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Abstract. This paper is devoted to the numerical solution of the insta-
tionary Maxwell equations in waveguides with metallic conical inclusions
on its internal boundary. These conical protuberances are geometrical
singularities that generate in their neighborhood, strong electromagnetic
fields. Using some recent theoretical and practical results on curl-free
singular fields, we have built a method which allows to compute the in-
stationary electromagnetic field. It is based on a splitting of the spaces
of solutions into a regular part and a singular one. The singular part is
computed with the help of a multiscale representation, written in the
vicinity of the geometrical singularities. As an illustration, numerical re-
sults in a rectangular waveguide are shown.

Keywords: Maxwell equations; waveguides; conical inclusions; multi-
scale approach.

1 Introduction

Many practical problems require the computation of electromagnetic fields. In
this paper, we are interested in computing the electromagnetic fields which prop-
agate in three-dimensional waveguides with metallic conical inclusions. This can
be useful in microwave and millimeter-wave technology, for instance for design
purpose. The knowledge of the electromagnetic fields in the vicinity of irregular
points of a surface is an old, widely studied problem (cf. [1], [2]). However, it
remains a present problem, particularly the influence and the numerical treat-
ment of such irregular points in the wave propagation (see for instance [3] and
the references therein).

Within this framework, we developed a numerical method for solving the
instationary Maxwell equations [4], with continuous approximations of the elec-
tromagnetic field. However in practical examples, the boundary of the compu-
tational domain may include reentrant corners and/or edges. They are called
geometrical singularities, generate strong fields, and require a careful computa-
tion of the electromagnetic field in their neighborhood.

Using some new theoretical and practical results, we have built a method, the
singular complement (hereafter SCM), which consists in splitting the space of
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solutions into a two-term direct sum (cf. [5]). The first subspace (the regular one)
coincides with the whole space of solutions, provided that the domain is either
convex, or with a smooth boundary. So, one can compute the regular part of the
solution with the help of a classical method such as the finite element or finite
difference method. The singular part is computed with the help of a multiscale
representation, written in the vicinity of the geometrical singularities.

In this paper, we consider a 3D waveguide with sharp conical metallic pro-
tuberances on its internal boundary. Then the singularities consist of conical
vertices. We propose an application of the SCM for the non-symmetric 3D case.
Based on a multiscale representation of the singular part of the solution at the
tip of each cone, coupled with a three-dimensional Maxwell formulation, we con-
struct a numerical method of solution. Numerical results are shown. This extends
the numerical results obtained in two-dimensional cartesian [5] or axisymetric
domains [6]. See also [7] for an extension to prismatic domains based on a Fourier
expansion. Following [8], extensions to rounded corners seem to be also possible.

2 Instationary Maxwell Equations

Let Ω be a open, polyhedral subset of R
3, unbounded in one direction (typi-

cally a hollow metallic cylinder or a rectangular waveguide) and Γ its boundary.
We denote by n the unit outward normal to Γ . If we let c, ε0 and μ0 be respec-
tively the light velocity, the dielectric permittivity and the magnetic permeability
(ε0μ0c

2 = 1), Maxwell’s equations in vacuum read

∂E
∂t

− c2curlB = − 1
ε0

J , div E =
ρ

ε0
, (1)

∂B
∂t

+ curl E = 0, div B = 0, (2)

where E and B are the electric and magnetic fields, ρ and J the charge and
current densities which depend on the space variable x and on the time variable
t. It is well known that ρ and J have to verify the charge conservation equation

∂ρ/∂t + div J = 0 . (3)

Waveguide problems are generally set without charges (ρ = 0), and this condition
expresses that the current density J is divergence-free.

These equations are supplemented with appropriate boundary conditions. Since
the domain of interest is unbounded in one direction, we denote by ΓC the ”real
part” of the boundary Γ (i.e. the metallic part), on which one imposes the perfect
conducting boundary condition. As it is well known, this is modelled by

E × n = 0 and B · n = 0 on ΓC . (4)

This condition expresses that the tangential components of E , and the normal
component of B uniformly vanish on ΓC . Nevetheless, these boundary condi-
tions are not sufficient to model efficiently our problem. Since the domain is not
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bounded, it has to be ”numerically closed” to perform computations. As a con-
sequence, the boundary Γ of Ω is also made up of an artifial part ΓA = Γ \ ΓC ,
on which a Silver-Müller boundary condition is imposed, namely

(E − cB × n) × n = e� × n on ΓA , (5)

where the surface field e� is given. In waveguide problems, the artificial boundary
ΓA is often splitted into Γ i

A and Γ a
A. On Γ i

A, we model incoming plane waves by
a non-vanishing function e�, whereas we impose on Γ a

A an absorbing boundary
condition by choosing e� = 0. Without loss of generality, one can choose the
location of the artificial boundary ΓA, in such a way that it does not intersect
with the conical inclusions. Moreover, one can also choose a regular shape for
ΓA. Hence, the boundary ΓA is not an issue for the conical inclusions. For this
reason, we will only consider in what follows perfectly conducting boundary (i.e.
ΓA = ∅). The case of Silver-Müller boundary condition will be then introduced.

Writing the Maxwell equations as two second-order in time equations, the
electric and the magnetic fields can be handled separately. In this paper, we
will focus on the electric field formulation. Let us recall the definitions of the
following spaces

H(curl , Ω) = {u ∈ L2(Ω), curl u ∈ L2(Ω)} , (6)
H(div , Ω) = {u ∈ L2(Ω), div u ∈ L2(Ω)} , (7)

H1(Ω) = {u ∈ L2(Ω),gradu ∈ L2(Ω)} . (8)

We define the space of electric fields E with

X = {x ∈ H(curl , Ω) ∩ H(div , Ω) : x × n|Γ = 0} , (9)

endowed with the norm ‖ · ‖X = [‖ · ‖2
0 + ‖curl · ‖2

0 + ‖div · ‖2
0]

1/2.
When the domain is convex (or with a smooth boundary), the space of electric

fields X is included in H1(Ω). That is not the case anymore in a singular domain
(see for instance [9]), in particular in a waveguide with conical inclusions. One
thus introduces the regular subspace for electric fields (indexed with R)

XR = X ∩ H1(Ω), (10)

which is actually closed in X [10]. Hence, one can consider its orthogonal sub-
space (called singular subspace and indexed with S), and then define a two-part,
direct, and orthogonal sum of the space as

X = XR

⊥X⊕ XS . (11)

As a consequence, one can split an element x into an orthogonal sum of a regular
part and a singular one, namely x = xR+xS . This is the principle of the Singular
Complement Method.

As far as numerical computations are concerned, one can also introduce di-
rect, but non-orthogonal two-part sum for the space X. The choice is made
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with respect to the ease of implementation and depends on the characterization
of the singular space. The characterization (and so is the computation) of the
elements of XS is complicated (see [10]). So, one is able to introduce another
(non-orthogonal) singular subspace LS and define a two-part, direct sum for the
space X as

X = XR ⊕ LS , (12)

so that an element x of X will be splitted into x = xR + lS. Following [10],
elements of LS are the curl-free elements of X that satisfy:

div lS = sD in Ω , (13)
lS×n|Γ = 0 , (14)

where sD is the (non-vanishing) singular solution (i.e. that belongs to L2(Ω)) of
the Dirichlet homogeneous boundary problem

ΔsD = 0 in Ω , (15)
sD = 0 on Γ . (16)

Hence, it appears more convenient to solve a scalar Laplace problem to determine
LS , than a vector one that would appear for the XS characterization.

Let us now briefly re-introduce the boundary ΓA. A first way could be to
consider the space of solutions

XΓA = {x ∈ H(curl , Ω) ∩ H(div , Ω) : x × n|ΓC
= 0} . (17)

Then introduce the regular subspace XΓA

R = XΓA ∩ H1(Ω), and construct the ad
hoc orthogonal (or non-orthogonal) splitting, in which appears a singular space,
say XΓA

S (or LΓA

S for the non-orthogonal curl-free part). Nevertheless, it is more in-
teresting from a numerical point of view, to consider the (non-orthogonal) splitting

XΓA = XΓA

R ⊕ LS , (18)

first since the subspace of singular magnetic fields is LS , as before (with only
a perfect conducting boundary condition). Second, modelling incoming plane
waves, or imposing an absorbing boundary condition has no impact, as far as
the singular subspace is concerned. It will be sufficient, as soon as ΓA is not
empty, to add in the variational formulation, integral terms on ΓA as for a
regular domain Ω.

3 Multiscale Representation for the Singular Part

In general 3D domains, the main difficulty of such an approach is to take into
account accurately singular subspaces. They originate from geometrical singu-
larities, such as reentrant edges, that can meet at reentrant vertices. In addition
to generating infinite dimensional singular subspaces, the challenge is to under-
stand and resolve the links between singular edges and singular vertex functions.
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In that case, other approaches are possible and very useful, see [11]. Neverthe-
less, in many cases, one can proceed with this approach. This is the case for
3D prismatic domains, or for 3D domains invariant by rotation (cf. [7,12]). This
is also the case for conical vertices that generate a finite dimensional singular
subspace (LS in our case), even in a full 3D geometry. However, computations
retain their 3D character.

To simplify the presentation, we assume in this section that there is only one
conical vertex, so that LS is of dimension 1. The numerical method consists in
first computing numerically the basis of the singular subspace LS , based on a
multiscale representation. Following the characterization (13-14), we shall need
sD to compute lS ∈ LS . Then using ad hoc singular mappings (see [10]), one can
associate to sD a unique scalar potential ψS such that

− ΔψS = sD in Ω , (19)
ψS = 0 on Γ . (20)

Then, the singular basis function lS will be easily inferred from ψS by taking its
gradient, lS = gradψS .

As the keypoint is to compute sD, let us now examine the behavior of this
solution in the vicinity of a sharp cone. This can be done by deriving the as-
ymptotic expansions. As the conical inclusion is locally invariant by rotation, we
consider the system of spherical coordinates (r, θ, ϕ), centered at the tip of the
cone. Let Γcone be the part of the boundary which intersects the cone of equation
θ = w0/2, with w0 the aperture angle of the cone (a priori π ≤ w0 ≤ 2π). Hence,
one can find sD in the form of spherical harmonic functions

rμ Pμ(cos θ) sin(mϕ), (21)

where P· denotes a Legendre function of order 0 and index μ, which is an eigen-
function of the Laplace-Beltrami operator, related to the eigenvalue −μ(μ + 1).

Proposition 1. There exists a sequence (cl)l∈IN� such that one can write, for
any N ∈ IN, the expansion

sD(r, θ, ϕ) = r−λ−1 Pλ(cos θ) +
N∑

l=1

clr
λl Pλl

(cos θ) +O(rλN+1 ), r −→ 0 . (22)

In addition, the coefficient λ can be uniquely determined by solving

Pλ(cos(
w0

2
)) = 0 . (23)

Remark first that, since the boundary Γcone is locally invariant by rotation, the
above expansion does not depend on the variable ϕ, namely is axisymmetric (see
for instance [13]). Moreover, computing the behavior of λ, as a function of the
angle w0, we find that only sharp conical inclusions (i. e. cones for which the
aperture is larger than a given value β 	 130o43′), generate a singular function.
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In other words, r−λ−1 is singular (i.e. belongs to L2(Ω), but not to H1(Ω)) only
for cones for which the aperture is larger than β. This result is in accordance
with the ones obtained in invariant by rotation domains [14]. For the other
conical inclusions (with an aperture lower than β), no specific treatment will be
necessary .

We are ready now to compute sD. If we denote by s̃D = sD −r−λ−1 Pλ(cos θ),
the regular part of sD (i.e. that belongs to H1(Ω)), and recall that r−λ−1Pλ(cos θ)
is known as soon as λ was determined, one can compute sD by solving

Δs̃D = 0 in Ω, (24)
s̃D = −r−λ−1 Pλ(cos θ) on Γ. (25)

Note that the above equation is homogeneous as Δ [r−λ−1 Pλ(cos θ)] = 0. More-
over, the boundary condition also vanishes on Γcone, due to the term Pλ(cos θ).
Then, one solves the discrete variational formulation, using continuous, P1 La-
grange finite elements.

The computation of ψS is carried out analogously. In that case, we have to
solve a non-homogeneous Dirichlet problem. From a numerical point of view, the

term
∫

Ω

sD v dx appears in the right-hand side of the variational formulation,

where v is a test function. It is splitted as
∫

Ω

s̃D v dx +
∫

Ω

r−λ−1 Pλ(cos θ) v dx.

Then, in order to compute the second term accurately, one uses the analytical
knowledge of r−λ−1 Pλ(cos θ) – up the quasi-exact value of λ – in conjunction
with Gauss quadrature formulas, exact up to the 6th order. These formulas re-
quire 15 integration points per element of the mesh (in our case, tetrahedron).
It is emphasized that these formulas are well-suited, in the sense that no inte-
gration point coincides with the tip of the cone, where the (absolute) value of
r−λ−1 Pλ(cos θ) is infinite.

Finally, the computation of lS(= ∇ψS) is carried out with the help of the
analytical expression in spherical coordinates of lPS (= ∇ψP

S ), namely

lPS = λrλ−1

⎛

⎜⎜⎝

cosϕ

sin θ
[Pλ(cos θ) − cos θPλ−1(cos θ)]

sin ϕ

sin θ
[Pλ(cos θ) − cos θPλ−1(cos θ)]

Pλ−1(cos θ)

⎞

⎟⎟⎠ . (26)

4 Numerical Algorithms

Now, to solve the problem, we have to modify a classical method by handling the
above decomposition. We first write Ampère and Faraday’s laws as two second-
order in time equations, and focus on the electric field problem. To enforce the
divergence constraint div E = 0, we introduce a Lagrange multiplier (say p), to
dualize Coulomb’s law. In this way, one builds a mixed variational formulation
(VF) of Maxwell equations. It is well-posed, as soon as the well-known inf-
sup (or Babuska-Brezzi [15,16]) condition holds. In addition to begin Mixed,
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we use here an Augmented VF (see [4]), which results in a Mixed, Augmented
VF. To this end, one adds to the bilinear form

∫
Ω

curl E · curl F dx, the term∫
Ω div E div F dx. This formulation reads

Find (E , p) ∈ X × L2(Ω) such that

d2

dt2

∫

Ω

E · F dx + c2
∫

Ω

curl E · curl F dx + c2
∫

Ω

div E div F dx +
∫

Ω

p div E dx

= − 1
ε0

d

dt

∫

Ω

J · F dx, ∀F ∈ X, (27)
∫

Ω

div E q dx = 0 ∀q ∈ L2(Ω) . (28)

To include the SCM in this formulation, the electric field E is split like E(t) =
ER(t) + ES(t). One has ES(t) = κ(t)lS , where κ is a continous time-dependent
function (to be determined). The same splitting is used for the test functions
of the variational formulation, which is discretized in time, with the help of the
leap-frog scheme. From a practical point of view, we choose the Taylor-Hood, P2-
iso-P1 finite element. In addition to being well-suited for discretizing saddle-point
problems, it allows to build diagonal mass matrices, when suitable quadrature
formulas are used. Thus, the solution to the linear system, which involves the
mass matrix, is straightforward [4]. This results in a fully discretized VF:

MΩEn+1
R + MRSκn+1 + LΩpn+1 = Fn , (29)

M
T
RSEn+1

R + MSκn+1 + LSpn+1 = Gn , (30)

L
T
ΩEn+1

R + L
T
S κn+1 = Hn . (31)

Above MΩ denotes the usual mass matrix, and LΩ corresponds to the divergence
term involving lhR and the discrete Lagrange multiplier ph(t). Then, MRS is a
rectangular matrix, which is obtained by taking L2 scalar products between reg-
ular and singular basis functions, MS is the ”singular” mass matrix, and finally,
LS corresponds to the divergence term involving lS and ph(t). To solve this sys-
tem, one first removes the unknown κn+1, so that the unknowns (En+1

R ,pn+1)
can be obtained with the help of a Uzawa-type algorithm. Finally, one concludes
the time-stepping scheme by computing κn+1 with the help of (30).

What is added, when compared to the same formulation posed in a waveguide
without conical inclusions is, first, equation (30); second, additional terms that
appear in (29) and (31), which express the coupling between singular and regular
parts. However, these terms are independent of the time variable, so they are
computed once and for all, at the initialization stage.

5 Numerical Experiments

We consider a metallic rectangular waveguide with two conical inclusions on its
boundary (see Fig. 1). The metallic walls of the guide are assumed to be entirely
perfectly conducting and the extremities are absorbing boundary conditions.
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Support of the current

Fig. 1. Rectangular waveguide with conical inclusions

Ey
Ey

regular

500 ΔΔΔΔt
-0.71

2.23
10-1

Ey
singular= +

Fig. 2. Comparison of the total field,
its singular and regular parts

with SCM

without SCM

500 ΔΔΔΔt
-5.33

9.79

10-1

Fig. 3. Comparison of the total field
with and without the SCM

The initial conditions are set to zero. The electromagnetic wave is generated by
a current, with density J (t) = Jzez, the support which is depicted on Fig.1.
The value of the z-component is

Jz(x, y, z) = C sin(ωt) . (32)

Above, C is a constant, set to C = 10−5, and ω is associated to the frequency
ν = 5.109 Hz.

We focus on the evolution of the electric field over time, at different nodes of
the finite element mesh. First, one can check that the numerical method enforces
causality, by studying the evolution at node A. By causality, we mean that the
value of the electric field at A should be zero as long as the wave generated
by the current has not reached A. To that aim, we show, on the same Figure,
the – strong – total electric field, Ey(A), its regular part ER

y (A), and its singular
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part ES
y (A) (see Fig. 2.) The singular coefficient κ(t) is non-zero as soon as the

wave hits the tip of the cone, and it adopts a more or less sinusoidal pattern, with
a frequency which depends on ν. Still, the total electric field at A, here Ey(A)
does not vary, until the wave actually reaches A: the regular part ’compensates’
for the variations of the singular part before that.

Then, we compare the results at some point B, with or without the SCM. In
particular, results differ significantly in amplitudes (see the component Ey(B),
Fig. 3): the amplitudes vary with a factor of more than two.

6 Conclusion

In this paper, we were interested in the treatment of conical protuberances in
waveguide problems. This is a real 3D problem, even if around each sharp conical
vertex, the singular subspace is finite-dimensional. Using a multiscale representa-
tion of the electromagnetic field in the vicinity of singular points, we propose an
extension of the SCM in this non symmetric 3D case. Such approach may be useful
in models in which it is possible and reasonable to determine or approximate the
behavior of the singular electromagnetic field near irregular points. Extensions to
”pseudo-singualrities”, namely rounded corners seems also possible (see [8]).
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tions with charges in singular geometries. Comput. Methods Appl. Mech. En-
grg. 196 (1-3), 665–681 (2006)

14. Bernardi, C., Dauge, M., Maday, Y.: Spectral methods for axisymmetric domains.
Series in Applied Mathematics. Gauthiers-Villlars, Paris and North Holland, Am-
sterdam (1999)

15. Babuska, I.: The finite element method with Lagrange multipliers. Numer.
Math. 20, 179–192 (1973)

16. Brezzi, F.: On the existence, uniqueness and approximation of saddle point prob-
lems arising from Lagrange multipliers. RAIRO Anal. Numér., 129–151 (1974)


	A Multiscale Approach for Solving Maxwell’s Equations in Waveguides with Conical Inclusions
	Introduction
	Instationary Maxwell Equations
	Multiscale Representation for the Singular Part
	Numerical Algorithms
	Numerical Experiments
	Conclusion


