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Abstract

Some electromagnetic materials present, in a given frequency range, an effective dielec-
tric permittivity and/or magnetic permeability which are negative. We are interested in
the reunion of such a “negative” material and a classical one. More precisely, we con-
sider here a scalar model problem for the simulation of a wave transmission between two
such materials. This model is governed by a Helmholtz equation with a weight function
in the ∆ principal part which takes positive and negative real values. Introducing addi-
tional unknowns, we have already proposed in [2] some new variational formulations of
this problem, which are of Fredholm type provided the absolute value of the contrast of
permittivities is large enough, and therefore suitable for a finite element discretization. We
prove here that, under similar conditions on the contrast, the natural variational formulation
of the problem, although not “coercive plus compact”, is nonetheless suitable for a finite
element discretization. This leads to a numerical approach which is straightforward, less
costly than the previous ones, and very accurate.

Key words: wave diffraction problem, sign shifting dielectric constant, left-handed
materials, meta-materials, finite elements, error estimate.

1 Introduction

In electromagnetics, a number of materials is currently modeled at a given fre-
quency ω by considering negative real values for their dielectric permittivity
and/or magnetic permeability [13,9,11]. In the London phenomenological model,
a super-conductor is represented as a medium with a negative dielectric permit-
tivity, whereas homogenization theory applied to meta-materials leads to negative
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effective dielectric permittivity and/or magnetic permeability (the so-called left-
handed materials). These ”negative” nondissipative materials raise many unusual
questions. In particular, the simulation of a wave transmission between a classical
medium and a ”negative” one must be handled carefully, from both mathematical
and numerical points of view [12,17]. Let us consider the reunion – called Ω from
now on – of two such materials. In two dimensional configurations, the electro-
magnetic wave transmission problem can be reduced to a scalar problem of the
form

div
(
ε−1∇u

)
+ ω2µu = f in Ω (1)

where f is an L2 source function and ε, µ are respectively the electric permittiv-
ity and the magnetic permeability. The same model arises when one considers the
electrostatic equations in two or three dimensional configurations, with ω = 0.
Without loss of generality, we choose to apply a homogeneous Dirichlet condition
on ∂Ω: u|∂Ω = 0. The scalar problem with a homogeneous Neumann condition can
be treated in the same way.
More precisely, assume that the domain Ω is split in two parts Ω1, Ω2. For the di-
electric constant ε(x), one writes εi = ε|Ωi

, for i = 1, 2: ε1(x) is strictly positive
over Ω1, whereas ε2(x) is strictly negative over Ω2.
The difficulty due to the ε sign-shift is obvious when considering the natural varia-
tional formulation equivalent to (1):

find u ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω),

(
ε−1∇u,∇v

)
L2(Ω)

− ω2(µu, v)L2(Ω) = −(f, v)L2(Ω) ;
(2)

Since ε exhibits a sign-shift,
(
ε−1∇u,∇v

)
L2(Ω)

has no specific sign, so its coer-
civity does not hold. Note that this difficulty disappears if one studies ”negative”
and dissipative materials, for which ε is a complex number, with <(ε) < 0 and, for
instance, =(ε) > 0 (cf. [14]).
The scalar problem (1) has already been studied in the case of a piecewise constant
ε, such that ε1 > 0 and ε2 < 0. In [8] it has been shown, using integral equations,
that for a smooth interface ∂Ω1 ∩ ∂Ω2, the model problem fits into the Fredholm
framework if the contrast κ := ε2/ε1 is not equal to −1. In [15], using Dirichlet
to Neumann operators, it has been shown that the model fits into the Fredholm
framework if |κ| >> 1 or |κ| << 1 (no regularity assumption on the interface).
The effect of a geometrical singularity of the interface has been investigated more
precisely in [4]. It has been proved there that, for an interface which exhibits a right
angle, the problem is ill-posed in H1(Ω) if κ ∈]− 3,−1/3[ (similar results can be
derived for any angle).
We are interested more generally by the Helmholtz equation with sign-shifting and
varying constants ε(x) and µ(x). Moreover, we want to introduce and analyze a fi-
nite elements discretization of this model. A first variational approach of the prob-
lem is presented in [2]: well-posedness in the Fredholm sense has been obtained,
under weak assumptions (Lipschitz interface and L∞ coefficient ε), when the abso-
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lute value of the generalized contrast function κ(x) is small or large enough. This
new formulation is well adapted for a discretization with the finite element method.
The extension to the Maxwell three-dimensional case is presented in [3].
The drawback of this approach, especially in three-dimensional configurations, is
its cost, since an additional vector unknown is introduced. This led us to consider
more carefully the direct approximation of the natural variational formulation (2),
which gave surprisingly accurate numerical results (see [18], Chapter 4). The sub-
ject of this paper is to explain rigorously this phenomenon. In section 2, we in-
troduce the abstract framework. Then, we are going to fit, under some suitable
conditions, the natural variational formulation into a well-posed variational setting
(section 3) and prove that a standard finite element discretization converges in a
classic manner (section 4). Finally in section 5 we give some concluding remarks.

2 The abstract problem

In the sequel, V is a Hilbert space, with scalar product (·, ·)V and norm ‖ · ‖V . To a
continuous bilinear form a defined on V × V , one associates a unique continuous
and linear operator A (A ∈ L(V )): ∀u, v ∈ V, a(u, v) = (Au, v)V .
Given l ∈ V ′, let us focus on the variational problem:

find u ∈ V such that ∀v ∈ V, a(u, v) = l(v) ; (3)

we assume that the form a can be split as a = b + c, where the forms b and c are
both continuous and bilinear on V × V . It is well known that (3) is well-posed (if
uniqueness holds) as soon as b is coercive and the operator C (associated to the
bilinear form c) is compact. We will extend this result to a class of non-coercive
forms b.

Definition 2.1 (T-coercivity) Let T be a continuous linear operator on V . A bilin-
ear form b is T-coercive on V × V if

∃γ > 0, ∀v ∈ V, |b(v,Tv)| ≥ γ‖v‖2
V .

Hereafter we assume that

(H1) there exists T ∈ L(V ), bijective, such that the form b is T-coercive on V × V ;
(H2) the operator C is compact.

Theorem 2.1 If the conditions (H1) and (H2) are fulfilled, the variational problem
(3) is well-posed if and only if the uniqueness principle of the solution to (3) holds
(i.e. l = 0 =⇒ u = 0).
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Proof: Since T is bijective, problem (3) is clearly equivalent to the following:

find u ∈ V such that ∀v ∈ V, b(u,Tv) + c(u,Tv) = l(Tv) . (4)

The usual framework is recovered: b(·,T·) is coercive, c(·,T·) is a compact pertur-
bation (T is continuous and C is compact) and l(T·) is continuous. �

The discretized (conforming) version of the problem (3) is

find uh ∈ V h such that ∀vh ∈ V h, a(uh, vh) = l(vh) , (5)

where (V h)h is a family of finite dimensional subspaces of V such that, for all
v ∈ V , one has lim

h→0
inf

vh∈V h
‖v − vh‖V = 0 .

The approach we propose is inspired by the finite element theory for the coercive
plus compact problems. The idea is to prove the stability of the form a over (V h)h:

∃σ > 0, ∀h, ∀vh ∈ V h, sup
wh∈V h

|a(vh, wh)|
‖wh‖V

≥ σ‖vh‖V . (6)

Then the standard error estimate is recovered with the help of the Strang Lemma
[16].

Theorem 2.2 Assume that hypotheses (H1) and (H2) hold, together with the
uniqueness principle so that problem (3) is well-posed.
Assume further that:
∃ δ > 0, γ > 0, such that ∀h, ∃Th ∈ L(V h), satisfying

(a) ‖Th‖ := sup
vh∈V h

‖Thvh‖V

‖vh‖V

≤ δ,

(b) the form b is Th-coercive over V h × V h with a coercivity constant equal to γ.

Then, the bilinear form a is stable and the discrete problem (5) is well-posed for h
small enough. Moreover the following error estimate holds:

∃ C > 0 ,∃h0 > 0 ,∀h ∈]0, h0] ‖u− uh‖V ≤ C inf
vh∈V h

‖u− vh‖V . (7)

Proof: The stability of a is proved by contradiction: if (6) does not hold, there
exists a sequence of subspaces – still called 1 (V h)h – together with a sequence of
elements (vh)h, with vh ∈ V h, such that

(i) ‖vh‖V = 1 (ii) sup
sh∈V h

|a(vh, sh)|
‖sh‖V

< µh, with lim
h→0

µh = 0 .

1 The sequence is indexed by the parameter h, whereas it should be indexed by m ∈ N,
with h = hm such that limm→∞ hm = 0.
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Let us now consider w ∈ V \ {0}. For all wh ∈ V h we have

|a(vh, w)| = |a(vh, w − wh) + a(vh, wh)| ≤ |a(vh, w − wh)|+ |a(vh, wh)|

≤ ‖A‖‖w − wh‖V + µh‖wh‖V .

Let us choose ε > 0. On the one hand, for h smaller than a given h0 (which depends
on both ε and w), we have inf

wh∈V h
‖w − wh‖V < ε. So, for h ≤ h0, there exists

wh ∈ V h satisfying ‖w − wh‖V < ε (and ‖wh‖V < ε+ ‖w‖V ).
On the other hand, according (ii), if h is small enough, one has µh < ε.
As a consequence, for everyw ∈ V \{0} and for all ε > 0, there exists h′0 such that,
for all h ≤ h′0, |a(vh, w)| < ε2 + ε(‖A‖ + ‖w‖V ). This is true for every element
w of V , therefore Avh ⇀ 0 (weakly) in V . We deduce, since A−1 is continuous by
the well-posedness of problem (3), that vh ⇀ 0 (weakly) and, since the operator C
is compact, Cvh → 0 (strongly) in V . In order to conclude, we are going to prove
that vh → 0 (strongly) in V . Indeed we note that b(vh,Thvh) = a(vh,Thvh) −
(Cvh,Thvh) and, from (ii) and the Th-coercivity of b, we obtain

γ‖vh‖2
V ≤ |b(vh,Thvh)| ≤ µh‖vh‖V ‖Thvh‖V + ‖Cvh‖V ‖Thvh‖V .

This last inequality leads straightforwardly to

γ ≤ (µh + ‖Cvh‖V )‖Th‖ ≤ δ (µh + ‖Cvh‖V ) ,

which contradicts hypothesis (i). Indeed (6) holds. �

3 A well-posed variational setting for the natural variational formulation

3.1 Some notations and functional spaces

Let Ω be an open bounded subset of Rd, d = 2, 3. It is assumed that this domain
can be split in two sub-domains Ω1 and Ω2 with pseudo-Lipschitz boundaries [1]:
Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅. In particular Ω1 and Ω2 can be disconnected and allow
checkerboard-like situations [14], see below.
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Moreover, if we let Σ = ∂Ω1 ∩ ∂Ω2 be the interface, we define Γi = ∂Ωi \ Σ.
Throughout this paper we will consider that the constants verify

ε, µ ∈ L∞(Ω), ε−1, µ−1 ∈ L∞(Ω).

Hereafter we adopt the notation, for all quantities v defined on Ω, vi := v|Ωi
, for

i = 1, 2. Furthermore, we use the notations If vi > 0 a. e. in Ωi: vmax
i = supx∈Ωi

vi(x), v
min
i = infx∈Ωi

vi(x).

If vi < 0 a. e. in Ωi: v+
i = supx∈Ωi

|vi(x)|, v−i = infx∈Ωi
|vi(x)|.

In what follows, we will use the following Sobolev spaces: Hs+1/2
0,Γi

(Ωi), Hs
0(Σ) and

Hs
00(Σ) (s > 0), respectively defined by

H
s+1/2
0,Γi

(Ωi) := {v ∈ Hs+1/2(Ωi) s.t. ∃ṽ ∈ Hs+1/2
0 (Ω), ṽ|Ωi

= v} , i = 1, 2 ,

Hs
00(Σ) (s− 1/2 ∈ N)

Hs
0(Σ) (s− 1/2 6∈ N)

 := {v|Σ s.t. v ∈ Hs+1/2
0,Γ1

(Ω1)} = {v|Σ s.t. v ∈ Hs+1/2
0,Γ2

(Ω2)} .

For simplicity, we suppose that Γi 6= ∅, i = 1, 2, so that the first spaces can be
endowed with the Hs+1/2 semi-norm ‖v‖

H
s+1/2
0,Γi

(Ωi)
:= ‖∇v‖Hs−1/2(Ωi). Next, we

can measure the elements of the second space thanks to either of the norms

i‖p‖Hs
0(0)

(Σ) := inf

v ∈ H
s+1/2
0,Γi

(Ωi)
v|Σ = p

‖v‖
H

s+1/2
0,Γi

(Ωi)
, i = 1, 2 .

The equivalence constants between the two norms 1‖ · ‖Hs
00(Σ) and 2‖ · ‖Hs

00(Σ) are
completely determined by the geometry of ∂Ω1 and ∂Ω2 near the interface Σ. When
s = 1/2, they are denoted by C1←2 and C2←1, with

i‖v‖H
1/2
00 (Σ)

≤ Ci←j j‖v‖H
1/2
00 (Σ)

, ∀v ∈ H1/2
00 (Σ) , (i, j) ∈ {(1, 2), (2, 1)} .

3.2 The general result

In this subsection, with the help of the theorem 2.1, we are going to fit the problem
(3) into a well-posed variational framework. Let us rewrite the natural variational
formulation (2) as

find u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω) , a(u, v) = l(v) , (8)

where l(v) := −(f, v)L2(Ω) and a is split into a = b+ c, with

b(u, v) := (ε−1∇u,∇v)L2(Ω) , c(u, v) := −ω2(µu, v)L2(Ω) .
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We are going to build an ad hoc operator T ∈ L(H1
0 (Ω)), bijective, such that b is T-

coercive overH1
0 (Ω)×H1

0 (Ω). Let us introduce the operator T : H1
0 (Ω) → H1

0 (Ω),
defined by

Tv =

 v1 in Ω1

−v2 + 2R(v|Σ) in Ω2

,

where R is a continuous and linear operator from H
1/2
00 (Σ) to H1

0,Γ2
(Ω2) such that

R(ϕ)|Σ = ϕ , ∀ϕ ∈ H1/2
00 (Σ) .

By construction, Tv belongs to H1
0 (Ω). Since the trace mapping is continuous and

linear fromH1
0 (Ω) intoH1/2

00 (Σ), one has T ∈ L(H1
0 (Ω)). Moreover, one can easily

check that T−1 = T, thus T is a bijective operator.
Let us introduce, for i = 1, 2, the notation bi(·, ·) = (ε−1

i ∇·,∇·)L2(Ωi) and the
parameter KR > 0 defined by

KR := sup
v1∈H1

0,Γ1
(Ω1), v1 6=0

|b2(R(v1|Σ),R(v1|Σ))|
b1(v1, v1)

. (9)

Proposition 3.1 The bilinear form b is T-coercive under the condition KR < 1.

Proof: To begin with, let us evaluate b(v,Tv), ∀v ∈ H1
0 (Ω):

b(v,Tv) = b1(v1, v1)− b2(v2, v2) + 2b2(v2,R(v1|Σ)) .

By the assumption on the signs of ε1 and ε2, it readily follows that

|b(v,Tv)| ≥ b1(v1, v1) + |b2(v2, v2)| − 2 |b2(v2,R(v1|Σ))| . (10)

Then, the term |b2(v2,R(v1|Σ))| can be bounded from above by applying Young’s
inequality and recalling the definition (9). For η > 0 we have

|b2(v2,R(v1|Σ))| ≤ η

2
|b2(v2, v2)|+

1

2η
|b2(R(v1|Σ),R(v1|Σ))|

≤ η

2
|b2(v2, v2)|+

KR
2η

b1(v1, v1) .

By combining this last inequality with (10), we obtain

|b(v,Tv)| ≥
(

1− KR
η

)
b1(v1, v1) + (1− η) |b2(v2, v2)| . (11)

Therefore, the form b is T-coercive if both conditions η > KR and η < 1 hold
simultaneously. It turns out that we can choose a suitable η(KR) satisfying these
two conditions, if and only if KR < 1. �

Corollary 1 The natural variational formulation (8) fits into the Fredholm well-
posed framework if KR < 1.
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Proof: First, we recall that, as KR < 1, the bilinear form b is T-coercive over
H1

0 (Ω)×H1
0 (Ω).

According to the Sobolev embedding theorem, the form c(·,T·) is a compact per-
turbation of b(·,T·). Then, we can apply straightforwardly theorem 2.1. �

This corollary can be related to existing results in the literature [8,2]. Indeed, since
the operator R is continuous from H

1/2
00 (Σ) into H1

0,Γ2
(Ω2), we have

|b2(R(v1|Σ),R(v1|Σ))| ≤
(

1

ε−2

)
2‖R‖2

2‖v1|Σ‖2

H
1/2
00 (Σ)

,

with 2‖R‖ := sup
v∈H

1/2
00 (Σ)

‖Rv‖H1
0,Γ2

(Ω2)

2‖v‖H
1/2
00 (Σ)

. By the definition of C2←1, we reach

|b2(R(v1|Σ),R(v1|Σ))| ≤
(

1

ε−2
C2

2←1

)
2‖R‖2‖v1‖2

H1
0,Γ1

(Ω1) .

As a consequence, the parameter KR is bounded from above by
(εmax

1 /ε−2 )2‖R‖2 C2
2←1. Therefore, if (εmax

1 /ε−2 )2‖R‖2 C2
2←1 < 1 (or equiva-

lently, if ε−2 /εmax
1 > 2‖R‖2 C2

2←1), the parameter KR is strictly smaller then 1, and
problem (8) is well-posed. This last condition is in accordance with the conditions
required in theorems 3.3 and 4.3 of [2]. Moreover, in the case of a piecewise
constant dielectric permittivity – with ε1 > 0 and ε2 < 0 – the ratio ε−2 /εmax

1 is
equal to the absolute value of the contrast κ (recall κ = ε2/ε1). Then we recover
that problem (1) is well-posed for large values of |κ|, generalizing the results of [8]
to the case of (pseudo-)Lipschitz interfaces.
To derive a similar result in the case of a big value of the ratio εmin

1 /ε+2 (i. e. a small
value of |κ|), one proceeds symmetrically, with the roles of Ω1 and Ω2 reversed.

3.3 The particular choice of the operator R

The optimal choice of the operator R which minimizes the value of KR is
R = Ropt, whose action is defined, ∀ϕ ∈ H

1/2
00 (Σ), by Roptϕ = ψ, where

ψ ∈ H1
0,Γ2

(Ω2) solves

div(ε−1
2 ∇ψ) = 0 in Ω2 , ψ|Σ = ϕ. (12)

As a matter of fact, with this choice of ψ, it is well-known that

b2(ψ, ψ) = min
v∈H1

0,Γ2
(Ω2), v|Σ=ϕ

b2(v, v).

Since (12) is well-posed, the operator Ropt is bounded and continuous from
H

1/2
00 (Σ) into H1

0,Γ2
(Ω2).

8



In the next section we will need extra regularity of ψ = Rϕ (ψ ∈ Hs+1/2(Ω2),
s > 1/2). Unfortunately, this does not hold for R = Ropt if ε2 ∈ L∞(Ω2) has no
additional regularity. This leads us to introduce the operator Rp whose action is
defined, ∀ϕ ∈ H1/2

00 (Σ), by Rpϕ = ψ, where ψ ∈ H1
0,Γ2

(Ω2) solves

∆ψ = 0 in Ω2 , ψ|Σ = ϕ. (13)

In this case, provided ϕ|Σ ∈ Hs
00(Σ), 1

2
≤ s ≤ 1, then ψ ∈ Hs+1/2(Ω2): this

property is very important for the finite element error estimate of (8). Indeed in
the proof of proposition 4.1, we will apply to the problem (13) the standard finite
element error estimate and the inverse inequalities. Again, one has the optimality
characterization

‖Rpφ‖H1
0,Γ2

(Ω2) = min
v∈H1

0,Γ2
(Ω2), v|Σ=ϕ

‖v‖H1
0,Γ2

(Ω2) , (14)

and the right-hand side is equal to 2‖φ‖H
1/2
00 (Σ)

according to the definition of norms.
As a consequence, 2‖Rp‖ = 1 (Rp is an isometry), and problem (8) is well-posed
under the condition

ε−2 /ε
max
1 > C2

2←1 . (15)

4 Finite element approximation

As we anticipated in the introduction, even with a sign-shifting permittivity, the
standard finite element discretization of (8) gives accurate results, although it does
not fit into the usual (coercive, or coercive plus compact) framework. In this sec-
tion our aim is to explain rigorously why, without any modification, this method is
convergent in case of a sign-shifting ε.
We are going to approximate the continuous problem (8) with the help of the stan-
dard nodal finite element method, both in two- and three-dimensional configura-
tions. Let (Th)h be a regular family of triangulations [5,6] of Ω̄, made of triangles
in 2D and tetrahedra in 3D. Moreover, we suppose that (Th)h fulfills the conditions:

(T1) For all h, for all T ∈ Th, there holds either T ⊂ Ω̄1 or T ⊂ Ω̄2.
(T2) The family of triangulations of the interface – (Th|Σ)h – is quasi-uniform [5,6].

For every T , let Pk(T ) be the set of polynomials defined on T of degree less than
or equal to k. Let us introduce the discrete functional spaces

Hh :=
{
vh ∈ C0(Ω̄) s.t. vh|T ∈ Pk(T ) , ∀T ∈ Th

}
; Hh

0 := Hh ∩H1
0 (Ω) ;

Hh
i :=

{
vh ∈ C0(Ω̄i) s.t. vh|T ∈ Pk(T ) , ∀T ∈ Th and T ⊂ Ω̄i

}
, i = 1, 2 ;

Hh
0,i := Hh

i ∩H1
0,Γi

(Ωi) , i = 1, 2 ; Hh
Σ :=

{
vh|Σ s.t. vh ∈ Hh

}
.
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The discretized version of (8) is:

find uh ∈ Hh
0 such that ∀vh ∈ Hh

0 , a(uh, vh) = l(vh) . (16)

In order to apply the theorem 2.2 and recover an error estimate, we must exhibit
an operator Th ∈ L(Hh

0), whose norm is independent of h and such that b is Th-
coervive over Hh

0 × Hh
0 . Such an operator can be obtained by considering a dis-

cretized version of the operator T introduced in subsection 3.2. Let us now intro-
duce the discrete operator Th : Hh

0 → Hh
0 whose action is defined by

Thvh :=

 vh
1 in Ω1

−vh
2 + 2Rh(vh|Σ) in Ω2

, (17)

where Rh is a suitably discretized version of the operator R.
Now, the difficulty is to show that Th is uniformly bounded from Hh

0 (endowed
with the ‖ · ‖H1(Ω) norm) into Hh

0 . For this one must prove that Rh is uniformly
bounded from from Hh

Σ (endowed with the norm 2‖ · ‖H
1/2
00 (Σ)

) into Hh
0,2 (endowed

with the norm ‖ · ‖H1
0,Γ2

(Ω2)).
To carry on, let us focus on the operator Rp and consider its discretized version: let
Rh

p : Hh
Σ → Hh

0,2, whose action is defined, ∀ϕh ∈ Hh
Σ, by Rh

pϕ
h = ψh, where ψh

is the solution to the problem:
Find ψh ∈ Hh

0,2 such that

(∇ψh,∇vh)L2(Ω2) = 0, ∀vh ∈ Hh
2 ∩H1

0 (Ω2), ψ
h|Σ = ϕh . (18)

Proposition 4.1 The discrete operator Rh
p is uniformly bounded from Hh

Σ (en-
dowed with the norm 2‖ ·‖H

1/2
00 (Σ)

) intoHh
0,2 (endowed with the norm ‖ ·‖H1

0,Γ2
(Ω2)).

Proof: Since the operator Rp is bounded, we have to prove that Rh
p − Rp is uni-

formly bounded.
Let us recall the definition of 2‖Rp −Rh

p‖:

2‖Rp −Rh
p‖ = sup

ϕh∈Hh
Σ

‖(Rp −Rh
p)ϕ

h‖H1
0,Γ2

(Ω2)

2‖ϕh‖
H

1/2
00 (Σ)

.

Then, let us evaluate ‖(Rp −Rh
p)ϕ

h‖H1
0,Γ2

(Ω2): Rpϕ
h is the solution ψ to (13) with

ϕ = ϕh as datum, whereas Rh
pϕ

h is the H1-conforming finite element solution ψh

to the discrete variational formulation of the same problem, i.e. (18).
As ∂Ω2 is pseudo-Lipschitz, the solution ψ of (13) exhibits extra-regularity. Indeed,
since by construction ϕh belongs to H1

0 (Σ), it follows that ψ belongs to H3/2(Ω2)
(cf. [7], lemma 1).
Moreover, there exists a constant c0 > 0 such that ‖ψ‖H3/2(Ω2) ≤ c0 2‖ϕh‖H1

0 (Σ).
Then, according to the standard interpolation theory (cf. [5], Chapter 12), there
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exists C > 0 such that

‖ψ − ψh‖H1
0,Γ2

(Ω2) ≤ Ch1/2‖ψ‖H3/2(Ω2) .

Next, according to theorem 4.5.11 of [5], the family (Th|Σ)h being quasi-uniform
(see (T2)), there exists a strictly positive constant C ′ such that 2‖ϕh‖H1

0 (Σ) ≤
C ′h−1/2

2‖ϕh‖
H

1/2
00 (Σ)

. By combining these inequalities we obtain

‖(Rp −Rh
p)ϕ

h‖H1
0,Γ2

(Ω2) = ‖ψ − ψh‖H1
0,Γ2

(Ω2) ≤ c0C C
′
2‖ϕh‖

H
1/2
00 (Σ)

,

and then the expected result follows, as 2‖Rp −Rh
p‖ ≤ c0C C

′. �

Let Th
p be the discrete operator defined in (17) with Rh replaced by Rh

p . We note
that, since the trace mapping is linear and continuous from Hh

0,2 (endowed with the
norm ‖ · ‖H1

0,Γ2
(Ω2)) into Hh

Σ (endowed with the norm 2‖ · ‖H
1/2
00 (Σ)

), the operator Th
p

is (by construction) bijective and uniformly bounded fromHh
0 into this same space.

Proposition 4.2 Let α := suph 2‖Rh
p‖. Under the condition

ε−2
εmax
1

> α2 C2
2←1 , (19)

the form b is uniformly Th
p-coercive over Hh

0 ×Hh
0 .

Proof: Since the operator Rh
p is uniformly bounded, one has to follow the proof of

the proposition 3.1 (replace R by Rh
p there). �

Theorem 4.1 Suppose condition (19) is fulfilled, then for h small enough, problem
(16) is well-posed. Let uh, u be respectively the solutions to (16) and (8). Then there
exists a strictly positive constant C, independent of h such that

‖u− uh‖H1(Ω) ≤ C inf
vh∈Hh

0

‖u− vh‖H1(Ω) . (20)

Remark 2 Notice that α ≥ 1, so that condition (19) is more restrictive than con-
dition (15). Indeed, the optimality characterization of Rh

p is similar to (14), but it
is set on Hh

0,2 ⊂ H1
0,Γ2

(Ω2), so that for all φh ∈ Hh
0,2,

‖Rh
pφ

h‖H1
0,Γ2

(Ω2) ≥ ‖Rpφ
h‖H1

0,Γ2
(Ω2) = 2‖φh‖

H
1/2
00 (Σ)

.

It is now possible to recover the usual finite element H1 error estimate (cf. [6]):
one can follow the proof of this last theorem by replacing the Céa’s Lemma with
theorem 4.1. Then, for a family of triangulations fulfilling conditions (T1) and (T2),
and for h small enough, one obtains easily the general result:

lim
h→0

‖u− uh‖H1(Ω) = 0 .

11



On the other hand, we have that, under some extra regularity assumptions, that is if
the solution u is such that ui belongs to H1+η(Ωi), for i = 1, 2, with η > 0, then
the following estimate holds:

inf
vh∈Hh

0

‖u− vh‖H1(Ω) ≤ C ′ hmin(1,η) max
i
‖ui‖H1+η(Ωi) .

By applying theorem 4.1 again, one recovers the improved error estimate:

‖u− uh‖H1(Ω) ≤ hmin(1,η)CC ′ max
i
‖ui‖H1+η(Ωi) . (21)

5 Concluding Remarks

In this paper, we focused on solving a scalar wave transmission problem between
media with opposite sign dielectric and/or magnetic constants. We proved that the
natural variational formulation, although not coercive plus compact is nevertheless
suitable for a finite element discretization, due to the T-coercivity property. What
is more, we proved that the continuous Lagrange finite element method yields a
converging discretization. Evidently, other finite elements could be used.
We carried out some numerical experiments: we implemented this model on basic
geometry and with piecewise constant coefficient ε, using P1 and P2 Lagrange finite
elements. We recovered the expected convergence rates (cf. [18], Chapter 4).

Methods based on the natural variational formulation can be applied to other situ-
ations. For instance, when the cavity is a torus as in [10] (periodic boundary con-
ditions). Also, in [18] the approximation of the eigen-frequencies and eigen-modes
in resonant cavities (built with meta-materials and dielectrics) is studied.
Last, the natural continuation of the present work is to extend the approach followed
here to the magnetostatic and/or time-harmonic Maxwell equations.
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