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We are interested in computing the charge density and the electric field at the rounded
tip of an electrode of small curvature. As a model, we focus on solving the electrostatic
problem for the electric potential. For this problem, Peek’s empirical formulas describe
the relation between the electric field at the surface of the electrode and its curvature
radius. However, it can be used only for electrodes with either a purely cylindrical, or
a purely spherical, geometrical shape. Our aim is to justify rigorously these formulas,
and to extend it to more general, two-dimensional, or three-dimensional axisymmetric,
geometries. With the help of multiscaled asymptotic expansions, we establish an explicit
formula for the electric potential in geometries that coincide with a cone at infinity. We
also prove a formula for the surface charge density, which is very simple to compute
with the Finite Element Method. In particular, the meshsize can be chosen indepen-
dently of the curvature radius. We illustrate our mathematical results by numerical
experiments.

0. Introduction

Electrostatic phenomena are of great interest in many domestic and industrial
applications. For instance, processing the smokes in thermal power stations: the
principle is to charge the particles in suspension with an ionizing device, which
then aggregate on the grounded inner walls so that they can first be gathered,
and later be disposed of. Let us also mention electrostatic spray painting. Below,
we describe in detail this second application, which motivates our mathematical
studies.
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When an object (a “target”) is painted with the help of a gun (electrode here-
after), the paint is made of microscopic droplets, a fraction of which actually reaches
the target, while the rest dissolves into the atmosphere. In order to improve the
method (greater fraction reaching the object, less pollution), one can apply a high
voltage between the electrode and the target. Thanks to the applied voltage, the
paint droplets are charged electrically. The difference between the electric poten-
tials (the voltage) produces a stationary electric field E = −∇φ. Then, the charged
droplets (or charges hereafter) follow the lines of force, from the electrode to the
target. An electric corona discharge is produced at the onset, and the phenomena
are then considered to be stationary. The electric field solves Coulomb’s law

div(εE) = �. (0.1)

In the above, ε is the electric permittivity of the medium, and � is the charge
density. Assuming that the medium is homogeneous, Eq. (0.1) can be rewritten

−∆φ =
�

ε
. (0.2)

In order to “close” the model with the potential φ as the main unknown, one has
to state precisely what the (computational) domain is, and also to add suitable
boundary conditions.

On the surface of the electrode and of the target, it is natural to prescribe a
constant value of φ (φ1 and respectively φ0, with for instance φ0 = 0), i.e. a Dirichlet
boundary condition.

Then, in a first approach, one can close the domain by putting artificial bound-
aries, on which a zero-flux condition is imposed (a Neumann boundary condition):
the resulting computational domain is bounded. This amounts to saying that there
is no loss of charges through these artificial boundaries, which is reasonable. Some
numerical experiments have been carried out on this model by Timouyas et al.,23,17

where the quantity of interest was the maximum (absolute value of the) surface
charge density on the electrode.

On the other hand, at the charges level, one can safely assume that the domain of
interest is unbounded. In order to define a well-posed problem, one has to prescribe
the behavior of the potential at the infinity: this defines a second approach, set in
an unbounded domain.

The stationary conservation equation on charges is

div J = 0, (0.3)

where J denotes the current density. Under some suitable assumptions,5 it can be
linked to the electric field as

J = K�E, (0.4)

where K is the constant charge mobility. This leads finally to

∇φ · ∇� =
�2

ε
. (0.5)
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This conservation equation for the charge density has also be supplemented with a
boundary condition around the tip of the electrode, where (all) charges are emitted:
it can be modelled as an injection law.2,5 In this setting the boundary value of � is
a function of the norm of the electric field, denoted by E. This is a more delicate
topic. Accepting Kaptzov’s hypothesis, which states that the electric field remains
constant at the surface of the electrode after the discharge occurs, allows to simplify
the model. One can simply choose near the tip of the electrode a boundary condition
� = f(E − Ec), with Ec the threshold field, and f such that f(x) = 0 if x ≤ 0,
and f(x) > 0 if x > 0. See Refs. 2 and 5 for examples. In the air, the value of the
threshold Ec is described by Peek’s heuristic formulas2:

• In a cylindrical geometry,

Ec = 3.1 × 104d
(

1 +
0.308√

drc

)
kV · cm−1. (0.6)

• In a spherical geometry,

Ec = 3.1 × 104d

(
1 +

0.308
√

2√
drc

)
kV · cm−1. (0.7)

In the above, rc denotes the curvature radius of the electrode (expressed in centime-
ters), and d the ratio (P/P0)

(T/T0) , with T0 and P0 respectively the reference temperature
and pressure, and T and P the actual temperature and pressure. It is crucial to
note that Peek’s heuristic formulas are valid only around specific electrodes, i.e.
thin, either cylindrical or spherical, electrodes.

Then, the full model — coupled in φ, � — consists of Eqs. (0.2) and (0.5),
together with the boundary conditions presented before.

Solving numerically the problem in � is standard, for example with the help of
the method of characteristics.2,5

In this paper, we focus instead on the theoretical and numerical solutions of the
problem on the electrostatic potential, that is

−∆u = f (0.8)

with a homogeneous Dirichlet boundary condition on the boundary and a prescribed
behavior at the infinity. Among others, we propose to justify mathematically Peek’s
formulas and to provide a rigorous and easily computable formula for the charge
density, at the tip of the electrode. We extend those results to other, less specific
geometries (still, under the assumption that at infinity the geometry coincides with
that of a cone).

The outline is as follows. First, we describe in some details the functional set-
ting. To that aim, we introduce a series of weighted Sobolev spaces around the
unbounded, sharp (at the vertex), cone, and around the unbounded, rounded (at
the tip), cones. Second, we solve the problem around the unbounded sharp cone:
we establish existence and uniqueness, together with some a priori regularity esti-
mates. The third and fourth parts are devoted to a detailed solution of the problem
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around rounded cones, either in Cartesian, or in axisymmetric coordinates. Using
multiscale expansions, we establish rigorously the asymptotic — when the cur-
vature radius goes to zero — behavior of the solution. In particular, we address
the problem of mathematically justifying Peek’s formulas. Moreover, we can char-
acterize the behavior of the trace of the normal derivative at the tip, which is
exactly the maximum surface charge density on the electrode. Among others, the
multiscale expansion formula can be computed accurately with a Finite Element
approximation, on meshes with a meshsize which is independent of the curvature
radius. Finally, we conclude by a series of numerical experiments, and we compare
our numerical method to a “standard” discretized integral representation.

The results of this paper have been announced in Ref. 10.

1. Notations and Functional Spaces

1.1. Preliminary notations

R
n is the Euclidean space of dimension n, with n = 2, 3.

For ε > 0 and x = (x1, . . . , xn) ∈ Rn, λ = (λ1, . . . , λn) ∈ Nn, let us introduce

ρ(x) :=
√

1 + |x|2,

ρε(x) := ερ
(x

ε

)
=
√

ε2 + |x|2, where |x| =
(
x2

1 + · · · + x2
n

)1/2
,

∂λu =
∂|λ|u

∂xλ1
1 · · ·∂xλn

n

, where |λ| = λ1 + · · · + λn.

For ε = 0, we introduce ρ0 = ρ (note that ρ0(x) �= limε→0 ρε(x)).
Given an open subset A of Rn and σ > 0, σA is equal to: σA := {σm ; m ∈ A}.
Bσ(x) is the open ball centered at x with radius σ. It is called Bσ when x = O.
Given A, B two topological spaces with A ⊂ B topologically and algebraically,

A
B

is the closure of A in B.
If the open subset under study is axisymmetric (n = 3), it is denoted by Ă.

Then, A stands for its trace in a meridian half-plane, the location of any point of
A being given by the coordinates (r, z), with r =

√
x2

1 + x2
2, z = x3.

The set of compactly supported, C∞-class, functions defined in A is denoted
by C∞

0 (A). Then, C∞
0 (A) is the set of restrictions (to A) of elements of C∞

0 (Rn).
Finally, D′(A) is the set of distributions defined on A, and L2

loc(A) is the space of
measurable and locally square-integrable functions on A.

1.2. Classes of domains

Let us first introduce the classes of domains of interest, for ε > 0 given. We consider
either Cartesian geometries, set in R2, or axisymmetric geometries, set in R3.

• Cartesian case: for 1/2 < α < 1, let Ω denote the unbounded, sharp (at its vertex),
cone of R2 with vertex O and angle π/α (see Fig. 1), and let Γ be its boundary.
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Fig. 1. Domains Ω and Ωε: Cartesian (n = 2) and axisymmetric (n = 3) geometries.

Let ϕ : R −→ R be the mapping

x �−→




cx, x < −1,

− c

2
(x2 + 1), |x| ≤ 1,

−cx, x > 1.

(1.1)

We set the constant c to the value c = − (tan[π/(2α)])−1. In this way, the map-
ping ϕ globally belongs to C1. In addition, it is C2 everywhere, except at the
coupling points x = ±1. Then, let ω be the open subset of R2

ω :=
{
(x1, x2) ∈ R

2|x2 > ϕ(x1)
}

.

Next, we introduce the unbounded, rounded (at the tip), cone

Ωε := εω =
{

(x1, x2) ∈ R
2
∣∣∣x2

ε
> ϕ

(x1

ε

)}
.

Note that Ω1 = ω.
The boundary and vertex of Ωε are respectively called Γε and Oε, with Oε =

(0,−(cε)/2).
• Axisymmetric case: for 1 < β < 2, let Ω denote the 2D, unbounded, sharp,

half-cone with vertex O and angle π/β, located in the half plane R2
+ :={

(r, z) ∈ R2, r > 0
}

(see Fig. 1). Then, let Ω̆ be the 3D unbounded sharp cone,
generated by the rotation of Ω around the axis (Oz).

In the axisymmetric case, the mapping ϕ is still defined by (1.1), with the
constant c set to c = − (tan[π/β])−1.

The open subset ω of R2
+ is equal to

ω :=
{
(r, z) ∈ R

2
+|z > ϕ(r)

}
.
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By rotation around the (Oz) axis, one generates the open subset of R3 called ω̆.
As above, one defines the 2D open set Ωε and then the 3D unbounded rounded
cone Ω̆ε by rotation. Let Γa (resp. Γε

a) be the part of the boundary of Ω (resp.
Ωε) located on the axis r = 0 (see Fig. 1).

For ε = 0, we introduce Ω0 = Ω in 2D, and Ω̆0 = Ω̆ in 3D.

Remark 1.1. For practical reasons, we choose a parabolic shape. However, one
can check that any shape defined with a smooth function ϕ such that ϕ(0) < 0 and
ϕ′(0) = 0 can be used.

1.3. Sobolev spaces in unbounded domains

We define in this subsection the many functional spaces required to carry out the
subsequent analysis. Note that we have to deal both with the behavior of solutions
near the vertex of the domain, and with the behavior of the same solution at the
infinity. As in the case of the Dirichlet problem set in an exterior domain, the
weighted Sobolev spaces are an appropriate setting. But, in addition, we have to
take into account the unbounded character of its boundary. One has in particular
to be careful in the definition of the trace spaces. Finally, we have to deal with
either sharp or rounded (at the tip) cones.

Let us consider the first family of Sobolev spaces below.

Definition 1.1. Given m ∈ N, β ∈ R, introduce

• around rounded cones, given ε > 0, the functional space:

Wm
β (Ωε) := {u ∈ L2

loc(Ωε) | wε
λ∂λu ∈ L2(Ωε) for |λ| ≤ m},

• around the sharp cone (ε = 0), the functional space:

Wm
β (Ω) := {u ∈ L2

loc(Ω) | wλ∂λu ∈ L2(Ω) for |λ| ≤ m}.

In the above, the weights wε
λ and wλ are respectively defined by

wε
λ(x) := ρε(x)β+|λ|−m, wλ(x) := ρ(x)β+|λ|−m.

The weights are introduced for three reasons. First, they allow to control the
behavior at the infinity (as previoulsy mentioned). Second, they are chosen in such
a way that compact embeddings and coercivity inequalities (Poincaré-like) hold.
Third, using them in the definition of the Wm

β spaces does not modify the behavior
near the origin O: in this way, local properties are similar to those of elements of
Sobolev spaces set in bounded domains. More precisely, one has:

Hm(Ωε) ⊂ Wm
β (Ωε) ⊂ Hm

loc(Ωε).

In the case of a bounded domain Ωε, for a given ε > 0, one finds Wm
β (Ωε) =

Hm(Ωε).
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Remark 1.2. The relevance of the use of ε-dependent weights will appear when
we derive error bounds for the asymptotic expansions.

Proposition 1.1. The functional space Wm
β (Ωε) is a Hilbert space, endowed with

the scalar product

(u, v)W m
β (Ωε) :=

∑
λ∈N2,0≤|λ|≤m

∫
Ωε

wε
λ(x)2 ∂λu∂λv dx.

By truncation,15 one can recover properties of the spaces Hm(Ωε).

Proposition 1.2. C∞
0 (Ωε) is dense in Wm

β (Ωε).

One can then consider the closure of C∞
0 (Ωε) in Wm

β (Ωε).

Definition 1.2. Introduce
◦

Wm
β (Ωε) := C∞

0 (Ωε)
W m

β (Ωε)
.

Classically, it follows that, if v ∈
◦

W 1
β (Ωε), then ∆v ∈ (

◦
W 1

β (Ωε))′.
The space Wm

β (Ωε) coincides locally with the “usual” space Hm(Ωε): traces can
therefore be defined locally. Since the space of choice for the Laplace problem is
W 1

0 (Ωε), let us focus on the properties of traces of its elements. From Ref. 15, it is
known that the behavior at infinity is comparable to those of traces in a half-plane.
So, let us introduce

Definition 1.3.

W
1
2
0 (Γε) :=

{
u ∈ L2

loc(Γε)
∣∣∣∣ u
√

ρε
∈ L2(Γε),

∫
Γε×Γε

|u(σ) − u(σ′)|2
|σ − σ′|2 dσ dσ′ < ∞

}
.

The dual space of W
1/2
0 (Γε) is denoted by W

−1/2
0 (Γε). The next proposition

provides a characterization of traces of elements of W 1
0 (Ωε).

Proposition 1.3. Given ε ≥ 0, the trace mapping

γ : u ∈ C∞
0 (Ωε) → u|Γε

∈ C0(Γε)

can be extended by continuity to a linear, continuous and surjective mapping, from

W 1
0 (Ωε) to W

1/2
0 (Γε). Its kernel is γ−1({0}) =

◦
W 1

0 (Ωε).

To build suitable Green formulas, we need some other functional spaces.

Definition 1.4. Consider W (div , Ωε) :=
{
u ∈ L2(Ωε)2, ρεdivu ∈ L2(Ωε)

}
.

W (div , Ωε) is a Hilbert space, endowed with the scalar product (u,v)div ,Ωε :=
(u,v)L2(Ωε)2 + (ρεdiv u, ρεdiv v)L2(Ωε).

Proposition 1.4. The space C∞
0 (Ωε)2 is dense in W (div , Ωε).

Proof. Cf. Ref. 16.

The normal trace of elements of W (div , Ωε) on Γε can then be introduced.
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Proposition 1.5. Given ε ≥ 0, the mapping γn : u ∈ C∞
0 (Ωε)2 → u.n|Γε ∈ C0(Γε)

can be extended by continuity to a linear and continuous mapping, from W (div , Ω)
to W

−1/2
0 (Γε). In addition, the following integration by parts formula holds:

∀u ∈ W (div , Ωε), v ∈ W 1
0 (Ωε),

(u,∇v)L2(Ωε)2 + (div u, v)L2(Ωε) =
W

−1/2
0 (Γε)

〈u · n|Γε , v|Γε〉W 1/2
0 (Γε)

. (1.2)

Proof. Cf. Ref. 16.

1.4. Axisymmetric setting

Given ε ≥ 0, m ∈ N, β ∈ R, we can define similarly the spaces Wm
β (Ω̆ε) in an

axisymmetric domain Ω̆ε. The trace space of W 1
0 (Ω̆ε) is now characterized by the

Definition 1.5. Introduce

W
1/2
0 (Γ̆ε) :=

{
u ∈ L2

loc(Γ̆ε)
∣∣∣∣ u
√

ρε
∈ L2(Γ̆ε),

∫
Γ̆ε×Γ̆ε

|u(σ) − u(σ′)|2
|σ − σ′|3 dσ dσ′ < ∞

}
.

Let us consider the dimension reduction, from n = 3 to n = 2. For µ ∈ R, let
L2

µ(Ωε) be the space of mesurable and square-integrable functions over Ωε, with
respect to the measure rµdrdz. In particular, there holds the

Lemma 1.1. Let u ∈ W 2
β (Ω̆ε) be invariant by rotation around the axis r = 0. If

D2u denotes its Hessian, then there holds∫
Ω̆ε

ρε(x)2β |D2u(x)|2 dΩ̆ε

= 2π

∫
Ωε

ρε(r, z)2β

{∣∣∣∂2u

∂r2

∣∣∣2 +
∣∣∣1
r

∂u

∂r

∣∣∣2 +
∣∣∣ ∂2u

∂r∂z

∣∣∣2 +
∣∣∣∂2u

∂z2

∣∣∣2} r dr dz.

This helps to define the ad hoc functional spaces in the meridian half-plane.

Definition 1.6. Consider, for ε ≥ 0, m ∈ N, β ∈ R,

Wm
β,a(Ωε) := {u ∈ L2

1,loc(Ωε)|ρβ+|λ|−m
ε ∂λ

r,zu ∈ L2
1(Ωε), |λ| ≤ m}.

With the help of Lemma 1.1, and according to Refs. 6 and 9, one finds that the
dimension reduction works in the following manner.

Proposition 1.6. For ε ≥ 0, β ∈ R and m ∈ {0, 1}, the space Wm
β,a(Ωε) is exactly

the space of traces in the meridian half-plane of invariant by rotation elements of
Wm

β (Ω̆ε). For m = 2, the relevant trace space is

W 2
β,a,+(Ωε) := {u ∈ W 2

β,a(Ωε)|ρβ
ε ∂ru ∈ L2

−1(Ωε)}.
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1.5. Sobolev spaces on the unbounded sharp cone

For a fixed x ∈ Ω, when ε → 0, the value of the weight wε
λ(x) goes to |x|β+|λ|−m.

Based on this simple observation, and from Refs. 19 and 22 it follows that the
Sobolev spaces thus weighted are the “natural” ones to describe the solutions to
elliptic problems in a sharp cone. The corresponding definitions are

Definition 1.7. Given m ∈ N, β ∈ R, introduce

V m
β (Ω) :=

{
u ∈ L2

loc(Ω)
∣∣∣∣ ∑

µ∈N2,|µ|≤m

∫
Ω

|x|2(β+|µ|−m)|∂µu(x)|2 dx < ∞
}

.

Note that there holds

u ∈ V m
β (Ω) ⇐⇒ u ∈ L2

loc(Ω), ∀µ ∈ N
2, |µ| ≤ m, |x||µ|−m∂µ(|x|βu) ∈ L2(Ω).

1.6. The problems to be solved

In the next sections, for ε ≥ 0, we shall solve the Laplace equation with Dirichlet
boundary condition in two-dimensional or three-dimensional domains.

In 2D:
{
−∆uε = f in Ωε,

uε = g on Γε.
In 3D:

{
−∆ŭε = f in Ω̆ε,

ŭε = g on Γ̆ε.
(1.3)

We make the following simplifying assumptions: first, that g = 0, and second
that f vanishes in a (fixed) neighborhood of the origin O. See Ref. 19 (Chap. 7,
Sec. 7.1), or Remark 3.3, for a more general assumption on f . In 3D, we further
assume that f is invariant by rotation.

We call (1.3), with g = 0, the Dirichlet problem hereafter.

2. Dirichlet Problem in the Sharp Cone

2.1. Setting of the problem

For the Cartesian case, existence and uniqueness results19,22 in the spaces V m
β (Ω)

come from the study of the Dirichlet problem in the strip R×]0, π
α [. As a matter

of fact, one easily checks that a one-to-one mapping from Ω to this strip is defined
by the change of variable t = log(r). In particular, one finds that the Laplace
operator maps V m+2

β (Ω) onto V m
β (Ω), except for specific values of the index β.

More precisely, one has

Theorem 2.1. Let β ∈ R, m ≥ 2, f ∈ V m−2
β (Ω).

If β − m + 1 /∈ Z∗α, then the Dirichlet problem (1.3) set in the sharp cone has
one, and only one solution u0 ∈ V m

β (Ω), which satisfies the a priori estimate

‖u0‖V m
β

≤ c ‖f‖V m−2
β

,

with a constant c independent of the right-hand side f .
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Remark 2.1. For our purpose, it is important to note that, in the case when m = 2
and if β is such that |β − 1| < α, then the solution to (1.3) belongs to V 2

β (Ω) for
any f ∈ V 0

β (Ω) (see Refs. 19 and 22 for details).

For the axisymmetric case, let us introduce G, the intersection between Ω̆ and
the unit sphere S2. In other words, Ω̆ = {ρσ, ρ > 0, σ ∈ G}. Let us call (ρ, θ, φ) the
spherical coordinates. The Laplace–Beltrami operator ∆G on G is defined as follows:

∆G :=
1

sinφ

∂

∂φ

(
sin φ

∂

∂φ

)
+

1
sin2 φ

∂2

∂θ2
.

On G, we consider the surface gradient

∇Gu :=




1
sinφ

∂u

∂θ

∂u

∂φ


 .

Then, we define the ad hoc Hilbert space (and accompanying scalar product)

H1(G) :=
{
u ∈ L2(G)|∇Gu ∈ L2(G)2

}
,

(u, v)H1(G) :=
∫

G

(
1
4
uv + ∇Gu · ∇Gv

)
dσ

(with dσ = sinφdφdθ).

Then, we introduce the closure of smooth surface fields H1
0 (G) := C∞

0 (G)
H1(G)

.
It is standard knowledge that the bilinear form on H1

0 (G) × H1
0 (G), defined by

A(u, v) :=
∫

G

∇Gu · ∇Gv dσ

is symmetric and coercive. As a consequence, one has

Theorem 2.2. There exist a countable sequence of positive real numbers (Λ�)�≥1

(sorted by increasing values), which goes to +∞, and a countable set (Ψ�)�≥1 of
elements of H1

0 (G) such that

• (Ψ�)�≥1 is a Hilbert basis of L2(G);
• (Ψ�/

√
Λ�)�≥1 is a Hilbert basis of H1

0 (G);
• −∆GΨ� = Λ�Ψ�, for all � ≥ 1.

In addition, the first eigenvalue Λ1 is simple, and Λ1 > 0.

As in the Cartesian case, the change of variables t = log(r) transforms problem
(1.3), set in Ω̆, in another one, set in R × G.

Theorem 2.3. Let β ∈ R such that |β − 1| <
√

Λ1 + 1
4 , f ∈ V 0

β (Ω̆). The Dirichlet

problem (1.3) set in the 3D sharp cone has one, and only one solution u0 ∈ V 2
β (Ω̆),

which satisfies the a priori estimate

‖u0‖V 2
β
≤ c‖f‖V 0

β
,

with a constant c independent of the right-hand side f .
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Proof. See Refs. 13, 19 and 16.

2.2. Cartesian case

In this subsection, we propose a variational setting for the Dirichlet problem, set
in the unbounded, sharp cone Ω. Recall that the space W 1

0 (Ω) combines the local
regularity of the space H1

loc, with a prescribed behavior at infinity, which allows to
recover Poincaré inequalities in unbounded domains. More precisely, there holds the

Proposition 2.1. There exists a constant C > 0, such that one has

∀u ∈
◦

W 1
0 (Ω),

∫
Ω

|u(x)|2
1 + |x|2 dx ≤ C

∫
Ω

|∇u|2 dx. (2.1)

The semi-norm |u|W 1
0

= (
∫
Ω |∇u|2 dx)1/2 is a norm on

◦
W 1

0 (Ω), which is equivalent
to the full norm.

As a consequence, the Lax–Milgram Theorem can be applied to the variational

formulation of the Dirichet problem, set in
◦

W 1
0 (Ω).

Proposition 2.2. Given f ∈ L2
loc(Ω) such that ρf ∈ L2(Ω), there exists one, and

only one solution u0 to the Dirichlet problem (1.3) which belongs to
◦

W 1
0 (Ω), and

satisfies (with a constant C independent of f)

‖u0‖W 1
0
≤ C‖f‖W 0

1
.

Remark 2.2. The Dirichlet problem is also well-posed with f ∈ (
◦

W 1
0 (Ω))′. Thanks

to the property that f vanishes in a neighborhood of O, f also belongs to the space
V 0

1 (Ω), and so u0 ∈ V 2
1 (Ω).

When f vanishes in a neighborhood of O, the asymptotic behavior of u0, that is
when r → 0, is governed by its local regularity. We follow here Grisvard13,14: con-
sider the polar coordinates (r, θ) with respect to the vertex O, such that Γ+ (resp.
Γ−) is a subset of {θ = 0} (resp. {θ = π

α}). Let (ϕ�)�≥1, ϕ�(θ) =
√

2α/π sin(�αθ)
be the orthonormal basis of L2(]0, π

α [), which is associated to the 1D operator
∆θ := − d2

dθ2 with homogeneous Dirichlet boundary conditions at θ = 0 and
θ = π/α. For � ∈ N, we introduce the dual functions s�

D(r, θ) = r−�αϕ�(θ), as
well as the primal ones φ�(r, θ) = r�αϕ�(θ). One has

Proposition 2.3. There exists coefficients (λ�)�≥1 such that one can write, for any
N ∈ N, the expansion (in increasing powers of r):

u0(r, θ) =
N∑

�=1

λ�φ�(r, θ) + O(r(N+1)α), r → 0. (2.2)

In addition, each coefficient λ� depends linearly on the right-hand side f :

λ� =
1

2�α

∫
Ω

fs�
D dx.
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Remark 2.3. For each � ∈ {1, . . . , m} such that �α ∈ N, a log term appears in the
expansion13: more precisely, φ�(r, θ) = d�r

�α(log r sin(�αθ) + θ cos(�αθ)), with d� a
normalizing factor. Anyway, all computations can still be carried out in this case.

We note that since α belongs to ]1/2, 1[, this cannot happen for � ≤ 2.

2.3. Axisymmetric case

Since we consider here the axisymmetric case, it is assumed that the right-hand
side f is invariant by rotation, in addition to vanishing in a neighborhood of the
origin O. The solution to the Dirichlet problem (1.3) set in the meridian half-plane
is invariant by rotation and satisfies



−∆+u0 = f in Ω,

u0 = 0 on Γb,

∂u0

∂n
= 0 on Γa.

(2.3)

In the above, the 2D operator ∆+ is defined as

∆+ :=
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
, or

∆+ :=
∂2

∂ρ2
+

2
ρ

∂

∂ρ
+

cot(φ)
ρ2

∂

∂φ
+

1
ρ2

∂2

∂φ2
in spherical coordinates (ρ, θ, φ).

Propositions 2.1 and 2.2 are still valid, so that u0 exists, and is unique.
Let us consider for a moment that f is not invariant by rotation. The domain

Ω̆ can include a conical geometrical singularity.a In addition, when the aperture
angle π/β is greater than a limit value, the behavior of the solution to the Dirichlet
problem becomes singular in the sense that ŭ0 does not belong to H2

loc(Ω̆) (see
for instance Refs. 6, 4 and 9). This value is related to the zero of the Legendre
function P 0

1/2, where t �→ P 0
ν (t) is the Legendre polynomial of order 0 and index

ν > 0, which is bounded at t = 0. More precisely, let us define βc ∈ ]1, 2[, such
that P 0

1/2 (cos (π/βc)) = 0, and assume that the aperture angle π/β is larger than
π/βc: in this case, the solution can be singular. Moreover, if one performs a Fourier
expansion in the azimuthal coordinate θ, it can be proven9 that the singular behav-
ior is contained in the mode k = 0. So, albeit this mode is the only one when the
solution is invariant by rotation, it is nonetheless exactly the one which behaves
singularly.

As we shall see, the regularity of the solution is related to the value of the index
ν > 0, and to the zero(s) of the Legendre polynomials P 0

ν . As a matter of fact, the

aBy definition,3,4 for a bounded axisymmetric domain, a geometrical singularity is located on the
boundary of the domain, and is either a re-entrant circular edge, or a conical re-entrant corner
(with a circular basis), both of which yield a non-convex domain.
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solution u0 in a neighborhood of O can be expressed as an infinite sum, using the
eigenfunctions of the 1D operator derived from (2.3): consider

∆+
φ := − d2

dφ2
− cot(φ)

d
dφ

.

Its domain (taking into account the boundary conditions on φ = 0 and φ = π/β)
is described below. Following Ref. 3, we introduce the functional space

H :=
{

u ∈ L2
loc

(]
0,

π

β

[)
, (sinφ)1/2u ∈ L2

(]
0,

π

β

[)}
. (2.4)

The domain of ∆+
φ is

D(∆+
φ ) :=

{
u ∈ H

∣∣∣∣∆+
φ u ∈ H, u′(0) = u

(
π

β

)
= 0

}
. (2.5)

Theorem 2.4. There exists a Hilbert basis (u�)�≥1 of H, made of eigenfunctions of
∆+

φ , which are associated to the eigenvalues (sorted by increasing values) (λ�)�≥1,

with λ� ∈ R
+
∗ for all � ≥ 1 and λ� → +∞ when � → +∞. All eigenfunctions (u�)�≥1

belong to

H1 :=
{

u ∈ H, u′ ∈ H, u

(
π

β

)
= 0

}
,

and, in addition, (u�/
√

λ�)�≥1 is a Hilbert basis of H1.

Now, let (ν�)�≥1 be the sequence of non-negative real numbers, sorted by increas-
ing values, such that P 0

ν [cos(π/β)] = 0. The eigenpairs of the operator ∆+
φ are

λ� = ν�(ν� + 1), u�(φ) =
P 0

ν�
(cosφ)

‖P 0
ν�

(cos ·)‖H
, � ≥ 1.

When π/β > π/βc, according to the tables of solutions to

find ν > 0 such that P 0
ν [cos(π/β)] = 0,

which can be found in Ref. 1, there holds ν1 < 1/2 and ν� > 1/2 for all � > 1. The
fact that ν1 is strictly smaller than 1/2 implies that the first term in the expansion
of the solution u0 to (2.3) generates a term in ŭ0, which does not belong to H2

loc(Ω̆)
(except if it vanishes. . . ).

For � ∈ N, define the primal and dual functions, resp. s�
D(ρ, φ) = ρ−ν�u�(φ) and

φc
�(ρ, φ) = ρν�u�(φ). Than, the expansion of u0 when ρ → 0 is as follows.

Proposition 2.4. There exist coefficients (λ�)�≥1 such that one can write, for any
N ∈ N, the expansion (in increasing powers of ρ):

u0(ρ, φ) =
N∑

�=1

λ�φ
c
�(ρ, φ) + O(ρνN+1), ρ → 0. (2.6)

Each coefficient λ� depends linearly on the right-hand side f :

λ� =
1

1 + 2ν�

∫
Ω

f(ρ, φ)s�
D(ρ, φ)ρ2 sinφdφ.
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3. Asymptotic Expansions Around Rounded Cones

In the previous section, we examined the behavior of the solution u0 to the Dirichlet
problem in the sharp cone (for n = 2, 3). We shall now derive the asymptotic
expansions (in powers of ε) of the solution uε to the Dirichlet problem, around the
rounded cones (for n = 2, 3). We assume that the right-hand side f is independent
of ε and, as before, that it vanishes in a neighborhood of O.

Let us introduce a cut-off function ξ ∈ C∞
0 (R+), such that 0 ≤ ξ ≤ 1, and

moreover ξ ≡ 1 in [0, a] and ξ ≡ 0 in [2a, +∞[ (a > 0 is given). Then, for γ > 0, let
us consider the scaled function χγ defined by x �→ ξ(|x|/γ); for γ = 1, the function
will be denoted simply by χ.

3.1. Rounded corners in two-dimensional domains

As for the sharp cone, the inequality (2.1) and the integration by parts formula
(1.2) remain valid in Ωε. There follows

Proposition 3.1. Given f ∈ W 0
1 (Ωε), there exists one, and only one solution uε,

which belongs to W 2
1 (Ωε), to the problem (1.3). Moreover, it satisfies

‖uε‖W 2
1
≤ Cε‖f‖W 0

1
.

Existence and uniqueness of the solution are still valid, provided that f belongs
to W 0

β (Ωε), under the condition |β − 1| < α.
A priori, Cε depends on the domain Ωε, so the index ε. As we shall see, it is

not the case a posteriori.

Theorem 3.1. (Stability) The constant Cε of Proposition 3.1 can be chosen inde-
pendently of ε.

Proof. Let us consider the operator

A−1
ε : W 0

1 (Ωε) → W 2
1 (Ωε)

which to f ∈ W 0
1 (Ωε) associates the solution u ∈ W 2

1 (Ωε) of the Dirichlet prob-
lem (1.3). The idea of the proof is to show that its operator norm is bounded,
independently of ε.

Let us write

f(x) = f1(x) + ε−2f2

(x

ε

)
, with f1 :=

(
1 − χ√

ε

)
f, f2

( ·
ε

)
:= ε2χ√

εf. (3.1)

Consider next the two problems:

−∆u1 = f1 in Ω, u1 = 0 on Γ, (3.2)

−∆u2 = f2 in ω, u2 = 0 on ∂ω. (3.3)

One can easily find the bounds:

‖f1‖V 0
1 (Ω) + ‖f2‖W 0

1 (ω) ≤ c‖f‖W 0
1 (Ωε),
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with c independent of ε. In particular, u1 and u2 exist, and are unique, respectively
in V 2

1 (Ω) and W 2
1 (ω) respectively. Moreover, one has

‖u1‖V 2
1 (Ω) + ‖u2‖W 2

1 (ω) ≤ c‖f‖W 0
1 (Ωε).

Define (with a continuation of u1 by zero to Ωε \Ω in the first term, still called u1)

Uε = (1 − χε)u1 + χu2

( ·
ε

)
.

Let Rε denote the operator which to f ∈ W 0
1 (Ωε) associates Uε ∈ W 2

1 (Ωε). We prove
first that the operator norm of Rε is bounded independently of ε. As a matter of
fact

‖Uε‖W 2
1 (Ωε) ≤ ‖(1 − χε)u1‖W 2

1 (Ωε) +
∥∥∥χu2

( ·
ε

)∥∥∥
W 2

1 (Ωε)
.

Let us bound the first term of the right-hand side. Since 1 − χε vanishes on {x ∈
Ωε | |x| ≤ aε}, one finds

‖(1 − χε)u1‖2
W 2

1 (Ωε) =
∑
|λ|≤2

∫
|x|≥aε

(
ε2 + |x|2

)|λ|−1 ∣∣∂λ(1 − χε)u1)(x)
∣∣2 dx.

Terms which do not include a derivative of (1 − χε) are bounded by ‖u1‖V 2
1 (Ω).

For the other terms (|λ| ≥ 1), the integral is actually carried out over the region
Cε = {x ∈ Ωε | aε < |x| < 2aε}. In this region, one has |x| � ε, so (ε2 + |x|2)|λ|−1 �
|x|2(|λ|−1). Therefore

‖(1 − χε)u1‖W 2
1 (Ωε) ≤ C1‖u1‖V 2

1 (Ω),

with C1 independent of ε.
For the second term, we perform the change of variables y = x/ε to recover∥∥∥χu2

( ·
ε

)∥∥∥
W 2

1 (Ωε)
≤ C2‖u2‖W 2

1 (ω).

As expected, the above allows to prove that ‖Rε‖W 0
1 →W 2

1
≤ C, with C independent

of ε.
Next, let Tε = (A−1

ε )−1Rε − I. In this way, the norm A−1
ε = Rε(I + Tε)−1

will be bounded independently of ε, provided that the norm of Tε is small. So, let
f ∈ W 0

1 (Ωε) and compute:

Tεf = −∆Uε − f,

= −χ√
εf + ∆χεu1 + χε∆u1 + 2∇χε · ∇u1

−∆χu2

( ·
ε

)
− χ∆

[
u2

( ·
ε

)]
− 2∇

[
u2

( ·
ε

)]
· ∇χ,

= ∆χεu1 + 2∇χε · ∇u1 − ∆χu2

( ·
ε

)
− 2∇

[
u2

( ·
ε

)]
· ∇χ.

Note that the last equality comes from the fact that the respective supports of χε

and of
(
1 − χ√

ε

)
are disjoint for small enough ε.
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We are now in a position to evaluate ‖Tεf‖W 0
1
. Let E be the term which includes

the contributions from u1: E = ∆χεu1 + 2∇χε · ∇u1. There holds supp(E) ⊂ Cε

and also∫
Ωε

(
ε2 + |x|2

)
|E(x)|2 dx ≤ C

(∫
Ωε

(
ε2 + |x|2

)
|∆χε(x)u1(x)|2 dx

+
∫

Ωε

(
ε2 + |x|2

)
|∇χε(x) · ∇u1(x)|2 dx

)
≤ C ( �1 + �2 ) .

Let d ∈ ]0, α[ be given. For the first term, �1 , one can write:

‖∆χεu1‖2
W 0

1 (Ωε) =
∫
Cε

(
ε2 + |x|2

)
ε4

∣∣∣∣
{

ξ′′
(
|x|
ε

)
+

ε

|x| ξ
′
(
|x|
ε

)}
u1(x)

∣∣∣∣
2

dx,

≤ 2
(
‖ξ′′‖2

∞ +
1
a2

‖ξ′‖2
∞

)∫
Cε

(
ε2 + |x|2

)
ε4

|u1(x)|2 dx,

≤ Cξ sup
x∈Cε

(
(ε2 + |x|2)|x|2+2d

ε4

)∫
Cε

|x|2((1−d)−2)|u1(x)|2 dx.

Since |x| = O(ε) for x ∈ Cε, the term ε−4(ε2 + |x|2)|x|2+2d is O(ε2d). Therefore,
under the condition that u1 belongs to V 2

1−d(Ω), one finds:

‖∆χεu1‖W 0
1 (Ωε) ≤ Cεd‖u1‖V 2

1−d(Ω).

The same kind of estimate can be obtained for the second term �2 .
One has to check that f1 belongs to V 0

1−d(Ω) to conclude, thanks to Remark 2.1,
that u1 ∈ V 2

1−d(Ω) and ‖u1‖V 2
1−d(Ω) ≤ C‖f1‖V 0

1−d(Ω). Now,

‖f1‖2
V 0
1−d(Ω) =

∫
Ω∩{x:|x|≥a

√
ε}
|x|2(1−d)

∣∣∣∣1 − χ

(
|x|√

ε

) ∣∣∣∣
2

|f(x)|2 dx,

=
∫

Ω∩{x:|x|≥a
√

ε}
|x|2

∣∣∣∣1 − χ

(
|x|√

ε

) ∣∣∣∣
2

|f(x)|2 1
|x|2d

dx,

≤ Cε−d‖f‖2
W 0

1 (Ωε).

Therefore, u1 belongs to V 2
1−d(Ω) and ‖u1‖V 2

1−d(Ω) ≤ Cε−d/2‖f‖2
W 0

1 (Ωε)
, so

‖∆χεu1 + ∇χε · ∇u1‖W 0
1 (Ωε) ≤ Cεd/2‖f‖W 0

1 (Ωε).

For the term which includes u2 in Tεf, one finds in a similar manner:

‖f2‖W 0
1+d(ω) ≤ Cε−d‖f‖2

W 0
1 (Ωε).

So, u2 ∈ W 2
1+d(ω) and∥∥∥∆χu2

( ·
ε

)
+ 2∇

[
u2

( ·
ε

)]
· ∇χ

∥∥∥
W 0

1 (Ωε)
≤ Cεd‖u2‖W 2

1+d(ω).
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To conclude, we proved the bound

∀ f ∈ W 0
1 (Ωε), ‖Tεf‖W 0

1 (Ωε) ≤ Cεd/2‖f‖W 0
1 (Ωε).

Recall that A−1
ε = Rε(I + Tε)−1, so there holds finally

‖A−1
ε ‖ = ‖Rε(I + Tε)−1‖ ≤ C1

1 − C2εd/2
.

Remark 3.1. The fact that f vanishes in a neighborhood of the origin O has not
been used in the previous proof. So, this method provides an approximation Uε

of the solution uε to the Dirichlet problem (1.3) for any f in the ad hoc space
W 0

1 (Ωε). However, in the case when f does not vanish near O, this approximation
is not usable to find an expansion at the order one or more (see Remark 3.3 below).

In the sequel, we establish an asymptotic, multi-scale, expansion of the solution
uε to (1.3), when ε → 0. The underlying principle of proof follows the scheme we
used for Theorem 3.1. We choose a term, which is not too different from the exact
solution, and then we estimate the error, by studying the PDE it solves.

Note that since the perturbation of the boundary (Γ versus Γε) is local, we
can (safely!) assume that, away from the origin, uε is similar to u0. Based on this
observation, we put u0 as the first term in our expansion. Since it is not defined in
Ωε \ Ω, we choose instead its continuation by zero (still called u0) and introduce

U0
ε = (1 − χε)u0.

Define R0
ε = uε − U0

ε . The error reads as follows, in the PDE,

−∆R0
ε = −1[a,2a]

( ·
ε

)
(∆χεu0 + 2∇χε · ∇u0 − χεf) ,

= −1[a,2a]

( ·
ε

)
(∆χεu0 + 2∇χε · ∇u0) ,

for small enough ε. In the above, we used the fact that f vanishes in a neighborhood
of O. Thanks to the behavior of u0 near O, we find (C depends only on f)

‖∆R0
ε‖W 0

1 (Ωε) ≤ Cεα.

According to Proposition 3.1 and Theorem 3.1, we infer

Proposition 3.2. Assume that f vanishes in a neighborhood of the origin O, then

‖uε − U0
ε ‖W 2

1 (Ωε) ≤ C0ε
α,

with a constant C0 that depends only on the data f .

This first approximation is not enough to provide information concerning the
trace of the normal derivative at the tip, so we look at the next term in the
expansion.

After studying the behavior of u0 at the origin (see (2.2)), we introduce the
function Q1 defined by

εα−2Q1

( ·
ε

)
= εα

{
∆χεφ1

( ·
ε

)
+ 2∇χε · ∇

[
φ1

( ·
ε

)]}
.
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Then, in ω, we consider the problem

{
−∆q1 = Q1 in ω

q1 = 0 in ∂ω.
(3.4)

According to Proposition 3.1, there exists one and only one solution q1 in W 2
1 (ω).

Next, define

U1
ε = (1 − χε)u0 − λ1ε

αq1

( ·
ε

)
,

with λ1 the coefficient which appears in (2.2). Define R1
ε = uε − U1

ε . For small
enough ε, the error reads, in the PDE,

−∆R1
ε = −1[a,2a]

( ·
ε

)
(∆χε(u0 − λ1φ1) + 2∇χε · ∇(u0 − λ1φ1) − χεf) ,

= −1[a,2a]

( ·
ε

)
(∆χε(u0 − λ1φ1) + 2∇χε · ∇(u0 − λ1φ1)) .

Let y1(ζ) = (1 − χ(ζ)) φ1(ζ) − q1(ζ). It satisfies



−∆y1 = 0 in ω,

y1 = 0 on ∂ω,

y1(ζ) = φ1(ζ) + c1s
1
D(ζ) + O(|ζ|−2α), |ζ| → +∞.

(3.5)

By construction, it is independent of ε. See Remark 3.4 for some further comments.
The term U1

ε can finally be rewritten as

U1
ε = (1 − χε) (u0 − λ1φ1) + λ1ε

αy1

( ·
ε

)
.

Now, the error between uε and U1
ε behaves as indicated below.

Proposition 3.3. Assume that f vanishes in a neighborhood of the origin O.

‖uε − U1
ε ‖W 2

1 (Ωε) ≤ C1ε
2α,

with a constant C1 that depends only on the data f .

More generally, one can prove

Theorem 3.2. (Consistency)
1. By induction, one can build a sequence of functions (y�)�≥1 such that



−∆y� = 0 in ω,

y� = 0 in ∂ω,

y�(ζ) = φ�(ζ) + O(|ζ|−α), |ζ| → +∞.
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2. Assume that f vanishes in a neighborhood of the origin O.
Then, for all m ∈ N, if Um

ε is defined by

Um
ε = (1 − χε)

(
u0 −

m∑
�=1

λ�φ�

)
+

m∑
�=1

λ�ε
�αy�

( ·
ε

)
, (3.6)

then the error of order m is bounded by

‖uε − Um
ε ‖W 2

1 (Ωε) ≤ Cmε(m+1)α. (3.7)

Remark 3.2. Let us note that the sequence (y�)�≥1 is independent of f, and that
the coefficients (λ�)�≥1 are the ones that appear in (2.2).

If mα ∈ N, (3.7) holds with the right-hand side Cmε(m+1)α| log ε|.
Moreover, if Ω and Ωε are bounded, then by restricting y� to Ωε, one finds

‖uε‖H2(Ωε) ≤ Cεα−1,

‖uε − Um
ε ‖H1(Ωε) ≤ Cε(m+1)α,

‖uε − Um
ε ‖H2(Ωε) ≤ Cε(m+1)α−1.

Corollary 3.1. For ε > 0, one can write in any given ε-neighborhood of Oε,

uε(x) =
�=m∑
�=1

λ�ε
�αy�

(x

ε

)
+ O(ε(m+1)α−1). (3.8)

Moreover, when ε → 0+, the trace of the normal derivative at the tip behaves as
∂uε

∂n
(Oε) = λ1

∂y1

∂n
(O1)εα−1 + O(ε2α−1). (3.9)

Outside any given neighborhood of the origin O, one can write, for ε > 0 sufficiently
small,

uε(x) = u0(x) + c1λ1ε
2αs1

D(x) + O(ε3α), (3.10)

where c1 appears in (3.5).

We conclude this subsection by two important remarks. The first one provides
some pointers as to the relevance of the assumption of f that it vanishes near O.
The second one gives some insight as to how one can relate the behavior near the
origin to the behavior at the infinity.

Remark 3.3. What happens if f does not vanish in a neighborhood of the origin
O? In the proof of Theorem 3.1, one can still split f as the sum of a term that
vanishes near O (f1), and a term with compact support (f2). Then, the first term
in the expansion of uε is as before, but, following the proof of Theorem 3.1, one has
only ‖uε−U0

ε ‖W 2
1 (Ωε) ≤ Cδε

α/2−δ, for δ ∈ ]0, α/2[, with a constant Cδ that depends
on the data f and on δ.

However, in the case when f is smooth and rapidly decreasing near O (see
Chap. 7 of Ref. 19), that is

∀N ∈ N, ∀β ∈ N
2, ∃Cβ > 0,

∣∣∣∂β1
θ (r∂r)

β2 f
∣∣∣ ≤ CβrN ,
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the expansion (2.2) of u0 still holds, and so does the asymptotic expansion of uε

(3.6) and the error (3.7).

Remark 3.4. What is the value of the constant c1 in the expression of y1 in (3.5)?
After some elementary computations, one finds

c1 =
1
2α

lim
R→+∞

∫
Ω∩∂BR

(
y1

∂φ1

∂n
− φ1

∂y1

∂n

)
dσR =

1
2α

∫
{σ∈Γ,|σ|<a}

∂φ1

∂n
(σ)y1(σ) dσ.

Actually, c1 can be seen as the multiplicative coefficient that enables one to go from
the local behavior of uε (3.8) to the behavior at infinity of uε − u0 (3.10):

For x such that |x| ≤ ε, uε(x) = λ1ε
αy1

(x

ε

)
+ O(ε2α−1),

For x such that |x| ≥ r0 > 0, uε(x) − u0(x) = c1λ1ε
2αs1

D(x) + O(ε3α).

3.2. Rounded corners in three-dimensional axisymmetric domains

Let us consider the axisymmetric case. We assume that the solution to the Dirichlet
problem can exhibit a singularity, i.e. π/β > π/βc (see Sec. 2.3). The techniques
are very similar to the 2D case.

Theorem 3.3. (Stability)

(1) Given f ∈ W 0
1 (Ω̆ε), there exists one, and only one solution ŭε, which belongs

to W 2
1 (Ω̆ε), to the problem (1.3). Moreover, it satisfies

‖ŭε‖W 2
1
≤ Cε‖f‖W 0

1
,

with a constant Cε independent of ε.

(2) If β is such that |β − 1| <
√

Λ1 + 1
4 and if f belongs to W 0

β (Ω̆ε), then the same

results apply with ŭε in W 2
β (Ω̆ε) and the estimate ‖ŭε‖W 2

β
≤ Cε‖f‖W 0

β
.

As in the Cartesian case, we define in the meridian half-plane U0
ε = (1 − χε)u0.

One has

Proposition 3.4. Assume that f vanishes in a neighborhood of the origin O.

‖uε − U0
ε ‖W 2

1,a,+
≤ C0ε

ν1+
1
2 ,

with a constant C0 that depends only on the data f .

Let us define Qc
1 such that

εν1−2Qc
1

( ·
ε

)
= εν1

{
∆+χεφ

c
1

( ·
ε

)
+ 2∇χε · ∇

[
φc

1

( ·
ε

)]}
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and qc
1 ∈ W 2

1,a,+(ω) the solution to



−∆+qc

1 = Qc
1 in ω,

∂qc
1

∂n
= 0 on ∂ωa,

qc
1 = 0 on ∂ωb.

(3.11)

Next, we define

U1
ε = (1 − χε)u0 − λ1ε

ν1qc
1

(
·
ε

)
= (1 − χε) (u0 − λ1φ

c
1) + λ1ε

ν1yc
1

(
·
ε

)
,

with yc
1(ζ) = (1 − χ(ζ))φc

1(ζ) − qc
1(ζ). It is possible to prove

Proposition 3.5. Assume that f vanishes in a neighborhood of the origin O, then

‖uε − U1
ε ‖W 2

1,a,+
≤ C1ε

ν2+
1
2 ,

with a constant C1 that depends only on the data f .

More generally, one can prove the general result below.

Theorem 3.4. (Consistency) 1. By induction, one can build a sequence of func-
tions (yc

�)�≥1 in H1
1,loc(ω) such that




−∆+yc
� = 0 in ω,

∂yc
�

∂n
= 0 on ∂ωa,

yc
� = 0 on ∂ωb,

yc
�(ζ) = φc

�(ζ) + O(|ζ|−ν1−1), |ζ| → +∞.

2. Assume that f vanishes in a neighborhood of the origin O.
Then, for all m ∈ N, if Um

ε is defined by

Um
ε = (1 − χε)

(
u0 −

m∑
�=1

λ�φ
c
�

)
+

m∑
�=1

λ�ε
ν�yc

�

( ·
ε

)
, (3.12)

then the error of order m is bounded by

‖uε − Um
ε ‖W 2

1,a,+
≤ Cmενm+1+

1
2 . (3.13)

Corollary 3.2. When ε → 0+, there holds

∂uε

∂n
(Oε) = λ1

∂yc
1

∂n
(O1)εν1−1 + O(εν2−1). (3.14)
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4. Integral Representation of the Normal Derivative

In this section, we establish computable integral boundary representation formulas
for the value of the normal derivative at the tip of rounded corners. In this way,
it will be possible to compare the results obtained here, with those derived from
the asymptotic expansion techniques. Among others, this involves a splitting of the
Green’s function, where the most singular terms are separated from the smooth
ones. Since the singular terms are known explicitly, they can be computed. As
far as the smooth terms are concerned, they are numerically approximated, via the
discretization of “standard” variational formulations. We begin by some well-known
results to illustrate our purpose, and then focus on the results we are interested in.

4.1. Sharp corners in two-dimensional domains

One can compute the solution u0 to the Dirichlet problem (1.3) set in Ω, with the
help of the Green’s function G0 of the domain Ω. As a matter of fact, there holds

u0(x) =
∫

Ω

f(y)G0(x, y) dy. (4.1)

Below, we recall some results concerning this Green’s function, so that we can first
derive a computable approximation of the above formula. For y ∈ Ω, let δy be the
Dirac mass at y: by definition, G0 is the solution to{

−∆xG0(·, y) = δy in D′(Ω),

G0(·, y) = 0 on Γ,
(4.2)

with the additional condition G0(x, y) = O(1) when |x| → +∞.
Consider E2(x, y) := − 1

2π log(|x − y|), which satisfies the identity below, in the
sense of distributions:

−∆xE2 = δy.

We would like to compare G0 to E2, and be able to compute the remainder. We
note that x �→ E2(x, y) behaves like log(|x|) when |x| → +∞: its trace on Γ does not
belong to W

1/2
0 (Γ). So, we introduce a smooth truncation function η ∈ C∞(R+),

built in such a way that

η ≡




0 for t ∈
[
0,

1
2

]
∪ [2, +∞[

1 for t ∈
[
3
4
,
5
4

]

and split Green’s function G0(·, y) as

G0(x, y) = η

(
|x|
|y|

)
E2(x, y) + H(x, y), x, y ∈ Ω.
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Since E2 is known, one only has to characterize H(·, y). After (4.2), it solves

−∆xH(·, y) = −∆x

((
1 − η

(
| · |
|y|

))
E2(·, y)

)
in Ω,

H(·, y) = −η

(
| · |
|y|

)
E2(·, y) on Γ.

(4.3)

Interestingly, this problem can now be solved in W 1
0 (Ω), since one has

supp
(

η

(
| · |
|y|

))
⊂
{

x ∈ Ω,
|y|
2

< |x| < 2|y|
}

and

supp
(

∆x

((
1 − η

(
| · |
|y|

))
E2(·, y)

))
⊂
{

x ∈ Ω,
|y|
2

< |x| < 2|y|
}
.

This splitting of the Green’s function, where the singular part E2 is extracted, is
now computable. As a matter of fact, the expression of E2 is explicit. Moreover,
one can discretize the variational formulation of problem (4.3), set in W 1

0 (Ω), to
recover a numerical approximation of H, and therefore of G0 and of u0, via (4.1).

Remark 4.1. There exist other ways of computing the Green’s function. For the
2D unbounded, sharp cone, G0 can be computed explicitly, using the separation of
variables in polar coordinates (r, θ). After some computations,16 for a given (r0, θ0)
(in Ω), G0 can be explicitly written as the expansion:

G0((r, θ), (r0, θ0)) =


∑

m≥1

1
2mα

(
r

r0

)mα

ϕm(θ)ϕm(θ0)


 1]0,1[

(
r

r0

)

+


∑

m≥1

1
2mα

(r0

r

)mα

ϕm(θ)ϕm(θ0)


 1]0,1[

(r0

r

)
. (4.4)

4.2. Rounded corners in two-dimensional domains

As for the sharp cone, the Green’s function Gε of Ωε can be split as: Gε(x, y) =
η(|x|/|y|)E2(x, y) + Hε(x, y), where η has been introduced in Sec. 4.1, and Hε(·, y)
is the solution to a problem analogous to (4.3) set in Ωε. As we already noticed:

uε(x) =
∫

Ωε

f(y)Gε(x, y) dy.

Since the quantity of interest is the trace of the normal derivative ∂nuε(x), one has
to know ∂nGε on Γε, which requires an ad hoc splitting of this object. We proceed
as before.
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Lemma 4.1. The Green’s function Gε satisfies:

(1) ∇xGε(x, y) = − x−y
2π|x−y|2 + O(1), when y → x;

(2) for any y ∈ Ωε and ψ ∈ C∞
0

(
Ωε

)
, there holds∫

Ωε

Gε(x, y)∆ψ(x) dx = −ψ(y) +
∫

Γε

ψ(x)
∂Gε

∂nx
(x, y) dσ(x).

Proof. The first item is straightforward.
As far as the second item is concerned, let us introduce another truncation

function, χ ∈ C∞
0 (Ωε), the support of which is included in a ball Bγ(y), and which

is equal to 1 in B γ
2
(y).∫

Ωε

Gε(x, y)∆ψ(x) dx =
∫

Ωε

Gε(x, y)∆ (χψ) (x) dx +
∫

Ωε

Gε(x, y)∆ ((1 − χ)ψ) (x) dx,

= −ψ(y) +
∫

Ωε−Bγ/2(y)

Gε(x, y)∆ ((1 − χ)ψ) (x) dx,

= −ψ(y) +
∫

Ωε−Bγ/2(y)

∆x (Gε(x, y)) ((1 − χ)ψ) (x) dx

−
∫

Γε

∂Gε

∂nx
(x, y)(1 − χ)(x)ψ(x) dσ(x),

= −ψ(y) −
∫

Γε

∂Gε

∂nx
(x, y)ψ(x) dσ(x).

One can then prove

Proposition 4.1. Consider σ ∈ Γε. The integral representation formula holds

∂uε

∂n
(σ) =

∫
Ωε

f(y)
∂Gε

∂nσ
(σ, y) dy. (4.5)

Proof. On the one hand, consider ψ ∈ C∞
0

(
Ωε

)
and compute〈∂uε

∂n
, ψ

〉
=

∫
Ωε

(∆uεψ − uε∆ψ) dx =
∫

Ωε

(−fψ − uε∆ψ) dx.

On the other hand, the singularity η(|x|/|y|) log(|x − y|) is locally integrable over
the domain Ωε × Ωε (see Ref. 18). Therefore, according to Fubini’s Theorem:∫

Ωε

uε∆ψ dx =
∫

Ωε×Ωε

f(y)Gε(x, y)∆ψ(x) dxdy,

=
∫

Ωε

f(y)
(∫

Ωε

Gε(x, y)∆ψ(x) dx

)
dy,

=
∫

Ωε

f(y)
(
−ψ(y) −

∫
Γε

ψ(x)
∂Gε

∂nx
(x, y) dσ(x)

)
dy.

The last equality is a consequence of Lemma 4.1. To conclude, since the singularity
|x − y|−1 is locally integrable over the domain Γε × Ωε, one finds, according once
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more to Fubini’s Theorem:〈∂uε

∂n
, ψ

〉
=

∫
Ωε

f(y)
(∫

Γε

ψ(x)
∂Gε

∂nx
(x, y) dσ(x)

)
dy,

=
∫

Γε

ψ(x)
(∫

Ωε

f(y)
∂Gε

∂nx
(x, y) dy

)
dσ(x).

This yields the desired formula.

To characterize the function Gσ
ε,n = ∂nσGε(σ, ·) for a given σ ∈ Γε, let us split

it as the sum of a singular part (when y → σ) and of a part, which belongs to
H1

loc(Ωε):

Gσ
ε,n(y) = (nx(σ) · ∇x)Gε(σ, y) = (nx(σ) · ∇x)E2(σ, y) + Hσ

ε,n(y).

If one notices that one can write

Gσ
ε,n(y) = lim

h→0+

Gε(σ − hnσ, y) − Gε(σ, y)
h

,

the boundary condition follows and the function Gσ
ε,n is a solution to:{

∆Gσ
ε,n = 0 in Ωε,

Gσ
ε,n = 0 on Γε − {σ}.

(4.6)

Assume that, in a neighborhood of σ = (x0, ϕ(x0)), Γε is of C2-class (this assump-
tion is satisfied everywhere, with the exception of the two coupling points). In this
way, ∂nσE2(σ, ·) belongs to L1

loc(Γε) (it is bounded when y −→ σ). Consider next
the problem 


−∆Hσ

ε,n = 0 in Ωε,

Hσ
ε,n = −∂E2

∂nσ
(σ, ·) on Γε.

(4.7)

It is clear that, under the condition ∂nσE2(σ, ·) ∈ W
1/2
0 (Γε), problem (4.7) is well-

posed in W 1
0 (Ωε), so Hσ

ε,n exists in this space.
For the specific point σ = Oε (which is the one with smallest curvature radius)

one finds by direct computations:

∂E2

∂nσ
(Oε, (x, ϕ(x))) =




− 1
2π

cx + cε
2

x2 + (cx + cε
2 )2

, x < −ε

1
2π

c
2ε

1 +
(

c
2ε

)2
x2

, x ∈ ]−ε, ε[,

− 1
2π

−cx + cε
2

x2 + (cx − cε
2 )2

, x > ε.

One then infers by a direct estimate that ∂nσE2(Oε, ·) is such that∥∥∥∥∂E2

∂nσ
(Oε, ·)

∥∥∥∥
W

1/2
0 (Γε)

= O(ε−1) ,
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which allows to conclude that HOε
ε,n indeed exists and is in W 1

0 (Ωε). Moreover, an
approximation is numerically computable, see the end of Sec. 4.1.

Remark 4.2. For σ �= Oε, one reaches a similar conclusion. More generally, for a
different shape of Γε, i.e. a different mapping ϕ, one can find explicit formulas by
direct computations (see details in Ref. 16).

4.3. Rounded corners in three-dimensional axisymmetric domains

The Green’s function in the domain Ω̆ε is such that{
−∆xGε(·, y) = δy in D′(Ω̆ε),
Gε(·, y) = 0 on Γ̆ε.

(4.8)

Whereas in a 2D domain the logarithmic behavior requires the use of a truncation
function to resolve the Green’s function, in 3D the restriction of the function x �→
|x|−1 to Ωε ∩{x, |x| > 1} now belongs to W 1

0 (Ωε ∩{x, |x| > 1}), so that the trace of
x �→ |x − y|−1 belongs to W

1/2
0 (Γε) (for y �∈ Γε). Thus, Gε can be split directly as

Gε(x, y) = 1
4π |x − y|−1+Hε(x, y). According to the above, one has Hε(x, y) = O(1)

when |x| → +∞, for fixed y. The gradient of Gε (with respect to x) behaves in the
following way, when x → y :

− x − y

4π|x − y|3 + O(1).

By performing computations, which are very similar to those carried out in 2D, one
can prove (provided the boundary is of C2-class) that the normal trace derivative
at σ ∈ Γ̆ε is given by the integral representation formula below.

∂uε

∂n
(σ) =

∫
Ω̆ε

f(y)
∂Gε

∂nσ
(σ, y) dy. (4.9)

Remark 4.3. Notice that, for a point y which does not belong to the axis (Oz),
the Green’s function is not invariant by rotation.

From now on, we carry out the computations at the point with the smallest curva-
ture radius, that is σ = Oε. To emphasize this, we shall use the superscrit � for the
related functionals. Due to the nature of Ω̆ε, (4.9) can be rewritten as:

∂uε

∂n
(Oε) = 2π

∫
Ωε

f(r, z)
∂Gε

∂nσ
(Oε, (r, z))r dr dz. (4.10)

As in 2D, introduce G�
ε,n = ∂nσGε(Oε, ·). It is the solution to a homogeneous

problem which reads 


−∆+G�
ε,n = 0 in Ωε,

∂G�
ε,n

∂n
= 0 on Γε

a,

G�
ε,n = 0 on Γε

b.

(4.11)
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Consider E3(x, y) = 1
4π |x − y|−1. At σ = Oε, the outward unit normal to Γ̆ε is

equal to −ez. Therefore, for y = (r, z) ∈ Ωε, there holds

−∂Gε

∂nσ
(Oε, y) =

∂Gε

∂zσ
(Oε, y) =

∂E3

∂zσ
(Oε, y) − H�

ε,n(y),

= − 1
4π

z − zOε

(r2 + (z − zOε))3/2
− H�

ε,n(y),

with a function H�
ε,n such that −∆+H�

ε,n = 0. Moreover, on Γε
a, it satisfies the

boundary condition: ∂nH�
ε,n = 0. On the other part of the boundary, Γε

b, its trace
H�

ε,n = ∂zσE3(Oε, ·) can be computed explicitly at the location σ′ = (r, ϕ(r)):

H�
ε,n(r, ϕ(r)) =




c

8πε

1

r
(
1 +

(
c
2ε

)2
r2
) 3

2
for r < ε,

c

4π

r − ε
2(

r2 + c2
(
r − ε

2

)2) 3
2

for r ≥ ε.

(4.12)

Unfortunately, the trace of H�
ε,n on Γε

b is still singular at Oε, so that H�
ε,n /∈

W
1/2
0 (Γε

b): the variational approach set in W 1
0,a(Ωε) fails. So, for practical pur-

poses, i.e. to be able to compute a variational approximation of ∂zσGε(Oε, y), we
introduce

F �(y) =
∂E3

∂zσ
(Oε, y) − c

2ε
E3(Oε, y).

With the help of F �, which is computable, it is possible to remove the singularity:
∂zσGε(Oε, y) is now split as

∂Gε

∂zσ
(Oε, y) = F �(y) − I�

ε,n(y) =
∂E3

∂zσ
(Oε, y) − c

2ε
E3(Oε, y) − I�

ε,n(y).

I�
ε,n is such that 



−∆+I�
ε,n = 0 in Ωε,

∂I�
ε,n

∂n
= 0 on Γε

a,

I�
ε,n = F � on Γε

b.

(4.13)

Then, one can compute

F �|Γε
b
(r, ϕ(r)) =




1
ε3

c3

32π

r(
1 +

(
c
2ε

)2
r2
) 3

2
for r < ε,

c

4π

r − ε
2(

r2 + c2
(
r − ε

2

)2) 3
2
− c

8πε

1

r

√
1 +

(
c
2ε

)2
r2

for r ≥ ε.
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The behavior of F � when r → +∞ is in r−2, so that one gets F � ∈ W
1/2
0 (Γε

b), with
the estimate

‖F �‖
W

1/2
0 (Γε

b)
= O

(
ε−1

)
.

These computations allow one to conclude that there exists one, and only one
solution to (4.13) in W 1

0,a(Ωε). It can be discretized, so that one recovers a numerical
approximation of (4.9).

5. Numerical Experiments

In this section, we compute the surface charge density at the tip, by using a numer-
ical approximation of the asymptotic expansion formulas, that is (3.9) in the Carte-
sian case, and (3.14) in the axisymmetric case. Interestingly, we can compare the
results to those obtained by approximating the integral representation formulas,
respectively (4.5) and (4.9). For simplicity, we shall consider numerical experiments,
set in a bounded domain: an angular sector of radius 5 (rounded at the tip). The
results we report below have been obtained using Matlab.

Before we proceed, let us begin by some brief comments. We focus on the Carte-
sian case, albeit they are very similar in the axisymmetric case.

If we evaluate the asymptotic expansion formulas, we note first that the approx-
imation is independent of ε. As a matter of fact, ∂ny1(O1) and α depend solely on
the geometry of the domain ω, whereas λ1 is equal to

λ1 =
1
2α

∫
Ω

fs1
D dx.

So, assuming ∂ny1(O1) is known (note that the value of ∂ny1(O1) is directly com-
putable via a numerical approximation of either (3.4) or (3.5)), one only has to eval-
uate λ1. This amounts to computing an approximation of s1

D, for which one can use
the Singular Complement Method.8 It can be implemented by using the Lagrange
P1 finite element on a series of regular triangulations (Th)h, where h denotes the
meshsize. From the above, it is clear that h can be chosen independently of ε. The
convergence result is as follows:

|λ1 − λh
1 | = O(h2α).

In the above, we took into account the classical result of Ref. 20 on the approxima-
tion of integrals, when the exact and discretized domains differ: the error is in the
order of O(h2).

Remark 5.1. According to Merlet,21 one can refine the Singular Complement
Method to reach an error estimate O(h2). One could also use graded meshes (near
the re-entrant corner) for a similar result. Neither techniques require the knowledge
of ε.

On the other hand, one can choose to approximate the integral representation
formulas, using the same finite element for simplicity. Then, to resolve the part of
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the boundary near the (rounded) tip, one has to have a meshsize in the order of ε,

i.e. hε � ε. Now, if this requirement is met, one has to evaluate ∂nuε(Oε) as given
by (4.5). With the splitting G�

ε,n = −∂yE
�
2 + H�

ε,n one only has to approximate
the variational formulation H�

ε,n solves, that is (4.7). The convergence result is as
follows: ∣∣∣∣∣∂uε

∂n
(Oε) −

∫
Ωε,h

fG�,h
ε,ndx

∣∣∣∣∣ = O(h2
ε).

Notice that the integrals are not evaluated over Ωε, but over Ωext = Ωε∩
◦

supp(f).
The estimate on the L2(Ωext)-norm of the difference (G�

ε,n −G�,h
ε,n) = (H�

ε,n −H�,h
ε,n )

is standard: O(h2
ε ‖H�

ε,n‖H2(Ωext)) = O(h2
ε), since ‖H�

ε,n‖H2(Ωext) = O(1).
Then, if we want to compare the two approaches, we introduce the ratio

Rh(α) =
1

λh
1εα−1

∫
Ωε,h

fG�,h
ε,ndx.

As far as the numerical results are concerned, let us begin with the Cartesian
case, with the opening 3π/2 (α = 2/3). We choose the data:

f(x) =




0, |x| < 2,
1

1 + |x|2 , |x| ≥ 2.

In other words, f vanishes in a neighborhood of the origin O. We consider the
results obtained via the discretization resulting from the asymptotic expansion (3.9)
and from the integral representation formula (4.5). So in Table 1, we give the value
of the coefficient λh

1 , the approximation of λ1, the only term of (3.9) that depends
on the data. Then, in Table 2, we provide the approximation of (4.5), scaled by the
factor εα−1 so that the result is independent of ε. Then, the ratio between the two
computed values is reported in Table 3: it corresponds to the value of the coefficient
∂ny1(O1), which depends only on the geometry of the domain. Here, we give the

Table 1. Values of λh
1 for α = 2

3
and f vanishing

near O.

h

α 0.2 0.1 0.05 0.025

2/3 1.077e−2 1.075e−2 1.076e−2 1.075e−2

Table 2. Values of ε1−α
R
Ωε,h

fG�,h
ε,ndx for

α = 2
3

and f vanishing near O.

ε

α 0.5 0.25 0.125 0.062

2/3 9.34e−2 9.29e−2 9.28e−2 9.28e−2
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Table 3. Ratio Rh(α) for α = 2
3
, 3

4
and f

vanishing near O.

h

α 0.5 0.25 0.125 0.062

2/3 −0.856 −0.868 −0.862 −0.862
3/4 −0.918 −0.883 −0.887 −0.890

Table 4. Ratio Rh(α) for α = 2
3
, 3

4
and f

nonvanishing near O.

h

α 0.5 0.25 0.125 0.062

2/3 −0.500 −0.436 −0.394 −0.376
3/4 −0.411 −0.360 −0.336 −0.305

Table 5. Ratio Rh(ν1) for β = 4
3

and f
rapidly decreasing at O.

h

β 0.5 0.25 0.125 0.062

4/3 −0.106 −0.106 −0.105 −0.105

results for two different values of the opening, namely 3π/2 and 4π/3. It appears
that the numerical convergence is good (for a fixed α).

What happens numerically, if one considers some data, which does not vanish
anymore near the origin O, and which is not rapidly decreasing? See the results in
Table 4. We choose here

f(x) =
1

1 + |x|2 .

Finally, we consider the axisymmetric case, with an opening corresponding to
β = 4/3. We choose the data

f(x) = e
− 1

|x|2 .

In other words, f is rapidly decreasing in a neighborhood of the origin O. See
Table 5 for the results.

6. Conclusion

Peek’s empirical formulas (0.6) and (0.7) are valid only around specific electrodes.
Under the assumption that the data (physically, the charge density) vanishes in
a neighborhood of the tip, we established a mathematical justification of those
formulas for geometries that coincide at infinity with a cone. The case of a parabolic
shape at the tip has been thoroughly studied, and extensions to other shapes are
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straightforward. In particular, we proved that the value of the normal derivative of
the electric potential at the tip behaves like (cf. (3.9)):

∂uε

∂n
(Oε) = λ1

∂y1

∂n
(O1)εα−1 + O(ε2α−1).

In other words, it depends only of the curvature radius at the tip like εα−1, the
data (through λ1), and the geometry of the domain (the coefficient ∂ny1(O1)).

Numerical experiments corroborate the theoretical results.
In addition, we provided some information about the link between the behavior

of the potential “close to the tip”, and the behavior of the potential “far from the
tip”. They are related by a constant, which we call c1, that depends only on the
geometry of the domain (see Remark 3.4).

As far as other applications are concerned, we note that the case of a (bounded)
wire could be handled similarly. Also, it is possible to extend our results to 21

2D
geometries11: an axisymmetric tip with data that is not invariant by rotation, or a
prismatic domain with rounded edge.

Finally, we mention that one derives easily from our framework that a phe-
nomenon similar to a boundary layer occurs, but only near the tip (namely, for
|x| � ε): a corona layer. Therefore, one can relate our work to the study of more
classical boundary layers. We refer to Refs. 12 and 7 for results on this problem.
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20. B. Mercier and G. Raugel, Résolution d’un problème aux limites dans un ouvert
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