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Modélisation Mathématique et Analyse Numérique

WEIGHTED REGULARIZATION FOR COMPOSITE MATERIALS IN
ELECTROMAGNETISM

PaTrRICK CIARLET, JR.!, FRANCOIS LEFEVRE?, STEPHANIE LOHRENGEL? AND SERGE
NICAISE?

Abstract. In this paper, a weighted regularization method for the time-harmonic Maxwell equations
with perfect conducting or impedance boundary condition in composite materials is presented. The
computational domain 2 is the union of polygonal or polyhedral subdomains made of different materi-
als. As a result, the electromagnetic field presents singularities near geometric singularities, which are
the interior and exterior edges and corners. The variational formulation of the weighted regularized
problem is given on the subspace of H(curl; Q) whose fields u satisfy w® div(eu) € L*(Q) and have
vanishing tangential trace or tangential trace in L?(9). The weight function w(z) is equivalent to the
distance of x to the geometric singularities and the minimal weight parameter « is given in terms of
the singular exponents of a scalar transmission problem. A density result is proven that guarantees the
approximability of the solution field by piecewise regular fields. Numerical results for the discretization
of the source problem by means of Lagrange Finite Elements of type P; and P are given on uniform
and appropriately refined two-dimensional meshes. The performance of the method in the case of
eigenvalue problems is adressed.

Résumé. Dans cet article, nous présentons une approche de type régularisation & poids pour résoudre
les équations de Maxwell harmoniques en temps, avec condition aux limites de conducteur parfait ou
d’impédance. Le domaine de calcul €2 est la réunion de sous-domaines polygonaux ou polyédriques
contenant des milieux matériels différents. Le champ électromagnétique produit est par voie de
conséquence singulier au voisinage des singularités géométriques, formées des arétes et coins extérieurs
et intérieurs. La formulation variationnelle de type régularisation & poids est construite dans un sous-
espace de H(curl;Q), dont les éléments u sont tels que w® div(e E) appartienne & L*(Q), avec une
trace tangentielle dans L?(99) éventuellement nulle. Le poids w(x) considéré se comporte comme la
distance de x aux singularités géométriques, alors que ’exposant minimal « est déterminé en fonction
des exposants singuliers d’un probleme de transmission scalaire. Nous démontrons un résultat de den-
sité garantissant I’approximabilité du champ cherché par des champs réguliers par morceaux. Nous
présentons ensuite des résultats numériques sur le probleme source, obtenus a ’aide d’Eléments Finis
de Lagrange P; et P» sur des maillages bidimensionnels uniformes ou raffinés. Nous évaluons enfin la
performance de la méthode sur le probléme aux valeurs propres, avec le méme type de discrétisation.
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1. INTRODUCTION

The question of approximability of the solution of Maxwell’s equations by means of nodal finite elements
has been widely studied in the last ten years (see e.g. [2,4,5,10,18,32] for perfect conducting boundary con-
ditions and homogeneous materials). In a regular domain of class C! as well as in a convex polyhedron, the
discretization of the time-harmonic Maxwell equations can be performed via standard Lagrange Finite Elements
by solving an equivalent regularized variational formulation similar to the vector Helmholtz equation (see [25]).
In a non-convex polyhedron, however, this approximation fails since the electromagnetic field does in general
present singularities near the reentrant edges and corners (see e.g. [7,8,17]) and the discretization space is no
longer dense in the vector space of the variational formulation. The same situation does occur in composite
materials where the electric permittivity and the magnetic permeability are piecewise constant functions. The
electromagnetic field then presents singularities near the exterior and interior edges and corners of the different
subdomains [19].

In order to overcome the lack of density, several possibilities have been studied. The singular complement
method [3] and singular field method [26] add explicitly the singularities to the discretization space according to
the splitting of the electromagnetic field into a regular part and a singular part deriving from a scalar potential.
Another possibility is the penalization of the perfect conducting boundary condition by an impedance-like
condition. From a theoretical point of view, the density result of the FE-space in the variational space holds
true for any homogeneous material (see [13,16]) and some composite materials (see [29]). The numerical
performances of this method, however, are rather poor. The idea of weighted regularization has been developed
in [18] for homogeneous materials. It consists in looking for the solution in the subspace of H(curl; Q) of
fields with divergence in a weighted L2-space, whereas the classical regularized formulation corresponds to the
L?%-space without weight.

In this paper, we study the method of weighted regularization for composite materials and prove the density of
the space of piecewise regular vector fields in the space of the weighted regularization method, for an appropriate
choice of the weight parameter. The idea of the proof is similar to the proof in [29] where the case of classical
regularization with impedance boundary condition has been addressed. It consists in proving that the orthogonal
of the closure of the space of piecewise regular vector fields is reduced to {0}. However, if the density result
for classical regularization with impedance boundary condition always holds true in the case of homogeneous
materials, it may fail for some composite materials. On the contrary, the method of weighted regularization
allows one to choose the weight parameter depending on the singularities of a scalar second-order transmission
problem and hence, the density result may be recovered for any composite material.

The paper is organized as follows: the theoretical aspects of the problem are dealt with in section 2. More
precisely, in §2.1, we give the geometric setting and the functional framework including a perfect conducting
boundary as well as an impedance boundary condition. We also address equivalence between the weighted
regularized formulation and the original Maxwell equations. In §2.2, we show that the density problem for
vector fields can be reduced to a similar density problem for the associated scalar potentials. The weight
function in two dimensions will be defined in §2.3. The proof of the density result in a two-dimensional domain
is developed for a more general family of two-dimensional scalar problems depending on a real parameter. This
turns out to be useful in order to deal with the three-dimensional case where the real parameter represents
the (local) edge variable. Subsection 2.4 is devoted to the proof of the density result in a polyhedron. In
section 3, we state precisely the discretization by means of Lagrange Finite Elements of type P, and give a
basic convergence proof. Finally, section 4 is devoted to a series of numerical tests performed in two dimensions.
In §4.1, we present the resolution of the static problem with source term for the electric field in an L-shaped
domain with three subdomains. Depending on the value of the electric permittivity, the main singularity of the
electric field can be arbitrarily strong and thus it is challenging for any numerical method. The numerical results
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show clearly that the weighted regularization method does converge to the exact singular solution whereas the
classical regularization method does not. Further, we provide numerical convergence rates for Finite Elements
of types P, and P, on uniform and refined meshes. Next, we study in §4.2 the performance of the weighted
regularization method for the eigenvalue problem and we compare our results to a benchmark in the case of an
interior singularity in a ”checkerboard-like” domain decomposed into four subdomains.

2. WEIGHTED REGULARIZATION IN THE CASE OF MIXED BOUNDARY CONDITIONS

2.1. Setting of the problem

In this section we will define precisely the geometric setting, which is the same as the one in [29]. Further, we
introduce the variational formulation of the weighted regularization problem as well as the associated functional
spaces. Whenever possible, we adopt the notations of [29].

We are concerned with an open bounded set Q C R? where d = 2 or 3. We assume that 2 is a Lipschitz
polygon (d = 2) or a Lipschitz polyhedron (d = 3) which means that € is a Lipschitz domain with piecewise
linear (d = 2) or plane (d = 3) boundary J€2. We denote by n the unit outward normal vector to 9Q2. We
further assume that Q is connected and simply connected and that its boundary 9 is connected.

It follows from the Maxwell equations that the electric field E is a solution to

curl (u ! curl E) — w?eE = iwl, (1)

where the time variation is assumed to be in e~**, with w € R. In the sequel, we set

f=iwd.

The coefficients € and p are, respectively, the permittivity and the permeability of the medium in 2, and
J € L?(Q)? is a datum which represents the impressed current density. We assume that J (and thus f) is
divergence-free which amounts to saying that the electric charge density vanishes in the whole domain 2.

In the case of composite materials, the electromagnetic coefficients € and p are given by piecewise constant
functions. This defines a partition P of € into a finite number of subdomains €2y, . ..,  such that on each €);
we have e(x) =¢; > 0 and p(z) = p; > 0.

We assume that each subdomain is itself a polygon (d = 2) or a polyhedron (d = 3) with Lipschitz boundary,
and we denote by Fj;, the edges or faces of 9€2; N0Q,. We distinguish between the sets Fj,¢ and Feyy of interior
faces (contained in ) and exterior faces (contained in 9€2). Without loss of generality, we may assume that the
subdomains are connected and simply connected and have a connected boundary (see a similar remark in [29]).

In order to deal both with the boundary condition of a perfect conductor and an impedance boundary
condition, let {T'p,T';} denote a partition of 9§ such that

I'pul'y =09,

o o 2
I'pnNnI=0. ( )
This induces a partition of Feys into Fp = {F € Fepe | FCTp}and Fr ={F € Fere | FC T}

The electric field then satisfies the following mixed boundary condition:

Exn=0 on I'p, 3)
nx (Exn)+Anxputcurl E)=0 onTl;.

1On the one hand, the case where OS2 consists of a finite number of connected components could be easily included, but would
result in more complicated notations. On the other hand, the case of a multiply connected domain is more involved, since one has
to deal with cuts, and we refer to [1,31] for a more detailed discussion. However, our results should carry over to this more general
setting, since they depend only on local geometry considerations.
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Above, A is a complex number proportional to the characteristic impedance of the surrounding conductor and
satisfying

Re A < 0.
The variational formulation of problem (1)—(3) is given on the functional space

{u e H(curl; Q) | div(ew) = 0; (ux n)jr, =0; (ux n)r, € L*(T)"},
where n = 1 if d = 2 and n = 3 if d = 3, and enters within the framework of the Fredholm alternative.
Hence, (1)—(3) admits a unique solution wu satisfying div(eu) = 0 if, and only if, w? ¢ o(curl,dive®) where
o(curl, dive?) is the discrete spectrum of the involved partial differential operator.

As in [18] for the homogeneous case, we consider a weighted regularized formulation of problem (1)-(3). To
this end, we denote by Y a (separable) Hilbert space with scalar product < -, >y such that

L*(Q) — Y — H Q). (4)
The variational space W[Y] is then given by
WIY] = {ue H(cur;Q) | div(cu) € V; (ux n)r, =0; (ux n)r, € L*T)"}. (5)

The space WY] is equipped with its canonical norm
2 2 . 2 2 /
iy = (il o + lleurlullf o + [|diviEa) |} + ux nldr,) .
The variational formulation corresponding to the space Y now reads as follows

(P[Y)) { Find u € WY such that

a(u, v) — w?(eu,v) = (f,v) Yv e W[Y],

where the sesquilinear form a(-,-) is given by

a(u,v) = / pteurlu- curlvde + s < div(ew), div(ev) >y
Q

A1 [ (uxmn)-(vxn)ds.
I'r

Here, s > 0 is a real parameter, but it could be defined as a positive piecewise constant functi_on.
Equivalence between problems (P[Y]) and (1)—(3) involves a scalar transmission operator APT[Y] = div e grad
with range in Y and Dirichlet boundary condition. The domain of AP [Y] is given by

DALMY = {p € H}(Q)| div(cgradp) € Y }. (7)

In the sequel, we note A.p = dive grad g for any ¢ in Hj(Q2). Since Y is a subspace of H~'(Q), the definition
of D(APT[Y]) is natural. Indeed, for p € H}(£2), we have ¢ = A.p € H~ () in the sense of

/Q cgrad g - grad b dz = —{g, V) -1y @y Y € HEQ)

where () -1 (q)—u3 () denotes the duality product between H~*(Q) and Hg ().
Further, the Riesz representation Theorem yields the existence of a bounded operator K. such that
K. : DAPEY]) — Y
¥ U P
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where K ¢ is the unique element in Y such that

<p,Kep >y={(p,p)u-1)-Hio) P EY.

We are now able to state the following equivalence result:

Theorem 2.1. Let f& L?(Q)? be divergence-free, div f= 0 in Q and assume that w # 0. Let u be a solution to
(P[Y]). If the range of the operator APT[Y] + “J;KE is dense in Y, then div(eu) = 0 in Q and u is a solution
to (1-3).

The idea of the proof is the same as in [18] and is omitted here. It is obvious that any solution of (1)—(3)

satisfies (P[Y]). Under the condition of Theorem 2.1, problem (P[Y]) has thus a unique solution whenever
w? & o(curl, dive?).

Remark 2.2. (1) The result of Theorem 2.1 carries over to the case w = 0, since the range of APT[Y] is
the whole space Y provided that Y ¢ H~1(Q).
(2) If the imbedding of Y in H~1(Q) is compact, we can prove in a similar way as in [18], that W[Y] is
compactly imbedded in L2(2)¢ (see also [21] for the case Y = L%(Q)). The sesquilinear form a(-,-) is
thus coercive on the space W[Y].
(3) As in [18], the space Y will be defined later on as a weighted L2?-space. Therefore, the range of

AP Y]+ “?QK - will be dense in Y if and only if “—82 does not belong to the spectrum of a scalar positive

self-adjoint operator with compact inverse (see [18] for details). Hence, taking s such that ‘”?2 is smaller
than the smallest eigenvalue of this operator guarantees the equivalence between (P[Y]) and the original
problem.

Let us finally introduce the following spaces of piecewise regular functions
PH* (% P) ={p € L*(Q)] ¢; € H* (), j=1,.... }, (9)

where ¢, denotes the restriction of ¢ to ;. We denote by PH *(Q; P) the corresponding spaces of vector fields.

The remainder of this first part is to show that the space W[Y] N PH(Q;P) is dense in WY] for an
appropriated choice of the space Y. As mentioned before, the main application is the possibility to approximate
the problem (P[Y]) by means of nodal finite elements.

2.2. Scalar potentials

With regard to the density results that we address here, we prove in this subsection that it is sufficient to
deal with the question in terms of scalar potentials only. We introduce the following functional space

HY]={oe H(Q) | Acp €Y; o, =0; ¢r, € H'(T1); l(p) =0} (10)

where [ is a continuous linear form on H!(T';) such that [(1) # 0. The space H[Y] is equipped with its canonical
norm

1/2
llellppy = (Il@llig + 1Al + D ||¢||ip> : (11)
FeFr

It is a space of scalar potentials associated with the space of vector fields W[Y] in the sense that
grad HY| Cc W[Y].

Notice that in general, scalar potentials are uniquely determined up to an additive constant. Here, the linear
form [ is introduced in the space H[Y] in order to fix this constant. In the case where 92 is not connected, one
linear form for each connected component including a part from I'y should be included in H[Y].
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The first step will be the decomposition of the elements of W[Y] into a (piecewise) regular part and a singular
part, the singular part deriving from a scalar potential.

Theorem 2.3. Let w € WIY]|. There is a scalar function ¢ € H[Y| and a piecewise regular vector field
up € W[Y]N PH'(;P) such that
u = upr + grad ¢. (12)

Further, there is a constant ¢ > 0 independent from w such that

||UR||PH1(Q;7>)+||<P||H[Y] SCHUHW[Y]- (13)

Proof. Let w € W[Y]. Since div(eu) € Y C H~'(), there is a unique function y € H{(f2) such that
A.x = div(ew). Thus, the vector field v = u — grad x satisfies

curlv = curlu in Q
div(ev) =01in Q
vxn=0onlp
vxn=uxmnonlj.

Hence, v belongs to the standard regularization space W[L?(2)]. From [29] (Theorem 3.2), we deduce the
existence of a regular vector potential ug € W[L?(Q)] N PH ' (Q; P) satisfying

curl ug = curlv in Q
div(eur) € L*(Q2)
ur X n=0 on 0N

as well as the estimate
urllpro.p) + [ldiv(eur)llg o < cllcurl ||, q, . (14)

Since curl(u — ug) = curl(v — ug) = 0 in €, there is a unique scalar potential ¢ € H'(2) such that

grady = u— upr in  and
I(p)=0.

We obviously have A.p € Y. Moreover, ¢, belongs to H'(I';) since
grady ¢ = gradp|p x n=wp x n€ L*(F)" VF C I';.

This shows that ¢ belongs to H[Y].
We prove in Lemma 2.4 below that

1/2
lellppy < ¢ <||A5<P||§/ + Z |lgrady ‘P||§7F> Vo € HY].
FeFr

The estimate of ||A. ||y follows from the continuous imbedding of L?(€2) in the vector space Y and (14), taking
into account that curl v = curl u:

[[A:olly ||diV(€U)||Y+C||diV(€UR)||07Q

c([ldiv(ew)lly + [[eurly]|; )

IN N CIA

clfullypy,
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whereas the second term is equal to

2
Z [lux g 5

FeFr
according to the definition of ¢. This proves (13). O

In the proof of Theorem 2.3, we made use of the following equivalence result between norms:

Lemma 2.4. Let Y be such that (4) holds. The application

Moy © HY] — RY

1/2
2 2
e <||As<ﬂ||y+ > ||gradT<P||o,F>
FeFr

defines a norm on H[Y] equivalent to the canonical norm ||'||H[y].

Proof. 1t is obvious that ||y defines a semi-norm on H[Y]. Now, let ¢ € H[Y] be such that |¢|y, = 0.
Hence, A, = 0 on Q which yields ¢ =0 on Qif I'p # 0. If T'p = 0, we have grad; ¢ = 0 on all exterior faces.
Hence, ¢|pq is a constant and this constant must be 0 since I(¢) = 0 and [(1) # 0.
We next prove equivalence between |-| mpy] and the canonical norm. Let p € H [Y]. There is a unique function
r € HY(Q) such that
A;r=0 in
r=¢ on 0f.

It follows from classical results in variational theory and the continuous imbedding H*(T';) < H/?(I';) that

1/2
2
7]y 0 < cllellijzon < c ( Z ||<P||1,F> : (15)

FeFr

Next, let ¢ = ¢ —r. The function @ is the variational solution in H{ (£2) to the following Dirichlet problem with
data in Y

Acp=Acp in ()

=0 on 0 -

We deduce from Poincaré’s inequality and the definition of the parameter ¢ that

1630 < o[ elamdpp ds
= —c(Acp, @H—l(n)—Hg(Q)
< dAcpll—relldll g
and thus
||¢||17Q <cllAcelly (16)

since the imbedding Y — H~1(Q) is continuous. Finally, we deduce from (15) and (16) that
1/2
#ll1.0 <c<||Aaso||i+ > ||so||iF)
FeFr

and the result follows from the equivalence between the H!-norm and the seminorm rer, | 1,7 in the space
{we HY ') | l(w) =0}. O
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Note that the above decomposition (12) is not unique. For instance take ¢ € D(§;) for a fixed j € {1,---, J}
and let uwy = ug + [[ullyy ) grady and ¢ = @ — |[ul[yy 1 9. Obviously,

u=up + grad ¢’

and u}j, and ¢’ satisfy (13).

Nevertheless, due to the decomposition (12) and estimate (13), we are able to define a linear continuous
application ® : W[Y] — H[Y] which maps any vector field u € W[Y] on the corresponding scalar potential
¢ € H[Y] in the sense that

u — grad(®(u)) € W[Y]NPH'(Q;P) and (17)
O(gradp) = ¢ Yo € H[Y]. (18)
Since grad H[Y] C WY, ® is well defined and onto. Moreover, ® maps regular vector fields on regular scalar
potentials, i.e.
& (W[YINnPH"(Q;P)) C HY]NPH*(;P). (19)
Indeed, let w € W[Y] N PH*(Q;P). Due to (17), we have grad(®(u)) € PH*(Q;P) which implies that

d(u) = ¢ € PH*(Q;P).

We are now able to state the main result of this subsection:

Theorem 2.5. The space of vector fields W[Y|NPH (Q; P) is dense in WY if, and only if, the corresponding
space of scalar potentials H[Y| N PH?(;P) is dense in H[Y].

Proof. The proof of Theorem 2.5 follows directly from the definition and the properties of the application ®.
We refer to [29] (Proof of Theorem 3.1) for details. O

2.3. Two-dimensional results

In this subsection, we prove the density result in the case of a polygon for an appropriate choice of the space
Y. We further state some preliminary results which will be helpful for the edge singularities in three dimensions.
In this subsection, €2 is a fixed polygon of the plane with the assumptions of §2.1.

Let us start with the definition of the space Y. For a €] — 1, 1], we denote

Y={ge H'Q)|wge L*(Q)}, (20)

where the weight function w is assumed to be positive on ). There are several possibilities to define the function
w (see [18]). Roughly speaking, w will be chosen to be equivalent to the distance function to the set of vertices
of the subdomains. The space Y is a Hilbert space equipped with the scalar product

< fig>v= / w? () f(z)g() da

In order to provide a rigorous definition of the weight function w, we introduce the following notations. Let
S be the set of vertices of at least one §2;. The set of exterior vertices will be denoted by Sy,

Sewt ={S €S| S €00}

This set is split into two subsets, namely,

SD = Sertm 1—‘OD
SI = Sewt \ SD~
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The set of interior vertices is given by Sint = S \ Seat-

Definition 2.6 (Weight function in two dimensions). Let 2 C R? be a polygon. For any vertex S € S, let
(rs,0s) denote the local polar coordinates with respect to S. The weight function w is defined by

w(x) = H rs (21)
SeSo

where Sy is a subset of S.

This definition is similar to the one of simplified weights in [18]. Notice that w(z) is equivalent to the distance
function d(x) = dist(x,S). Moreover, in a sufficiently small neighourhood Vg of the vertex S containing no
other vertex of €, the weight function is equivalent to rg if the weight is ”active”, whereas w(x) ~ 1 far away

from the vertices. Let us now introduce
(e}
<H 7“5) gELQ(Q)}.
SeSo

The following result shows that L2(£2) is an admissible choice for the space Y:

Proposition 2.7. Let Y = L2(Q). Then (4) does hold for any o € [0,1].

L (Q) = {g € H™(Q)

Proof. Since a > 0 and w is continuous on , the imbedding L?(2) — L2(Q) is obvious.
On the other hand, we deduce from a classic Hardy inequality (see for instance [33], Lemma 4.1 p. 38) that

HY(Q) = L2 ()

for all & € [0, 1], if one recalls that the weight function w is equivalent to the distance function near the vertices
and equivalent to 1 anywhere else.
The result of the Proposition follows by duality since (L%, (Q2)) = L2(Q). O

From now on, let Y be as in Proposition 2.7. For £ € R, we introduce the space of dual singularities N ¢[Y]
defined as the orthogonal in Y of (A, —e€2I)(H[Y] N PH?(;P)) with respect to the scalar product of Y. In
other words, an element g € Y belongs to N ¢[Y] if, and only if,

< g,(A. —e€’T)p >y=0Vp € HY] N PH*(Q; P). (22)
We next recall the space of standard dual singularities NV; pir¢ defined as follows: g € N pir¢ if, and only if,
g € L*(Q2) and
/ g(A — eNpdx = 0 Vo € D(APT[L2(Q)]) N PH%(; P) (23)
Q

where D(ADPT[L2(Q)]) is defined in analogy with (7). Taking into account the definition of the scalar product
< -,- >y, we are now able to state the following link between N: ¢[Y] and N; pir e:
Proposition 2.8. Let £ € R. For any g € N.¢[Y], the function g, defined by

Ja = w2ag

belongs to the space of standard dual singularities, Na,Dir,£~

Proof. (1) Let g € N.¢[Y]. Since g belongs to Y = L2(1), the function w®g belongs to L*(2). The
definition of the weight function w then guarantees that g, = w?*g € L?().
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(2) In order to prove that g, satisfies the orthogonality relation (23), let » € D(APT[L2(Q)]) N PH2(; P).
Then, ¢ also belongs to H[Y]N PH?(Q;P), since L*() C L2(2) and @)oo = 0. Hence

/ ga(A: — e€N)pdr =< g, (A — e£’T)p >y=10
Q

which proves (23).
t

In view of the forthcoming Theorem 2.10, we need to recall the singularities of the transmission problem
involving the operator A, with domain D(APT[L2(Q)]). (see [28,34,35] for details).

For S € Seut, let Ac g be the set of positive singular exponents of the operator APT[L?(2)] that we now
describe shortly. Without loss of generality we may assume that the set of subdomains Q; having S as vertex
is {Qj}ﬁp for some positive integer Jg. For j € {1,---,Jg} let w; be the interior opening of Q; at S and set
oo = 0 and 0; = 0j—1 + w;. Then a real number X belongs to A, g if, and only if, there exists a non trivial
solution ¢x € H'(10,05]), dr = (¢r,)7%,, to

¢X; + Ao =0in]oj1, 05, j=1,---,Js, (24)
A1(0) = dx,us(0s) =0, (25)
[(b)\]o'j—l = [8(5)]0’]‘71 =0,j=1,---,Js -1, (26)

where (rg, fs) are the local polar coordinates with respect to .S, the half-line 85 = o; containing an edge of €,
for j=1,---,Jg while the half-line §s = 0 contains an edge of Q; (see Fig. 1).

6=0,4

FIGURE 1. Subdomains having a common vertex (Js = 3).

Note that in the homogeneous case, i.e., €; = ¢, for all j = 1,.--,Jg, the set A, g is equal to {o’% ke
N,k # 0} and is independent of e. In the inhomogeneous case this set is not explicitly known but may be
approximated numerically (see e.g. [28,34,35]).

We proceed similarly for S € S;, replacing the Dirichlet boundary condition (25) by the transmission
conditions

Px,1(0) = dx, 55 (2m), €19 1(0) = €5 ) s, (27).

Let us notice that if S € Seqr then A € A, g is simple (see [35]). In other words, the solution ¢ to (24)-(25)
is unique up to a multiplicative factor. On the other hand, if S € S;,¢, then A € A, g has a finite multiplicity
and in that case A is repeated in A, g according to its multiplicity.

The standard singularities of the operator APT[L2(Q)] at the vertex S € S are

Ssx = nsrpy, for A € A, g, (27)

where ng = ng(r) is an appropriate cut-off function (ns = 1 in a neighbourhood of S and ns = 0 in a
neighbourhood of the other vertices).
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Next, we need to characterize the elements of the space N& Dpir,e- To this end, we recall Proposition 2.8.
of [29] (for any details, see [34] for the case £ = 0 and [24] for £ # 0). Let us begin with some classical Grisvard
notations. For £ = 1,2, let H*~1/2(9Q) be the range of the trace mapping, starting from H’(2) ; for all faces
F € Fop, the restrictions of those sets to F is denoted by H"Y/2(F). Then, define H*"'/2(F) as the set
of elements of H*"1/2(F) whose continuation by zero to dQ belongs to H~1/2(99). Finally, let H/2~¢(F)

denote the dual space of HY 2(F). In the same manner, one can introduce similar spaces for the interior
faces, starting from interior domains.

Proposition 2.9. g € N pir¢ if, and only if, g € L*(Q) is solution to

(A —¢&T)g=0 in Q;Vj,

g=0in H Y*(F)VF € Foy.

[g] =0in H Y2(F)VF € Fin,
[€0ng] =0 in H3/?(F)VF € Fins.

In order to give an appropriate basis of Nz pir¢, we set for any vertex S € S and all A € A, g,
gsne =nse ST gy —vs e, (28)
where vg )¢ € Hg(Q) is the unique variational solution to
(A —eNos pe = (A — D) (nse™ r72y), (29)

i.e., is the unique solution to
/ e(gradvg ¢ - grad w + E%vg \ cw) dz
Q
=— / (Ae — 5§2H)(7756_‘5‘Tr_)‘¢>\)w dx,Yw € Hy(Q).
Q

Notice that this problem is well defined since the right hand side of (29) belongs to L(Q2) with ¢ < 1%\ (see

Lemma 4.4 and 4.5 of [27]).
The function gg x ¢ belongs to Nz pir ¢ and satisfies (thanks to Green’s formula, see Proposition 2.5.5 of [24]))

/ (Ac — e€2D) (71" ¢p)gs,a ¢ dx = 2X58,70 - (30)
Q

Furthermore, under the assumption

1¢A.5,VS €S, (31)

the set {gs.x¢}rea. smo,,ses is a basis of Nz pire.
The following Theorem provides an appropriate condition on the weight exponent « such that the density
result for the scalar potentials (and thus also for the corresponding space of vector fields) holds true:

Theorem 2.10. Let Y be as in Proposition 2.7. Let the subset Sy C S satisfy the following inclusion:
{§€8SpUSint| Ae,sN)0,1[# D} U{S € Sr| Ae,sNJ0,1/2[# 0} C Sp. (32)
Further, let a be such that

a>1—min{ U Aesnjoipu | (As,sﬂ]0,1/2[)} (33)

SESPpUSint SeS;
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Assume that (31) holds. Then H[Y]N PH?(Q;P) is dense in H[Y].

Proof. In order to prove the density result, we will characterize the elements of some complementary space O[Y]
that wedefine here. Let

HolY]={pec H'(Q)| Acp € Y; pir, =0; ¢|p € Hy(F),VF € Fr }.

As in [29], we prove that Ho[Y] is continuously imbedded in H[Y] if we choose the linear form [ in the definition
of H[Y] as follows:

SeSy
Now, let £ € R and let O[Y] be the orthogonal complement of Hy[Y] N PH?();P) for the inner product

(O, Vey = < (Ac—e€D)p, (A — €2y >y
+ > {(grady @, grady ¢)o.r + £%(@,¥)o.r } -
FeFr

Then

H[Y|=H[Y]NnPH?*(;P) @ OY]
since the complementary space of Hy[Y] in H[Y] is spanned by a finite number of functions that belong to
H[Y] N PH?(;P). Notice that arguments, similar to those of Lemma 2.4, allow one to show that the norm
llelle,y = (e, gp)é/Q is equivalent to ||-[| ) With equivalence constants that depend on ¢.

As in [29] (Proposition 4.3), we are able to prove that for any f € O[Y], there is a unique g € N ¢[Y] with

(A: —e’)f =g in Y, (34)

(Ap — €21)f = —€0,94 in H-Y(F),VF € F, (35)

[flley <c (IIglly + Y Isaugall—l,p> (36)
FeFr

where g, = w?®g is the standard dual singularity in A, Dir,e corresponding to g, according to Proposition 2.8.
The function g, is thus uniquely represented as

Ja = Z Z CX\,SgS .\ ¢

SES AeA., sN)0,1]
As in the proof of Theorem 4.4 in [29], condition (35) implies that
cas =0VYAE A sN[1/2,1], VS € S;
since 0, gs ¢ & rg_l near S.

Now, let A € A sN|0, 1] for a vertex S € Sp US;n: or A € A sN]0,1/2[ for S € S;. Taking into account that
w*g belongs to L?(§2), we deduce that w™“gg \ ¢ € L*(2) whenever cy g # 0. But

—a —(a+X\
wgs e =15 TV, 5(0s)
near S, and r§<a+A)CI>>\7s belongs to L2(£) if, and only if, a+\ < 1 which is in contradiction with the assumption

on a. Therefore cy s = 0 for any A which yields g = 0 in .
Finally, we deduce from (36) that f = 0 in Q which completes the proof. O
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Remark 2.11. One could also consider general weights with an exponent that depends on the vertex S of S.
Namely, one could replace w® by
I1 s, (37)

Ses
with (as)ses in )0, 1]1S! such that
ag > 1 — min (A57sﬁ]0, 1[) if S eSpUSin; (38)
ag > 1 —min (A57sﬁ]0, 1/2[) if S € Sy.

2.4. Density results in three-dimensional domains

In this subsection we investigate a suitable condition on the weight exponent « in order to obtain the density
result in the case of a three dimensional Lipschitz-polyhedron.

In order to define the weight function w, we introduce the following notations which describe the domain
near the geometric singularities.

Let S (resp. &) be the set of vertices (resp. edges) of at least one ;. The subscripts ext and int will denote
exterior and interior vertices or edges as before, and the set Seyt (resp. Eent) admits the following splitting,
according to the different boundary conditions:

SD - Seztm FoDa SI = Sert \ SD;
€ = EertN T, €1 = Euut \ Ep.

For a vertex S € S, let I'g be the polyhedral cone which coincides with ) near S and let Gg be the intersection
of T's with the unit sphere. We shall use local spherical coordinates (rg,os) centered at S. To each edge e
adjacent to the vertex S, corresponds a corner of Gg denoted by S.. A neighbourhood of the point S, may thus
be mapped on an infinite plane sector which can be written in polar coordinates as

CS,e = {(195,6; ‘PS,e) | 195‘,3 > 07 0< PS8 < WS,e}-

Next, let e € € be an (exterior or interior) edge with opening angle we € ]0,27] (we = 27 if, and only if,
e € Eint). Without loss of generality, we may assume that e is supported by the z-axis and we denote (r., 0, z)
the corresponding cylindrical coordinates. In particular, we have

re(z) = dist(x, €) Ve € Q.
Let us fix R, > 0 and h, > 0 and introduce the two-dimensional domain
D¢ :={(recosbe,resinbe) | 0 <re < Re,0 <0, < we}

such that the dihedral cone

D.=9Q. xR (39)
coincides with  for any z €] — he, h.[ and does contain no other edge nor any vertex of 2. To each Q; containing
e, there corresponds a unique set ). ; C Q.. Therefore the partition P induces a natural partition P. of €.
(and thus D.) for which ¢ and p are piecewise constant and depend only on §. Namely, we take

€ej = €5 0n Qe j X R,
frej = pij on Qe j X R.

We finally denote I'c o (resp. I'c ) the edges of Q. and Fe o =Tc o X R (resp. Fe ) the corresponding exterior
faces of D, containing e.
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If we denote by ds(x) (resp. dg) the distance function to the set S (resp. &), i. e.
ds(zx) = dist(x,S) and dg(x) = dist(z, &),

we clearly have
dg X Ts
in any sufficiently small neighbourhood Vs of the vertex S, and

d‘g%T‘e

in Q¢ x] — he, he[ for sufficiently small numbers R, and he.
In order to define the weight function, we need to introduce another distance function p, taking into account
the edge/vertex interaction. Let e € £ be the segment between the two vertices S and S’. Then we define p, by

Te = Pel'STS! . (40)

In a sufficiently small neighbourhood of the vertex S, the function p, is equivalent to the angular distance Vg .
near the edge e, while
Pe = dg far from S.

The definition of the weight function then reads as follows (see the definition of global weights in [18]):
Definition 2.12 (Weight function in three dimensions). Let Q C R? be a Lipschitz-polyhedron. The weight

function w is defined by
w(x) = (H rs> <H pe> (41)
SeSo ec&o

where §g C S and &y C & satisfy the following compatibility condition: if e € &y is an edge with end points S
and S/, then S € & and S’ € Sy.

It has been proven in [18] that an equivalent definition is
w(x) = dist (2, Sy U &) .

This corresponds to the simple weights of Costabel-Dauge, where the set Sy U & is a so-called wire basket, in
the spirit of [36].
As in two dimensions, we have the

Proposition 2.13. Let Y = L2(Q) with a weight function as in Definition 2.12. Then (4) does hold for any
a € [0,1].

Proof. As in two dimensions, the first imbedding L?(Q2) — L2() is obvious. For the second imbedding, we
proceed by duality, proving that

HM Q) — L% ().
Near an edge, this follows as in two dimensions from the classical Hardy inequality. Near the vertices, we may
use Proposition 5.1. in [30] since the definition of weights therein is equivalent to Definition 2.12. O

We next describe the vertex and edge singularities of the operator A. with Dirichlet boundary condition,
i. e. with domain D(AP¥[L2(€)]). The set A, s of positive vertex singular exponents is related to the spectrum
of the nonnegative Laplace-Beltrami operator L. g. More precisely, it is the Friedrichs extension of the triple
(H. 5,Vs,ac5), where H. s = L*(Gg) with the inner product

(W, ). = /G ey do,
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the space Vg being equal to H} (Gg) if S € Seyt, and Vs = HY(Gs) if S € Sint, and finally

aes: Ve x Vg = R: (¢,¢) — e grad, ¢ - grad, ¢ do.
Gs

The operator L. g is a nonnegative selfadjoint operator on H, g with a compact inverse. Let 0 < vy < wvy---
be its eigenvalues repeated according to their multiplicity. We further denote by ¢; € Vg the eigenfunction
associated with v;. According to [19], we have

1 1
AE,S\N:{_§+ VJ+Z|.]21}\N

and 0 € A. 5. For A € A g, we will denote by ¢, the eigenfunction ¢; for which A = —% ERViZ s i (with the

above convention ¢, is uniquely defined). As in two dimensions, for S € S the standard singularities of the
operator A, at the vertex S € S are given by (27).
As the edge e of ) corresponds to a vertex S, of ()., the set A, . of edge singular exponents is given by

A57e = AE,Sea

where A, g, is the set of corner singularities defined in §2.3 (here at S. in €.). In other words, the edge
singularities are induced by the corner singularities at S, in Q..
The goal of this subsection is to show the following density result:

Theorem 2.14. Let &y C £ such that
{e€&pU&int| AceN]0,1[#0}U{e € &r| Acen]0,1/2(# 0} C &. (42)

Let S C S such that
{S€SpUSint| Ae,sn0,1/2[#0} C So (43)

and assume that & and So satisfy the compatibility condition of Definition 2.12. Assume further that
1/2¢ Acs,VS €S and 1 ¢ A, Ve € E. (44)

Let Y = L2(Q) where a € [0, 1] satisfies

a > 1—min(A;N0,1]) Ye € E N (Ep U Eint) (45)
a > 1—min(A;N0,1/2[) Ve € ENEr (46)
a > 1/2—min(A;sN]0,1/2]) VS € So N (Sp U Sint) (47)

Then the space H[Y] N PH?(Q;P) is dense in H[Y].

The arguments of the proof of Theorem 2.14 are similar to those in [29] (Theorem 5.1). In a first step, we
reduce the density problem from H[Y] to that of the closed subspace

HolY] ={p € H| ¢r € Hy(F) VF € Fr }

which makes sense if we define the linear form [ involved in the definition of H[Y] by

W)=Y [ els)ds

ecfr v €
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(we recall that this definition is meaningful since the trace on a face F € Fy of any element of H[Y] belongs to
HY(F) < L'(e)). As in [29] (Proposition 5.3) we have the

Proposition 2.15. If Hy[Y] N PH?*(Q;P) is dense in Ho[Y], then H[Y] N PH?*(Q;P) is dense in H[Y].

As in two dimensions, the proof of Theorem 2.14 relies on a careful analysis of the dual singularities associated
with the weighted space Y, that are defined by:

MY]={geY | <g,Ap>y=0Vp e H[Y]NPH*({;P) }. (48)
The standard dual singularities are given by
N ={g € L*(Q) | (9, Acp) = 0 Vo € DA [L*(Q)]) N PH*(P) } - (49)

From [29] (Proposition 5.5 and Lemma 5.6) we recall the following characterization of the elements of N;:

Proposition 2.16. Let g € N.. Then g is solution to

Ag=0 in Q;Vj, (50)
g=0in H Y?(F)VF € Feu. (51)
[g) =0in HY?(F)VF € Fin, (52)
[£0,9] =0 in H32(F)VF € Fipy. (53)

Moreover, g belongs to |J; C>(Q; \ V) where V is any neighbourhood of the geometric singularities of 0 (edges
and corners of at least one ;).

Proof of Theorem 2.14. Let O[Y] C Hy[Y] be the orthogonal space of Hy[Y] N PH?(Q;P) and take f € O[Y],
ie.
<Acf,Acp >y + Z (grady f,grady @)o.r = 0 Vo € Ho[Y] N PH?(Q;P).
FeFr
Now, let g = A.f. Since L?(Q2) — Y, we get

< g,Acp >y= 0V € D(APT[L2(Q)]) N PH?(; P).
As in Proposition 2.8, the function g, = w?®g thus belongs to A and satisfies
w™%g, € L*(9Q).
Moreover, applying the arguments of the proof of Proposition 5.7 in [29], we show that
—€0hga = Arf € HY(F) VF € Fy.
According to Proposition 2.20 below, these supplementary regularity results guarantee that g, belongs to

HY(Q). On the other hand, g, is a solution to the homogeneous problem A.g, = 0 in Q and g, = 0 on 99 (see

Proposition 2.16). This implies that g, vanishes in  and so does g = w™2%g,.

Finally, f € Ho[Y] is the variational solution to the homogenous problem
Acf=0 inQ,
f =0 on FD,
ATf =0 on P[.

Hence, f =0 in Q which proves the density result. O
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According to the proof of Theorem 2.14, we shall consider in the sequel a function g, € N satisfying
w g, € L*(Q) (54)

and
£0nge € HY(F) VF € Fy. (55)
In order to describe its behaviour near an edge e, we introduce a cut-off function ¢, with respect to e which
is given by
Pe(Te; e, 2) = h(re)x(z) (56)
with ¢ € C*([0,00]), v =1if0<r <rg/3,p =0if r > 2ry/3 and x € D(] — h,h[), x =1 on [-h/2,h/2].
Thus ¢, = 1 in the neigbourhood of an interior part of e, and ¢, vanishes near any other geometric singularity
of Q.
In Lemma 2.17 below we prove that the elements of A coincide with those of the corresponding space on
the infinite cone D, modulo a function of class H'. To this end, let us introduce the space

-/\/E(De) = {4,0 € LQ(De) | (‘Pa AE"/))De =0V € PHQ(DE;PE) N (HO[Y] n H&(De)) } :

For any function ¢ of L?(Qex] — h, h[), ¢ denotes its extension by zero on D.. We now prove the

Lemma 2.17. Let g, € N: with 0 < o < 1. Let . be as in (56). There is a unique function g* € H(D,)
such that

90, ‘= g* _Q/OEEJ\/E(DE)' (57)

Moreover, if go satisfies (54) and (55), then
d, *go,o € L*(D.) and (58)
£090.o € H Y (F.p) if e € & (59)

where d.(z) = dist(x, e) denotes the distance function with respect to the edge e.

Proof. (57) and (59) have been proved in Lemma 5.8 in [29].

Now, suppose that g, € N satisfies in addition (54). We deduce from Hardy’s inequality that g*/d. belongs
to L%(D.) since g* € H}(Q) and d. = r, in D.. Hence, d;%g* € L?(D,) for all a € [0,1] since d;* < d_! near
e

In order to prove that d_%p.g € L*(D.), we notice that
Az “Pefa ~ P “ga on Qe x| — h, b

whereas d; *c.ga = 0 anywhere else. We thus conclude with the help of condition (54). O

The main tool to investigate edge singularities is the partial Fourier transform in the edge variable z: for a
given function v € L?(D,), we denote

Fula€) = 0(a'.§) = 2= [ ola’ ez,

Then we have the following

Lemma 2.18. Let g € No(De). Then §(-, &) € Nz pire for almost every & € R (here Nz pire, defined in §2.3,
is based on Q). instead of Q). If in addition, g satisfies (58) and (59), then

o *9(-,€) € L*(Qe) and (60)
£0ng € H Y (Tep) if e € & (61)

for almost every € € R.



18 TITLE WILL BE SET BY THE PUBLISHER

Proof. The first part has been proved in Lemma 5.9 in [29]. We deduce from Lemma 2.17 that d_%g € L?(D,).
(60) then follows since de(x) = r. does not depend on z and thus

—

de“g(-, &) =r""g.
In the same way, we get (61) since the normal vector m is invariant in z. O

The following Proposition yields a condition on « in order to get H'-regularity of g, near the edges:

Proposition 2.19. Let 0 < a < 1. Consider an edge e € £ and assume that 1 # A. .. Let go € N: satisfy
(54) and (55). Assume that oo > 1 — min (A N)0,1]) if e € (Ep UEint) N, and o > 1 — min (A, .N]0,1/2]) if
e € ENE. Then vega € H () where @ is a cut-off function defined as in (56).

Proof. Lemma 2.17 implies that there exists go . € Nz(D.) satisfying (58) and (59) such that go o + Pega €
H}(D.). Under the given assumptions on «, we then deduce from Lemma 2.18 and Section 2.3 that

9/0771('75) =0

for almost every & € R which yields
90,0 = 0 on De.
In other words,
Peda € Hy(De)
which completes the proof. O

We are now able to prove the following global regularity result:

Proposition 2.20. Let 0 < o < 1. Let go € Ne satisfy (54) and (55). Assume further conditions (44), (45),
(46) and (47) to be true. Then g, € HY(Q).

Proof. Under the given assumptions, we already know that g, exhibits the H'-regularity away from the corners.
As the function g, belongs to N (and thus to L?(f)), one infers the following decomposition near a vertex
Ses
«(rs,0s) Zgl (rs)di(os),
leN
where ¢; denotes the orthonormalized eigenfunction corresponding to the (nonnegative) eigenvalues v; of the
Laplace-Beltrami operator L. ¢ on Gg (for the inner product (-,-).). For [ € N, the coefficient ¢; is given by

gi(rg) = alrs + bﬂ"s

MN=—rayfutrtandp= -t futl
1= 5 vt gandu=—3 vty

(see [23] for details). Notice that A\; > 0 and p; < —1 since v > 0 for all [ € N.

As the function g, belongs to L2(£2), we notice that b; = 0 for any [ € N such that pu; < —3/2.

Now, let S € S;. Since g, € N, is satisfies a Dirichlet boundary condition on 9 (see Proposition 2.16).
Hence, all eigenvalues v; are positive which implies p; # —1. Moreover, there is at least one face F' € Fy such
that S is a vertex of F. Taking into account that £0,,9, € H1(F) thanks to (55), we deduce as in [29] that
by = 0 for all y; €] — 3/2, —1]. Therefore

where

a(rs,os) E ary éi(os)

leN

and g, belongs to H! in the cone I's(R’) with basis Gs and height R’ for any R’ < Rg.
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Next, take a vertex S € Sp. Again, y; < —1 thanks to the Dirichlet boundary condition. If A. ¢N]0,1/2[= 0,
we have p; < —3/2 and hence

9a(rs,a5) = Y airs ¢i(os).

leN

We thus conclude as before.
Now, let S € S such that A, sN)0,1/2[# (). Taking into account that g, satisfies (54), we must have

arg® ey (os) € L2(Q) (62)

and
blrg(aJr)\lJrl)le(US) c LZ(Q) (63)

for any \; where we used that A\; + pu; = —1. (62) is always satisfied since \; > 0 and 0 < o < 1. Thanks to
(47), a > L — N, for any A € A, sN]0,1/2[. Hence, property (63) is satisfied if and only if b = 0 for all I € N
because o+ A\; + 1 > %

Again, we conclude that g, € H(I's(R’)) for any R’ < R.

Finally, let S € S;nt. Now, 1 = 0 is an eigenvalue of the operator L. s and ¢; = c. denotes the associated
(constant) eigenfunction. g, thus splits as follows,

9o = 1(rs)d1(0s) + Y _ai(rs)u(os). (64)

1>2
But g, belongs to M. and thus
/ gaAcns dz = 0,
Q

where g = ng(rg) is any regular cut-off function such that ng = 1 near the vertex S and 7g = 0 near the other
vertices. Indeed, such a function belongs to D(AP™[L2(Q)]) N PH?(Q; P) and is admissible in the orthogonality
relation that defines N (see (49)). As in [24], we prove that

o0 2
/%&mmz%/gWﬁ%%H"www%W
Q 0 rs

since
/ 6(;51(05) do =0
Gs

for all I > 2. It follows that the integral of the second term in (64) vanishes. But gi(rs) = a; + b175" and an
elementary calculation shows that

> 2
| ars)0irs) + 2o ar = o
0

which yields b; = 0. We then conclude as in the case S € Sp that g, € H (I's(R’)) for any R’ < R.

3. DISCRETIZATION AND CONVERGENCE

In this section, we describe the discretization of problem (P[Y]) by means of conforming nodal finite elements
of order k, and we prove convergence of the numerical method.
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3.1. Discretization

Consider a family of simplicial meshes (73,)n of €, with h = maxgp e, hi, which is compatible with the
partition P (in the sense that all simplices lie in exactly one Q;, j =1,...,J). With 7}, we associate the space
of vector finite elements

X, ={v, € PH'(QP)| vy, € Pi(T)?, VT1 € Tp, } (65)
where d =2 or d = 3. Let {M1}1,. non be the set of nodes of the mesh 7;. The discretization space V7, is the
subspace of X, defined by V, = X, NW[Y] C PH'(Q;P) N W[Y], that is

Vi = {vh S Xh| ”['vh X 'n](M]) = O”; ”[5vh . 'n](M]) =0" VM7 € Fins ”(’Uh X ’I’L)(M[) =0" VM; € fD}.
(66)
This discretization is conforming in the sense that V', is a subspace of the vector space involved in the variational
formulation of the continuous problem P[Y]. The elements of V', are continuous on each subdomain 2; and
satisfy the transmission (resp. boundary conditions) pointwise on the interfaces F' C F;,; (resp. boundary faces
F C Fp) since the restriction of Lagrange Finite Elements to the element faces is unisolvent.

Note that the discrete transmission ( resp. boundary conditions) ”[v, x n|(M;) = 07, ”[evy, - n|(M]) = 0"
(resp. " (vp, x n)(My) = 07) are ambiguous on the set of vertices S of the domain € (and also on the set of edges
€ if d = 3) and will be specified hereafter for a two-dimensional problem. In three dimensions, the ideas are
the same, but the implementation is more technical (see for instance [6]). For simplicity, we also assume that
F[ = (Z), i. e. -FD = -’Tewt'

We start our investigation with boundary nodes belonging to a single subdomain. For each boundary node
situated at the interior of a boundary face, we apply a rotation in R? which maps the canonical basis (€, &)
on a local basis of the normal and tangential vectors. In the latter basis the vector boundary condition becomes
decoupled and standard elimination techniques apply. Next, let the boundary node be the vertex of a single
subdomain €;. The two boundary faces that form the vertex have linearly independent normal vectors and
it follows from the continuity of the fields of X in €, that two linearly independent vanishing boundary
conditions have to be imposed at the vertex. The zero value of any field uw;, € V) at this vertex is thus
completely determined by the boundary conditions.

Next, we describe how the transmission conditions are taken into account at the interfaces. The first step is
a replication of the degrees of freedom according to the number of subdomains the associated node does belong

to. To fix ideas, let My C]g‘e,e/ be an interior node of the interface F, . = Qe N Qe € Fine. My belongs to
subdomains Q. and Q. and the associated degrees of freedom will thus be doubled. Let U¢ = Uf .€: + U7 ey
(resp. U¢ = Uf:me} + Uf:yé'y) be the (vectorial) unknown associated to M; on Q. (resp. €2./). The transmission
conditions at M7y read

eelf fieer = €oUf “fleer Tieer X Uf = ileer x U (67)

where eer = Neer 1€z + Neer y€y is the unit normal vector on F, .. (67) can be written in matrix form

DR Us = DR, Uf (68)

ge O g 0 Nee! — N
D, = ¢ 7]D)/: ¢ 7andR r = e ey )
¢ <O 1) € < 0 1) ©e <nee’,y Nee’
three elements of Ms(R). Hence, ﬁf/ can be eliminated in terms of U ¢. The matrix R. performs the
transformation of the canonical basis into the local basis of the normal and tangential vectors.
The situation is more involved if M; coincides with a vertex S € S. Let m € N denote the number of
subdomains containing M; as a vertex. If M; € Scyt, then there are m — 1 interfaces Fi .41 having M;

as an endpoint. Thus, u;, has to satisfy 2(m — 1) transmission conditions at M;. For e = 1,--- m, let
Ur = Uf € + U €y denote the degrees of freedom associated with M; on the subdomain Qe. Applying

with
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successively the formula (68), (jf can be eliminated in terms of [j} for all e =2,--- ,;m and we have
m—1
U =TU;, where T= [ Re,e11D, DR - (69)
e=1

But both ©; and 2, have a boundary face with M as its endpoint. Let I'y (resp. I';,) denote this boundary
face and 71 (resp. 7i,,) its outer normal unit vector. Then the boundary conditions read

iy x Up =0 and i, x U* =0 (70)
or, taking into account (69),
ity x Uy = 0 and i, x TU} = 0. (71)

Above, (71) is a linear system in the unknowns U} = U 1,26z + U] €, which admits a non trivial solution if and
only if its matrix is singular. In this case?, the two boundary conditions in (70) are in fact the same, and we
can apply the same techniques as for boundary nodes belonging to a single subdomain. Otherwise, the values
of uy at M7 are entirely determined by the boundary condition, i. e. U f=0foralle=1,---,m, and no degree
of freedom is associated with the node Mj.

A similar situation occurs if M; coincides with an interior vertex. Assume again that M; does belong to m
subdomains. Since M € S;+, there are now m interfaces Fe .11 having M; as an endpoint with the convention
that Fi, m+1 = Fm,1. The unknowns ((jf);”zl satisfy the block linear system

Ml,l —Ml,Q 0 T 0 [jll
0 My Mo - : Uy
) _ D)
: ) ) | o i 0 (72)
0 “e 0 Mm,17m71 _Mm*Lm UZI
_M'rml 0 P O Mm,m U}TL

where M . = D.RY y; and M1 = DeyiRE 4. Let My, € My, (R) be the matrix in (72). Again, this
system admits a non trivial solution if and only if its matrix M, is singular. In this case, it may easily be seen
that My, is of rank 2(m — 1) and there are thus 2 degrees of freedom associated with the node M;. Otherwise,
the values of uy, at M; are entirely determined by the transmission conditions and we have necessarily ljf =0
for any e € {1,...,m}.

The following three examples illustrate the different situations that may occur. In the first example (see
Figure 2, left), M; is a boundary node belonging to two subdomains €2; and . The normal vector on the
interface F} o is given by 712 = —€; and the matrix R o thus reads

-1 0
ram (30).

gt (20
T == R1’2D2 DIRI,Q - <€02 1> .

The outer normal vectors on I'y and I'y are given by 7, = 72 = €, and the linear system (70) thus reads as
follows in this first case
-1 0\ ~ 0
Ul = ( ) .
(2 9o

2As can be expected by looking directly at the boundary conditions when 71 = iy, .

We have U2 = TU} with
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The degree of freedom associated with the node M is thus U Il’y, while the others, prescribed by the transmission

and boundary conditions, vanish.

In the second example (Figure 2, middle), My is a boundary node that belongs to three subdomains Q;, Q9

and Q3. Eliminating U in terms of U} yields

o =1
U?:<502

The outer normal vectors on I'y and I's are respectively given by 7, = —é, and 73 = €,. Hence, the linear

system (70) reads

0\ =
_) i,
€3

€2
~U}_ =0and =U?, =0
I,x a1l €3 Iy

which implies in turn ﬁf =0 for all e € {1,...,3}. No degree of freedom is associated with Mj.
Finally, the last example deals with an interior vertex (Figure 2, right). M} belongs to four subdomains and
the matrix M, € Mg(R) of the linear system (72) is now given by

—&1 0 1S 0
0 1 0 -1 0 0
0 0 1S 0 —E3 0
-1 0 1 0
Mint =
0 0 €3 0 —&4 0
0 1 0o -1
0 &1 0 —e4
~1 0 0 0 1 0
An elementary calculus yields det(Miy,) = (e163 — £264)?. Hence My is singular if and only if €163 = 264. In
all the other cases, no degree of freedom is associated with M; and U§ =0 for all e € {1,...,4}.
= = Q, Q,
12 an
n, ng Ny
n | Mt }
F TR ;
No3 n, l n23 |
LEP)
Q ——
Q, Q, 3 Ns Q, Hn34 Q,
M3

FIGURE 2. Boundary and transmission conditions at vertices.

At first glance, it may seem surprising to constrain the fields of V', to vanish at a vertex S € S at which the
exact solution field presents an unbounded singularity. The density result however shows that in presence of
an appropriate weight function, the fields in V', are able to recover the singular behavior in the energy norm.
Notice however that no pointwise convergence can be obtained.

3.2. Convergence

To fix ideas, asssume that V}, is given by Lagrange finite elements of order k. The discrete problem is given

on the space V' by
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(PalY]) Find wy, € V), such that
" aup, vy) — w?(eun, vp) = (f, vn) Yon € Vi,
One can prove by a classical contradiction argument (the proof is omitted here), that there exists h, > 0

such that, for all h < hy,, the discrete problem (P[Y]) has one, and only one, solution wuy,.
The following theorem yields the convergence of the nodal finite element method.

Theorem 3.1. Let Y = L2(Q) where o € [0, 1] satisfies conditions (45), (46) and (47). Assume the condition
of Theorem 2.1 to be true and let w? € RY \ o(curl,dive®). Let u be the solution to (P[Y]) with f€ L*(Q).
Consider a family of meshes (Tp,)n. Let up, be the solution to the discrete problem (Py[Y]) where the discretization
space is defined by (66). Then, there exists hg > 0 and C(w) > 0 such that

llw = up|lyy) < Clw) vhilelgh v = vnllyyyy, YR < ho. (73)

It follows that
%LH%JHU_U’IHW[Y] =0. (74)

Finally, if ue W[Y]|NPH?®(Q;P) with s > 1, one has
l|w—wnllyry < CRF=0Vh < by, (75)

Proof. Let us prove (73) first, with the help of a variant of Céa’s Lemma. Indeed, the orthogonality relation
between problems (P[Y]) and (P[Y]) reads

a(u— uy, u, — vp) — w(u— up, e(up, — vp)) =0 Vo, € Vy, (76)
and thanks to the coercivity of a(:,-) on W[Y], there are constants ¢ > 0 and C(w) > 0 such that

cllu— unl[f v — @2 e (w— wh)[F20ya < CW) [l = unllyypy) [|w— vnllyy vy (77)
for all vy, € V. Now, consider the sequence

u— up

w, = ———.
||U_Uh||W[Y]

Since [|wp||yy(y) is bounded, there is a sub-sequence (wjy/) which converges weakly in W[Y] to an element
w € W[Y]. Now, let v € W[Y]. Thanks to the density result of Theorem 2.5, there is a sequence (vy), with
v, € V', that converges strongly in W[Y] to v. From (76), we get a(wy/, vp) — w?(ewps, vp) = 0. Thus,

a(w, v) — w?(ew, v) = a(w — wy, v) — W (e(w — wp), v) + al(wp, v — Vi) — W (EwWH, vV — V).

The right hand side tends to 0 if A’ — 0 due to the weak convergence of (wy/) to w and the strong convergence
of vy, to v. Hence,
a(w, v) — w?(cw,v) = 0 Vv € W[Y].
Since w ¢ o(curl,dive?), problem (P[Y]) has a unique solution. Thus, w = 0, and the whole sequence (wy,)
converges weakly to 0 in W[Y]. We conclude from the compact imbedding of W[Y] into L?(2)? that (wy,)
converges strongly to 0 in L?(Q)%.
Thus, there is hg > 0 such that

C 2
"2 (u— wp) |13 20 < 52 1= unllwiy) Vh < ho.
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Consequently, we deduce from (77) that

2C(w
[|lu— uh||W[Y] < c( ) [|lu— "’hHW[Y] Yo, € Vi, Yh < ho,

which yields (73).

In [19] (Theorem 2.1), the density of W[Y] N PH*(;P), s > 1, in W[Y] N PH"'(;P) has been proven
in the case I'y = (). The generalization of this result to the case I'; # () is straightforward. Under the given
assumptions on o, WY N PH?®(;P) is thus dense in W[Y] for any s > 1.

Now, let s > 1 be given, and let n > 0. There is ug € W[Y] N PH?®(Q; P) such that

lu = urllwp) <0

On the other hand, if II;, denotes the standard piecewise (with respect to the partition P) interpolation oper-
ator for Lagrange finite elements, then II,ur € V5. Indeed, ug satisfies the transmission (resp. boundary)
conditions on each node located on an interface (resp. boundary face), and so does Il ur. Since the restric-
tion of standard Lagrange finite elements to the element faces is unisolvent, IT, ug satisfies the transmission
(resp. boundary) conditions on any interface (resp. boundary face). Standard error analysis for Lagrange finite
elements of type Py yields the following estimation in the PH!(Q; P)-norm:

|lur — HhuR”PHl(Q;P) = C(“R)hmin(mfl) (78)

where the constant C(ug) does depend on ug, but is independent from the mesh size h.
We finally deduce from (73) and (78) that there is hyp > 0 (depending on 7)) such that

[lu— un|ly vy < Cn Vh < ho.

This proves (74.
The last estimate (75) follows by standard error analysis (replace ur by u above). O

4. NUMERICAL RESULTS

In this section, we provide numerical illustrations for the application of the weighted regularization method
in two-dimensional polygons. We further restrict ourselves to the case I'y = (). According to Theorem 2.10, the
space Y is realized as a weighted L?-space. Thus, the variational space W, = W[L2 ()] is defined as

W, = {u € H(curl; Q) | div(eu) € L%(Q); (ux n)jpo =0}, (79)

with ad hoc values of a (see Theorems 2.10 and 2.14). It is equipped with the semi-norm

/
2 B
lulw, = (Jleurlulff g + | diview|}s @) -

which is equivalent to the full norm, thanks to the compact imbedding of W, into L2(£2)2.
Finally, we slightly modify the definition of the sesquilinear form a(-,-) in order to get a better conditioning
of the linear system. Actually, we take

J
ag(u,v) = /Qufl curlu - curlvdz + 3 Z sj_Q /Q w?® diveudivevdr (80)
=1 3

with 5 > 0.
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4.1. Source problem

In this subsection, we provide numerical tests for the computation of the solution to problem (P[Y]) on a

two-dimensional L-shaped domain,
Q=] - 1,1\ ([0,1] x [~1,0]).

We consider the static case where w = 0. The computational domain is split into three sub-domains according
to Figure 3. Notice that the only singular vertex is located at (0,0). Indeed, no singular behavior does occur
near the other vertices of 0f2 since they correspond to a convex opening angle in a homogeneous medium and
the solution to (P[Y]) is thus of class H' in a neighborhood of these vertices. The situation is similar near
(—1,0) and (0,1). Indeed, the interfaces are orthogonal to the boundary, and classical extension techniques
allow us to prove that any scalar potential has piecewise H2-regularity near these vertices. We thus deduce
from Theorem 2.3 that the solution to problem (P[Y]) is piecewise H! near (—1,0) and (0, 1).

We define the weight function w by

w(x) = min(r, 1)

where (r,0) are the polar coordinates with respect to the origin.

FIGURE 3. L-shaped domain with 3 subdomains.

The electromagnetic coefficients are
i =1Vj=1:3; =1, eg =e3=¢>0.
We are then able to construct a family of vector fields that belong to the space
{we H(curl; Q) | div(ew) € L2(Q) }.

To this end, we define the scalar potential
Sx(r, 6) = r¢(6)

where A > 0 is solution to the non-linear equation

tan)%tan)\gzg (81)
and ¢ = (¢;);=1:3 is given by
¢1(0) = sin(\0) ifo<6<1z
sin 2%
$2(0) =neos(A\(0—3T)) f T <f<m p=-—L
cos 2%

4
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Notice that ¢ satisfies equations (24)—(26) and thus A is a singular exponent with respect to the vertex S = (0, 0).
Now, let
E) = grad S).
We have
curl Ey =0, and div(eEy) =0in

Further, E) has a vanishing tangential trace on those segments that form the reentrant corner at S = (0,0), i.e.
E), xn=0for § =0 and 6 = 37/2.

Notice however, that E) does not satisfy the perfect conductor condition on the whole boundary 9€2. We thus
have to deal with a non-homogeneous boundary condition. Numerically, this is achieved by a transformation
into local coordinates and a technique of pseudo-elimination involving a discrete lifting of E) X n on each edge of
the boundary which vanishes on the interior nodes of the mesh. Notice that such a lifting determines completely
the solution field on the vertices of 9S2 since two linearly independent components have to be fixed. We get the
following regularity result for Ej,
E, € PH*(Q;P) Vs < A

However, if A\g > 0 is solution to (81), so is Ay = A\g + 4k for k € N. We thus get a family of vector fields that
become more and more regular as k increases. It is clear that the smallest positive value Ag, solution to (81)
depends on the choice of the parameter . More precisely, if € tends to zero, so does Ag. Thus, the smaller is ¢,
the stronger is the singularity at S = (0,0) of the corresponding vector field Ey,.

Now, we choose the right hand side fin such a way that E) is the exact solution to the problem. Since
curl E, =0, div(eE)) = 0 and w = 0, this actually means that f= 0.

We present the error E) — E" in the semi-norm

1/2

3
2
_ h hy h oy N
ea =a1(Ex— E",E\ — E") = HCUI“I(EA —FE )Ho79+ Elﬁj | div(Ex — E")[|72 o,
iz

as well as in the L2-norm
s = || By — E"| 122

For both norms, we give the numerical convergence rate

_ log(e(he—1)/e(he))
log(he¢—1/he)

of two successive simulations corresponding to mesh parameters hy_1 and h, respectively. Notice, that e, may
be computed exactly since curl Ey =0 and div(e Ey) = 0. Hence,

e2 = (E")'AE"

where A is the stiffness matrix corresponding to the sesquilinear form a1 (-, -). The computation of the L?-norm
is a little bit more involved since Ey does not belong to CY and thus, its standard interpolate does not exist.
Instead, we write
€ = | Exl22qye — 2(Bx, B") + (B")'ME"

where Ml denotes the mass matrix. The first term can be written as a one-dimensional integral which is computed
using Simpson’s rule. The second term is computed using Gauss quadrature of order 2. Higher order quadrature
rules have been tested, but do not improve significantly the results.

In tables 1 to 3 below, N denotes the number of nodes and the number of degrees of freedom is thus given
by 2N.
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P;-FEM, uniform meshes

A =4.535 a=0 a = 0.95
h/v2 N €q T es T €q T e T
1/2 21 1.698e+01 — 2.096e+00 — 1.600e+01 — 3.421e+00 -
1/4 65 9.071e+00 0.9041 7.095e-01 1.5625 | 8.613e+00 0.8936 1.113e+00 1.6202
1/8 225 | 4.615e+00 0.9751 1.505e-01 2.2371 | 4.435e+00 0.9575 2.631e-01 2.0807
1/16 833 | 2.318e+00 0.9936 4.122e-02 1.8681 | 2.242e+00 0.9845 7.604e-02 1.7906
1/32 3201 | 1.160e+00 0.9984 9.108e-03 2.1782 | 1.128e+00 0.9902 2.033e-02 1.9032
P>,-FEM, uniform meshes

A =4.535 a=0 a = 0.95
h/v2 N €q T es T €q T e T
1/2 65 2.501e+00 — 5.695e-01 — 2.225e+00 — 5.724e-01 —
1/4 225 | 6.392e-01 1.9686 1.894e-01 1.5878 | 5.790e-01 1.9425 1.900e-01 1.5910
1/8 833 | 1.614e-01 1.9849 3.795e-02 2.3199 | 1.485e-01 1.9626 3.796e-02 2.3236
1/16 3201 | 4.057e-02 1.9926 1.053e-02 1.8494 | 3.742e-02 1.9892 1.053e-02 1.8497

TABLE 1. Regular solution on uniform meshes with different values of o, FEM of type P, and Ps.

First we show numerical results for a regular field with parameters € = 0.5 and £ = 1 and uniform meshes as
shown in Figure 5. This is a validation situation for our code. The corresponding singular exponent is given by
A & 4.535 and thus E\ belongs to PH*(Q;P). We get optimal convergence rates in the semi-norm as well for
the standard regularization (o = 0) as for the weighted regularization (o > 0) for both P; and P, experiments
(Table 1).

Next, we show numerical results for the computation of a singular field. Indeed, for K = 0 and € = 0.5 we get
A~ 0.535 and thus E\ ¢ PH'(€;P). In Table 2, we see that the numerical convergence rate tends to zero if
« = 0, whereas it is positive for &« = 0.48 or « = 0.95. On one hand, this illustrates that standard regularization
does not allow one to approximate the singular solution, but yields a spurious solution (see also Figure 6). On
the other hand, according to Theorem 3.1, the weighted regularization method converges to the exact solution
if the weight parameter « satisfies

1-minA. s <a<1.

In the present case, 1 — min A, g ~ 0.465 and o = 0.48 or o = 0.95 are suitable. However, following Table 2
and Figure 6, we see that the numerical convergence rate increases with a.

As shown in Figure 4, switching from uniform to geometric refined meshes (see Figure 5) improves significantly
the numerical rate of convergence (from 7 & 0.32 to 7 &~ 1.21 in the semi-norm e, for finite elements of type
Py). Here, the numerical convergence rate is obtained using least square calculations.

Table 3 contains results for a = 0.95 and refined meshes. It clearly shows the advantage of using P, or higher
degree FE-solutions (instead of P;) for improving both the errors and the numerical rate of convergence. This
is particularly striking for the visualization of the singular field (see Figure 6 where the radial component of the
electric field is represented).

4.2. Eigenvalue problem

In this subsection, we carry out some numerical experiments on the computation of electromagnetic eigen-
modes in a bounded cavity, encased in a perfect conducting material. In other words, we solve the eigenproblem
related to (1) and (3) (with I'y = 0), that is



TITLE WILL BE SET BY THE PUBLISHER

P;-FEM, uniform meshes

A=0.535 a=0
h/v2 N €q T e T
1/2 21 9.679e-01 — 7.186e-01 —
1/4 65 9.368e-01 0.0470 7.028e-01 0.0321
1/8 225 | 9.224e-01 0.0224 6.837e-01 0.0398
1/16 833 | 9.154e-01 0.0110 6.754e-01 0.0176
1/32 3201 | 9.119e-01 0.0055 6.705e-01 0.0104
P;-FEM, uniform meshes
A=0.535 a=0.48
h/v2 N €q T e T
1/2 21 8.933e-01 — 6.528e-01 —
1/4 65 | 7.966e-01 0.1652 5.852e-01 0.1575
1/8 225 | 7.250e-01 0.1360 5.118e-01 0.1935
1/16 833 | 6.706e-01 0.1124 4.591e-01 0.1567
1/32 3201 | 6.274e-01 0.0960 4.139e-01 0.1496
P;-FEM, uniform meshes

A=0.535 a=0.95
h/v2 N €q T es T
1/2 21 8.251e-01 - 6.119e-01 -
1/4 65 6.423e-01 0.3613 5.291e-01 0.2098
1/8 225 | 5.189e-01 0.3079 4.559e-01 0.2147
1/16 833 | 4.138e-01 0.3262 3.969e-01 0.2000
1/32 3201 | 3.395e-01 0.2857 3.435e-01 0.2088

TABLE 2. Singular solution on uniform meshes with different value of oo, FEM of type P;.

P-FEM, refined meshes

A=0.535 a=0.95
h N €q T es T
0.471 58 5.865e-01 - 4.852e-01 -
0.347 135 | 4.454e-01 0.8966 4.091e-01 0.5556
0.287 314 | 3.186e-01 1.7693 2.993e-01 1.6504
0.236 672 | 2.598e-01 1.0357 2.201e-01 1.5621
0.158 2528 | 1.610e-01 1.1989 1.461e-01 1.0254
P,-FEM, refined meshes
A=0.535 a=0.95
h N €q T es T
0.471 203 | 3.819e-01 - 3.959e-01 -

0.347 497 | 2.166e-01 1.8466 2.449e-01 1.5648
0.287 1191 | 8.281e-02 5.0808 9.560e-02 .9690
0.236 2585 | 2.259e-02 6.5997 1.609e-02 9.0536

S

TABLE 3. Singular solution on refined meshes, FEM of type P; and P».
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FIGURE 4. Singular solution: numerical rates of convergence for the P;-FEM with uniform and
refined meshes.

Maillage EF-P1: 225 noeuds, Qualite = 1.4 Maillage EF-P1: 135 noeuds, Qualite = 2.4

FIGURE 5. Exemple of meshes used for calculations. Left: uniform, 384 triangles (225 vertices in Py).
Right: geometric refinement, 228 triangles (135 vertices in P).
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(82)

= 0.5 with the same

Top left: P; solution with

€3

)

)

in €,
in

(left) and P> (right) solution with weighted
on ON.

w2cE

Bottom: P
curl E)
0

1

)

cFE
Exn=0

(

curl (u

E, of the singular solution: &1 = 0.5,e2 = 1
div

Note that we write down the constraint on the divergence of the field, which was implicit in the original

ox

As a matter of fact, it will be used explicitly to approximate the eigenmodes, via a mixed,

standard regularization (o = 0). Top right: exact solution. Middle: P; (left) and P> (right) solution

refined mesh of 564 triangles (314 vertices in Pi, 1191 vertices in P»).

with weighted regularization (o = 0.48).

FIGURE 6. Radial component
regularization (o = 0.95).

Find (E,w) such that

formulation (1).
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augmented variational formulation (see (84) below). Let us describe briefly how it is constructed (we follow the
Annex of [12]).
Let us introduce
K,={ueW,|div(eu) =0}.
It is common knowledge that an equivalent variational formulation of the eigenproblem (82) is
Find (E,w) € K, x RT such that

(! curl E,curl v)g g = w?(¢E,v)o0, VveE K,. (83)

However, it is difficult to build a conforming discretization in K, so the divergence-free condition on FE is
preferably taken into account as a natural condition. In other words, one solves the eigenproblem in W,,. There
exist two approaches: the parameterized one is described in [18], and the mized one in [11] (see also [9] for the
abstract theory).
The first approach relies on the introduction in the left-hand side of a parameterized regularization term namely,
with a parameter s > 0,
s(diveE,divev) 2 (q)-

The idea is two-fold. One notices first that the left-hand side now defines a scalar product on W, for any
s > 0. However, one captures both div e--free eigenfields and curl-free eigenfields. The first family corresponds
to the actual electromagnetic eigenmodes, whereas the second family is made of spurious modes. So, one allows
the parameter s to vary: for two different values of s, one recovers the same two families, but with different
eigenvalues for the spurious modes. The second idea is thus to let s vary, to keep only the eigenmodes with the
”numerically constant” eigenvalues, and to drop the others. For other alternatives based on this technique, we
refer the interested reader to [15].

The second approach consists in keeping the constraint on the dive- of the eigenmodes explicitly in the
variational formulation, thus resulting in a mixed approach. Also, one adds a stabilizing term like

(sdiveE,divev)r: )

in the left-hand side, to deal again with a scalar product on W,,. Here, s is fixed, piecewise constant, with
s(z) > sop > 0 a.e.: following (80), we choose s; = ﬂsj_Q, j=1,...,J. Following [11,12], one finds that the
eigenproblem (82) is equivalent to the mixed, augmented variational formulation

Find (E,p,w) € W, x L2 _ () x R such that

ag(E,v) +b(v,p) = w?(cE,v)0.0, YveEW,
b(E,q) =0, VYgeL?,(Q).

Above, the sesquilinear forms ag(-,-) and b(-, ) are respectively given by (80) and

b(u, q) = (diveu,q)r2 )-12 (o) = /Qdiv cuqdz.

Indeed, one can prove (simply) that the Lagrange multiplier p that appears in (84) is always equal to zero,
because the bilinear form b satisfies the inf-sup condition with respect to the spaces W, and L% ().

Then, one proceeds by discretizing the electric field as before (vector Py Lagrange finite elements), whereas
the multiplier is discretized with scalar P,_; Lagrange finite elements. In particular, in order to guarantee
the discrete inf-sup condition, this choice imposes that & > 2. There is one further restriction on the choice
of the discretization of the Lagrange multiplier. If there exists vertices and/or edges located on the boundary
that induce a singular behavior of the field (id est, either reentrant corners and/or edges in a homogeneous
medium, or at the intersection of two or more media), one should use discretized multipliers that vanish in a
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neighborhood of these geometrical singularities. For details, we refer to [14], in which the case of a homogeneous
medium with geometrical singularities is treated extensively.

FIGURE 7. Checkerboard with 4 subdomains.

For illustrations purposes, let us consider the two-dimensional sample configuration of Figure 7: the checker-
board domain of interest is the square Q =] — 1,1[2, and it is divided into four squares with different values
of e. We first remark that there is no singular behavior induced by the intersection of the interfaces with the
boundary. Again, this stems from the fact that the interfaces are orthogonal to the boundary. Therefore, the
set Sp reduces to the center {S} of the square.

We carried out the numerical experiments with € = 0.5, or ¢ = 1078, on a series of three successively refined
graded meshes (labeled mesh #1, #2 and #3). The meshes contain 403 (resp. 1612, 6448) triangles and 231
(resp. 864, 3339) vertices. The discretizations using the Taylor-Hood P, — P; finite elements yield discrete
problems with 1841 (resp. 7310, 29129) d.o.f. The weight is implemented with o = 0.95 and the stabilization
term with 8 = 5. Our results are compared to those obtained by M. Dauge (see [20]). The smallest 6 Maxwell
eigenvalues up to eight digits are listed in Table 4.

€ 0.5 1078
A1 | 3.3175488 | 4.9348022
Ao | 3.3663242 | 7.2252112
A3 | 6.1863896 | 24.674005
A4 | 13.926323 | 24.674011
A5 | 15.082991 | 24.674011
X¢ | 15.778866 | 27.868851

TABLE 4. Maxwell eigenvalues in the checkerboard domain (M. Dauge’s computations).

The relative errors on the computed eigenvalues,

T = [Anke — A6l /| Akl

are reported in Tables 5 and 6.
When & = 1078, we note that there is a triple eigenvalue at 24.674, which seems hard to capture numerically
(see the residuals r3, r4 and 75 of Table 6).

Finally, we conclude this series of experiments by the computation of eigenvalues (for ¢ = 0.5) using a
formulation without weight, i.e. we set & = 0. We report the first 6 computed eigenvalues in Table 7. As
expected [11], since one solves a different (variational) problem, one fails to capture the singular eigenmodes
(here A1 or A2), and new ones appear (Ap,2).
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mesh #1 #2 #3
o 8.4e-4 | 1.6e-4| 2.7e-5
o 9.6e-3|2.8e-3| 1.1e-3
3 1.0e-3 | 2.2e-4 | 1.6e-5
T4 1.9e-3|8.0e-4 | 1.7e-4
5 8.3e-4 | 7.5e-4 | 1.1e-3
T 3.5e-3|1.2e-3 | 2.7e-4

TABLE 5. Relative errors for € = 0.5.

mesh #1 #2 #3
s 1.4e-3 | 2.6e-4 | 6.2e-5
T2 4.0e-3 | 4.4e-3 | 4.5e-3
3 2.5e-3 | 3.5e-2 | 1.9e-2
T4 1.1e-2 | 3.3e-4 | 6.0e-5
5 5.8e-2 | 1.7e-2 | 2.8e-3
T6 6.7e-2 | 1.1e-2 | 6.5e-4

TABLE 6. Relative errors for ¢ = 1078,

mesh #1 #2 #3

An1 | 3.47142 | 3.43039 | 3.39922
Ah2 | 4.55538 | 4.77986 | 5.10793
An.3 | 6.19368 | 6.18823 | 6.18672
Aha | 13.9537 | 13.9375 | 13.9286
Ahs | 15.1186 | 15.0941 | 15.0848
Ah | 15.9944 | 15.9159 | 15.8680

TABLE 7. Computed eigenvalues in the absence of weights (¢ = 0.5).
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