What is more (confusing?), we see are that all five

computed eigenvalues converge numerically to a limit value. The reason is simple. As

a matter of fact, if one applies the convergence analysis carried out earlier on, it turns

out that, when γ = 0, we approximate precisely the mixed eigenproblem below

Find (E ′, p′, λ′) ∈ (X ∩ H1(Ω)3) × L2(Ω) × R
+ such that


(E ′,F)X + (p′, divF)0 = λ′(E ′,F)0 ∀F ∈ (X ∩ H1(Ω)3)

(q, div E ′)0 = 0, ∀q ∈ L2(Ω).

(Compare to the exact eigenproblem (18).)

In particular, one cannot prove that p′ = 0 in the above. As a matter of fact, this can

be false, since the field Fp′ (see the Second approach, as described in Section 3) does

not necessarily belong to H1(Ω)3.

6 Concluding remarks

To solve Maxwell eigenvalue problems with a continuous approximation of the field,

we introduced an equivalent mixed eigenproblem. We presented the numerical analysis

of this mixed formulation together with some numerical experiments, assuming one

uses the weighted method of Costabel and Dauge to discretize the electric field, com-

pleted with the Zero Near Singularity finite element pair of Ciarlet, Jr. and Hechme to

discretize the Lagrange multiplier. For additional numerical results and comparisons,

we refer to [17]. In particular, the use of higher degree finite element pairs improves

the convergence rate, as expected. This accounts for the so-called p-version of finite

element methods (from a numerical point of view). Following [21], a theoretical study

of the p- and hp- versions of finite element methods could be investigated.

We note that a similar analysis can be carried out, when one uses the singular

complement method to discretize the electromagnetic field in a 2D non-convex polygon

Ω, here with the Pk+1 − Pk Taylor-Hood finite element. In which case, one uses the
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stronger norms ‖ · ‖0 and ‖ · ‖X (without the weights).

The estimate corresponding to the weak approximability stems from (39), with γ = 0:

r∗1(h) = C h.

To obtain the strong approximability bound, the needed error estimates for the static

case can be found in [27]. Let the angles at the reentrant corners of ∂Ω be denoted

π/αj , and set α = minj αj (σD
∆ = 1 + α). Estimate (36) is replaced by

||E − E0
h||X ≤ Cεh

2α−1−ε||J ||0, ∀ε > 0.

Now, consider the static problem written in mixed form (similarly to (37)). When it is

discretized, it satisfies a uniform [8,15] discrete inf-sup condition: β(h) ≥ C∗
is > 0, ∀h,

in (DA1). If (E1
h, ph) denotes the solution to the discretized problem, there holds

||E − E1
h||X ≤ Cεh

2α−1−ε||J ||0, ∀ε > 0.

One gets r∗2(h) = Cεh
2α−1−ε. Error bounds on the eigenvalues and on the gap follow,

with ε∗(h) = Cεh2α−1−ε. Again, the use of graded meshes shall improve the overall

quality of the computations.
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charges in singular geometries. Comput. Methods Appl. Mech. Engrg., 196, 665–681 (2006)
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