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Introduction

In recent years, a growing interest for new materials haeariAt particular frequencies,
they behave like materials with negative electric pernititie or/and negative magnetic
permeability.. They include superconductors, left-handed matetfaletc. As a conse-
guence, most mathematical approaches fail to resolve thhespwnding electromagnetic
models. Accordingly, these "negative” materials raise ynelmallenging questions, from
both mathematical and numerical points of view.

We consider here the particular case of an interface betmeasitive” (dielectric) and
"negative” materials. Our main objective is to study thaseiface problems, and to pro-
vide variational settings, which can be easily discretided instance via finite element
methods.

In 2d configurations, they reduce to scalar problems innglteérms like—div (¢V-). Those
scalar problems have been thoroughly investigated: we tleéereader to Refs. 9, 15, 5. It
is now well understood that well-posedness depends chyoiathe ratio of the values af
taken from both sides of the interface. On the one hand, wikeslue is precisely equal to
—1, the interface problem is ill-pos@d On the other hand, well-posedness in the Fredholm
sense has been obtained when its absolute value is smaljleifjoularge enough). This
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result has been achieved under very weak assumptions fliipgaterface, L > coefficient

€) in Ref. 3 where a variational formulation with an additibmactor unknown is used (see
also Ref. 4 for an alternate proof).

The main objective of this paper is to extend these resultsgaase of the 3d Maxwell
equations, especially when battand i exhibit a sign-shift at the interface. With no loss
of generality, we shall focus on the electric field formwati Here, the sign-shift of in

the termcurl | —curl - | raises similar difficulties as in the scalar case. In addjt®

w
new difficulty appears in the constraint on the fielid (ee) = 0, coming now from the
sign-shift ofe.

The outline of the paper will be as follows. In section 1, weedduce thead hocmathe-
matical framework of our study. In section 2, we specificédiyget the constraint involving
a sign-shifting electric permittivity: we prove a new, Weber-like, compactness embed-
ding result for the space of electric fields. Then, in the rgextion, we focus instead on
Maxwell’s equations with a sign-shifting magnetic permiégb .. We build a three-field
variational formulation, thus generalizing the approadtiogated in Ref. 3 for the scalar
problem. Assembling the previous results allows us to ptieeevell-posedness of this vari-
ational formulation, in the general case of sign-shiftiteceric permittivity and magnetic
permeability. Finally we give some concluding remarkspbefecalling some elementary
results in the Annex.

1. Derivation of the model and mathematical framework

Let Q be an open, bounded and connected s@%ivith a Lipschitz polyhedral 9¢2; let

n be the unit outward normal @X2.

It is assumed that the domé&ihcan be partitioned into two simply connected sub-domains
Q; and(), with Lipschitz polyhedral boundarieQ = Q; UQ,, Q1 NQy = 0; letn; be the
unit outward normal t@<;, i = 1, 2. Then, define the interface = 9, N 9. Finally,

we introducd’; = 09; \ %; it is assumed thdt; andI'; are connected.

Both assumptions on the geometfy; (and 2, simply connected]’; andI'; connected)
can be removed. We introduce them for the ease of exposition.

In the sequel, we shall introduce functional spaces witmelgs defined o, or on (a
part of) its boundary©, where© stands for an open, bounded and connected set with a
Lipschitz polyhedral boundary. Typicall? € {Q, Q1,Q5}.

Hereafter we adopt the same notations as in Ref. 3: for alttifies v defined o2, v; :=

v|q, (fori =1,2) and

If v; > 0a.e.inQ;: v = sup v;(x), V""" = inf v;(z).
2€Q; re);
If v; < 0a.e.inQ;: vl = sup |v;(z)], v; = inf |v;(2)].
x€Q; z€Q;

aResults can be generalized to the case of an open, boundedmmected set &k with a Lipschitzcurvilinear
polyhedral boundary. For short, we simply write that thermaries are Lipschitz polyhedral boundaries.
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Let e and s be respectively the dielectric permittivity and the magnpermeability: we
assume that, e 1, z andp 1 all belong toL > (2). The time-harmonic Maxwell equations
(w # 0), with perfect conductor boundary condition 82, read:

weE —curlH = —-J

wpH + curlé =0

div (e£) =p , (1.1)
div (uH) =0

E x ’n,|aQ =0

where(&, 'H) is the electromagnetic field. Quantitipgnd.7, respectively the charge and
current densities, satisfy the relatianp + div 7 = 0. We assume that € L?(Q2). Pro-
vided&, H and.7 belong toL?(Q2) component by component (we shall wriles L?(€2)
hereafter), one finds th&tand are both inH (curl; ?). Recall that

{H(curl; 0) :={p € L*(O) | curlp € L*(0)},
H(div;0) := {p € L*(0) | divp € L*(0)}.

The norm onH (op; O) (for op € {curl,div }) is equal to the graph norm.
We also introduce

Hy(curl;0) .= {p € H(curl; O) | p X n|so = 0}.

Indeed, thanks to the boundary condition&rthe electric field belongs tel o (curl; ).
One can eliminate one of the two fields (beld), to find anequivalent second order
system of equations:

w2e€ — curl (lcurlé’) =wJ inQ

7!
div () = pin Q (1.2)
E x ’n|aQ =0
Let us consider the "electrostatic-like problem™:
Find ¢. € Hg () such that
div (eVe) = p. (1.3)

In the case whenis a constant-sign element 6f°(Q2), solving the problem (1.3) is clas-
sical. Whene exhibits a sign-shift ovef?, (1.3) may be solved using the three-field vari-
ational formulation proposed in Refs. 3 (see also Refs. 4pf&nother solution). More
precisely, suppose for instance that> 0. Then, it is proven that the electrostatic prob-
lem is well-posed under the assumption that one of the twérastsR$ := e; /e*** or
RS := €™ /e is large enough. Note that this type of condition on congréstr e and/or

1) will systematically appear throughout the paper as a sefffitcondition.
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By solving problem (1.3) and setting= € — V., j = iwJ — w?eV ., it is straightfor-
ward to prove that the system of equations (1.2) may be r@nrés
w?ee — curl <lcurle) =7inQ
w
div (ee) =0in Q
e X n|aQ =0

(1.4)

We note that, by contruction, € L*(Q) anddivj = 0, and the fielde belongs to the
functional spaceX defined by

X :={p e Ho(curl;Q) | div (ep) =0in Q} . (1.5)

On the one hand, the "natural” variational formulation af{lis:
Find e € X such that

1
Vv e X, (—curle, curl’v) — w?(ee,v)o.0 = —(4,v)0.0- (1.6)
H 0,0 '

This "natural” formulation highlights the difficulties wealie to cope with. The first one, if

e exhibits a sign-shift, since in this case, there exists salt@nsuring that the embedding
of the functional spacéX into L?(Q) is compact. The second one ifexhibits a sign-
shift, since(u ™' curlv, curl’v)oﬂ has no specific sign, so its coercivity does not hold.
We note that the respective rolesecdndy can be reversed, if one chooses instead to write
the "natural” variational formulation it.

On the other hand, it is easy to prove that the system of esps(il.4) with a solution in
X is equivalent to:
Find (e1, e2) € H(curl; 1) x H(curl;)y) such that

1 .

wlere; — curl | —curle; | = J1iny
H1
1 .

w2eses — curl [ —curles | = Join o
M2

e; X ni‘pi =0 2= 1,2

e| X n1|2 = €2 X TI,”E

€1€1 " M|z = €2€2 - N |n

—curle; x nyy = —curle; x nix

M1 H2

In particular,e; belongs to
Xi = {p € H(curl;Q;) | div(ep) =0inQ;, p x np, = 0}. (1.8)

This setting shall be used hereafter, to build some weledasriational formulations.
In the sequel, we denote By, -)o and|| - ||o respectively the canonical scalar product and
norm of L2(Q) and L*(£2), whereas we denote ky, -)o.; and|| - ||o.; resp. the canonical
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scalar product and norm @ (9;) (and of L*(;)), fori = 1, 2.

In order to build equivalent variational formulations, weali need a few results on
traces of vector fields off (curl; O). We follow Refs. 6, 7.

First (cf. Thms 3.9 and 3.10, and subsection 4.1 in Ref. &)fdalowing integration by
parts formula holds

Vf € H(curl;0), Vg € H(curl; O),
(f,curlg)o.o — (curlf,g)o.o = (f X 150,97190) 5o »

with g7 |50 the trace of the tangential componentgjofAbove, (-, -)s0 is a well-defined
duality product between two differeatl hocHilbert spaces of functions with support on
the boundary) O, and endowed with the "natural” — quotient — norm. Namely,

TL(0O) := {(p X n)po | p € H(curl; O)} ,
) :={(P)r90 | P € H(curl;0)}.

In addition, the trace mappings— v xn 5o andv — vr e are onto, fromi (curl; O)
to the same trace spaces, respectiZely(00) andT R(00) (cf. Thm 5.4 in Ref. 7).

Second (cf. Thms 3.15 and 3.16 and subsection 4.2 in Refiv@ng C 00 (also
with a Lipschitz boundary)y) andy’ = 00 \ 7, considerH (curl; 0) = {p €
H(curl; 0) | p x n), = 0} ; this space is endowed with the usual nornttfcurl; O).
Then, one can prove the following integration by parts fdamu

Vf e Hy~(curl;0), Vg € H(curl; O),
(.f7 C'U/I"lg)gx) - (curl.fvg)ﬂ,(') = <.f X nh/ngh/>v/ ’

The duality product-, -} is again considered between appropriate Hilbert spaces:

) {pxnh |p € Ho,(curl;0)},
’ ={(®)ry |p € H(curl;0)} .

The trace mapping — f x m, is onto, fromH , (curl; O) to TL(v') (cf. Thm 6.6
in Ref. 7).

Finally, for scalar fields that belong ! (©), recall that
Hoy*(7) = {p € H'*(7) | h € H'/*(20)},
wherep is the continuation op by zero to the whole boundary, is the "natural” space for

traces ony, whenever the trace vanishes@@ \ v. This Hilbert space is endowed with the
"natural” norm||p|| ;1,2\ == 1Bl g1/2(90)-
Hyp ()
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2. A compactness result for a sign-shifting: extension of the Weber
embedding Theorem

Whene is sign-constant over the whole doméinaccording td "3 the embedding oK
into L?(Q) is compact (we call this result théfeber embedding Theoreas a tribute to
the landmark paper of Webéf). However, when exhibits a sign-shift, there exists to our
knowledge no result ensuring that the embedding of the fomat spaceX into L*(Q) is
compact. We suppose in this section that- 0 andes < 0. In order to extend further the
range of our theory, we shall establish that, provided atleae of the twalobal contrasts
ine RS := e, /e or RS = """ /e is large enough, the embedding of the functional
space

XY :={p € Ho(curl;Q)|div (ep) € L*(Q)}

into L?(2) is compact. In other words, we propose an extension of\aker embedding
TheoremAs a particular case, the embeddingXf— which is a subset aX'Y" — will be
compact.

We follow the skeleton of the proof given by Hazard-Lenoirttoe same result, when
e > 0 a.e. (Appendix B of Ref. 13). For that, we study separatetydase of curl-free
elements (the spad@ defined below) and the case of divergence-free elements e
X).

First, let us consider the embedding of
Y ={pe XY |curlp=0inQ}
into L*(9).

Theorem 2.1. The embedding of the functional spaceinto L*(Q) is compact if at least
one of the global contrastB{ or RS is large enough.

Proof: We carry out the proof in the case of a large contfst

NB. The proof, in the case of a large contr#st proceeds symmetrically, with the roles
of ; and(), reversed.

Let (U’“) be a bounded sequence¥f In particular, we deal with curl-free fields: as

Qis simpl@egonnected (see page 31 in Ref. 11) and as its boyiglaonnected, one can
replace eacli/* by V¥, with o* € H{(Q). Our aim is to prove that a subsequence of
(V") convergesinL?(Q).

Note that, since finding this subsequence is an iterativege®(one extracts a subsequence,
then a subsubsequence, etc.), we keep the same notatiohdobsequences of a given
sequence.

By constructiony”* solves

Find ¥ € HZ () such that

div (eVF) = div (eU*) in Q. (2.1)
(According to Corollary 4.3 of Ref. 3, this problem is wellg®ul for a large contragi§ )
Let us considep’ solution to
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Find pf € H{ - (€;) such that

i
div (,VpF) = div (,UY) in Qi 613})1 s =0in (Héf@)) . (2.2)

The sequencépl);. is bounded inH*((2;), thus by the Sobolev embedding Theorem we
can extract a subsequence — still callpf) . — that converges i.?(2;). Moreover, since
there holds

(€Y (0F =), Vi —p),., (&(U} - UY))

the subsequencé!), actually converges in!(Q;). Let us introduce the auxiliary
(sub)sequences of tera} := ¢F — p¥; these fields belong &1 (£2;). Moreover,(u!, uk)
satisfies the system of equations
div (equf) =0in Q;
Uﬂn =0

k !
all@F =l s

: 2.3
ufls — uls = h§ 23)
€1an1ulf|§] = _|62|8n1u]2€\2
where the jump is equal th%, := —(p} — pk)|s. By construction, the sequen¢kt);

converges in > ().
Letus set* = u* —u! andh¥ = h% —hl,. From the definition ofi*, we have, integrating

by parts,
(EQVUIQ”,VUIQ”)O’Q = (€20, ub’, us")
oub!
1/2(2),<€2 (9 hkl> 362(2) — (61Vulfl,Vu]fl)071. (24)
This leads to the inequality
- a 5 max
& Vs < llea g 2l oy I8l pagosy + IVl lGe. (25)

To bound the last term of (2.5), we use (implicitly) a Dirietto-Neumann operator in the
process: we go fronf); to the interfacez, and then from® to Q. In other words, it is
possible to consider (2.3) as a problem where the unknowefisat orf),, i. e.u¥ or u!.
From Proposition A.1, we can then verify that

kl kl ] kl kl
Vet lo.n < CEM b gy < CE (1! gy + 108 N 1oy )

where the local contraﬂj’ft is equal to the ratia*** /7", Next, the trace operator,

from H; 1, (Q2) to HéOQ( ) is linear and continuous. L€ /, be its norm (see the Annex
after Proposition A.1 for a discussion): one Has' HH1/2 < Ciyal|Vus
everything back together, we obtain

(e = (CICrya)*e™ ™) Vs [13
mazx int)2
< ||h HH1/2(E){ (Cel t) |:||h]§l||HééQ(E) + 2||u]2€lHHéé2(E):|

aukl
+||€2 ”Hl/Q(E)/} (26)

(=)
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Recall that the subsequen¢g) is bounded inH' (), S0 (u§|x), and (e20,u5 sk
are bounded sequences of respectivély’ () andH,,* ()’ (cf. Proposition A.1). As a
consequence, the right-hand side of (2.6) goes to zero wher co. From the definition
of R§, we deduce thaprovided

R{ > (CIM"Cyy2)?, 2.7)
holds the subsequende5);. actually is a Cauchy sequencefh' (€2,), so it converges.

The same is true fo(p}),. Therefore, in the sub-domaid,, we conclude that, since
Vk = V(ub + pk), the subsequend® %) converges irL?(0s).

In order to end the proof, we must show that some subsequér(§esd) also converges
in L?(Q). To this aim, let us recall the "natural” variational formatibn of (2.1):
Find ¢* € HZ(Q) such that

(eVih, Vo), = (eUk, vu)o, Vo € HY(Q). (2.8)

Letus sel/* = U* — U', " = pF — ¢! and choose in (2.8) the test field= ©*!. We
have, after integrating by parts,

(e Ve, Vei)on — (le2| Vs, Viphoo = —(div (eU™), o*)o .

As (") is bounded in! (), we can extract a subsequence that convergds ).
Since a (sub)sequenge’) ;. converges il (€2,) (provided (2.7) holds the convergence
of (Vh), in L?(Q,) follows.

Going back toU* = V¥, we conclude that we can extract a subsequenc&/é,,
that converges it (Q). u

Second, let us study the embedding®into L*(£2). In order to achieve a compactness
result similar to Theorem 2.1, we add two geometry-relagsdimptions. For that, let

W (0) :={w € H(curl;0) | divw € L*(0), w - n|po = 0}.

We recall that, according to the Weber embedding Theok®m{O) is compactly embed-
dedinL*(0).

The first assumption writes

x = linaneighborhood of

w — yw is continuous, fronW (Q) to H'(Q). (2.9)

Jx € C>=(Q) such thal{

The second assumption writes

x = 1 in a neighborhood ot

w; — yw; is continuous, fronW (Q;) to H*(Q;), i = 1,2.
(2.10)

These two assumptions are independent of the coefficieartd .. On the one hand, (2.9)

is verified if, and only if, the domaif is locally convexor if the boundan®f? is smooth

Ix €C®(Q) s. t.{
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in a neighborhood of the intersection of the interfateith 02 (note that: N 0 is equal
to 9T'; N dI'%). One the other hand, (2.10) is verified if, and only if, béthare locally
convex in a neighborhoadl’, N JI'; andif X is smooth. Finally, we consider that the two
functionsy can be merged into a single one. Figure 1 pictures an exarhafeadmissible

Fig. 1. An admissible configuration.

geometry: both assumptions (2.9) and (2.10) hold true.reigwpictures two unadmissible
geometries: on the left, assumption (2.9) is violated; anright; assumption (2.10) is
violated.

z AN
QZ \ 2\\\\

Fig. 2. Two unadmissible configurations.

Proposition 2.1. Assume that (2.9) and (2.10) hold. Then, the embedding &fiticdional
spaceX into L*(Q2) is compact if at least one of the global contra&s or R is large
enough.

Remark 2.1. We shall explain how the first assumption (2.9) can be reméated on. In
this way, a configuration like the one depicted on the leftigtiFe 2 is now admissible. We
proceed in two steps, since its removal adds another laytecbhicalities. The final result
is established at Theorem 2.2.

Proof: We again carry out the proof in the case of a large confRast
NB. Once again, the case of a large contéaSis handled similarly.

Let (W’“)k N be a bounded sequence Xf. Let us introduce and focus on the problem
[S
below:

Find ¢* € L?(Q) such that
curlg® = eWrinQ
dive® =0in Q . (2.11)
@ - nloa =0
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It is well-known that this “magnetic”-like problem is weflesed in the simply-connected
domain2 (see for instance Ref. 8). In particula’ belongs toW (), and (¢");, is
bounded inW (Q) (and inL?(2)).

Our aim is to prove that a (sub)sequencémirlqs’“)k converges inL?(Q).

Note that sincd¥* belongs taX, one has !curl¢” x n|sq = 0, sog* actually solves
Find ¢" € H (curl; Q) such that

1 .
curl (—curlqbk) = curlw*inQ
€

.k
¢" oo =0

1
~curlg® x njsg =0
€

Following a procedure analogous to the proof of the previbusorem, we are going to
isolate the trace ap* on the interface, ¢>fE, which belongs tcHl/Q(E) (cf. assumption
(2.9)).

In a first step, foi = 1,2, let us considep? solution to the regularized problem

Find p¥ € H(curl; ;) such that

1 .
curl (fcurlpf) — s5g(e;)V(div p¥) = curlW¥in Q;

E—curlpf X niloq, =0
Above,sg(e;) is equal to the sign of;.
To begin with, let us prove a few results on the two sequeitp&¥,, with the help of
the Annex. Set to 1 or 2. According to Proposition A.2, the regularized problem de-
fines a unique’, the W(Q;)-norm of which is bounded bjfcuriW¥ || ;. It follows
from Corollary A.1 that there exists a subsequence, stilotied by(p¥),., that converges
in Wr(Q;). Furthermore, from assumption (2.10), we deduce (péls ), converges in
H'Y?(%). Finally (cf. Proposition A.2)div p¥); is bounded i ().
Now, letgk := (p§ — p¥)s: by construction(gk ), converges inH['/?(%) and one has
(g%)r = g% (sincegk - my = 0). Next, we define the vector field* := ¢* — p¥. This
field, which belongs td (curl; ;) satisfies the system of equations

1 .
curl (—curluf) — sg(e;)V(divur) =0in Q;
€

divuf = —divpl in Q;

uf “nir, =0

u’f\z —Ug\z = g% ’ (2.14)

—curlul x n;r, =0
&

k L k
—curluy X nj )y = ———curlu; X nyx
€1 |62|
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Letus sew?! := uf — ul, pi .= pF — pl andg¥ = g¥& — gL.. Our aim is to show that

3

(uk!),; converges to zero il (curl; ;) whenk, I — oc.

Integrating by parts the first line of (2.14) for indicesnd! with the test fieldu*!, we
find

1 1
<—curlufl, curlul = ( —curlul’ x n;, (uf")r
€; 0,i €; b))

—sg(e:)(V(divpi'),u")oi.  (2.15)

Then, we use two identities o, namelye; ~Lcurluf! x ny = || ' curlub! x n,,
and(ul!) := g& + (ub)7, to reach:
1
kl kl kl
Tmar ||curlui Hal < <6—curlu1 X nl,g2>
1 1 by
. 1
+ > IV (divp")logillufllo. + = lewrtuy'|[3 ». (2.16)
i=1,2 2
The next step consists in evaluating the terms in the rigindkside.
As far as the first term on the right-hand side is concernee,that(e; ~'curlu} xn;|s)y
is bounded if"L(Y), since(e; ~*curlul); is itself bounded i (curl; ;). Moreover,
as(g%),. converges i R(X) this term goes to zero whén! — oc.
About the second term, we recall th@f (div p¥)),. is a bounded sequence &r(9;).
Then, one can extract a subsequenc@f), which convergesi.?(£2;). Indeed, one has
ul = ¢ — pl by construction, and

e since(pl)y is bounded ifW 1 (Q;), the Weber embedding Theorem tells us that
there exists a subsequence that converg&s ;) ;

o similarly, since(¢" ) is bounded ifW 1 (£2), one can extract a subsequence that
converges inL?(Q). Its restriction ta); converges ink?(€2;).

The third term in the right-hand side cannot be handled ams$tforwardly. Let us proceed
as follows. Thanks to the system of equations (2.14) gowgrai’) ., we infer first from
Proposition A.3 that there exisfs., > 0 independent ofu’ ), such that

lewrtull 3., < Cregllub 2y < Creg (Il sy + 198 sy ) -
Next, we infer from assumption (2.10) that there exists astamtc > 0 such that
Bl me) . @AD)
From the above, we upgrade the estimate (2.16) to

1 c 1

kljj2 Kl Kl

— — — | [[curluy HO,l < ({ —curlui” X ny, gy
€1 €9 €1

lewrtul!|3 5 < ¢ (Jleurtul!|3, + divpt!

2
P Kl
+ > IV (divp)lo,illuilo.q

i=1,2

c .
= (vl 133 + 198 llmracs) ) -
2
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Now, the last term in the right-hand side converges to zerenih! — oo. Indeed,

e since(div p¥);. is bounded inH'(;), we know from the Sobolev embedding
Theorem that there exists a subsequence that convergé&iy) ;
e gk convergesirH'/?(%).

Therefore, we see that
R{ >c (2.18)

ensures that the subsequeriearlu});, actually is a Cauchy sequencelri (), so it
converges. But we already proved that a subsequ@neep’), convergesinL?(;). As
a consequencécurle®), does converge too. Therefore, in the sub-donfainwe con-
clude that, sincdV* = ¢, ~'curle?, the subsequendd®*),. convergesinL?(£,).

To conclude the proof, we go back to (2.12) and we introduea¢tated "natural” varia-
tional formulation (cf. Ref. 8).
Find ¢* € W1(Q) such that

<lcurl¢>k, curlw) = (cuerk, w) , Ywe Wrp(Q).
€ 0 0
Set¢" = ¢* — ¢! andW* := W* — W' and choosev = ¢*' in the above (for indices
k andl). This yields

1 1
(—curl¢]fl,curl¢>]fl) — <—curl¢>§l,curl¢§l> = (curlwkl,d)kl) .
€1 01 0,2 0

|e2]

We already noted that there exists a subsequént. that converges il,?(2). Since
(curlg?), converges inL?(Q;), we infer that(curldh), converges inL?(£2,). Thus
(W), convergesinL?(Q,), and so doesW*),, in L*(Q2), which ends the proof. H

Theorem 2.2. Assume that (2.10) holds. Then, the embedding of the furatpaceX
into L?(02) is compact if at least one of the global contragsor R is large enough.

Proof: We follow step by step the proof of Proposition 2.1, bearinmind that, on the one
hand, since assumption (2.10) still holds, all #é(Q;)-regularity results olipk);, remain
valid. On the other hand, without assumption (2@‘@3 does not automatically belong to

Hl/Q(E). To address this difficulty, we rely on the continuous decosiljpon of elements
of W1(Q) into aregular part and a gradient part, first obtained by Bivand Solomyak

Consider
Wi9(Q) = Wr(QNH'(Q), U= {¢ € H(Q)/R | Ap € L*(Q), Intfy,, =0} .
The space of potential® can be endowed with the equivalent nofim||¢ := ||A¥|o.

According to Ref. 2, one can introduce the continuous spith () = W9(Q) +
VU, in the following sense:

{HCBS >0, YVw € WT(Q),H(’UJR,¢) S W;eg(Q) x WU,
w=wr+Y, |[wrlw., o +[YIe < Crsllwlw, @



January 17,2008 WSPC/INSTRUCTION FILE BoCZ07-revise

Transmission problems for electromagnetic waves betwisecttics and metamaterials 13

In other wordsV W contains the singular parts of element3%f; (2) (if 2 is not convex).
Thus, one can write the continuous splittings, forkall

B = @f + VOF, (¢h, ) € WiI(Q) x T

The regular parts are handled as before, whereas the gradigs have to be tackled
separately. This plays a role only in the estimate of thedthérm in (2.16), since the
other two terms can be estimated as before. To that aim, c&hansider a variant of
Proposition A.3. More precisely, one considers a regutarizroblem with boundary data
made up of two parts: a regular part, which belongs to the $&oe space as in the original
Proposition A.3, plus a singular part, equal to the traceheninterface of an element of
V¥. Since one hagA||o = || Vi) ||w (o), One reaches the same conclusion as beidre,
est(2.17), for amad hocconstant. Then, provided (2.18) holds, there exists a subsequence
(curluk);, which convergesiL?(Q;). The end of the proof is unchanged. [

Remark 2.2. Probably, one should be able to handle the case of piecemiseth inter-
faces, thus also removing assumption (2.10). The ideasngémeral case can be outlined
as follows. Consider each edge and/or corner of the interf@ce field, for instancg¥,

is locally regular:y*p% € H'(Q,), for anad hoctruncation functiony*. Whereas the
other field,p5 can be locally singulary*ps ¢ H'(€,) is possible. Then, this behavior
is inherited byu} andw’. Therefore, in order to bound the third term as in (2.17), one
should probably isolate the singular and regular paris;bfand proceed by controlling its
singular part byy¥', resp. its regular part by}'.

Theorem 2.3. Assume that (2.10) holds. The embedding of the functiomakesE Y into
L?(Q) is compact if at least one of the global contragsor R is large enough.

Proof: It is based on the standard Helmholtz decomposition of vdithls, here on ele-
ments of XY . Givenzy € XY, solve
Find ¢ € Hg () such that

div (eV¢) = div (exy) in Q.

This problem is well-posed-*: its solution ¢ exists (and it is unique) and moreover
|6l a1 o) < Cle) ||div (exy)|lo (with C(e) > 0 independent oky).
Lety := V¢ andx := xy — y. By construction,

y €Y, with div (ey) = div (exy) in Q
x € X, with curle = curlzyinQ

We note that|yl|lo = ||Véllo < C(e) ||div (exy)]lo, SO it follows that||z|lo < ||zyllo +
C(e) |ldiv (ezy)]o-

Combining the above, we deduce that, from any bounded sequew”); in XY, one
can build twoboundedsequencegy®);, (in Y)) and(z*), (in X). From each sequence,
we extract a subsequence that convergeEi(r2), according to Theorems 2.1 and 2.2.
Aggregating the two, we obtain a subsequefacg”),. that converges i (Q). |
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3. Recovering coerciveness in the case of a sign-shiftipg

In this section we assume that the sigrnuafhifts from<; to 5, with 1 > 0 andus < 0.
We make no further assumption on the sigre.oRecall thatj belongs toL?(2) and that
divj = 0. The aim is to build a three-field variational formulatiogquésalent to (1.7), and
then to show that this formulation is well-posed under sézonditions.

3.1. A three-field formulation

To begin with, keeping botlk; ande, leads to a reformulated — equivalent — definition
of X. According to the definition (1.8) of the spacds and X,, to whiche; and e,
belong respectively, and adding the compatibility comditi on the interface, we are led to
introduce the functional space

X = {(v,w) € X X Xy | VXMNy =wX ’I’L1|E, Qv Ny = 62’10-"11‘2}

and the auxiliary unknown

1
ey .= —curles.
T |22

Now, let us consider the test functiofs,, v2) € X andvy € H(curl; ;) and

o take theL?—scalar product of the first Eq. of (1.7) with :

1 .
wg(elel,vl)o,l - (curl (—curlm) ,vl) =(J1,v1)01
0,1

1

and let us integrate by parts:

1
w?(ere1,v1)01 — (u—curlel, curlv,
1

0,1
1 .
—{v1 xnq, | —curle; =(J1,v1)0,1-
M1 T/ %
. L 1
Since, by definition| —curle; = —(e2)r andvy; X n; = vy X Ny ONY,
M1 T -

we obtain
1
(—curlel, curl'v1> — w2(€1€1,v1)0,1 — (v2 x ny, (e2)7)s
H1 0,1 _
= —(J1,v1)o0,1- (3.1)
o take theL*—scalar product of the second Eq. of (1.7) witiarlvs; multiply the
resulting equality by a constant factér> 0:

Yw?(e2e2, curlvs)o 2 + J(curles, curlvs)o s = ¥(j,, curlvs).  (3.2)
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e consider the identity

1 1
(—curleg,curlm) = (curl (—curleg) ,'Ug)
|M2| 0,2 |M2| 0,2

1
— <'02 X Ny, (—C'U/I”l62> > ;
|12 >

according to the definition af; this last equation leads taf = —n; onX)
1
<ﬁcurleg, curlvg) —(curlez, v2)o2 — ((v2 X n1,e2)r)s =0. (3.3)
H2 0,2 - -

e consider the identity
(€2, curlvy)o 2 = (curles, v3)o 2 + (€2 X no, (V2)7)s ;
sinceey X no|y, = —e1 X |y, we get:
(|u2lez,v2)o,2 — (e2, curlvs) — (€1 x ny, (v2)7)s = 0. (3.4)

Adding up the previous contributions (3.1)-(3.4), we imlwmoe the variational formulation
(3.5):
FindU = ((e1, e2),e2) € X x H(curl;Q,) such that

YV = ((v1,v2),v2) € X x H(curl;Qs), A°(U,V) =L (V). (3.5)

We call (3.5) thehree-field formulation
The formsA? andL? are respectively defined by

1
ANU,V) = (—curlel, curl’vl) — w¥(ereq, v1)o1 + Yw? (egeq, curlvy)o.o
M1 0,1 -

1
+9(curley, curlvy)o 2 + (— curle,, curl'v2>
- - |,u2| 0,2

—(curlez, v2)o,2 + (|12]€2, v2)0,2 — (€2, curlvz)o 2

—2(vy x ny, (e2)7)s — (€1 X n1, (V2)7)%
(3.6)

and
LY(V) := —(j1,v1)01 + 9(ja, curlvs)o s - (3.7)

It is important to note that, in the definition of the bilindarm A”, the two boundary terms
(v2 x ny, (e2)7)s and(e; x ni, (v2)r)s are independent of the coefficiertand .. In
addition, we remark that this is true for any choice of thec8jr positive factord (which
we will fit to some optimal value when we establish the coetgiof A?).

3.2. Equivalence with the initial problem

Proposition 3.1. The three-field formulation (3.5) is equivalent to problenvy.

Proof: It is already known that (3.5) follows from (1.7), so let usfis on the reciprocal
assertion.
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To begin with, we note that, sineg € X; (i = 1, 2), one haslive; = 0in ;.
Next, one finds thafl X TL1|§] = €9 X TL1|§], €1€e1 -n1|§] = 6262-TL1|2 andel- X Tl,l'|pi =0
(i = 1, 2), according to the definition of.

Let us choose in (3.5) test functioms which span(D(£2))?, (v2,v2) = (0,0) and
differentiate in the sense of distributions(i®’(Q1))?:

1
<w26161 — curl (—curlq) —jl,’01> =0.
H1

Thus the first Eq. of (1.7) is recovered.

From there, we shall establish simultaneously thate, = curle; and that the second
Eq. of (1.7) is recovered.
We introduce two elements dﬁ‘Z(Q): T := curle;—|uzles, andn := w262e2+curl2—
Jo, and prove that both fields vanish o¥ey. To start with, we know thadivn = 0 in the
whole of(2, since(eq, es) € X anddiv j = 0.

Choose first in (3.5)v1, v2) = (0,0) andvs € (D(22))3:

Yw?(eze2, curlvy)o2 + ¥(curley, curlvy)o 2 — V9(j,, curlva)o2
+(|p2lez, v2)o,2 — (€2, curlvz)o = 0.
After differentiating in the sense of distributions, thést equation leads to
Jeurl(w?ezes + curles — jo) + |uzlez — curle; = 0in (D'(Q2))*,
which implies
deurln = Tin L*(Qy). (3.8)
Then, let us take in (3.5w1, v2) = (0,0) andv, € (D(£s))?:
1
(—curleg, curlv2> — (curlez,v2)p2 =0.
|,u2| 0,2 -

Let us differentiate again in the sense of distributionstitam

curl <ﬁcurleg — 62) =0in (D'(2))? (3.9)
H2 -

that we may rewrite as
1
curl (—T) =0. (3.10)
|12

Now, let us prove that the tangential tracepfanishes ovedS2,. For that, choose in (3.5)
(v1,v2) = (0,0) andvy € H(curl,Qy):

Yw?(ezes, curlvy)o 2 + V(curley, curlva)o 2 + (|p2]ez, v2)o,2

—(ez, curlvy)o 2 — (e1 x ny, (V2)7)s — V(Jo, curlvy)o 2 =0.

In terms ofn, this reads:

Y(n, curlvy)oz + (|p2|e2, v2)o2 — (e2, curlva)o 2 — (€1 X ny, (v2)r)s = 0.
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Sincen ande, belong toH (curl; 22), we can integrate by parts to find

19(0'“”"772)0,2 -9 <77 X N2, ('U2)T>892 + (|,U2|2a 2)0,2

—(curles, v2)o,2 — (€2 X M2, (V2)71)a0, — (€1 X N1, (V2)7)s =0.
Then, we can remove a number of terms.
o We already proved thaét = Jcurln — T = Jeurln + |uz|ex — curles in Q.
e In addition, there holdge; x nga, (v2)1)a0, = (€2 X ng, (v2)r)s, Sinceey €

Hr,(curl, Q).
[ Finally, €2 XNy p = —e1 X Ny|x, SinCE(el,EQ) e X.

The conclusion is{n x na, (v2)r)sq, = 0, for all vo € H(curl, ). Sincevy —
(v2)T|00, IS ONtO, this finally leads to

1 X n2lan, = 0. (3.11)

Recalling first (3.10) and then (3.8) and finally (3.11), waate

1 1 1 1
0= — | curl—m,n = | curl—-curln,n = | —curln, curln .
) |,u2| 0,2 |,U2 0,2 |,LL2| 0,2

Thuscurln = 0 and using (3.8) once again yielels= 0. Moreover, since; belongs to
L?();) and satisfieglivy = 0 andcurlny = 0 with a vanishing tangential trace ov@g,
7 vanishes ovef), (see for instance Ref. 8). The second Eg. of (1.7) is thus/ezed.

In order to conclude the proof, we must also recover the lgsbE(1.7). To this aim, let
us take in (3.5p2 =0

1
(—curlel, curl'v1> — w2(elel,v1)0,1 —2(v1 X ny, (e2)r)n+
H1 0,1 -

1
(| |C'U/I”l62, C'U/I”l'l)g) — (curles,v2)o2 = —(31,v1)0.1,
H2 0,2 T

and let us integrate by parts to get

1 9 .
curl | —curle; | —w e1e1+ 71,01 curl | —curle; — ey | ,v2 —
1251 | 2| 0,2

1 1 7
<v1 X Ny, (—curleg + —curle; =0.
|12] G} /s

From this last equation, using the first Eq. of (1.7) togethign (3.9), it is straightforward
to recover the last Eq. of (1.7). |

3.3. Finding a well-posed variational setting for the three-féformulation

Below, we build a splitting of the bilinear form? in a two term sum, so that the first term
is coercive ovet¥ x H(curl;2), and the second is a compact perturbation of the first
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+ A

one. Let us writed? = A?, Y ompy With

coer

M1 1 |12
+(e2,v2)0,2 + V(curles, curlvy)o 2 + (|u2]ez, v2)o.2
—2(v1 x n, (e2)7)s — (€1 X Ny, (V2)71)s

1 1 1
Afom,(U, V)= (—curlel,curlm) + ——(e1,v1)o,1 + <—curleg,curlv2>
01 M 0,2

(3.12)

9 — 2 1 _
Alyp(UV) = (( €1+ H;mm) 61,1)1)0’1 (e2 + curlez, v2)o2 (3.13)

—((1 = dw?ez)es, curlvy)o 2 ,

whereU = (e, ez, e3) andV = (v1, vz, v2) both belong to¥' x H (curl; Q).
Let us prove thatl? _ is coercive under some suitable conditions.

coer

Sincepus andu;1 both belong ta.>°(22), the two norms

1/2
I ez (eurtiann) = (12l Jo.2 + (curl -, curl-)o o]
1 1/2
|| . ||,ﬁ(curl;92) = (.’ .)032 + (wcurl -, curl .)072

are equivalent to the, usual norm. Then the terfvz x n, (v2)7)s| can be bounded
from above by

[(v2 x n1, (v2)7)s| < V2l G curtson V2] F curtin) - (3.14)

On the other hand, for interface terms involving fields defior(2; and on),, we intro-
duce some constant. Letc R} be defined as

v1 X nq, (v
¢ = sup |< 1 1 (_2)T>E‘ L v EX \ {0}7,02 c H(curl;Qg) \ {0} .
HUIHH(curl;Ql)||2|‘H(cu7‘l;§22) -
(3.15)
Note that we have
V(v1,v2) € &1 x H(curl;Qs), (3.16)

|(v1 x ny, (v2)r)s| < clvill m(eurton V2] Heurt0m)

with an optimalc.
Let us introduce now the firglobal contrast inu R/ equal to the ratiqu, /uj**.

Proposition 3.2. Assume that
R > (5/4)c? (3.17)

holds withc defined by (3.16). Then, for any > max(1, u; ), AY,,, is coercive over
{X x H(curl;Qs)}.
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Proof: Let us first compute the value ef?,..(V, V), with V = ((v1,v2), v2):

1 1
Al (V,V) = <—CU7‘l’01,CUT‘l’Ul> + —= (v1,v1)0,1+
M1 01 M1

1

(—curlvg, curlv, + (v2, v2)02+
|M2| 0,2

Y(curlvy, curlvy)o 2 + (|p2|v2, v2)o2—

3(ve X N, (ﬂ)ﬂx .

Thus, introducing the real parametge [0, 3], A?,

coer

(V, V) may be bounded from below

by
p 1 1
AL, (V, V) > | —curlvy, curlv, + ——(v1,v1)0,1+
H1 01 M1
1
——curlvs, curlvs + (v2, v2)02+
|:u2| 0,2

Y(curlvy, curlvy)o 2 + (|p2|va, v2)o2—
(B =mn) [{v1 x n1, (vo)7)s| — n|(v2 X Ny, (V2)7)s] -

Then, the term (v x ny, (v2)r)s| is bounded by (3.14), wheref@, x ny, (v2)r)s|is
bounded as in (3.16). Let us introdu@eand3;, two real and strictly positive parameters
such that3; + B2 = 1; we deduce

1
AﬂCO@T(Vﬂ V) > W”’le%{(curl;Ql) + Hv?”%(curl:Qg)
T ;

+(B1 + B2) [(|p2]va, v2)o,2 + | curlvs|| ,]
_(3 - n)chlHH(curl;Ql)Hﬂ”H(curl;Qg)
_nHv?Hﬁ(curl;Qz)Hﬂ“ﬁ(curl;ﬂg) :

Sinced > max(1, u; ), one actually has

1 _
AﬂcoeT(Va V) > WHle%{(curl;Qﬂ + ﬂl,LLQ ||2H%I(cu'rl;92)
2 2

+Hv2”f—1’\(curl;92) + ﬁ2”2”ﬁ(curl;§12) (318)

—(3 =mn)el|v: HH(curl;Ql) ||2|\H(curl;92)

_nHvQ”f-I\(curl;(h) ||E”H(curl;§22) :
Now, the idea is to control the negative terms with (a fractf) the positive ones. Let us
recall the standard result

givenm, p € Rf such thatn > p?, (3.19)
IA € RY, Va,y € R, ma® + y2 — 2pay > A2 + o). '
Then, let us set

71 = [[v1llH(eurt:r) s Y1 = [02]| H(curt;an)

T2 = ||2”H(curl;§22) ) Y2 = ||1)2Hf-l\(curl;92)
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and
1 c(3—-n)
my = — e — 5 P1i= o
pi gy B 201415
mo = (B2, p2=1n/2.

With this new notations, the inequality (3.18) can be reemntas
AL (V,V) = Bupg (maaf + 7 — 2praays) + (maah + y5 — 2pazays) . (3.20)

According to (3.19), the formd? ., (V,V) is coercive if both conditionn; > p? and

coer

mg > p3 are satisfied. In other words, provided both

— 209 . \2
ta B ang g, > (n/2)? hold (3.21)
251 43

Sincefz < 1, we consider from now on € [0,2[. Moreover, sinced; + B2 = 1, the
second condition in (3.21) is equivalent@o* > (1 — n?/4)~'. Then the first condition
in (3.21) is satisfied for some suitabe(n) (depending here on) if

— 3 o 2
ul’iz‘” > (4 — Zl . (3.22)
1

Now, f : n — (3 —n?)/(4 — n?) takes his minimal value at = 4/3, andf(4/3) = 5/4.
For this optimal value, condition (3.22) reduces to (3.br)some suitablg, (4/3). W

Theorem 3.1. The variational formulation (3.5) fits into the coercive plecompact frame-
work, ford > max(1, u, ), if the following conditions are met:

(1) for a constant-sigam, if the global contrasi?/' is large enough.
(2) for a sign-shiftinge, if the global contrastr!’ is large enough, if assumption (2.10)
holds, and if one of the global contrad®§ or RS is large enough.

Proof: Whene is sign-constant over the whole domdin we already noted that the em-
bedding ofX into L*(Q) is compact. Due to this resuld?,  is a compact perturbation
of AY ..., which is coercive provided that the condition (3.17)®hholds.

In the case of a sign-shifting condition (3.17) has to be supplemented with a condition

like (2.18) onRs, to ensure that the embedding &finto L*(Q2) is compact. |

Remark 3.1. The constant depends only on the geometry, so the lower bound in (3.17)
is fixed by the geometrical configuration.

To derive a similar result in the case of a big value of the sdaglobal contrast inu

RY = p™ /ud, one simply builds an alternate three-field formulation bygasinge; :=

u; Lcurle; as the auxiliary unknown.
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4. Concluding remarks

According to the previous results, one can solve problem

1 .
w?ee — curl (—curle) =37inQ

"
div (ee) =0in 2
e X ’n|aQ =0

under very weak assumptions on the coefficients, which congety challenging config-
urations of practical interest. Recall that wheand . are constant-sign coefficients, the
problem is well-posed under the assumption that !, i, ! all belong toL>°(Q2). These
assumptions are always implicit below.

e If only € exhibits a sign-shift at an interface: there are two possitdys to achieve
well-posedness, under the condition that at least one dfttbglobal contrast&s or
RS is large enough:

— According to the compactness result of theorem 2.2, thatianal formulation
(1.6) fits into the coercive plus compact framework, prodidee interface is
"smooth” in the sense of assumption (2.10).

— Or, one can choose a three-field formulation for thagnetic fieldlike (3.5)),
along the same lines as those of section 3, under the weakenpton that the
interface is Lipschitz.

e If only u exhibits a sign-shift at an interface: one can proceed dseiptevious case
by reversingthe roles of the electric and magnetic fields.

e If both e and i exhibit a sign-shift at interfaces that can be differente @an use a
three-field formulation ((3.5), or in the magnetic field) édiger with the compactness
result. In this case, it is required that one of the two glafmadtrastsk or RS is large
enoughand alsathat one of the two global contras®’ or RY is large enough. In this
configuration, one interface must be "smooth” in the sensssfimption (2.10), while
the other one is Lipschitz.

€ sign-constants e sign-shifts
4 Sign-constants NF NF or 3F
1 sign-shifts NF or 3F 3F

The above table summarizes, for all possible transitionaédmen media, which formula-
tion(s) can be chosen for solving the problem. There, thergens "NF” and "3F” denote
respectively the "natural” variational formulation anchage-field variational formulation.
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A. Annex

We recall or prove here a series of elementary results, sat iopen, bounded and con-
nected se® with a Lipschitz polyhedral bounda®®. Lety C 9O be connected (also
with a Lipschitz boundary)y), andy’ := 90 \ v. Leta € L*°(0O) be positive, with
a"le L>(0).
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A.1. Results on scalar fields

The first result deals with the lifting of some scalar data tharescribed on a part of a
boundary: for the sake of completeness, we report the pyefdefine thdocal contrast
Cint equal to the ratie™2* /o™, Recall that

Hy)?(v) = {p € HY*(7) | p € H*(90)},

wherep is the continuation op by zero to the whole boundary. This Hilbert space is
endowed with the "natural” norrﬂipHHmm = |15l 17200
00

Proposition A.1. Leth € Hy/?(v) and define: as the solution to
Findu € H'(O) such that

div (aVu) =0in O
uly =h . (A)
uly =0

Then the inequality Vul|o.0 < cgm|\h|\H1,2( holds.
’ 00 7)
Proof: Integrating by parts, one finds:
(aVu,Vu)y = (aVu-n,u) = (Hééz(,y)),<aVu -n, h>H362('y)'

The normal trace mapping, : H (div;0) — (H'/2(00)), v — v - n|so, is such that
|7 |l = 1, according to page 28 of Ref. 11. Moreover, givea H (div ; O):

2y (0 P) )

HU ’ anH Y24y = su
(Hoo™ (7)) peH2 () HpHHéf(v)

) (v-nlpo,p)
sup T
PEH(7) HPHH1/2(80)

<|lv-nloolmr/20))-

Combining the above yields:
™| Vull3 < llaVullmrao) bl ) < @[ Fullo 1Al /e,
i. e. the expected result. [

Remark A.1. This result typically allows us to study the Dirichlet-teedimann operator
S : h— ad,ul, defined fromH )% (+) to (Hy,* (7)), since one finds
mazx in 1/2
ISkl 37200y < @ C Bl o) Vh € Hih? (7).
Now, assume that the domaihcan be partitioned intd = O; U Oy, O N Oy = 0,
with Lipschitz polyhedral boundariég?;. We letX = 90, N 00, be the interface with

a Lipschitz boundarg%, andB; = 90, \ X. On the interface, let us choose to measure
elements ofHy)* (%) thanks to the norm||p|| := |[5]l111/2(90,), With a continuation by
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zero to0O, . It is well-known (cf. for instance page 19 of Ref. 12) thatemjuivalent (and
more intrinsic) norm orHéf(E) is

1/2
- 2 p(o)?
ool = (1ol + [ 7o)

whereo — d(o,0Y) is the distance to the boundary Bf The equivalence constants
between the two norms are completely determined by the gepwiedO; neary. On the

other hand, the trace mapping +— v is also continuous frontl{ ; (O2) to Hy)*(X).
According to the above, if we measure elementgigf>(S) with 1| - ||, the norm of the

trace mapping depends dioth geometrical configurations @fO; and of 90, near the
interface. So, the continuity modulus should be writted gs:

vzl < Cij2llVo2llo,0q, Yv2 € Hy g, (O2).

A.2. Elementary result on vector fields

The proposed results deal with the well-posedness of ragethproblems.

We recall a result on norms W (0), as proven in Proposition 7.4 of Ref. 10 and Corol-
lary 3.16 of Ref. 1. The semi-norfh- [y, (0) : w — ([lcurlullf , + ||divu||(2)’o)1/2
defines a norm, which is equivalent to the full normi®T(O), provided that the domain
O is simply-connected

Proposition A.2. Assume that is simply-connected.
Let f € L*(0). Then, the regularized problem below admits one, and ondy solution:
Findu € W (0O) such that

curl (acurlu) — V(divu) = fin O
(N n‘ao =0 . (B)
acurlu X njgo =0

Moreover, one hadivu € H*(O).
Finally, the normg|u||w .0y and||div u||1,0 depend continuously dff ||o,o.

Proof: Classically, an equivalent variational formulation of (B)
Find w € W (O) such that

(acurlu, curlw)o,o + (divu, divw)o,o = (f, w)o,0, Yw € Wr(O0). (C)
Well-posedness follows. In addition, takimg= u in (C) yields

amchurluHao + ||div u]

5.0 < fllo.ollulloo,

SO ||u|lw (o) depend continuously ojnf |o,0-
To prove that one hadivu € H'(0), let us introduce the scalar Neumann problem
Findd € H'(0) N L%(O) such that

(Vd,Vw)o.o = —(f, Vw)o.0, Yw € H(0) N LE(0). (D)
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NB. We recall that.3(0) := {v € L*(O) | (v,1)9,0 = 0}.

According to the Poincaré-Wirtinger inequality, this pkem is well-posed, andd||; o
depends continuously df¥||o.0-

Now, let us comparé to div w. To that aim, we introduce a second scalar Neumann prob-
lem. Letd € R be such thatd, 1)p,0 = (divu, 1)g,0. According to the above), depends
continuously on| f|lo,0. The second scalar problem reads

Findv € H'(O) N L%(O) such that

(Vo, Vw)o,o = (d+ 6 — divu,w)o.0, Yw € H(O) N LE(O). (E)

Since by constructiori + § — div w is orthogonal to constants, the right-hand side defines
a linear form onH'(©) N L3(O). This problem is also well-posed. One finds easily that
v € HY(O)N L3(O) can be characterized by the relatiahs = divu — (d+4) in O, and
Onvi90 = 0, so thatVv belongs toW r(0O). Taking successivelw = Vv in (C), w = v

in (D) and integrating by parts, we find

(divu,divu — (d+ 6))o,0 = (f, Vv)o.o = —=(Vd, Vv)o,0 = (d,divu — (d + 0))o,0-

In other words(divu — d,divu — (d + 0))o,0 = 0. Butdivu — (d + ) is orthogonal
to constants(d, divu — (d + §))o,0 = 0. It follows ||divu — (d + d)|lo,0 = 0, id est
divu = d + § in O. We conclude thaffdiv u||1,0 depends continuously dif|lo.o. W

Corollary A.1. Let(f"); be a bounded sequencelit(©), and let(u*),, be the corre-
sponding sequence of solutions to the regularized prob{@with f = f*. Then, there
exists a subsequence(af®),, that converges iW r(0).

Proof: According to Proposition A.2, the sequer(e€®),. is bounded inW 1 (O). Thanks
to the Weber embedding Theorem, there exists a subsequtifiaenoted by(u*),, that
converges ir.%(©). Taking the difference of Eq. (C) for two indicésand! with the same
test fieldw = u* — u!, one finds

™" |eurl(u® — u')|[§ o + [ldiv (u* — u')] o.ollu’ —u'[oo.

60 <IfF =1
In other words, the subsequen@e®);, is a Cauchy subsequence W r(0), so it con-
verges. |

Let us carry on with a final result on regularized problemswiiata on the boundary.
Let us introduce first
Hyo (1) = {p € H'?(7)| 3¢ € H'(0). ¢y, =0, ¢ = 1}
Using standard results, we know that

{acwt >0, Vo € HY2(v'), 3¢ € HY(0), ©

¢-npy =0, = ¢, and||dlar o) < Clsllell gy
Proposition A.3. Assume tha) is simply-connected.

Lety € Hééi(y’). Then, the regularized problem below admits one, and ongy solu-
tion:
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Findu € H(curl; O) N H(div; O) such that
curl (acurlu) — V(divu) =0in O
u-n, =0
acurlu X nj, =0
Uy =P

Moreover, the normgcurlul|o,o and||div ulo,o depend continuously ofip|| g1/2 (-

(G)

Proof: Let us considet satisfying (F). We remark that — ¢ belongs to
Wr_(0) :={we Wr(0)|w, =0},

which is a closed subspace@df r(O).

Introduceu’ := u — ¢. Then one can reformulate the system of equationg’ias the
equivalent variational formulation

Find v’ € W_(0O) such that

(acurly’, curlw)p,o + (div ', divw)o,o
= —(acurlg, curlw)p,o — (div ¢, divw)o,0, Yw € Wr_(O).

SinceW _(0O) can be endowed with the norm & 1(©O), well-posedness of the vari-
ational formulation imu’ follows. Existence ofu is achieved. To obtain uniqueness and
continuity with respect to the data, we proceed as follows.

We know that|w’||w (o) depends continuously di||w . (o), which is itself bounded by

| @l 1 (0, @and s0 by || g1/2(, according to (F). Therjju’ + ¢|lw,.(0) depends con-
tinuously onf|¢|| g1/2(,.). We conclude that: is unique and that the normiguriu|lo,0
and||div ul[lo,0 depend continuously oifip|| 71/ (). [



