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Costabel and Dauge proposed a variational setting to solve numerically the time-
harmonic Maxwell equations in 3D polyhedral geometries, with a continuous approx-
imation of the electromagnetic field. In order to remove spurious eigenmodes, three
computational strategies are then possible. The original method, which requires a pa-
rameterization of the variational formulation. The second method, which is based on an
a posteriori filtering of the computed eigenmodes. And the third method, which uses a
mixed variational setting so that all spurious modes are removed a priori. In this paper,
we discuss the relative merits of the approaches, which are illustrated by a series of 3D
numerical examples.
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Introduction

In a recent paper 17, Costabel and Dauge proposed a method, which allowed to

discretize the electromagnetic field with a continuous approximation, in a 3D, non-

convex, polyhedron. In a way, they complemented the method earlier developed by

Heintzé et al 20,2, which relied also on a continuous approximation of the field, but

worked only in 3D, convex polyhedra.

As it is well-known, when solving the Maxwell equations in a non-convex poly-

hedron with a continuous and conforming discretization, the discretized spaces are

always included in a closed, strict subspace – sometimes called the subspace of reg-

ular fields – of the space of all possible fields. In other words, one cannot hope to

approximate the part of the field which belongs to the subspace orthogonal to the

subspace of regular fields. Over the past decade, several methods have been devised

to address this problem. We refer to Ref. 11 and References therein for an extended

discussion on this topic. In Ref. 17 the authors propose to recover density of the dis-
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cretized spaces by measuring the electromagnetic fields in weighted Sobolev spaces.

In order to solve the time-harmonic Maxwell equations, Costabel and Dauge

proceeded by adding a regularization term, with a parameter s: this resulted in

the parameterized weighted regularization method. Using this technique, one has to

discriminate between two sequences of eigenpairs: one is correct and the other is

spurious. The spurious eigenvalues vary with the parameter s, whereas the correct

ones don’t. To remove the spurious modes, one has to repeat the computations for

various values of the parameter s. We propose two alternate methods. The filter

method (alluded to in Ref. 18), discriminates between the eigenpairs by examining

a posteriori the divergence of fields. The mixed method 11,10,13 imposes a priori the

divergence free constraint, and spurious modes are automatically excluded. Both

methods lead in the end to the correct pairs. However, with the second method, it

is expected that the constraint on the divergence of the fields is better taken into

account.

The paper is organised as follows. In section 1, we introduce the mathematical

framework and develop the variational problem for each of the three methods. In

section 2, discretization aspects are analysed and convergence of the discrete pairs

is studied. In section 3, we report 3D numerical experiments that illustrate the

methods.

1. The eigenproblem and related variational formulations

We are interested in computing numerically eigenmodes of electromagnetic oscilla-

tions in a resonator cavity, bounded by a perfect conductor. Let Ω be the compu-

tational domain, included in R3. Mathematically, the domain is assumed to be a

bounded, open polyhedron with a Lipschitz, connected, boundary ∂Ω. For simplic-

ity, we assume that Ω is simply connected. We denote by n the unit outward normal

vector to ∂Ω. Let c be the light velocity in vacuuma. Classically, the electromagnetic

eigenmodes are non-zero solutions to the time-harmonic Maxwell equations

Find E and ω such that

c2curl curl E = ω2E in Ω, (1.1)

div E = 0 in Ω, (1.2)

E × n = 0 on ∂Ω, (1.3)

with E the electric field and ω the time-frequency. One can verify11 that ω = 0 is

not an eigenvalue of (1.1)-(1.3). The corresponding magnetic field is given by the

formula B = ıω−1curl E .

To achieve our goal, we would like to discretize the field with a continuous

and conforming approximation, based on nodal finite elements. As we mentioned

aThe case of a non-homogeneous material is addressed in Ref. 14.
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already, different functional spaces will be considered, with regards to the convexity

of the domain. We adopt the functional frameworks respectively given by Assous et

al 2 (case of a convex domain) and Costabel and Dauge 17 (case of a non-convex

domain). Let L2(Ω) be the Lebesgue space of measurable and square integrable

functions over Ω. Its canonical norm and scalar product are respectively denoted by

‖ · ‖0 and (·, ·)0. Furthermore, let (Hs(Ω))s∈R be the usual scale of Sobolev spaces.

We then introduce the following functional spaces for vector fields

H(curl , Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3} ,

H0(curl , Ω) := {F ∈ H(curl , Ω) | F × n|∂Ω = 0} .

When Ω is convex, we introduce as well

X := {F ∈ H0(curl , Ω) | divF ∈ L2(Ω)}.

By construction, the electric field E , solution to the time-harmonic equations (1.1)-

(1.3), belongs to X . From Ref. 1, we know that X is a subset of H1(Ω)3. In partic-

ular, the functional spaces X ∩ H1(Ω)3 and X coincide.

Remark 1.1. Why is this property crucial? Let Xh denote the discrete space ob-

tained with nodal finite elements. Since the intended discretization is continuous,

Xh is included in H1(Ω)3. Moreover, a conforming discretization implies that Xh is

also included in X . As a consequence, the density of ∪hXh in X requires the density

of X ∩H1(Ω)3 in X . In other words, the density of X ∩H1(Ω)3 in X must be seen

as a necessary condition to achieve a continuous and conforming discretization.

Note that, from Refs. 25, 15, the graph norm and the semi-norm ||F||X :=
(

||curlF||20 + ||divF||20
)1/2

are equivalent norms on X .

On the other hand, when Ω is non-convex, X ∩ H1(Ω)3 is a strict, closed1 sub-

space of X : X ∩H1(Ω)3 can not be dense in X . According to the previous remark,

the density condition in X is not fulfilled. So, another functional space has to be

chosen. It turns out that one can address this problem by relaxing the way the

norm of the divergence is measured (for another alternative, we refer the interested

reader to Ref. 11).

We follow here Ref. 17, Subsection 4.5. Since the domain Ω is non-convex, its

boundary ∂Ω includes a non-empty set of reentrant edges E, with dihedral an-

gles (π/αe)e∈E such that 1/2 < αe < 1. Let d denote the distance to E:

d(x) = dist(x,∪e∈E ē), and introduce the weight wγ , a smooth non-negative func-

tion of x, that depends on a real parameter γ. It is chosen to behave as dγ in the

neighborhood of reentrant edges and corners, and is bounded above and below by a

strictly positive constant outside a neighborhood of E. Let L2
γ(Ω) be the weighted

functional space below, with ||.||0,γ norm:

L2
γ(Ω) := {v ∈ L2

loc(Ω) |wγ v ∈ L2(Ω)} , ||v||0,γ := ||wγ v||0.

We then define, for γ ≥ 0,

Xγ := {F ∈ H0(curl , Ω) | divF ∈ L2
γ(Ω)}.
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Clearly, X ⊂ Xγ . Measuring the fields in the weaker norm of Xγ allows us to

recover the desired density result. Indeed, there exists γmin ∈]0, 1/2[ which de-

pends on the geometry of the domainb, such that for all γ ∈]γmin, 1[, Xγ ∩ H1(Ω)3

is dense in Xγ . Moreover, in Xγ , the graph norm and the semi-norm ||F||Xγ
:=

(

||curlF||20 + ||divF||20,γ

)1/2
are equivalent norms.

Remark 1.2. One can choose any γ in ]1/2, 1[, independently of the geometry.

From now on, we shall keep the index γ everywhere. In the non-convex case, γ

belongs to ]1/2, 1[ and it is fixed. In the convex case, we consider that there is no

weight (γ = 0), so that X0 stands for X , etc.

We note that the electric field solution to (1.1)-(1.3) naturally belongs to the

space

Kγ := {F ∈ Xγ | divF = 0}.

By setting λ = ω2/c2, we can rewrite (1.1)-(1.3) as

Find (E , λ) ∈ Kγ × R+ such that

curl curl E = λE in Ω, (1.4)

an equivalent variational formulation of which is

Find (E , λ) ∈ Kγ × R
+ such that

(curl E , curlF)0 = λ(E ,F)0, ∀F ∈ Kγ . (1.5)

However, building a conforming discretization in Kγ is a difficult task. Therefore,

we choose to relax the divergence-free condition on the fields, and solve the eigen-

problem in Xγ . To that aim, we deal with augmented variational formulationsc, as

advocated in Ref. 11. As a matter of fact, let (E , λ) be a solution to (1.4). Consider

the L2(Ω)3 scalar product between curl curl E and a test field F of Xγ and inte-

grate by parts. Then, add the weighted L2
γ(Ω) scalar product between div E and the

divergence of the test field divF , to reach

(curl E , curlF)0 + (div E , divF)0,γ = λ(E ,F)0.

bMore precisely, one has γmin := 2 − σ∆, where σ∆ is the minimum singularity exponent for
the Laplace problem with homogeneous boundary condition. If one introduces the usual space
H1

0
(Ω) := {φ ∈ H1(Ω) |φ|∂Ω = 0}, σ∆ is such that :

{φ ∈ H1
0
(Ω) |∆φ ∈ L2(Ω)} ⊂

T

s<σ∆
Hs(Ω),

{φ ∈ H1
0
(Ω) |∆φ ∈ L2(Ω)} 6⊂ Hσ∆ (Ω).

As can be seen by direct inspection, σ∆ ∈] 3
2
, 2[.

cWe shall not consider the popular choice of solving this eigenproblem in H0(curl ,Ω). This ap-
proach has been extensively studied, starting with the work of Kikuchi 21. It relies on a dis-
cretization based on edge elements, as introduced by Nédélec 23 (see Bossavit and Rapetti 8 for
an illuminating discussion on this topic). One major difficulty has to be addressed within this
framework: the removal of spurious eigenmodes associated to λ = 0, with eigenspace equal to
{F ∈ L2(Ω)3 | ∃ϕ ∈ H1

0
(Ω), F = ∇ϕ}, which results in spectral pollution at λ = 0. Establishing

a discrete compactness property 21,22,7 allows one to remove this difficulty.



July 23, 2008 11:10 CiHe07b

Computing electromagnetic eigenmodes 5

Hence, the eigenpair (E , λ) also solves

Find (E , λ) ∈ Xγ × R
+ such that

(E ,F)Xγ
= λ(E ,F)0 ∀F ∈ Xγ . (1.6)

Unfortunately, the reciprocal assertion is not true: in other words, the fact that

(E , λ) is a solution to (1.6) does not guarantee that it is an eigenpair of the original

problem (1.4), i. e. a ”real” eigenpair. The reason is that there exist solutions to

(1.6) which are not divergence-free: in this sense we call these eigenpairs spurious.

Interestingly, provided the spurious eigenvalue is simple, the associated eigenvectors

are automatically curl-free18. In the case of a multiple eigenvalue, the corresponding

eigenvectors can be written as a linear combination of a ”real” electric field and of

a spurious field.

To remove the spurious pairs, we report below three possible approaches (see Refs.

17, 18, 11, 10).

The filter approach. Assume that the eigenproblem (1.6) is discretized with

nodal finite elements. Let (Eh, λh) denote a discrete eigenpair. As we shall see in the

next section, we have convergence of the discrete eigenpairs towards eigenpairs of

(1.6). Hence, when the discrete eigenproblem is solved, eigenpairs in both families

are computed, that is ”real” pairs and spurious pairs. The filter method retains only

”real” pairs by monitoring a posteriori the value of the filter ratio:

‖div Eh‖0,γ

‖curl Eh‖0
. (1.7)

This value is small for ”real” pairs since the divergence part of the eigenvector

is small, whereas it is large for spurious ones since the curl part is small. Thus,

one can filter out the spurious pairs. However, when a multiple eigenvalue is dealt

with, an additional step must be carried out. Actually, for a multiple eigenvalue,

the corresponding eigenvectors are in general linear combinations of vectors in both

families. Hence, the eigenspace is first projected onto the subspace of vectors with

a null divergence, in order to obtain correct values of the filter ratio, before the

filtering process.

The parameterized approach. To sort out the pairs, Costabel and Dauge 17

chose to consider instead the parameterized eigenproblem

Find (Es, λs) ∈ Xγ × R+ such that

(curl Es, curlF)0 + s (div Es, divF)0,γ = λs(Es,F)0 ∀F ∈ Xγ , (1.8)

where s > 0 is a parameter. By doing so, the equivalence with (1.1)-(1.3) can be

restored: if one lets s vary, the ”real” pairs, divergence-free, will be independent of

s, while the spurious ones will vary with s.

In order to discriminate between ”real” and spurious pairs, one can use a purely
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imaginary parameter instead. In other words, one solves

Find (E ′
s, λ

′
s) ∈ Xγ × C such that

(curl E ′
s, curlF)0 + ıs (div E ′

s, divF)0,γ = λ′
s(E

′
s,F)0 ∀F ∈ Xγ . (1.9)

In this manner, ”real” pairs correspond to real eigenvalues (λ′
s ∈ R), whereas spuri-

ous pairs correspond to purely imaginary eigenvalues (λ′
s ∈ ıR). The discrimination

is automatic, and there is no need to let the parameter vary anymore. Still, from

a numerical point of view, one has to consider complex-valued unknowns, thus in-

creasing the cost of computations. Indeed, the number of real-valued unknowns is

multiplied by a factor two. For historical reasons, we still refer to it as the (complex)

parameterized approach. We shall use this version of the parameterized approach

from now on.

The mixed approach. As it is advocated in Refs. 11, 10, 13 by Ciarlet, Jr. et al,

one can take the constraint on the divergence of the field into account a priori, via

the introduction of a Lagrange multiplier. In this way, one recovers the equivalence

with the original problem. Consider L2
−γ(Ω) the dual space of L2

γ(Ω) (in the convex

case L2
−γ(Ω) = L2(Ω)). The mixed eigenproblem to be solved reads

Find (E , p, λ) ∈ Xγ × L2
−γ(Ω) × R+ such that

{

(E ,F)Xγ
+ L2

−γ
〈p, divF〉L2

γ
= λ(E ,F)0 ∀F ∈ Xγ

L2
−γ

〈q, div E〉L2
γ

= 0, ∀q ∈ L2
−γ(Ω).

(1.10)

To prove the equivalence with the original problem, one notes that any solution to

(1.10) is such that p = 0 and E ∈ Kγ (see the Annex of Ref. 11). This proves the

equivalence with the original problem, since (E , λ) is an eigenpair of (1.4).

2. Abstract setting and conforming discretizations

In the following, we examine the convergence of discrete eigenpairs, when we deal

with either a convex domain, or a non-convex domain.

2.1. Approaches without multiplier

First, we briefly recall the abstract theory that can be used to solve the filter and

parameterized approaches. Let us introduce V , a Hilbert space. Then, let us take

L, a second Hilbert space, such that V ⊂ L, V is dense in L, and L′ ≡ L. In other

words, L plays the role of the ’pivot’ space. Next, let a be a bilinear, continuous,

symmetric, coercive form on V × V . Last, let f be an element of L. Consider the

abstract problem

Find u ∈ V such that

a(u, v) = (f, v)L, ∀v ∈ V. (2.1)

One can naturally define the operator T : L → L, with u = Tf .

The associated eigenproblem reads
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Find (u, λ) ∈ V × R such that

a(u, v) = λ(u, v)L, ∀v ∈ V, (2.2)

or, equivalently,

Find (u, λ) ∈ V × R such that

λTu = u. (2.3)

Next, let us discretize the eigenproblem by defining a series of finite dimensional

subspaces of V , called (Vh)h. To each Vh, one can associate the discrete operator

Th : L → L, and Thf = uh, with uh ∈ Vh such that a(uh, vh) = (f, vh)L, for all

vh ∈ Vh. The discretized eigenproblem reads

Find (uh, λh) ∈ Vh × R such that

λhThuh = uh. (2.4)

Classically (cf. Proposition 2.1 of Ref. 5), for a compact operator T of L(L, L),

uniform convergence of Th to T in L(L, L) implies convergence of eigenvectors and

eigenvalues (note that uniform convergence in either L(L, V ) or L(V, V ) leads to

the same conclusion). Moreover, to achieve convergence, it is enough that the three

requirements below are fulfilled:

(i) the form a is symmetric and coercive over V ;

(ii) the operator T is compact from L to V ;

(iii) a pointwise convergence result holds:

∀u ∈ V, lim
h→0

‖u − Phu‖L = 0,

with Ph : V → Vh the orthogonal projection operator with respect to a.

It is pointed out in Ref. 5 that the compact character of the operator T in L(L, L)

can be derived from the compact imbedding of V into L.

In addition, we remark that in item (ii) – the compact character of T in L(L, V )

– can also be viewed as a consequence of a second imbedding result. If A : V → V ′

is defined by 〈Au, v〉 = a(u, v), for all u, v in V , then the solutions to the abstract

problem (2.1) belong to

V0 := {v ∈ V |Av ∈ L}

by construction. Then, if the imbedding of V0, endowed with the graph norm

||u||V0
:=

(

||u||2V + ||Au||2L
)1/2

, into V is compact, item (ii) follows. Also, no discrete

compactness property is required. Indeed, as one considers a series of conforming

approximations Vh ⊂ V , the imbedding of Vh into L is automatically compact.

In order to use this classical theory in our case, we proceed as follows :

Let us introduce a series a regular triangulations (Th)h of Ω, indexed by the mesh-

sizes h, and made of tetrahedra. We use the conforming, continuous Pk Lagrange
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finite element (k ≥ 1) to discretize, component by component, elements of Xγ .

The resulting discrete spaces are called (Xγ,k,h)h. Then, we simply set V = Xγ ,

L = L2(Ω)3 and a(u, v) = (u, v)Xγ
.

Item (i) is straightforward.

The fact that the operator T is compact in L(L, L) and that item (ii) holds can

be checked directly. As we remarked previously, this can be achieved with the help

of imbedding results, which we call the Weber imbedding Theorems 25,17,10. The

first one is the compact imbedding of Xγ into L2(Ω)3, whereas the other one is

the compact imbedding of the space of magnetic fields {F ∈ H(curl , Ω) | divF ∈

L2(Ω), F · n|∂Ω = 0} into L2(Ω)3.

In the convex case, item (iii) is a well-known consequence of the interpolation the-

ory for Lagrange finite elements. In the non-convex case, we refer the reader to the

approximation errors provided in Ref. 17.

The convergence of the discrete pairs to the exact pairs thus follows. Recall that

the exact pairs include both the ”real” and the spurious pairs. The possible ways to

discriminate them has been discussed in the previous section. The convergence rates

will be analysed at subsection 2.3. After the discretization has been performed, one

has to solve a generalized eigenproblem, that writes K~u = λhM~u. It is solved either

in Rn for the filter approach, or in Cn for the (complex) parameterized approach.

It is beyond the scope of this paper to study the numerical algorithms that can be

used to solve this generalized eigenproblem.

2.2. Approach with a multiplier

Let us now recall the abstract theory we use for the mixed approach. We keep

the same notations as before (V , L, a on so on). Additionally, let us introduce Q,

the Hilbert space of the multipliers. Here, a is a bilinear, continuous, symmetric,

positive semidefinite form on V × V . Next, let b be a bilinear, continuous form on

V × Q. Given f ∈ L, we consider the abstract mixed problem

Find (u, p) ∈ V × Q such that
{

a(u, v) + b(v, p) = (f, v)L, ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q
. (2.5)

Under the assumption that this problem is well-posed, we define the operator T :

L → L, with u = Tf .

The associated eigenproblem reads

Find (u, p, λ) ∈ V × Q × R such that
{

a(u, v) + b(v, p) = λ(u, v)L, ∀v ∈ V

b(u, q) = 0, ∀q ∈ Q
. (2.6)

In terms of the field u, this eigenproblem can again be formulated as λTu = u,

similarly to Eq. (2.3).



July 23, 2008 11:10 CiHe07b

Computing electromagnetic eigenmodes 9

We discretize the eigenproblem by defining two series of finite dimensional sub-

spaces: respectively of V , called (Vh)h, and of Q, called (Qh)h. The discretized

eigenproblem writes again λhThuh = uh, as in Eq. (2.4), with Th the discrete coun-

terpart of T. According to Refs. 6, 5, for a compact operator T of L(L, V ), uniform

convergence of Th to T in L(L, V ) implies convergence of eigenvectors and eigen-

values. Moreover, the necessary (see Remark 3.3 of Ref. 5 for a discussion) and

sufficient conditions (iv)-(v)-(vi)-(vii) to reach convergence can be listed as below.

For that, let us introduce the exact kernel K := {v ∈ V | b(v, q) = 0, ∀q ∈ Q} and

the discrete kernel Kh := {vh ∈ Vh | b(vh, qh) = 0, ∀qh ∈ Qh}. We define also the

subspaces V0 of V and Q0 of Q, made of solutions to the abstract mixed problem

(2.5), endowed with their natural norms:

V0 = {v ∈ V | ∃q ∈ Q s.t. (v, q) solution to (2.5) for some f ∈ L},

Q0 = {q ∈ Q | ∃v ∈ V s.t. (v, q) solution to (2.5) for some f ∈ L}.

To achieve convergence, the four requirements below are necessary and sufficient:

(iv) the form a is symmetric over V and coercive over the discrete kernel Kh ;

(v) the operator T is compact from L to V ;

(vi) the weak approximability of Q0:

∃ω1 : R+ → R+, such that limh→0+ ω1(h) = 0 and

sup
vh∈Kh

b(vh, q0)

‖vh‖V
≤ ω1(h)‖q0‖Q0

, ∀q0 ∈ Q0 ; (2.7)

(vii) the strong approximability of V0:

∃ω2 : R+ → R+, such that limh→0+ ω2(h) = 0 and

∀v0 ∈ V0, ∃vI ∈ Kh s.t. ‖v0 − vI‖V ≤ ω2(h)‖v0‖V0
. (2.8)

How can we use the theory in our case?

Let us introduce again a series a regular triangulations (Th)h of Ω, indexed by the

meshsizes h, and made of tetrahedra. We use conforming, continuous Pk+1/Pk finite

elements (k ≥ 1) to discretize elements of Xγ × L2
−γ(Ω). If Ω is convex the Taylor-

Hood finite element is used, while a ”zero near singularity” Taylor-Hood like finite

element (cf. Ref. 13) is applied if Ω is non-convex. The resulting discrete spaces are

called (Xγ,k+1,h × Qk,h)h. Then, we simply set V = Xγ , L = L2(Ω)3, Q = L2
−γ(Ω)

and a(u, v) = (u, v)Xγ
, b(u, q) = L2

−γ
〈q, div u〉L2

γ
.

Item (iv) is straightforward.

Item (v) stems again from the Weber imbedding Theorems 10.

The weak approximability (item (vi)) can be established with ω1(h) ' h in the

convex case, and ω1(h) ' h1−γ in the non-convex case (we refer the reader to Ref.

10).

It can be checked 6 that the strong approximability (item (vii)) is actually a conse-
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quence of the uniform discrete inf-sup conditiond, which we recall here:

∃β > 0 s.t. ∀h, inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ β. (2.9)

In the convex case, this condition has been proven by Stenberg and Boffi 24,4 for the

Stokes problem. For this problem, one uses only zero-mean value multipliers, that

is Qh ⊂ {q ∈ L2(Ω) | (q, 1)0 = 0}. On how to include multipliers with any mean

value, as one must for electric fields, we refer the interested reader to Ref. 12.

In the non-convex case, such a result has been obtained very recently for the pairs

of discrete spaces Xγ,k+1,h × Qk,h (see Ref. 13).

The convergence of the discrete pairs to the exact pairs thus follows. In this case,

no post-treatment is required, since all exact eigenpairs are ”real” eigenpairs. The

convergence issues are addressed in the next subsection. After discretization, one

has to solve a generalized, mixed eigenproblem in R
n ×R

p, that writes K~u+C
T ~p =

λhM~u, subject to the constraint C~u = 0 in R
p. Once again, the numerical algorithms

that can be used to solve this generalized mixed eigenproblem are not presented

here.

2.3. Convergence results

Here, we assume the uniform convergence of (Th)h to T in either L(L, L), L(L, V ) or

L(V, V ). From this initial result, one can derive error bounds 3 on the eigenvalues

and eigenspaces as stated below. For an eigenvalue λ, let Eλ be the associated

eigenspace. In the case of a multiple eigenvalue, let λh be the average of the discrete

eigenvalues converging to λ, and Eλh
the sum of the discrete eigenspaces associated

to λh. As far as convergence of the eigenvalues is concerned, one wants to measure

the error |λ− λh|. As far as the eigenspaces are concerned, one wants to bound the

gap δ̂ between them: given V1 and V2 two subspaces of V , we introduce

δ̂(V1, V2) = max(δ(V1, V2), δ(V2, V1)), where δ(V1, V2) = sup
v1 ∈ V1

‖v1‖V = 1

inf
v2∈V2

‖v1 − v2‖V .

We recall here convergence results, the proofs of which can be found in Ref. 3.

Theorem 2.1. There exists C > 0 such that

|λ − λh| < C ελ(h)2 and δ̂(Eλ, Eλh
) < C ελ(h), (2.10)

with the approximation error

ελ(h) = sup
v ∈ Eλ

‖v‖V = 1

inf
vh∈Vh

‖v − vh‖V . (2.11)

dAnd of the approximation errors (see the upcoming Propositions 2.1 and 2.2).



July 23, 2008 11:10 CiHe07b

Computing electromagnetic eigenmodes 11

To be more precise, for a given N , the N smallest eigenvalues (with repetition)

are approximated in such a way that there exists h0 such that, for all h ∈]0, h0[,

the estimates (2.10) hold. In other words, the constant C above depends on N .

In the case of a convex domain, one has the classical result, which requires an

(extra) H1+σ(Ω)3 regularity of the eigenfields (we refer to Ref. 16 for a precise study

of this extra regularity).

Proposition 2.1. Assume that one has the imbedding Eλ ⊂ H1+σ(Ω)3, for a given

σ > 0. Then, the bound in the approximation error estimate (2.11) is

ελ(h) ' ht, for t = min(σ, k).

Remark 2.1. This extra regularity assumption can be removed by adding weights

in convex domains too (cf. Ref. 17), so that the approximation error becomes inde-

pendent of λ.

In the case of a non-convex domain, one uses the error estimates established

in Refs. 17, 18. Recall that the weight exponent γ belongs to ]γmin, 1[, and that

γmin ∈]0, 1/2[ depends on the geometry. In particular, one can always choose γ so

that (γ − γmin) > 1/2.

Proposition 2.2. There exists a uniform bound (independent of λ) in the approx-

imation error estimate (2.11), which is equal to

εδ(h) ' ht, for t = (γ − γmin) − δ, ∀δ > 0.

Assume in addition that one has the imbedding Eλ ⊂ H(1−γmin)+σ(Ω)3, for a given

σ > 0. Then, the bound in the approximation error estimate (2.11) is

εδ
λ(h) ' ht, for t = min((γ − γmin) + σ − δ, k), ∀δ > 0.

3. Numerical experiments

In this section, we highlight the pros and cons of the approaches with some numerical

results.

3.1. In a convex geometry: the filter approach

We consider the solution of eigenproblem (1.1)-(1.3) in a three-dimensional cube

with edges of unit length. Eigenpairs of this problem are of the form:

ω2/c2 := (k2
1 + k2

2 + k2
3)π

2, k1, k2, k3 ∈ N,

E(x) :=





λ1 cos(k1πx) sin(k2πy) sin(k3πz)

λ2 sin(k1πx) cos(k2πy) sin(k3πz)

λ3 sin(k1πx) sin(k2πy) cos(k3πz)



 ,
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subject to

k1λ1 + k2λ2 + k3λ3 = 0,

which is the divergence free constraint, with (x, y, z) the cartesian coordinates of a

given x ∈ Ω.

We compute the smallest 11 Maxwell eigenvalues corresponding to 2π2 (of mul-

tiplicity 3), 3π2 (of multiplicity 2) and 5π2 (of multiplicity 6). Computations are

carried out on a quasi-uniform mesh with 3072 tetrahedra and 729 vertices. We

apply the filter method using vector Pk (k = 1, 2, 3) finite element discretizations,

leading to problems with respectively 1323, 11475 and 39675 d.o.f., and the mixed

method using Pk+1−Pk (k = 1, 2) Taylor-Hood finite elements, leading to problems

with resp. 12204 and 44588 d.o.f. The relative errors on the computed eigenvalues,

rk = |λh,k − λk|/|λk|,

are reported in Table 1.

Method Filter Mixed

F E

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

P1 P2 P3

3.4 × 10−2 2.0 × 10−4 4.8 × 10−7

5.1 × 10−2 2.1 × 10−4 4.8 × 10−7

5.1 × 10−2 2.1 × 10−4 5.6 × 10−7

7.8 × 10−2 6.1 × 10−4 2.4 × 10−6

7.9 × 10−2 6.1 × 10−4 2.4 × 10−6

7.5 × 10−2 1.0 × 10−3 5.4 × 10−6

7.5 × 10−2 1.0 × 10−3 5.4 × 10−6

1.0 × 10−1 1.0 × 10−3 5.6 × 10−6

1.0 × 10−1 1.0 × 10−3 5.6 × 10−6

1.0 × 10−1 1.0 × 10−3 6.3 × 10−6

1.0 × 10−1 1.0 × 10−3 6.3 × 10−6

P2 − P1 P3 − P2

2.0 × 10−4 4.8 × 10−7

2.1 × 10−4 4.8 × 10−7

2.1 × 10−4 5.6 × 10−7

6.1 × 10−4 2.5 × 10−6

6.2 × 10−4 2.5 × 10−6

1.0 × 10−3 5.4 × 10−6

1.0 × 10−3 5.4 × 10−6

1.0 × 10−3 5.6 × 10−6

1.0 × 10−3 5.6 × 10−6

1.0 × 10−3 6.3 × 10−6

1.0 × 10−3 6.3 × 10−6

Table 1. Relative errors for computations in the unit cube

One can easily remark that both approaches give similar results. This reveals the

efficiency of the a posteriori filtering. Indeed, the eigenvalue 3π2 is of multiplicity

3 in the spectrum of the augmented problem (1.6), but only two pairs correspond

to ”real” pairs. This fact is successfully detected by the filter approach and the

spurious pair is excluded as expected.

3.2. In a non-convex geometry: comparisons of the approaches

In convex domains, computations are fairly standard, and the approaches show

analogous behavior. We further investigate the approaches in non-convex domains,

when singular eigenfields are handled.
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3.2.1. Experiments in the thick L-shaped domain

First, we solve eigenproblem (1.1)-(1.3) in the thick L-shaped domain 19 having a

single reentrant edge, (]−1, 1[2\[−1, 0]2)×]0, 1[. The smallest 9 Maxwell eigenvalues
19 up to six digits are listed in Table 2. It is reported that the first, second and fifth

eigenvalues exhibit the strongest singularity. The value of γmin is equal to 1/3.

λ1 9.6397

λ2 11.3452

λ3 13.4036

λ4 15.1972

λ5 19.5093

λ6 19.7392

λ7 19.7392

λ8 19.7392

λ9 21.2591

Table 2. Maxwell eigenvalues in the thick L-shape (Dauge’s computations)

Through the experiments, 2D triangular meshes of the L-shape are duplicated

towards the direction of the reentrant edge so as to generate 3D tetrahedral meshes.

Two types of 2D triangular meshes are used : a quasi-uniform (ungraded) mesh and

a graded mesh (graded towards the 2D reentrant corner). We obtain 3D meshes with

4608 tetrahedra and 1125 vertices in the ungraded case, and 4032 tetrahedra and

1010 vertices in the graded case. The filter and (complex) parameterized (s = 1)

methods are applied with vector P2 finite elements and the mixed method with

”zero near singularity” P2 − P1 finite elements. These discretizations yield discrete

problems resp. with 14843 and 17069 d.o.f. on the ungraded mesh, and, 15818 and

18162 d.o.f. on the graded one. The weight is implemented with γ = 0.95. The results

are shown in Tables 3, 4 and 5. For the (complex) parameterized experiments, we

report the values of rk = |<(λh,k) − λk|/|λk|.

Overall, when compared to the mixed method, the parameterized and the filter

methods exhibit smaller relative errors for most of the eigenpairs, and in particular

for the singular ones on the graded mesh. Moreover, for the mixed method, appro-

priate results are only obtained on the graded mesh, since spurious eigenvalues are

encountered on the ungraded mesh, as shown in Table 3 (λh,4, λh,6 and λh,7). In

fact, for the thick L-shape, the electric field has singularities only in the directions

perpendicular to the reentrant edge. Therefore, a grading towards these directions

is beneficial to approximate better the singular eigenvalues and improve the con-

vergence rate e. Furthermore, for ”zero near singularity” P2−P1 finite elements (cf.

eThis is true for all methods. Compare Tables 4 and 5 for the filter and the parameterized methods.
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λh,1 9.6627

λh,2 10.5974

λh,3 13.3150

λh,4 13.6238

λh,5 15.9957

λh,6 16.7727

λh,7 18.6795

λh,8 19.7434

λh,9 19.7643

Table 3. The smallest 9 eigenvalues given by the mixed method in the thick L-shape with the
ungraded mesh

Method Filter Parameterized

r1 2.4 × 10−3 2.4 × 10−3

r2 1.7 × 10−2 3.9 × 10−2

r3 9.7 × 10−4 8.1 × 10−4

r4 1.5 × 10−4 1.6 × 10−4

r5 2.6 × 10−3 1.5 × 10−2

r6 2.1 × 10−4 2.1 × 10−4

r7 1.3 × 10−3 1.1 × 10−3

r8 1.4 × 10−3 1.1 × 10−3

r9 1.6 × 10−3 1.2 × 10−3

Table 4. Relative errors for computations in the thick L-shape with the ungraded mesh

Method Filter Parameterized Mixed

r1 6.1 × 10−4 6.1 × 10−4 6.2 × 10−4

r2 6.5 × 10−3 1.1 × 10−2 8.5 × 10−3

r3 8.1 × 10−4 7.4 × 10−4 8.4 × 10−4

r4 1.1 × 10−4 1.0 × 10−4 1.1 × 10−4

r5 2.0 × 10−3 4.7 × 10−3 6.9 × 10−3

r6 1.8 × 10−4 1.8 × 10−4 1.8 × 10−4

r7 1.2 × 10−3 1.1 × 10−3 1.2 × 10−3

r8 1.2 × 10−3 1.1 × 10−3 1.3 × 10−3

r9 1.3 × 10−3 1.1 × 10−3 1.1 × 10−2

Table 5. Relative errors for computations in the thick L-shape with the graded mesh

Ref. 13), the components of the discrete Lagrange multiplier are set to zero in all

tetrahedra having a vertex on the reentrant edge. When the considered 2D triangu-
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lar mesh is graded towards the reentrant corner, the volume of the aforementioned

set of tetrahedra is much smaller than in the case where the 2D triangular mesh is

ungraded. Hence, in the ungraded case, the constraint is imposed on a smaller vol-

ume of the domain Ω, and some spurious eigenvalues might remain in the spectrum

of the discrete mixed problem. It is also consistent with the fact that, according to

the approximation theory of eigenproblems (see Theorem 2.1 and comments below

it), convergence occurs only for sufficiently small h.

Note that, after discretisation, the spectrum of the (complex) parameterized

problem (1.9) has complex eigenvalues. The spurious pairs have the larger imaginary

parts, and the ”real” pairs have the larger real parts. Thus, on the one hand, for the

parameterized approach, the filtering is uniquely based on the eigenvalues, whereas,

on the other hand, for the filter method, the filtering is based on the properties

exhibited by the eigenvectors.

3.2.2. Experiments in the Fichera corner domain

We conclude this section with experiments peformed in the Fichera corner domain,

which is the cube ] − 1, 1[3 minus the cube [−1, 0]3. The smallest 8 Maxwell eigen-

modes given in Ref. 19 are listed in Table 6. The value of γmin is equal to 1/3.

λ1 3.2199

λ2 5.8804

λ3 5.8804

λ4 10.6854

λ5 10.6937

λ6 10.6937

λ7 12.3164

λ8 12.3164

Table 6. Maxwell eigenvalues in the Fichera corner

Computations are carried out on a 3D mesh having 2688 tetrahedra and 665

vertices, refined towards the reentrant edges and corner. Vector Pk (k = 2, 3) finite

elements (filter method), and ”zero near singularity” Pk+1 − Pk (k = 1, 2) finite

elements (mixed method) are used, leading to problems with 9894 and 34422 d.o.f.,

resp. 10461 and 38328 d.o.f. Results are reported in Table 7.

We can see that both methods give quite similar relative errors. Furthermore,

the approximations are significantly improved when higher order finite elements are

considered. Also, when vector P3 finite elements are used, the first eigenvalue having

the highest singularity is better approximated by the filter method.
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Method Filter Mixed

F E

r1

r2

r3

r4

r5

r6

r7

r8

P2 P3

2.2 × 10−1 1.1 × 10−3

1.5 × 10−2 6.5 × 10−4

1.5 × 10−2 6.5 × 10−4

5.6 × 10−2 1.8 × 10−3

2.5 × 10−2 6.9 × 10−4

2.5 × 10−2 6.9 × 10−4

4.2 × 10−2 5.8 × 10−4

4.2 × 10−2 5.8 × 10−4

P2 − P1 P3 − P2

1.8 × 10−1 5.1 × 10−2

1.8 × 10−2 3.9 × 10−4

1.8 × 10−2 3.9 × 10−4

3.7 × 10−2 1.0 × 10−3

2.7 × 10−2 6.4 × 10−4

2.7 × 10−2 6.4 × 10−4

3.1 × 10−2 5.2 × 10−4

3.1 × 10−2 5.2 × 10−4

Table 7. Relative errors for computations in the Fichera corner

4. Discussion: focusing on eigenvalues or eigenvectors?

Up to now, we focused mainly on the convergence of the eigenvalues. What about

the convergence of eigenvectors? Except in the particular case of the cube where

the exact expression of the eigenvectors is known, no analytic knowledge is avail-

able. However, there is – at least – one noticeable exception, since according to Eq.

(1.2), all eigenvectors are divergence-free. So, we expect that the divergence of the

discrete eigenvectors goes to zero, when measured in || · ||0,γ norm. Recall that it

is not exactly zero, since our method is conforming in Xγ , but not in the subspace

made of divergence-free fields, Kγ .

Below, we monitor the evolution of the filter ratios (1.7), that compares (here, for

the discrete eigenvectors) the L2
γ(Ω)-norm of the divergence to the L2(Ω)3-norm of

the curl, for the Fichera corner. On the left side of Figure 1, we report the evolu-
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Fig. 1. Filter ratios: for the filter method (left) and for the mixed method (right).

tion of the filter ratios, on a given mesh, when one uses either the vector P2 or the

vector P3 finite element to discretize the fields, without a multiplier. Similarly, on

right side of Figure 1, we report the same evolution, when a Lagrange multiplier

(respectively the scalar P1 or the scalar P2 Finite Element) is used.
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One can draw three conclusions from this Figure. The first one is that, the approx-

imation on the divergence is consistently better when one goes from a P2 to a P3

approximation of the fields. The second one is that the mixed method allows us to

better control the divergence of the discrete eigenfields, as expected (see also Figure

2 for a specific comparison). We recall that these results on the eigenfields are linked

to comparable accuracies for the eigenvalues, as we saw in section 3. The last one is

that the threshold one imposes to the ratio (1.7) must be chosen with great care for

the filter method. Indeed, if the value were set to 0.5, two ”real” eigenvalues would

have been filtered out in the P2 computations.
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Fig. 2. Filter ratios for both methods, P2 FE.
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