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A CHARACTERIZATION OF SINGULAR ELECTROMAGNETIC

FIELDS BY AN INDUCTIVE APPROACH

F. ASSOUS, P. CIARLET, JR., AND E. GARCIA

Abstract. In this article, we are interested in the mathematical modeling of

singular electromagnetic fields, in a non-convex polyhedral domain. We first

describe the local trace (i. e. defined on a face) of the normal derivative of an

L2 function, with L2 Laplacian. Among other things, this allows us to describe

dual singularities of the Laplace problem with homogeneous Neumann bound-

ary condition. We then provide generalized integration by parts formulae for

the Laplace, divergence and curl operators. With the help of these results, one

can split electromagnetic fields into regular and singular parts, which are then

characterized. We also study the particular case of divergence-free and curl-

free fields, and provide non-orthogonal decompositions that are numerically

computable.
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Introduction

When one solves boundary value problems in a bounded polyhedron Ω of R
3

with a Lipschitz boundary, it is well-known that the presence of reentrant corners
and/or edges on the boundary deteriorates the smoothness of the solution [30, 28].
This problem is all the more relevant since boundary value problems which arise in
practice, are often posed in domains with a simple but non smooth geometry, such
as three-dimensional polyhedra.

More specifically, consider Maxwell’s equations with perfect conductor boundary
conditions and right-hand sides in L2(Ω). Then the electromagnetic field (E ,H)
always belongs to H1(Ω)6 when Ω is convex1. On the other hand, it is only guaran-
teed that it belongs to Hσ(Ω)6, for any σ < σmax, with σmax ∈]1/2, 1[, when Ω is
non-convex (see for instance [24]). In the latter case, strong electromagnetic fields
can occur, near the reentrant corners and/or edges. For practical applications, we
refer for instance to [31]. Nevertheless, one can split (cf. [7]) the field into two
parts: a regular one, which belongs to H1(Ω)6, and a singular one. According to
[28, 7, 12, 24], the subspace of regular fields is closed, so one can choose to define
the singular fields by orthogonality. Other approaches are possible and useful, see
[23].

In the same way, when solving a problem involving the Laplace operator with data
in L2(Ω), the solution is in H2(Ω) when Ω is either a convex polyhedron or a
bounded domain with a smooth boundary. However, it is only guaranteed to be
in H1+s(Ω) for s < smax, when Ω is a non-convex polyhedron (one can prove that

Received by the editors May 2007.
1As proven in [28, p. 12], if Ω is convex, then its boundary is automatically Lipschitz.
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smax = σmax, see Section 3). Grisvard showed in [28] that a solution of the Laplace
operator can be decomposed into the sum of a regular part and a singular part,
the latter being called a primal singularity. This decomposition is based on a de-
composition of L2(Ω) into the sum of the image space of the regular parts and its
orthogonal (the latter is the space of dual singularities).

As it is well known, the singular part of the electromagnetic field is linked [7, 8, 10]
to the primal singularities of the Laplace problem, respectively with

• homogeneous Dirichlet boundary condition for the electric field E ;
• homogeneous Neumann boundary condition for the magnetic field H.

For a comprehensive theory on this topic, we refer the reader to the works of Bir-
man and Solomyak [7, 8, 9, 10, 11]. Among other results, they proved a splitting of
the space of electromagnetic fields into a two-term simple sum. First, the subspace
of regular fields. Second, the subspace made of gradients of solutions to the Laplace
problem.

During the 1990s, Costabel and Dauge [25, 19, 20, 22, 23] provided new insight
into the characterizations of the singularities of the electromagnetic fields, called
afterwards electromagnetic singularities. In the process, they proved very useful
density results.

In [2], we first studied, for L2 functions with L2 Laplacians, a possible definition
of the trace on the boundary. Actually, it was proven that it can be understood
locally – face by face – with values in H−1/2-like Sobolev spaces. This being clar-
ified, we inferred a generalized integration by parts (gibp) formula. Finally, in [4],
we were able to describe precisely the space of all divergence-free singular electric
fields. Indeed, starting from the orthogonality relationship with regular fields, the
gibp formula allowed to build a suitable characterization. In the present article, we
would like to extend the results first to the case of magnetic fields and second to
the case of any electric field, by using the same three step procedure.

The article is organized as follows. We first introduce some notations and define
the Sobolev spaces that we will use throughout this paper. In the following Section,
we recall some definitions on local traces together with the resulting gibp formula
for the Laplace problem with Dirichlet boundary condition. These results are then
extended to the Laplace operator with Neumann boundary condition. In Section
3, we transpose (part of) these results to the electromagnetic fields, from which,
in Section 4, we can prove characterizations of the singular electromagnetic fields.
Section 5 is devoted to the study of the divergence-free case. Then, in Section 6,
we relate the regular/singular fields to the vector and scalar potentials. We also
give their characterizations, using for this ad hoc isomorphisms. Finally, in the
last Section, we consider curl-free spaces, that allow to define non-orthogonal but
numerically useful decompositions of the electromagnetic fields.

1. Notations and functional spaces

Let Ω be a bounded open set of R
3, with a Lipschitz polyhedral boundary ∂Ω.

For simplicity reasons (cf. Remark 3.1), we assume that Ω is simply connected and
that ∂Ω is connected. The unit outward normal to ∂Ω is denoted by n. We call
(Sv)1≤v≤NV the vertices of ∂Ω. Let (Fi)1≤i≤NF be the faces of ∂Ω: ∀i means that
i spans {1, · · · , NF}, whereas i stands for a given index. We also introduce the
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edges between faces: eij is the edge between the faces Fi and Fj (when it exists),
and ∀(i, j) means that (i, j) spans the subset of {1, · · · , NF }

2 which correspond to
actual edges of ∂Ω. In this case, setting ni = n|Fi

, τ ij is a unit vector parallel to

eij , and τ i is such that (τ i, τ ij ,ni) forms an orthonormal basis of R
3. Finally, we

denote by Γij the reunion of two faces Fi and Fj when there are connected by an
edge, i. e. Γij is open and such that Γ̄ij = F̄i ∪ ēij ∪ F̄j .

In the text, names of functional spaces of scalar fields usually begin with an
italic letter, whereas they begin with a bold or calligraphic letter for spaces of vec-
tor fields (for instance, L2(Ω) = L2(Ω)3). The scalar products (respectively the
norms) of L2(Ω) and of L2(Ω) are both denoted by (·, ·)0 (resp. by ‖ · ‖0), and the
duality product between X and its dual X ′ is denoted by 〈·, ·〉X . We assume that
the reader is familiar with the space of smooth functions with compact support on
Ω, called D(Ω), and with its dual D′(Ω), the space of distributions on Ω. The same
for the Sobolev spaces Hm(Ω), m ≥ 1, and the closure of D(Ω) in these spaces,
denoted by Hm

0 (Ω). Now, let us consider some well-known, but more specialized,
Sobolev spaces.

The first specialized functional space is L2
0(Ω), i. e. the subspace of L2(Ω) made

of elements with zero mean value over Ω. Then, to study electromagnetic fields, it
is convenient to introduce

H(curl ,Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}, ‖v‖H(curl ,Ω) =
[
‖v‖2

0 + ‖curl v‖2
0

]1/2

H(div ,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}, ‖v‖H(div ,Ω) =
[
‖v‖2

0 + ‖div v‖2
0

]1/2
,

and the closure of D(Ω)3 in those spaces, respectively denoted by H0(curl ,Ω) and
H0(div ,Ω). Let us also set H(div 0; Ω) = {v ∈ H(div ,Ω) : div v = 0}.

Next, we shall use throughout this paper trace mappings on the boundary ∂Ω,
together with functional spaces related to these mappings.

For scalar fields, the trace γ0 : u 7→ u|∂Ω
, and the trace of the normal derivative

γ1 : u 7→ ∂nu|∂Ω
. Then, introduce H1/2(∂Ω) as the range of γ0 from H1(Ω), that

is γ0(H
1(Ω)) (note that H1

0 (Ω) = Ker(γ0)), and its dual H−1/2(∂Ω). This allows
to define functions, the support of which is restricted to any given face Fi. Define
L2(Fi) as usual and

H1/2(Fi) = {v ∈ L2(Fi) : ∃w ∈ H1/2(∂Ω), v = w|Fi
}

H̃1/2(Fi) = {v ∈ H1/2(Fi) : ṽ ∈ H1/2(∂Ω)}
,

where ṽ is the continuation of v by zero to ∂Ω. Denote by H̃−1/2(Fi) the dual space

of H̃1/2(Fi).
Following [13, 14], we introduce then H3/2(∂Ω) = γ0(H

2(Ω)), and, on any given

face, successively H3/2(Fi), H̃
3/2(Fi) and H̃−3/2(Fi).

To conclude on the scalar functions defined on a part of ∂Ω, consider finally any

given reunion of two faces Γij , and let s ∈ {1/2, 3/2}. We define Hs(Γij), H̃
s(Γij)

and H̃−s(Γij) as previously.

Now, let us introduce the spaces of vector fields. The normal trace γn : u 7→
u · n|∂Ω

is surjective from H(div ,Ω) to H−1/2(∂Ω) (H0(div ,Ω) = Ker(γn)). Fol-
lowing [13], we introduce then two companion vector traces. The first one, the
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’tangential trace’ γτ : v 7→ v × n|∂Ω
, and the second one, the ’tangential compo-

nents trace’ πτ : v 7→ n× (v×n)|∂Ω
. One can prove simply that, when considered

from H(curl ,Ω), γτ takes its values in H−1/2(∂Ω), without being surjective. The
characterization of its range is more delicate, but it can be obtained nonetheless
[13]. We do not provide it here, since it is not relevant for our studies. However,
we shall need

(1) L2
t (∂Ω) = {v ∈ L2(∂Ω)3 : v · n = 0},

and the respective ranges of γτ and πτ , when considered from H1(Ω): H
1/2
⊥ (∂Ω) =

γτ (H1(Ω)), and H
1/2
‖ (∂Ω) = πτ (H1(Ω)). A characterization of these spaces can be

obtained, and it will be stated when it is needed. As before, for any given face Fi,

we introduce the sequences: H
1/2
⊥ (Fi) and H̃

1/2
⊥ (Fi); H

1/2
‖ (Fi) and H̃

1/2
‖ (Fi).

2. Local traces and generalized integration by parts formulas for the

Laplace problem

We want to characterize singular electromagnetic fields. To achieve our goal,
we retrace the three-step procedure of [4], in which divergence-free singular electric
fields were scrutinized:

(1) derivation of generalized integration by parts (gibp) formulas;
(2) characterization of dual singularities related to the Laplace problem;
(3) characterization of singular electromagnetic fields.

In this Section, we focus on the first two steps. We begin by introducing primal
scalar fields, which are the solutions to the Laplace problem set in H1(Ω), with
right-hand side in L2(Ω).
The dual scalar fields correspond to the right-hand sides, i. e. either L2(Ω) or
L2

0(Ω).

Definition 2.1. Let Ψ and Φ be the spaces of primal fields for the Laplace oper-
ator, respectively with homogeneous Dirichlet or homogeneous Neumann boundary
conditions

Ψ = {ψ ∈ H1
0 (Ω) : ∆ψ ∈ L2(Ω)} ,

Φ = {φ ∈ H1(Ω) ∩ L2
0(Ω) : ∆φ ∈ L2

0(Ω) : ∂nφ|∂Ω
= 0} .

It is common knowledge (use the Lax-Milgram Theorem) that both spaces Ψ
and Φ can be equipped with the equivalent norm ‖v‖∆ = ‖∆v‖0. Then, we split
the primal fields into H2-regular fields and singular fields, and study the properties
related to the splittings. The latter fields are called primal singularities.

For the electric case, we assume that the domain Ω is enclosed in a perfectly
conducting material, so that the boundary condition for the electric field is E ×
n|∂Ω

= 0. Hence, the singular electric fields are related to the singularities of
the Laplace operator with Dirichlet boundary condition [7]. As far as primal and
dual singularities are concerned, let us thus begin by the case of the Dirichlet
boundary conditions, which is addressed in [2]. Following this Ref., it is convenient
to introduce (sub)spaces of regular solutions of the Laplace problem, such as the
ones below.

Definition 2.2. Consider the regular subspaces of Ψ

(2)
HD(Ω) = H2(Ω) ∩H1

0 (Ω)
HD

i (Ω) = {v ∈ HD(Ω) : ∂nv|Fj
= 0, ∀j 6= i}, 1 ≤ i ≤ NF

.
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Since HD(Ω) is closed in Ψ (cf. [28]), we can introduce its orthogonal subspace,

called HD(Ω), the space of primal singularities and get the splitting

Ψ = HD(Ω)
⊥∆

⊕ HD(Ω).

Next, we consider SD, equal to the range of the scalar Laplace operator acting on the
space of primal singularities HD(Ω). Elements of SD are called dual singularities.
We explain below how they can be characterized. To proceed, we define D(∆; Ω) =
{q ∈ L2(Ω) : ∆q ∈ L2(Ω)}, endowed with the graph norm ‖ · ‖D. This space is
natural for the study of dual singularities of the Laplace problem. Since H2(Ω) is
dense in D(∆; Ω) [2], one can prove simply some gibp formulas, such as (3) and
other formulas afterwards.

Theorem 2.1. Consider i ∈ {1, · · · , NF }.

(*) The mapping v 7→ ∂nv|Fi
is linear and continuous from HD(Ω) to H̃1/2(Fi);

(i) The mapping v 7→ ∂nv|Fi
is surjective from HD

i (Ω) to H̃1/2(Fi);

(ii) The mapping p 7→ p|Fi
is linear and continuous from D(∆; Ω) to H̃−1/2(Fi);

(iii) The following gibp formula holds:

(3) (p,∆v)0 − (v,∆p)0 =
∑

i

〈p|Fi
, ∂nv|Fi

〉 eH1/2(Fi)
, ∀(p, v) ∈ D(∆; Ω) ×HD(Ω).

With the help of these results, we can characterize dual singularities of SD as
follows [2].

Corollary 2.1. An element s of L2(Ω) belongs to SD if, and only if, there holds:

(4) s ∈ D(∆; Ω), −∆s = 0 in Ω, s|Fi
= 0 in H̃−1/2(Fi), ∀i.

We recall briefly how these results can be established (cf. [2]).
Proof. Consider s ∈ SD. By definition, (s,∆v)0 = 0, for all v ∈ HD(Ω).
Since D(Ω) is a subset of HD(Ω), one finds, for any v ∈ D(Ω):

〈∆s, v〉 = 〈s,∆v〉 = (s,∆v)0 = 0.

So ∆s = 0 and s belongs to D(∆; Ω). According to item (ii) of Theorem 2.1,

s|Fi
∈ H̃−1/2(Fi), for all i. Also, given any µ ∈ H̃1/2(Fi), there exists v ∈ HD

i (Ω)

such that ∂nv|Fi
= µ (item (i)). Then, formula (3) applied to the couple (s, v)

yields 0 = 〈s|Fi
, µ〉 eH1/2(Fi)

. In other words, s|Fi
= 0 in H̃−1/2(Fi).

The reciprocal assertion is an easy consequence of formula (3). �

In order to proceed similarly for the magnetic field, recall first that the perfect
conductor boundary condition is written here H · n|∂Ω

= 0. Hence, the singular
magnetic fields are related to the singularities of the Laplace operator with Neu-
mann boundary condition [7, 10]. Compared to the electric case, the idea is then
to swap the trace mapping γ0 with the trace of the normal derivative mapping γ1.

Definition 2.3. Consider the regular subspaces of Φ

(5)
HN (Ω) = {v ∈ H2(Ω) ∩ L2

0(Ω) : ∂nv|∂Ω
= 0},

HN
i (Ω) = {v ∈ HN(Ω) : v|Fj

= 0, ∀j 6= i}, 1 ≤ i ≤ NF .

Since HN(Ω) is closed in Φ (cf. [28]), we introduce its orthogonal subspace,

HN (Ω), the space of primal singularities with Neumann boundary conditions and
get the splitting

Φ = HN(Ω)
⊥∆

⊕ HN (Ω).
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Next, we define SN , equal to the range of the Laplace operator acting on the
space of primal singularities HN (Ω). Elements of SN are called dual singularities
(with Neumann boundary conditions). The characterization of the elements of
SN will prove slightly more complicated then the SD counterpart, as we will see
below. Following basically the same techniques as in the case of the Dirichlet
boundary conditions [26, pp. 175-176], one can first derive the results below (with
the important exception of item (*) of Theorem 2.1, see Remark 2.1).

Theorem 2.2. Consider i ∈ {1, · · · , NF }.

(i) The mapping v 7→ v|Fi
is surjective from HN

i (Ω) to H̃3/2(Fi);

(ii) The mapping p 7→ ∂np|Fi
is linear and continuous from D(∆; Ω) to H̃−3/2(Fi);

(iii) The following gibp formula holds:

(6) (p,∆v)0 − (v,∆p)0 = −〈∂np|Fi
, v|Fi

〉 eH3/2(Fi)
, ∀(p, v) ∈ D(∆; Ω) ×HN

i (Ω).

Remark 2.1. One can not transpose item (*) of Theorem 2.1 from the electric to
the magnetic case. As a matter of fact, given v ∈ HN (Ω), it is true that v|Fi

belongs to H3/2(Fi), but v|Fi
∈ H̃3/2(Fi) is not automatically fulfilled. However,

the gibp formula (6) is easily extended to (p, v) of D(∆; Ω) × HN (Ω), such that

v|Fi
∈ H̃3/2(Fi), ∀i.

With the help of Theorem 2.2, one gets easily (transpose the proof of Corollary
2.1) the

Corollary 2.2. An element s of SN satisfies necessarily:

(7) s ∈ D(∆; Ω), −∆s = 0 in Ω, ∂ns|Fi
= 0 in H̃−3/2(Fi), ∀i.

The question is: does (7) completely characterizes dual singularities of SN? The
problem here is the absence of item (*) in the magnetic case. However, if

∑
iH

N
i (Ω)

were dense in HN (Ω), then the characterization (7) would be complete! But it is
not the case. It can be explained simply by contradiction if one recalls the Sobolev
imbedding Theorem, which states that H2(Ω) is continuously imbedded in the
Hölder space C0,1/2(Ω̄) (cf. for instance [28, p. 27]). In particular,

∃C > 0, sup
x∈Ω̄

|u(x)| ≤ C ‖u‖H2(Ω), ∀u ∈ H2(Ω).

If one assumes that
∑

i H
N
i (Ω) is dense in HN (Ω), one gets that, given any f ∈

HN(Ω) and any ε > 0, there exists fΣ ∈
∑

i H
N
i (Ω) such that ‖f − fΣ‖H2(Ω) ≤ ε,

so that sup
x∈Ω̄ |f(x) − fΣ(x)| ≤ C ε. But, since fΣ|Fi

belongs to H̃3/2(Fi), for all

i, one gets in particular that fΣ|eij
= 0, for all (i, j). Passing to the limit, one finds

that f|eij
= 0, for all (i, j). But, there exists elements of HN(Ω) that do not fulfill

this property (cf. the Annex, Subsection A.2).
So, as (7) provides an incomplete characterization of the elements of SN , one has
to model them more precisely.

Definition 2.4. Consider the regular subspaces of Φ, for all (i, j),

(8) HN
ij (Ω) = {v ∈ HN(Ω) : v|Fk

= 0, ∀k 6∈ {i, j}},

and the trace spaces, for all (i, j),

(9) Aij = {v ∈ H̃3/2(Γij) : ∇Γv|Fi
· nj

1/2
= 0, 0

1/2
= ∇Γv|Fj

· ni}.
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(
Above, ∇Γ is the surface gradient on ∂Ω, and the notation fi

1/2
= fj has the

following meaning: consider (fi, fj) ∈ H1/2(Fi) × H1/2(Fj); we write fi
1/2
= fj

if, and only if, the function fij , equal to fi on Fi and to fj on Fj , belongs to

H1/2(Γij).
)

One can prove easily that the Aijs are Hilbert spaces (i. e. they are complete),
and moreover that they are the ad hoc trace spaces (i. e. the trace mapping is
surjective). As a matter of fact, using [6, Theorem 2] for item (iv) below, one can
prove enhanced results, for the trace mappings γ0 and γ1.

Theorem 2.3. Consider (i, j) associated to an edge eij.
(iv) The mapping v 7→ v|Γij

is surjective from HN
ij (Ω) to Aij;

(v) The mapping p 7→ ∂np|Γij
is linear and continuous from D(∆; Ω) to (Aij)

′;

(vi) The following gibp formula holds:

(10) (p,∆v)0 − (v,∆p)0 = −〈∂np|Γij
, v|Γij

〉Aij , ∀(p, v) ∈ D(∆; Ω) ×HN
ij (Ω).

In other words, one has to add another condition to (7) in Corollary 2.2, namely
∂ns|Γij

= 0 in (Aij)
′, for all (i, j). The question is: is it the only one? The answer is

yes: from the above, we can actually provide a full characterization of the elements
of SN .

Corollary 2.3. An element s of L2
0(Ω) belongs to SN if, and only if, there holds:

(11)
s ∈ D(∆; Ω), −∆s = 0 in Ω, ∂ns|Fi

= 0 in H̃−3/2(Fi), ∀i,

∂ns|Γij
= 0 in (Aij)

′, ∀(i, j).

Proof. Following the proof of Corollary 2.1, one obtains easily that any element s
of SN satisfies all the conditions in (11).
To prove the reciprocal assertion, we consider an s which satisfies (11), together
with any u ∈ HN(Ω), and compute (s,∆u)0. We split u into four parts, in the
following way

u =
∑

v

uv +
∑

(i,j)

uij +
∑

i

ui + uΩ,

where the first summation is taken over all vertices, the second one over all edges,
and the last one over all faces. Let us explain how each part is built. Introduce χ :
R

+ → R
+, a smooth cut-off function, equal to one in a neighborhood of zero, and

to zero near +∞.
Around vertex v, consider the spherical coordinates (ρv, θv, ϕv), and set un

v (x) =
χ(nρv)u(x), for an integer n ≥ 1. In other words, the support of un

v is located
around vertex v, and it shrinks as n increases.
The difference vn = u−

∑
v u

n
v is equal to zero around all vertices. Around edge eij ,

consider the cylindrical coordinates (ρij , θij , zij), and set un
ij(x) = χ(nρij)v

n(x).
The support of un

ij is located around edge eij and, in addition, for n large enough,

one gets that un
ij belongs to HN

ij (Ω).
The difference wn = u −

∑
v u

n
v −

∑
ij u

n
ij is equal to zero around all edges and

vertices. Near face Fi, consider the distance to the face zi, and set un
i (x) =

χ(nzi)w
n(x). The support of un

i is located near face Fi and, in addition, for n
large enough, one gets that un

i belongs to HN
i (Ω) (although the distance zi is not

a ’smooth’ function, the regularity of un
i is not an issue, since it vanishes near the

edges surrounding the face, i. e. precisely where zi is not smooth).
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The difference un
Ω = u−

∑
v u

n
v −

∑
ij u

n
ij −

∑
i u

n
i belongs to H2

0 (Ω) (by construc-

tion, it is equal to zero near the boundary). Summing up, one can thus write, for
n large enough

(s,∆u)0 =
∑

v

(s,∆un
v )0,

since the three other terms disappear according to the (three) conditions specified
in (11). Now, one has simply to prove that the remaining term is actually zero.
To that aim, we use Lemma A.1 ((cf. the Annex, Subsection A.1), which states
precisely that, for each vertex v, the sequence (∆un

v )n converges weakly to zero in
L2(Ω). This ends the proof. �

Remark 2.2. Once again, using the same counter-example (cf. the Annex, Subsec-
tion A.2), one can prove that, with respect to a given edge eij of ∂Ω, there exists f
of HN (Ω) such that ∆fn

ij does not converge weakly to zero in L2(Ω).

As a conclusion to this Section, we make the following remarks. The full char-
acterization of dual singularities (the elements of SN ) does not only rely on a strict
transposition of the arguments developed in [2] for the characterization of dual
singularities (the elements of SD). As a matter of fact, it is more complex to
achieve, in the sense that additional tools must be used in the case of elements of
SN . Interestingly, the 3D context is different from the 2D context, in which the
characterizations of SD and SN are completely symmetric [29]. For intermediate
situations – 2 1

2D geometries – we refer the reader for instance to [17, 18].

3. Functional spaces, local traces and generalized integration by parts

formulas for the electromagnetic field

Assuming that the right-hand sides of Maxwell’s equations belong to L2(Ω)
(or to L2(Ω)) amounts to saying that both electric and magnetic fields belong
to H(curl ,Ω)∩H(div ,Ω), plus (perfect conductor) boundary conditions. We thus
consider the spaces X × Y of electromagnetic fields as below.

Definition 3.1. Let X × Y be the space of electromagnetic fields, with

X = {x ∈ H(curl ,Ω) ∩ H(div ,Ω) : x × n|∂Ω
= 0};(12)

Y = {y ∈ H(curl ,Ω) ∩ H(div ,Ω) : y · n|∂Ω
= 0}.(13)

Recall that our aim is to characterize the singular electromagnetic fields by
orthogonality (to all regular electromagnetic fields). Therefore, we have to focus
on the scalar product. Since both X and Y are subsets of H(curl ,Ω)∩H(div ,Ω),
a natural choice would be the scalar product induced by the graph norm

(14) (u,v) 7→ (u,v)0 + (curl u, curl v)0 + (div u, div v)0.

However, we know from Weber [32] that both X and Y are compactly imbedded in
L2(Ω). As a consequence, one can prove that

(15) (·, ·)W : (u,v) 7→ (curl u, curl v)0 + (div u, div v)0,

defines a norm, which is equivalent to the graph norm.

Remark 3.1. Following [1], this result holds true in X provided that the boundary ∂Ω
is connected, and in Y provided that the domain Ω is simply connected. Otherwise,
one has to add another term to (15) (different in each case) that allows to take
care of the elements of X and Y which are curl- and divergence-free, but not equal
to zero. The subspaces of X and Y made up of such fields are finite dimensional.
However, the theory we develop here is not modified.
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Since we are interested in the regular/singular splitting of the fields, we introduce
some subspaces of X and Y.

Definition 3.2. Consider the regular subspaces of X and Y

XR = X ∩ H1(Ω),
XR

i = {x ∈ XR : x · n|Fj
= 0, ∀j 6= i}, 1 ≤ i ≤ NF

;(16)

YR = Y ∩ H1(Ω),
YR

i = {y ∈ YR : y × n|Fj
= 0, ∀j 6= i}, 1 ≤ i ≤ NF

.(17)

As already mentioned, we have the closedness results

Theorem 3.1. The following decompositions direct and continuous

(18) X = XR
c
⊕ ∇HD(Ω), Y = YR

c
⊕ ∇HN (Ω) .

In particular, XR is closed in X and YR is closed in Y.

We explain here how these results can be established (cf. [12, 24]).
Proof. We consider mainly the electric case. According to [7], one can split X
continuously as

X = XR
c
+ ∇Ψ.

Note however that the sum is not direct. Then, following [28], one knows that Ψ

can be split orthogonally as Ψ = HD(Ω)
⊥∆

⊕ HD(Ω). Interestingly, this yields

∇Ψ = ∇HD(Ω)
⊥W

⊕ ∇HD(Ω).

Since ∇HD(Ω) is itself a subset of XR, one finds [12, 24] that

X = XR
c
⊕ ∇HD(Ω).

Indeed, the sum is direct, because by construction XR ∩ ∇HD(Ω) = {0}. From
this splitting, one infers easily that XR is a closed subspace of X .
For the magnetic case, set in Y, one has to replace the initial citation of [7] by a
combined Ref. to [7, 10]. The rest of the proof is left unchanged. �

The direct and continuous decompositions will be of use in Section 7.

Moreover, we know from [2, 4] that the following is true.

Theorem 3.2. Consider i ∈ {1, · · · , NF }.

(+) The mapping x 7→ x · n|Fi
is linear and continuous from XR to H̃1/2(Fi);

(i) The mapping x 7→ x · n|Fi
is surjective from XR

i to H̃1/2(Fi). Its kernel is

H1
0(Ω).

A direct consequence is

Corollary 3.1. The space XR can be written as the sum: XR = XR
1 + · · ·+ XR

NF
.

To obtain a direct sum, note that H1
0(Ω) = ∩iX

R
i , so one can consider the sum

of the quotient spaces XR
i /H

1
0(Ω), plus H1

0(Ω).

As far as gibp formulas involving vector fields of XR are concerned, let us pro-
vide one formula from [4], whereas the other one is standard, if one recalls that
H0(curl ,Ω) is – by definition – the closure of D(Ω)3 in H(curl ,Ω).



10 F. ASSOUS, P. CIARLET, JR., AND E. GARCIA

Theorem 3.3. The following gibp formulas hold:

(p, div x)0 + 〈∇p,x〉XR =
∑

i

〈p|Fi
,x · n|Fi

〉 eH1/2(Fi)
, ∀(p,x) ∈ D(∆; Ω) × XR;(19)

〈curl p,x〉H0(curl ,Ω) − (p, curl x)0 = 0, ∀(p,x) ∈ L2(Ω) × H0(curl ,Ω).(20)

In order to transpose the results (when possible) to the magnetic case, we shall use

the vector trace spaces related to the tangential trace of fields, that is H
1/2
⊥ (∂Ω)

and the likes. As a matter of fact, the nature of the normal and tangential traces
are fundamentally different, since the first one is a scalar and the second one is a
vector. It can be proven [26, pp. 177-178] that

Theorem 3.4. Consider i ∈ {1, · · · , NF }.

The mapping y 7→ y×n|Fi
is surjective from YR

i to H̃
1/2
⊥ (Fi). Its kernel is H1

0(Ω).

However, since item (+) of Theorem 3.2 has no equivalent in the magnetic case
(for reasons similar to those expressed in Section 2), there is no equivalent of Corol-
lary 3.1. Still, one obtains an adequate property in this case. To that aim, one has
to use Lemma 2.6 (step 3 of its proof) in [24], which yields a density property:

Lemma 3.1. The space

YR
∞ = {v ∈ YR ∩ C∞(Ω̄)3 : v vanishes in a neighborhood of the edges of ∂Ω}

is dense in YR.

Clearly, YR
∞ is a subset of the sum

∑
i Y

R
i , so one infers

Corollary 3.2. The sum
∑

i Y
R
i is dense in YR.

Transposing (19) is standard, if one considers elements of L2(Ω) × H0(div ,Ω).
On the other hand, in order to derive a formula similar to (20) for elements of
D(∆∆∆; Ω) × YR (or of a suitable subset), we recall the integration by parts formula

(21) (curl p,y)0 − (p, curl y)0 =

∫

∂Ω

πτp · y × n dΓ,

for smooth vector fields p, y. Then, since the local tangential trace of elements of

YR
i belongs to H̃

1/2
⊥ (Fi), one requires that p is such that πτp belongs to its dual

(H̃
1/2
⊥ (Fi))

′. Owing to item (ii) of Theorem 2.1, this is the case of elements of
D(∆∆∆; Ω). Summing up the results (cf. [26, pp. 179-181] for (23)), one gets

Theorem 3.5. The following gibp formulas hold:

(p, div y)0 + 〈∇p,y〉H0(div ,Ω) = 0,

∀(p,y) ∈ L2(Ω) × H0(div ,Ω);(22)

〈curl p,y〉YR
i
− (p, curl y)0 =

〈
πτp|Fi

,y × n|Fi

〉
eH

1/2

⊥
(Fi)

,

∀(p,y) ∈ D(∆∆∆; Ω) × YR
i .(23)

4. Characterizations of the singular electromagnetic fields

From Theorem 3.1, one recalls that XR (resp. YR) is closed in X (resp. Y).
Then one can define the singular spaces by orthogonality.

Definition 4.1. Let XS be the space of singular electric fields so that one has

X = XR
⊥W

⊕ XS.

Let YS be the space of singular magnetic fields so that one has Y = YR
⊥W

⊕ YS.
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Now, with the help of the generalized integration by parts and the surjectivity
results (or Corollary 3.2 in the magnetic case), we are able to establish the follow-
ing characterizations of the singular electromagnetic fields, that involve the vector
Laplace operator, standardly defined by −∆∆∆ = curl curl −∇div .

Theorem 4.1. An element x of X is singular if, and only if, the condition (24)
below is fulfilled:

(24) −∆∆∆x = 0 in Ω, div x|Fi
= 0 in H̃−1/2(Fi), ∀i.

An element y of Y is singular if, and only if, the condition (25) below is fulfilled:

(25) −∆∆∆y = 0 in Ω, πτ (curl y)|Fi
= 0 in (H̃

1/2
⊥ (Fi))

′, ∀i.

Proof. The case of the singular electric fields. Let x ∈ X .

(I) x ∈ XS =⇒ x satisfies (24).

Any x of D(Ω)3 belongs to XR. Thus, the orthogonality with respect to the Weber
scalar product for smooth vector fields yields

0 = (x,x)W = 〈curl curl x−∇div x,x〉, ∀x ∈ D(Ω)3.

But one has −∆∆∆ = curl curl −∇div , so the first part of (24) follows (in particular,
in the dual of XR).

To prove the second part of (24), let us consider the gibp formulas of Theorem 3.3.
The first one, (19), is used with p = div x. As a matter of fact, p belongs to
D(∆; Ω), according to the remark that, for any v in D(Ω), its gradient is in XR, so
the orthogonality with respect to the Weber scalar product once again yields

0 = (p,∆v)0 = 〈∆p, v〉 = 0, ∀v ∈ D(Ω),

and ∆p = 0. In particular, ∆p is in L2(Ω).
The second gibp formula, (20), is simply used with p = curl x.
One finds, for any x in XR:

0 = (x,x)W = −〈∇p,x〉XR + 〈curl p,x〉H0(curl ,Ω) +
∑

i

〈p|Fi
,x · n|Fi

〉 eH1/2(Fi)

= 〈curl curl x −∇div x,x〉XR +
∑

i

〈div x|Fi
,x · n|Fi

〉 eH1/2(Fi)

=
∑

i

〈div x|Fi
,x · n|Fi

〉 eH1/2(Fi)
.

Above, we took advantage of the fact that XR is a dense subset of H0(curl ,Ω), so
one can replace 〈curl p,x〉H0(curl ,Ω) by 〈curl p,x〉XR . The conclusion follows from
the surjectivity property (i) stated in Theorem 3.2.

(II) x satisfies (24) =⇒ x ∈ XS .

Since −∆∆∆x = 0, one finds that, in the sense of distributions,

∆(div x) = div∇(div x) = div (∇div x) = −div (∆∆∆x) = 0.

Therefore, p = div x belongs to D(∆; Ω), and (19) can be used with p. Evidently,
(20) can also be used, with p = curl x.
To check the orthogonality condition for x, which satisfies (24), let us write, for
any x in XR:

(x,x)W = 〈curl p,x〉H0(curl ,Ω) − 〈∇div x,x〉XR

= 〈curl curl x −∇div x,x〉XR = −〈∆∆∆x,x〉XR = 0.
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This ends the proof for the characterization of singular electric fields.

The case of the singular magnetic fields. Let y ∈ Y.

(III) y ∈ YS =⇒ y satisfies (25).

As in (I), one finds that −∆∆∆y = 0, i. e. the first part of (25) is proved.

To prove the second part of (25), let us use the gibp formulas of Theorem 3.5, with
regular fields y of YR

i .
For (22), choose p = div y. For (23), one can consider p = curl y. Indeed, one has
in the sense of distributions,

∆∆∆(curl y) = −curl curl (curl y) = −curl (curl curl y) = curl (∆∆∆y) = 0,

so p is an element of D(∆∆∆; Ω).
Then, for any y in YR

i :

0 = (y,y)W = −〈∇p,y〉H0(div ,Ω) + 〈curl p,y〉YR
i

+ 〈πτp|Fi
,y × n|Fi

〉eH
1/2

⊥
(Fi)

= 〈πτ (curl y)|Fi
,y × n|Fi

〉eH
1/2

⊥
(Fi)

.

Above, we used the fact that YR
i is a dense subset of H0(div ,Ω). The conclusion

follows from the surjectivity property stated in Theorem 3.4.

(IV) y satisfies (25) =⇒ y ∈ YS .

Since −∆∆∆y = 0, one finds in the sense of distributions

∆∆∆(curl y) = −curl curl (curl y) = −curl (curl curl y) = curl (∆∆∆y) = 0.

Therefore, p = curl y belongs to D(∆∆∆; Ω), and (23) can be used. On the other
hand, (20) holds with p = div y.
To check the orthogonality condition for y, which satisfies (25), let us recall Corol-

lary 3.2, which states that
∑

i Y
R
i is a dense subspace of YR. So, it is enough to

check the orthogonality condition for all i, and for all y ∈ YR
i :

(y,y)W = 〈curl p,y〉YR
i
− 〈∇div y,y〉H0(div ,Ω)

= 〈curl curl y −∇div y,y〉YR
i

= −〈∆∆∆y,y〉YR
i

= 0.

This concludes the proof for the characterization of singular magnetic fields. �

5. Divergence-free space characterizations

Since magnetic fields are actually divergence-free, it is relevant to introduce the
following subspace of Y

Definition 5.1. Let W be the space of ”real” magnetic fields, with

(26) W = {w ∈ Y : div w = 0}.

On W , the Weber scalar product reduces to

(27) (u,v) 7→ (curl u, curl v)0.

Let us then consider the subspace of regular fields.

Definition 5.2. Consider the regular subspace of W

(28) WR = W ∩ H1(Ω).
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It is clear that WR is closed in W , because one can also write WR = {w ∈ YR :
div w = 0}. Indeed, let (wn)n be a sequence of elements of WR, which converges to
w in W . In Y, this amounts to saying that (wn)n is a sequence of divergence-free
elements of YR. As YR is closed in Y, w belongs to YR, and therefore to WR, as
it is divergence-free.

The singular space can thus be defined by orthogonality. To that aim, we shall use

V = H1
0(Ω) ∩ H(div 0; Ω).

Definition 5.3. Let WS be the space of ”real” singular magnetic fields so that one

has W = WR
⊥W

⊕ WS.

Following the process described in [4], one can prove along the same lines the

Theorem 5.1. An element w of W is singular if, and only if, the condition (29)
below is fulfilled:

(29) ∃p ∈ L2
0(Ω) s.t. (curlw, curl y)0 + (p, div y)0 = 0, ∀y ∈ YR.

Proof. Let w be an element of W , we have w ∈ WS if and only if

(curlw, curl z)0 = 0 ∀z ∈ WR .

For w ∈ WS , consider then the linear form l defined by

l : y 7→ 〈l,y〉 = (curlw, curl y)0

defined and continuous on YR which cancels on WR. In particular, it is a continuous
linear form on H1

0(Ω) ⊂ YR, which cancels on V . Due to the de Rham Theorem
[27, Theorem 2.3], there exists p ∈ L2(Ω), defined up to a constant, such that

〈l,y〉 = −(p, divy)0 ∀y ∈ H1
0(Ω) .

Hence, one can choose p ∈ L2
0(Ω), and we have

(curlw, curl y)0 + (p, div y)0 = 0 ∀y ∈ H1
0(Ω) .

Now let y ∈ YR. In particular, Green’s formula yields (divy, 1)0 = 0, i. e. div y ∈
L2

0(Ω). After [27, Corollary 2.4], there exists a function v ∈ H1
0(Ω) such that

div v = −div y.
Then the function y + v of YR verifies div (y + v) = 0, so that y + v ∈ WR. This
implies

(curlw, curl (y + v))0 = 0,

that is

(curlw, curl y)0 = −(curlw, curl v)0 = (p, div v)0 = −(p, divy)0 ,

or

(curlw, curl y)0 + (p, div y)0 = 0 , ∀y ∈ YR.

Conversely if w ∈ W satisfies this last relation, we have straightforwardly

(curlw, curl z)0 = 0 ∀z ∈ WR,

so that w ∈ WS . �

Then, we relate fields of WS to SN . Recall that we provided in Corollary 2.3
a characterization of the elements of SN , the dual singularities with Neumann
boundary condition.

First, one gets easily the intermediate characterization hereunder.
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Proposition 5.1. Let (v, p) ∈ H(curl ,Ω) × L2
0(Ω). The couple (v, p) satisfies

(curl v, curl y)0 + (p, div y)0 = 0, ∀y ∈ YR,

if, and only if, p belongs to SN , and the conditions below hold

curl curl v = ∇p in (H0(div ,Ω))′, πτ (curl v)|Fi
= 0 in (H̃

1/2
⊥ (Fi))

′, ∀i.

Proof. Choosing y = ∇v, for any element v ∈ HN (Ω), we find (p,∆v)0 = 0, so that
p ∈ (∆HN (Ω))⊥ = SN .
Taking y ∈ D(Ω)3, we immediately have curl curl v = ∇p in the sense of distri-
butions. With the help of the gibp (22), we see that this relation actually holds in
(H0(div ,Ω))′, as p belongs to L2(Ω).
To prove the second part, we consider successively the two gibp formulas of Theo-
rem 3.5.
For the first one, we take advantage of the fact that YR

i is a dense subset of
H0(div ,Ω), so one can replace 〈∇p,y〉H0(div ,Ω) by 〈∇p,y〉YR

i
, when y ∈ YR

i .

The second gibp formula is used with curl v = p. Indeed, since curl p = ∇p, such
a p is an element of D(∆∆∆; Ω): in the sense of distributions, there holds

∆∆∆p = ∆∆∆(curl v) = −curl curl (curl v) = −curl (curl curl v) = −curl (∇p) = 0.

One then finds, for any y in YR
i :

0 = (p, curl y)0 + (p, div y)0 = 〈curl p −∇p,y〉YR
i
−

∑

i

〈πτp|Fi
,y × n|Fi

〉eH
1/2

⊥
(Fi)

=
∑

i

〈πτp|Fi
,y × n|Fi

〉eH
1/2

⊥
(Fi)

.

The conclusion follows from the surjectivity property stated in Theorem 3.4:

πτ (curl v)|Fi
= 0 holds in (H̃

1/2
⊥ (Fi))

′.

Conversely, if p ∈ SN verifies curl curl v = ∇p in H0(div ,Ω)′, let us use the gibp
formulas of Theorem 3.5, with regular fields y of YR

i .
For (23), one can still consider p = curl v. Then, on the one hand, for any y in
YR

i :

〈curl curl v,y〉YR
i

= (curl v, curl y)0 + 〈πτcurl v|Fi
,y × n|Fi

〉eH
1/2

⊥
(Fi)

,

that is, using the above boundary condition

〈curl curl v,y〉YR
i

= (curl v, curl y)0, ∀y ∈ YR
i .

On the other hand, one gets from (22)

−〈∇p,y〉YR
i

= (p, div y)0, ∀y ∈ YR
i .

Hence, the conclusion follows since curl curl v = ∇p holds in (YR
i )′. �

These two results can be aggregated.

Theorem 5.2. An element w of W is singular if, and only if, the condition (30)
below is fulfilled:

(30)
curl curlw = ∇p in (H0(div ,Ω))′, with p ∈ SN ;

πτ (curlw)|Fi
= 0 in (H̃

1/2
⊥ (Fi))

′, ∀i.

We recall here without proofs (cf. [4]) the analogous results for the electric fields,
in the case when they are divergence-free. Let us introduce the following subspace
of X
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Definition 5.4. Let V be the space of divergence-free electric fields, with

(31) V = {v ∈ X : div v = 0}.

On V , the Weber scalar product reduces to the same as on W , i. e. (u,v) 7→
(curl u, curl v)0. The subspace of regular fields is defined here as

Definition 5.5.

(32) VR = V ∩ H1(Ω),

and it is closed in V . The singular space can still be defined by orthogonality.

Definition 5.6. Let VS be the space of divergence-free singular electric fields: V =

VR
⊥W

⊕ VS.

Then it is proved [4, Theorem 3.3]

Theorem 5.3. An element v of V is singular if, and only if, the condition (33)
below is fulfilled:

(33) ∃p ∈ L2(Ω) s.t. (curl v, curl x)0 + (p, div x)0 = 0, ∀x ∈ XR.

Next, it is proved [4, Lemma 3.2] that p is a dual singularity (with Dirichlet
boundary condition).

Proposition 5.2. Let (v, p) ∈ H0(curl ,Ω) × L2(Ω). The couple (v, p) satisfies

(curl v, curl x)0 + (p, div x)0 = 0, ∀x ∈ XR,

if, and only if, p belongs to SD, and the condition below holds

curl curl v = ∇p in (H0(curl ,Ω))′.

These two results can be aggregated (cf. [4, Theorem 3.2]).

Theorem 5.4. An element v of V is singular if, and only if, the condition (34)
below is fulfilled:

(34) curl curl v = ∇p in (H0(curl ,Ω))′, with p ∈ SD.

As far as numerical computations are concerned, the above characterizations of
W and V are not very useful as they stand. However, in 2D geometries (cf. [5])
and in 2 1

2D geometries (cf. [16, 3]), a fruitful approach consists in introducing
scalar potentials, which are then primal fields of the Laplace operator (with ad hoc
boundary conditions). Here, in 3D geometries, we shall also introduce potentials
of the elements of V and W . Contrarily to the 2D and 2 1

2D cases, these are vector
potentials.

6. The potentials and their characterizations

Our aim is to link the electromagnetic subspaces W and V (and more generally Y
and X ) to the primal or dual spaces related to the vector Laplace operator. We have
already introduced the scalar primal or dual fields (related to the scalar Laplace op-
erator). Let us consider now the vector fields. For this purpose, one can still use the
relation −∆∆∆ = curl curl−∇div . First, we choose the gauge condition correspond-
ing to divergence-free primal vector fields. Therefore, the previous operator identity
reduces to ∆∆∆u = −curl curl u when applied to such fields. As a consequence, the
dual vector fields are also divergence-free: indeed, div (∆∆∆u) = 0. In-between, we
introduce the electromagnetic fields as follows. According to [27, Theorems 3.5
and 3.6], it is established that given a divergence-free field ue ∈ H(div ,Ω) (resp.
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um ∈ H0(div ,Ω)), there exists w ∈ W (resp. v ∈ V) such that curlw = ue (resp.
curl v = um). In particular, this result concerning the existence of a potential
applies to any ue ∈ V (resp. um ∈ W). Hence, it is relevant to introduce the
following spaces

Definition 6.1. Let ΨΨΨ(V) and ΦΦΦ(W) be the spaces of primal fields of W and V
respectively, with

ΨΨΨ(V) = {ψψψ ∈ V : ∆∆∆ψψψ ∈ L2(Ω)} ,

ΦΦΦ(W) = {φφφ ∈ W : ∆∆∆φφφ ∈ L2(Ω) : (curlφφφ) × n|∂Ω
= 0} .

The additional boundary condition in the definition of ΦΦΦ(W) allows to obtain a
one-to-one mapping between potential and fields.
The spaces ΨΨΨ(V) and ΦΦΦ(W) are equipped with the following equivalent norm (the
equivalence result is once more obtained as a consequence of the Weber norm on
W and V)

(35) ‖ · ‖∆∆∆ = ‖curl curl · ‖0 = ‖∆∆∆ ·‖0

This definition allows to prove isomorphisms between the relevant spaces. These
isomorphisms are linked by ∆∆∆ = −curl curl and can be summarized in the graphs
below (see [26, pp. 185-186] for detailed proofs)

curl
−−−→ (W ; ‖ · ‖W )

curl
−−−→

(ΨΨΨ(V); ‖ · ‖∆∆∆) (H(div 0; Ω); ‖ · ‖0)
∆∆∆=−curl curl

−→

(ΦΦΦ(W); ‖ · ‖∆∆∆) (H0(div 0; Ω); ‖ · ‖0)
curl
−−−→ (V ; ‖ · ‖W )

curl
−−−→

In addition, since norms are preserved2, these isomorphisms are isometries, so or-
thogonality is also preserved, thanks to the well-known identity (a, b)X = 1

4 (‖a +

b‖2
X − ‖a− b‖2

X).

Remark 6.1. As a matter of fact, one gets

ΨΨΨ(V) = {ψψψ ∈ V : ∆∆∆ψψψ ∈ H(div 0; Ω)} ,

ΦΦΦ(W) = {φφφ ∈ W : ∆∆∆φφφ ∈ H0(div 0; Ω) : (curlφφφ) × n|∂Ω
= 0} .

Moreover, it is possible to rewrite the boundary conditions differently for elements
of ΦΦΦ(W) (see [26, pp. 186-189] for more details). First, for a smooth field, one has
the identity: ∂nφφφ = ∇(φφφ · ni) + (curlφφφ) × n on the face Fi. Then, one proves by
density of H2(Ω) in D(∆∆∆; Ω) that this holds true for any element φφφ of ΦΦΦ(W), in the

dual space H̃−3/2(Fi). In particular, since φφφ ·n|Fi
= 0, by restricting the identity to

the tangential components, one finds actually πτ (∂nφφφ) = γτ (curlφφφ) in (H̃
3/2
⊥ (Fi))

′.
This allows to replace the boundary condition (curlφφφ) × n|∂Ω

= 0 in the definition
of ΦΦΦ(W) by the equivalent

πτ (∂nφφφ) = 0 in (H̃
3/2
⊥ (Fi))

′, 1 ≤ i ≤ NF .

As the domain Ω is non-convex, we have now to consider the subspaces of regular
primal fields.

2For instance, for any ψψψ ∈ ΨΨΨ(V), one has ‖ψψψ‖∆∆∆ = ‖curlψψψ‖W = ‖∆∆∆ψψψ‖0.
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Remark 6.2. When the domain is convex, ΨΨΨ(V) and ΦΦΦ(W) are both included in

H1(curl ,Ω) = {u ∈ H1(Ω), curl u ∈ H1(Ω)}.

Unfortunately, it is not worthwhile to define the intersection with the space H1(curl ,Ω)
when Ω is non-convex. Indeed, there is no guarantee that the inverse image ψψψ ∈
ΨΨΨ(V) of an element of w ∈ WR belongs to H1(Ω). The same is true for ΦΦΦ(W).

We thus introduce the subspaces of regular fields.

Definition 6.2. Consider the regular subspaces of ΨΨΨ(V) and ΦΦΦ(W)

ΨΨΨR(V) = {ψψψ ∈ ΨΨΨ(V); curlψψψ ∈ WR} , ΦΦΦR(W) = {φφφ ∈ ΦΦΦ(W); curlφφφ ∈ VR} .

It is clear that ΨΨΨR(V) and ΦΦΦR(W) are closed in ΨΨΨ(V) and ΦΦΦ(W) respectively. The
singular spaces can thus be defined by orthogonality.

Definition 6.3. Let ΨΨΨS(V) and ΦΦΦS(W) be the spaces of singular primal fields:

ΨΨΨ(V) = ΨΨΨR(V)
⊥∆∆∆

⊕ ΨΨΨS(V), ΦΦΦ(W) = ΦΦΦR(W)
⊥∆∆∆

⊕ ΦΦΦS(W).

As we are interested in the regular/singular splitting of the fields, we link the reg-
ular (respectively singular) parts of the potentials to the regular (resp. singular)
parts of the divergence-free fields. Since we have isometries at our disposal, this is
straightforward. In other words, curl is an isomorphism between ΨΨΨR(V) and WR,

and also between ΨΨΨS(V) and WS . Similarly, it is an isomorphism between ΦΦΦR(W)

and VR, and between ΦΦΦS(W) and VS .

Next, let us consider the spaces H(div 0; Ω) and H0(div 0; Ω) of dual vector fields.
In order to define the subspaces of regular dual fields, a natural choice induced by
the above mappings and the previous results is

Definition 6.4. Introduce the regular subspaces of H(div 0; Ω) and H0(div 0; Ω),

respectively equal to ∆∆∆ΨΨΨR(V) and ∆∆∆ΦΦΦR(W).

Now, ∆∆∆ΨΨΨR(V) is closed in H(div 0; Ω), and ∆∆∆ΦΦΦR(W) is also closed in H0(div 0; Ω).

Indeed, ΨΨΨR(V) is closed in ΨΨΨ(V), and ∆∆∆ is an isometry from ΨΨΨ(V) to H(div 0; Ω)

(the same for ∆∆∆ΦΦΦR(W)). Again the singular subspaces can thus be defined by
orthogonality.

Definition 6.5. Let S and S0 be the spaces of singular dual fields:

H(div 0; Ω) = ∆∆∆ΨΨΨR(V)
⊥0

⊕ S, H0(div 0; Ω) = ∆∆∆ΦΦΦR(W)
⊥0

⊕ S0.

Remark 6.3. The spaces S and S0 can be equivalently be defined by

H(div 0; Ω) = curlWR
⊥0

⊕ S, H0(div 0; Ω) = curlVR
⊥0

⊕ S0.

The one-to-one, and surjective, mappings, considered above, are still valid for
regular and singular subspaces, respectively. We summarize these results for the
singular spaces in the graph hereunder. The same remains true between the regular
spaces.

curl
−−−→ (WS ; ‖ · ‖W )

curl
−−−→

(ΨΨΨS(V); ‖ · ‖∆∆∆) (S; ‖ · ‖0)
∆∆∆=−curl curl

−→

(ΦΦΦS(W); ‖ · ‖∆∆∆) (S0; ‖ · ‖0)
curl
−−−→ (VS ; ‖ · ‖W )

curl
−−−→
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We have already characterized the spaces SN and SD of dual singularities of the
scalar Laplace problem, with homogeneous Neumann or Dirichlet boundary con-
dition. This is readily extended to the vector Laplace operator ∆∆∆ with vector
homogeneous boundary conditions by introducing SN = (SN )3 and SD = (SD)3.
Now with S (and S0), we are interested in divergence-free fields, a priori without
explicit (vector) boundary conditions. With the help of the generalized integration
by parts formulas of Theorem 3.5, and a surjectivity result, one gets elements for
the characterization of S. Define WR

i = WR ∩ YR
i .

Lemma 6.1. Consider i ∈ {1, · · · , NF }.

The mapping w 7→ w×n|Fi
is surjective from WR

i to H̃
1/2
⊥ (Fi). Its kernel is H1

0(Ω).

Proof. One has to construct a divergence-free lifting of any element of H̃
1/2
⊥ (Fi).

Now, for any h ∈ H̃
1/2
⊥ (Fi), there exists (cf. Theorem 3.4) y ∈ YR

i such that
h = y × n|Fi

. Using the fact that y · n|∂Ω
= 0, we have div y ∈ L2

0(Ω) and so

there exists u ∈ H1
0(Ω) such that div u = div y. Hence, we set w = y − u: this

field belongs to WR
i , and one has h = w × n|Fi

. This proves that the mapping

w 7→ w × n|Fi
is indeed surjective from WR

i to H̃
1/2
⊥ (Fi). The characterization of

the kernel is straightforward. �

Theorem 6.1. Any element s of H(div 0; Ω) which is singular, verifies the condi-
tion (36) below:

(36) s ∈ D(∆∆∆,Ω), −∆∆∆ s = 0, πτ s|Fi
= 0 in (H̃

1/2
⊥ (Fi))

′, ∀i.

Proof. Following the previous isomorphisms, curlWS = S, and any s ∈ S is
orthogonal to curlw, with w ∈ WR for the ad hoc scalar product: it reads

(s, curlw)0 = 0, ∀s ∈ S, ∀w ∈ WR .

Using the fact that V is a subset of WR, and due to the de Rham Theorem [27,
Theorem 2.3], there exists p ∈ L2(Ω) such that

(37) curl s = ∇p in the dual of YR .

But since −∆∆∆ s = curl curl s, one has s ∈ D(∆∆∆,Ω) with −∆∆∆ s = 0.

To prove the second part of (36), let us successively consider the gibp formulas of
Theorem 3.5. The second one, (23), is used with p = s. According to (37), we find

〈∇p,y〉YR
i
− (s, curl y)0 =

〈
πτ s|Fi

,y × n|Fi

〉
eH

1/2

⊥
(Fi)

, ∀y ∈ YR
i .

As p belongs to L2(Ω), the other gibp formula (22) can be used to replace the first
term. Then, we reach

(p, div y)0 + (s, curl y)0 = −
〈
πτ s|Fi

,y × n|Fi

〉
eH

1/2

⊥
(Fi)

, ∀y ∈ YR
i .

Choose y ∈ WR
i . The previous relation, together with the orthogonality between

S and curlWR leads to
〈
πτs|Fi

,w × n|Fi

〉
eH

1/2

⊥
(Fi)

= 0, ∀w ∈ WR
i .

The conclusion follows from the previous Lemma. �

Remark 6.4. Any element s of H(div 0; Ω) that verifies the condition (36) belongs
to the orthogonal of

∑
i curlWR

i . Then, one could prove the reciprocal assertion
if

∑
i W

R
i were a dense subset of WR. Alternately, if the density result were not
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true, one would have to add a supplementary condition to (36) to fully characterize
the singular elements.

Remark 6.5. We did not prove that S = SD ∩ H(div 0; Ω)! Actually, the (third)

boundary condition s · n|Fi
= 0 in H̃−1/2(Fi), for all i, is missing in (36).

Remark 6.6. Observe that S0, ΦΦΦ(W) and ΦΦΦR(W) differ one from the other by their
respective curl regularity. Indeed, the elements of S0 have their curl in (H0(curl ,Ω))′,

those of ΦΦΦ(W) have their curl in L2(Ω), whereas the curl of elements of ΦΦΦR(W)
belongs to H1(Ω).

7. curl-free spaces and non-orthogonal decompositions

Based on a Helmholtz decomposition [1], one infers easily that the electromag-
netic fields can be split into a divergence-free and a curl-free part. In the previous
section, we have focused on the divergence-free fields. In order to proceed similarly
for the curl-free part of the fields, it is relevant to introduce the following subspaces
of Y and X .

Definition 7.1. Let M,L be the spaces of the ”curl-free” part magnetic and electric
fields, with

(38) M = {m ∈ Y : curl m = 0}, L = {l ∈ X : curl l = 0}.

Remark 7.1. Evidently, one has X = V
⊥W

⊕ L and Y = W
⊥W

⊕ M.

On M and L, the Weber scalar product reduces to

(39) (u,v) 7→ (div u, div v)0.

Let us then consider the subspace of regular fields.

Definition 7.2. Consider the regular subspaces of M and L respectively

(40) MR = M∩ H1(Ω), LR = L ∩ H1(Ω).

It is clear that MR is closed in M. The same is true for LR. The singular spaces
can thus be defined by orthogonality.

Definition 7.3. Let MS and LS be the spaces of ”curl-free” singular magnetic and
electric fields:

M = MR
⊥W

⊕ MS , L = LR
⊥W

⊕ LS .

Our aim is now to characterize the singular curl-free spaces LS and MS . As for
the divergence-free spaces W and V , we link the subspaces M,L to the primal or
dual spaces of the scalar Laplace operator. So, they correspond precisely to Ψ and
Φ, the spaces of scalar primal fields. One can prove isomorphisms between the
relevant spaces; these isomorphisms can be established by standart arguments, and
are summarized in the graph below

∇
−→ (M; ‖ · ‖W )

div
−−→

(Φ; ‖ · ‖∆) (L2
0(Ω); ‖ · ‖0)

∆=div∇
−→

(Ψ; ‖ · ‖∆) (L2(Ω); ‖ · ‖0)
∇
−→ (L; ‖ · ‖W )

div
−−→

As before, one notices that these isomorphisms preserve norms, i. e. they are
isometries. Let us then consider the subspaces of regular fields.
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Definition 7.4. Consider the regular subspaces of Ψ and Φ

ΨR = Ψ ∩H2(Ω) , ΦR = Φ ∩H2(Ω) .

The regular spaces ΨR and ΦR coincide respectively with the spaces HD(Ω) and
HN(Ω) originally introduced in (2) and (5).

Definition 7.5. Let ΨS and ΦS be the spaces of singular scalar primal fields:

Ψ = ΨR
⊥∆

⊕ ΨS, Φ = ΦR
⊥∆

⊕ ΦS .

The singular spaces ΨS and ΦS respectively coincide with HD(Ω) and HN (Ω).
We now relate the regular (resp. singular) parts of the primal fields to the regular
(resp. singular) curl-free parts of the electromagnetic fields.

Proposition 7.1. The following mappings are isomorphisms, linked by ∆ = div ∇,
∇
−→ (MS ; ‖ · ‖W )

div
−−→

(ΦS ; ‖ · ‖∆) (SN ; ‖ · ‖0)
∆=div∇

−→

(ΨS ; ‖ · ‖∆) (SD; ‖ · ‖0)
∇
−→ (LS ; ‖ · ‖W )

div
−−→

Similar results hold for regular spaces.
Finally, with the help of this proposition, one establishes simply characterizations
of the singular curl-free part MS and LS , by using the results of Section 2 on dual
scalar fields.

As far as numerical computations are concerned, one can also introduce direct,
albeit non-orthogonal two-part sums of the spaces X and Y. For instance, whenever
the electric field is concerned, it appears more convenient to solve a scalar Laplace
problem to determine LS , than a vector one for the XS characterization (cf. [3] for
a practical implementation). To that aim, it is interesting to use non-orthogonal
decompositions introduced in (18) that we rewrite here as

X = XR
c
⊕ LS , Y = YR

c
⊕ MS .

These results can be reinterpreted as follows in the framework of curl-free fields:
the electric (resp. magnetic) singular fields are one-to-one with the gradients of
the primal singularities of the scalar Laplace operator with Dirichlet boundary
condition (resp. with Neumann boundary condition).

Remark 7.2. With the help of those non-orthogonal decompositions, oe can prove
that the divergence mapping is an isomorphism from XS to SD, resp. from YS to
SN . The first result was proven in [21], whereas the second one is established in
[26, p. 198].

Alternately, one can obtain non-orthogonal decompositions involving divergence-
free fields.

Proposition 7.2. The following decompositions are direct and continuous:

X = XR
c
⊕ VS , Y = YR

c
⊕ WS .

Below, we provide the main steps of the proof in the electric case (details can be
found in Chapter 11 of [26]).

Proof. To begin with, one remarks that LR
⊥W

⊕ VR is a strict (closed) subset of XR.
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The idea is to introduce its orthogonal in XR, called X⊥. Interestingly, X⊥ is also

the (orthogonal) ’missing part’ of XS in LS
⊥W

⊕ VS . As a consequence, one proves
simply that both x⊥ 7→ ‖divx⊥‖0 and x⊥ 7→ ‖curl x⊥‖0 define norms on X⊥.
Then, one recalls that the divergence mapping is surjective from XR to L2(Ω) [4,
Proposition 3.5]. Also, the curl mapping is surjective from H1

0(Ω) (and so from
XR) to H(div 0; Ω) ∩ H0(div ; Ω) [15].
From the orthogonal decompositions and the surjectivity results above, it stems
that the divergence mapping is an isomorphism from X⊥ to SD, while the curl
mapping is an isomorphism from X⊥ to S0. These last two properties allow to
conclude that X can indeed be identified with the sum XR ⊕ VS . Moreover, the

decomposition is continuous: X = XR
c
⊕ VS.

As far as the continuous decomposition of Y is concerned, one uses similar tools.
In particular, that the divergence mapping is surjective from H1

0(Ω) (and so from
YR) to L2

0(Ω) [27, Corollary 2.4], and that the curl mapping is surjective from YR

to H(div 0; Ω), thanks to the combination of [27, Theorem 3.4] and [10]. �

Remark 7.3. The proofs are completely different than the one provided for estab-
lishing the non-orthogonal decomposition involving curl-free singular fields (18). As
a matter of fact, the Birman and Solomyak splitting has no equivalent in the cur-
rent case: even though it is used as a starting point, the process still requires some
caution.

To conclude, we note that, at least for 3D problems, these decompositions relying
on divergence-free singular fields are less useful, due to the difficulty in approxi-
mating (vector) elements of VS or WS , or their vector potentials. The situation is
evidently completely different in 2D geometries [5].
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A. Annex

In this Section, we consider χ : R
+ → [0, 1], a smooth cut-off function, equal to

one in a neighborhood of zero, and to zero near +∞. Select ρ0, ρ1 > 0 such that
χ is equal to one on [0, ρ0] and to zero on [ρ1,+∞[. Recall the Sobolev imbedding
Theorem, which states that H2(Ω) is continuously imbedded in C0,1/2(Ω̄) (cf. for
instance [28, p. 27]).

A.1. A convergence result around corners. Let u be an element of HN (Ω).
Around a given vertex Sv, consider the spherical coordinates (ρv, θv, ϕv) (with asso-
ciated orthonormal basis (eρv , eθv , eϕv)), and define Σ implicitly by Ω∩B(S, ρ?) =
{(ρ, θ, ϕ) : ρ ∈ [0, ρ?], (θ, ϕ) ∈ Σ}, for small ρ?. Finally, set χn(x) = χ(nρv) and
un

v = χn u, for any integer n ≥ 1. Then one has the weak convergence result below.

Lemma A.1. The sequence (∆un
v )n converges weakly to zero in L2(Ω).

In the proof, we drop the index v to lighten the notations.
Proof. Note that since ∆un(x) → 0 pointwise a. e. when n → +∞, we simply
have to prove that the sequence (∆un)n is bounded in L2(Ω). Also, since we are
interested in 2nd order derivatives and since u is continuous up to the boundary,
we can assume that u(S) = 0.
Then, using the chain rule, we find that

∆un = χn∆u+ 2∇χn · ∇u+ u∆χn.

Let us consider the three terms one after the other.
According to the bounded convergence Theorem, (χn∆u) converges to zero in
L2(Ω).
As far as the second term is concerned, we note that ∇χn = nχ′(nρ)eρ. Then,
the product ∇χn · ∇u reduces to nχ′(nρ) g, with g = ∂ρf an element of H1(Ω).
According to step 1 of the proof of Lemma 2.6 in [24], one gets that ∇χn · ∇u also
converges to zero in L2(Ω).
Therefore, we only have to tackle the third term. To that aim, let us carry out
some elementary computations:

∆χn = n2χ′′(nρ) +
2n

ρ
χ′(nρ).

One has ‖χ′′(n·)‖∞ = ‖χ′′‖∞, which is independent of n. Also, χ′(n·) vanishes on
[0, ρ0/n], so

‖
1

·
χ′(n·)‖∞ = ‖

1

·
χ′(n·)‖∞,[ρ0/n,+∞[ ≤

n

ρ0
‖χ′‖∞.

Accreting the two yields

‖∆χn‖∞,Ω ≤ C n2, with C = ‖χ′′‖∞ +
2

ρ0
‖χ′‖∞.

We can now compute the quantity of interest

‖u∆χn‖2
0 =

∫

Ω∩supp(χn)

|u|2|∆χn|2 dΩ ≤ C2 n4

∫

Ω∩supp(χn)

|u|2 dΩ.

By definition, we know that the support of χn is included in the ball of center
S, with radius ρ1/n. Also, thanks to the Sobolev imbedding Theorem, u belongs
to C0,1/2(Ω̄). Thus, there exists a constant Cu (which depends only on u), such
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that |u(x) − u(S)| ≤ Cu‖x − S‖1/2, for all x ∈ Ω̄. Since u(S) = 0, this reads,
|u(x)| ≤ Cuρ

1/2. Summing up all the results, we find finally

‖u∆χn‖2
0 ≤ C2C2

u n
4

∫

Ω∩B(S,ρ1/n)

ρ dΩ ≤ C2C2
uCΣ n

4

∫ ρ=ρ1/n

ρ=0

ρ3 dρ =
C2C2

uCΣρ
4
1

4
.

(
Above, CΣ is equal to

∫

(θ,ϕ)∈Σ

sin θ dθdϕ for sufficiently large n.
)

This is exactly the desired result. �

A.2. A counter-example around edges. Consider a domain Ω, such that the
geometry of its boundary ∂Ω locally coincides with that of a wedge, with two plane
faces Γ1 and Γ2 such that n|Γ1

= e1 and n|Γ2
= e2, with an edge e12 parallel to e3

of unit length. Let us choose f(x) = χ(ρ12)x
2
3(1−x3)

2, where ρ12 is the distance to
the edge e12. Clearly, f belongs to H2(Ω). In addition (at least locally, that is for
small ρ12), ∂nf|Γ1

= ∇f|Γ1
· e1 = 0 and ∂nf |Γ2

= ∇f|Γ2
· e2 = 0. Then f belongs3

to HN (Ω).

On e12, one has f|e12
= x2

3(1 − x3)
2, so f does not vanish on the edge!

Also, if one defines fn
12 = χnf12 with χn(x) = χ(nρ12), ∆fn

12 does not converge
weakly to zero in L2(Ω)! To prove this second (negative) result, we basically follow
the proof of Lemma A.1. Let us drop the double index 12. We have

∆fn = χn∆f + 2∇χn · ∇f + f∆χn.

As before, χn∆f converges to zero in L2(Ω).
Then, for sufficiently large n, one notices that ∇χn and ∇f are pointwise orthogonal
over Ω: ∇χn is different from zero only near the edge, and it is orthogonal to e3

there, whereas in this region ∇f is parallel to e3. The second term is zero.
As far as the third term is concerned, let us pick a suitable test-function g of L2(Ω),
and prove that (f∆χn, g)0 does not converge to zero. We choose g(x) = ρ.
To begin with, one finds, in cylindrical coordinates, ∆χn = n2χ′′(nρ) + n/ρχ′(nρ).
Then, one gets (with the change of variables η = nρ from the line before last to the
last line):

(f∆χn, g)0 =

∫

Ω∩supp(χn)

g f ∆χn dΩ

=

∫ ρ=ρ1/n

ρ=ρ0/n

(
n2ρ2χ′′(nρ) + nρχ′(nρ)

)
dρ

∫ θ=π/2

θ=0

dθ

∫ x3=1

x3=0

x2
3(1 − x3)

2 dx3

=
Ce

n

∫ ρ1

ρ0

(
η2χ′′(η) + ηχ′(η)

)
dη.

(
Above, Ce is equal to

π

2

∫ 1

0

x2
3(1 − x3)

2 dx3, so Ce > 0.
)

To conclude, we evaluate the integral in η by performing elementary integration by

3According to the definition of f , one could add faces perpendicular to e3 to ’close’ the domain
Ω at the endpoints of the edge, and find that ∂nf also vanishes on those faces.
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parts:
∫ ρ1

ρ0

(
η2χ′′(η) + ηχ′(η)

)
dη =

∫ ρ1

ρ0

η2χ′′(η) dη +

∫ ρ1

ρ0

ηχ′(η) dη

= [η2χ′(η)]ρ1

ρ0
− 2

∫ ρ1

ρ0

ηχ′(η) dη +

∫ ρ1

ρ0

ηχ′(η) dη

= −

∫ ρ1

ρ0

ηχ′(η) dη = −[ηχ(η)]ρ1

ρ0
+

∫ ρ1

ρ0

χ(η) dη

= ρ0 +

∫ ρ1

ρ0

χ(η) dη > 0.

Therefore, (f∆χn, g)0 is proportional to n−1: we conclude negatively!
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