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We consider a chiral medium in a bounded domain, enclosed in a perfectly conducting
material. We solve the transient Maxwell equations in this domain, when the medium is
modeled by the Drude–Born–Fedorov constitutive equations. The input data is located
on the boundary, in the form of given surface current and surface charge densities. It
is proved that, except for a countable set of chirality admittance values, the problem is
mathematically well-posed. This result holds for domains with non-smooth boundaries.
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1. Introduction

Chiral materials, along with other bianisotropic media, have been the subject of
many studies in the past years and numerous references are available in the litera-
ture, dealing both with applications and theoretical works. Indeed, these materials
respond with both electric and magnetic polarizations to either electric or magnetic
excitations, which makes them of particular interest for optics and many other elec-
tromagnetic applications. They can be characterized by different sets of constitutive
relations in which the electric and magnetic fields are coupled, the strength of this
coupling being measured by the chirality admittance. In the present work, we make
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use of the so-called Drude–Born–Fedorov constitutive equations. Recent investi-
gations, dealing with the propagation of time-harmonic electromagnetic waves in
chiral media assuming such relations, are the subject of articles by Ammari et al.1–4

and also by Athanasiadis et al.6–8 The time domain case has not been as exten-
sively treated, but mathematical studies for problems set in unbounded domains
can nevertheless be found in Refs. 9, 21 and 31.

We deal here with the well-posedness of the transient Maxwell equations in a
homogeneous, isotropic chiral media surrounded by a perfect conductor, assuming
a very general geometry. The interface conditions we consider are the ones coming
from the physics. We show that there exists a unique solution to this problem for
all but possibly a discrete set of values of the chirality admittance. The proof of this
result mainly relies on the existence and uniqueness of linear Beltrami (or force-free)
fields for one part and on classical semigroup theory applied to evolution problems
for the other part.

The outline of the paper is as follows: Section 2 is devoted to the formulation of
the physical problem, which relies on the well-known Maxwell’s equations. Its study
is then reduced in Sec. 3 to that of a model evolution problem: it appears that there
exist several possibilities to close the set of interior equations, by choosing more or
less constraining boundary conditions. This problem is subsequently solved in the
next three sections. In Sec. 4, the more constraining boundary conditions are kept,
together with divergence-free data assumption. Then, in Sec. 5, the condition on
the divergence of the data is dropped and less constraining boundary conditions
are considered in Sec. 6. Some concluding remarks are made in the last section, and
among others the case of a domain with a non-connected boundary is discussed.

2. Modeling of the Problem

2.1. Maxwell’s equations and transmission conditions

Maxwell’s equations in the absence of volume sources read
∂D
∂t

− curlH = 0 in R
3, t > 0, (2.1)

∂B
∂t

+ curlE = 0 in R
3, t > 0. (2.2)

In the above, D is the electric displacement, H is the magnetic field, B is the
magnetic induction, and E is the electric field. Those vector fields are functions of
four variables, namely (x, t) in R

3×]0, +∞[.
In addition, they satisfy some conditions at interfaces between different media.

Consider such an interface (a surface), and let n denote a unit normal vector to
it. Then, the four jump conditions satisfied on the interface are (see Ref. 25 for
instance)

[D · n] = −σ, [B · n] = 0, [E ∧ n] = 0 and [H ∧ n] = J, (2.3)

where J and σ denote respectively the surface current density and surface charge
density on the interface.



March 20, 2007 19:24 WSPC/103-M3AS 00199

Well-Posedness of the Drude–Born–Fedorov Model for Chiral Media 463

In what follows, we consider Maxwell’s equations in a bounded domain Ω with
boundary ∂Ω, and build a relevant evolution problem whose well-posedness can be
mathematically investigated. We assume that the domain Ω is made of a homoge-
neous isotropic medium. Moreover, we assume that this medium is chiral, and that
it is enclosed in a perfect conductor.

2.2. Interior equations

Maxwell’s equations in Ω read
∂D
∂t

− curlH = 0 in Ω, t > 0, (2.4)

∂B
∂t

+ curlE = 0 in Ω, t > 0. (2.5)

Although the generally accepted constitutive laws in chiral media are nonlocal in
time, a local approximation, the so-called optical response approximation,9,21 is
considered here. This model assumes instantaneous responses of the system and,
as a consequence, it is only valid for certain frequency ranges. Nevertheless, as
pointed out in Ref. 9, such a hypothesis is normal for homogeneization studies
in electromagnetism. A detailed investigation of the error of the optical response
approximation model is provided in Ref. 21. The respective behaviors of the electric
displacement and magnetic induction are then given by the Drude–Born–Fedorov
relations (see Ref. 27 for instance)

D = ε (E + β curlE) and B = µ (H + β curlH) , (2.6)

the real scalars ε > 0, µ > 0 and β �= 0 being respectively the electric permittivity,
the magnetic permeability, and the chirality admittance. We supplement Maxwell’s
equations (2.4)–(2.5) with initial conditions. Since the system is of first order in
time, one has to provide

E(·, 0) = E0, H(·, 0) = H0 in Ω. (2.7)

2.3. Boundary conditions

The Maxwell system (2.4)–(2.7) has to be closed by a set of boundary conditions
in order to define an evolution problem in the bounded domain Ω. So, the goal
of this subsection is to “construct” relevant instances of those conditions. To this
end, we use the interface conditions (2.3) at the boundary ∂Ω, knowing that the
electromagnetic field vanishes inside a perfect conductor: interface conditions thus
become “candidate” boundary conditions. From now on, n denotes the unit outward
normal vector to ∂Ω.

Possible boundary conditions for the magnetic field and for the electric displace-
ment are

H ∧ n = J and D · n = −σ on ∂Ω.

Data J and σ are then linked through the trace of the Maxwell–Ampère equation
(2.4). To see this, let us first introduce the surface divergence operator divτ and
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recall the relationship

curl u · n = divτ (u ∧ n) on ∂Ω, (2.8)

which is valid for (sufficiently smooth vector) fields u defined in Ω. Thus, one gets
∂D
∂t

· n = −∂σ

∂t
= curlH · n = divτ (H ∧ n) = divτ J on ∂Ω.

The well-known surface charge conservation equation follows:
∂σ

∂t
+ divτ J = 0 on ∂Ω. (2.9)

In other words, the knowledge of J allows to determine σ completely, provided its
initial value σ(·, 0) is part of the data. On the other hand, the knowledge of σ

allows only to determine J partially. More precisely, it yields no information on the
divergence-free part of the surface current density. Thus, for a problem with only
surface data (vs. volume data), when one keeps the boundary condition H∧n = J
on ∂Ω, the condition on D appears as a straightforward consequence, if the initial
data are compatible, that is if D(·, 0) · n = −σ(·, 0) on ∂Ω.

In a similar manner, one infers from the Maxwell–Faraday equation (2.5) that
∂B
∂t

· n = − divτ (E ∧ n) on ∂Ω.

This time, the boundary condition E ∧ n = 0 on ∂Ω implies that B · n = 0 on
∂Ω, as soon as the initial condition B(·, 0) · n = 0 on ∂Ω holds. Knowledge of the
condition B · n = 0 on ∂Ω allows one to determine partially the trace of E, since
one gets simply divτ (E ∧ n) = 0 on ∂Ω.

From the above, one can actually select the boundary conditions to close the
set of equations. In the next section, we keep the a priori more constraining pair of
boundary conditions. Surface data includes the value of J, which we first assume
to be divergence-free, so that σ = 0, and the conditions on ∂Ω are

H ∧ n = J and E ∧ n = 0.

The resulting evolution problem is then solved in Sec. 4.1, when the data is smooth
(in a sense to be explained) and the domain Ω is assumed to be simply connected
with a connected boundary. The more general cases of non-smooth data (what
this encompasses being motivated) and of a non-divergence-free current density J
are studied in Sec. 4.2 and Sec. 5 respectively. Then, the choice of the boundary
conditions is revisited in Sec. 6. For instance, the a priori less constraining boundary
conditions — such as B ·n = 0 on ∂Ω — are used to close the problem. In all cases,
the well-posedness of the optical response approximation model, as an evolution
problem, is established. Extensions to more complex settings and an application of
these results are considered in Sec. 7.

3. Model Problem and Some Notations

From now on, let Ω be a connected bounded open subset of R
3, with Lipschitz

continuous boundary ∂Ω. There is no a priori assumption that ∂Ω is connected
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and we denote by Γi, 0 ≤ i ≤ p, the connected components of ∂Ω, Γ0 being the
boundary of the only unbounded connected component of R

3\Ω.
Plugging relations (2.6) in Maxwell’s equations (2.4) and (2.5), we obtain the

following system, supplemented with boundary and initial conditions,

ε
∂

∂t
(E + β curl E) − curlH = 0 in Ω, t > 0,

µ
∂

∂t
(H + β curlH) + curlE = 0 in Ω, t > 0,

div E = 0, div H = 0 in Ω, t > 0,

E ∧ n = 0, H ∧ n = J on ∂Ω, t > 0,

E(·, 0) = E0, H(·, 0) = H0 in Ω.

(3.1)

We include explicitly the fact that both E and H are divergence-free. When the
coefficients ε, µ or β depend on the space variable, this is not the case anymore (see
Sec. 7 for comments).

Let us define some suitable Sobolev spaces, to derive a sound mathematical basis
for the model problem. It is assumed that the reader is familiar with such spaces
as L2(Ω), L2(Ω)3, H(curl; Ω) and H(div; Ω) and their subspaces H0(curl; Ω) and
H0(div; Ω).

First, according to the definition of the electromagnetic energy,25 it follows that
the electromagnetic field belongs to H(curl; Ω) × H(curl; Ω) at all times. Second,
E(·, t) and H(·, t) both belong to X = H(div; Ω) ∩ H(curl; Ω), since they are
divergence-free. Moreover, according to the boundary condition on E, one gets that
E(·, t) is in XN = H(div; Ω) ∩ H0(curl; Ω) for any t. We also introduce the space
XT = H0(div; Ω)∩H(curl; Ω). Recall (see Ref. 5 for instance) that there holds
XT ∩XN = H1

0 (Ω)3. Finally, as noted above, we shall use the space of divergence-
free fields: H(div 0; Ω) =

{
v ∈ L2(Ω)3 | div v = 0 in Ω

}
and its subspace with van-

ishing normal traces H0(div 0; Ω) = {v ∈ H(div 0; Ω) | v · n = 0 on ∂Ω}.
In order for the electromagnetic field (E,H) to be unique when the domain is

non-simply connected and/or when its boundary is not connected, one has to add
some compatibility conditions to the above system of equations. To this end, let us
introduce, when the boundary ∂Ω is not connected, the space

H(e) =
{
v ∈ L2(Ω)3 | div v = 0 in Ω, curl v = 0 in Ω and v ∧ n = 0 on ∂Ω

}
,

which usually characterizes the electrostatic behavior around perfectly conducting
bodies, with boundaries Γ0, . . . , Γp. Its dimension is equal to p. Here p = 0 if and
only if, the boundary ∂Ω is connected. As a matter of fact, according for instance
to Ref. 5, a field v of H(e) is uniquely characterized by 〈v · n, 1〉Γi

, 1 ≤ i ≤ p.
Similarly, when the domain Ω is non-simply connected, we define the space

H(m) =
{
v ∈ L2(Ω)3 | div v = 0 in Ω, curl v = 0 in Ω and v · n = 0 on ∂Ω

}
.
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This second space allows one to characterize the magnetostatic behavior inside a
non-simply connected cavity (enclosed in a perfectly conducting material). The
dimension of H(m) is equal to the (minimal) number of cuts Σk, k = 1, . . . , m, such
that Ω \ ∪k=1,...,mΣk is simply connected. Thus m = 0 when the domain is simply
connected. According again to Ref. 5, a field v of H(m) is uniquely characterized
by 〈v · n, 1〉Σk

, 1 ≤ k ≤ m.
Next, let us equip the spaces XN and XT with the graph norm on X , that is:

‖v‖X =
(
‖v‖2

L2(Ω)3 + ‖curl v‖2
L2(Ω)3 + ‖ div v‖2

L2(Ω)

)1/2

. (3.2)

From Ref. 32, one gets

Theorem 3.1. The spaces XN and XT are compactly imbedded into L2(Ω)3.

Moreover, the semi-norm

v �→
(
‖curl v‖2

L2(Ω)3 + ‖ divv‖2
L2(Ω) +

m∑
k=1

∣∣∣〈v · n, 1〉Σ2
k

∣∣∣)1/2

is equivalent to the norm (3.2) over XT (cf. Corollary 3.16 of Ref. 5), whereas the
semi-norm

v �→
(
‖curl v‖2

L2(Ω)3 + ‖ div v‖2
L2(Ω) +

p∑
i=1

∣∣∣〈v · n, 1〉Γ2
i

∣∣∣)1/2

is equivalent to the norm (3.2) over XN (cf. Corollary 3.19 of Ref. 5).
Note that one has to be careful. Indeed, the space X is not compactly imbed-
ded into L2(Ω)3.5 Still, there exists a subspace of X containing both XT and
XN , for which the compact imbedding into L2(Ω)3 result remains valid. It
is the subspace made of fields of X with a tangential trace in L2

T (∂Ω) ={
v ∈ L2(∂Ω)3 | v · n = 0 on ∂Ω a.e.

}
.20

From now on, we assume that the domain Ω is simply connected with a con-
nected boundary ∂Ω. The more general cases are dealt with in Sec. 7.1.

4. Divergence-Free Current Density

In this section, we assume that the surface current density J is such that divτ J = 0
on ∂Ω. With the help of (2.8), one then gets

E(·, t) · n = E0 · n and H(·, t) · n = H0 · n on ∂Ω, t > 0.

To simplify the presentation, we assume that E0 · n = H0 · n = 0 on ∂Ω, so that
E and H also have vanishing normal traces. Therefore, a well-suited Sobolev space
for magnetic fields is

X0
T = {v ∈ XT | divτ (v ∧ n) = 0 on ∂Ω} .
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As a matter of fact, the field H(·, t) belongs to X0
T for any t. As far as the electric

field is concerned, it belongs to the smaller space XT ∩XN = H1
0 (Ω)3 at all times.

4.1. Smooth data

When the boundary ∂Ω is smooth, i.e. at least C1,1 (see Ref. 22), or when the
domain Ω is convex, the space XT is actually a subspace of H1(Ω)3 (see Ref. 5
for instance). In this case, the trace of any of its elements belongs to H1/2(∂Ω)3.
Therefore, if we denote by J∂Ω the trace of H on ∂Ω, there holds

J = J∂Ω ∧ n on ∂Ω, with J∂Ω ∈ H1/2(∂Ω)3 and J∂Ω · n = 0 on ∂Ω. (4.1)

In this subsection, we assume that the data is smooth, in the sense defined above.
In other words, even if the domain is non-convex and its boundary is not of C1,1

regularity, there exists a surface field J∂Ω such that the data J can be defined by
(4.1). In Sec. 4.2, we investigate some other possibilities concerning the regularity
to J and the implications on the solution of Maxwell’s equations.

4.1.1. An equivalent evolution problem

The first step is to replace the set of Maxwell’s equations (3.1) by an evolution prob-
lem, for which boundary conditions are homogeneous. The idea here is to exhibit
a suitable lifting for the magnetic field H. This is achieved in the following way.
Since J∂Ω belongs to H1/2(∂Ω)3, there exists a (continuous) lifting HJ of H1(Ω)3

such that HJ = J∂Ω on ∂Ω. In addition, it is chosen to belong to H(div 0; Ω): this
divergence-free property stems from Corollary 2.4 of Ref. 23. In this way, the vector
fields E and H̃ = H− HJ satisfy

ε
∂

∂t
(E + β curlE) − curl H̃ = curlHJ in Ω, t > 0,

µ
∂

∂t

(
H̃ + β curl H̃

)
+ curlE = −µ

∂

∂t
(HJ + β curlHJ) in Ω, t > 0,

div E = 0, div H̃ = 0 in Ω, t > 0,

E = 0, H̃ = 0 on ∂Ω, t > 0,

E(·, 0) = E0, H̃(·, 0) = H̃0 = H0 − HJ(·, 0) in Ω.

(4.2)

The next step is to find a relevant mathematical framework, in which the equiv-
alent evolution problem (4.2) can be efficiently solved. System (4.2) is first written
as an abstract evolution problem. To this end, let us introduce the Hilbert space
W = H0(div 0; Ω), and define the operator aβ = I + β curl from W to W , with
domain D(aβ) = W ∩H1

0 (Ω)3. This accounts for either the electric field, or the mag-
netic field. To deal with both of them simultaneously, consider the Hilbert space
H = W × W , equipped with the following inner product((

ϕ1

ψ1

)
,

(
ϕ2

ψ2

))
H

=
∫

Ω

(
ε ϕ1 · ϕ2 + µ ψ1 · ψ2

)
dx,



March 20, 2007 19:24 WSPC/103-M3AS 00199

468 P. Ciarlet, Jr. & G. Legendre

and the operators from H to H

Aβ =

(
aβ 0

0 aβ

)
and C =

(
0 −ε−1curl

µ−1curl 0

)
,

with domains D(Aβ) = D(C) =
(
W ∩ H1

0 (Ω)3
)× (W ∩ H1

0 (Ω)3
)
. System (4.2) can

be rewritten 
d

dt
(Aβ E) + C E = F,

E(0) = E0,

(4.3)

with E =
(

E
eH

)
, F =

(
ε−1curlHJ

− ∂
∂t (HJ + β curlHJ)

)
and E0 =

(
E0
eH0

)
.

4.1.2. Invertibility of the space-domain operator

We shall prove that the operators aβ and Aβ are invertible, except possibly for
a discrete set of nonzero values of the chirality parameter β. We hence study the
existence and uniqueness of a solution to the following stationary problem: for any
f ∈ W , find u ∈ H1(Ω)3 such that

u + β curl u = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(4.4)

Let us first remark that a possible solution to this problem is unique. Indeed,
∀ β �= 0, any solution to the homogeneous system associated to (4.4) is also a
solution to the following problema{

u − β2 curl (curl u) = 0 in Ω,

curl u ∧ n = u ∧ n = 0 on ∂Ω.

Therefore, the field u is identically equal to zero owing to Holmgren’s theorem.

aOne could alternately use the method proposed by Boulmezaoud to establish the uniqueness of
a solution to (4.4). Indeed, a homogeneous solution to (4.4) also satisfies

curl u ∧ u = 0 in Ω, div u = 0 in Ω and u = 0 on ∂Ω.

In other words, it is a Beltrami, or force-free, field, with vanishing trace. One has curl u ∧ u =

u · ∇u−∇
“ |u|2

2

”
. Then, let us take the scalar product with the position vector x and sum over

Ω. By using the relations

Z
Ω

x · (u · ∇u) dx =
3X

i=1

Z
Ω

xi (u · ∇ui) dx = −
3X

i=1

Z
Ω

div (xi u) ui dx = −
Z
Ω
|u|2 dx

and Z
Ω

x · ∇
„ |u|2

2

«
dx = −

Z
Ω

(divx)
|u|2
2

dx = −3

2

Z
Ω
|u|2 dx,

we reach ‖u‖2
L2(Ω)3

= 0, i.e. u = 0 in Ω.
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To establish the existence, we note that a solution to problem (4.4) verifies
automatically

u + 2β curl u + β2 curl (curl u) = f + β curl f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

Let us introduce the bilinear form a(u,v) = (u + β curl u,v + β curl v)L2(Ω)3 . The
above equations imply that u solves the variational problem: find u ∈ W ∩H1

0 (Ω)3

such that

a(u,v) = 〈f + β curl f ,v〉H0(curl ,Ω)′,H0(curl ,Ω) , ∀ v ∈ W ∩ H1
0 (Ω)3. (4.5)

The form a(· , ·) is trivially sesquilinear, symmetric, continuous on W ∩ H1
0 (Ω)3,

definite (due to the uniqueness of a solution to (4.4)) and positive. It is also coercive,
which is proved by contradiction.

Assume there exists a sequence (vk)k∈N
of W ∩H1

0 (Ω)3 such that
a(vk,vk) −→

k→+∞
0 and |vk|H1(Ω)3 = 1, ∀ k ∈ N. Due to the compactness of

the imbedding of H1(Ω) into L2(Ω), we can extract a subsequence, still denoted
(vk)k∈N

, which converges to a limit v in L2(Ω)3. We immediately deduce that
v ∈ W . We, moreover, have β curl vk −→

k→+∞
−v in L2(Ω)3 and also β curl vk −→

k→+∞
β curl v in H−1(Ω)3. By the uniqueness of the limit, we find that v+β curl v = 0.
Since v belongs to L2(Ω)3, v+β curl v = 0 holds in L2(Ω)3. We finally deduce that
β curl vk −→

k→+∞
β curl v in L2(Ω)3, so that (vk)k∈N

converges to v in H(curl , Ω):

v ∧ n = 0, and v ∈ W ∩ H1
0 (Ω)3. Therefore, v is the unique solution to problem

(4.4) with zero right-hand side, i.e. v = 0. This contradicts the initial assumption.
Problem (4.5) consequently admits a unique solution due to Lax–Milgram’s

lemma. We now have to check that, conversely, a solution to (4.5) is also a solution
to (4.4). Let us define w = u+β curl u− f , where u is a solution to problem (4.5).
By construction, the field w belongs to W and verifies

β curlw = β curl u+β2 curl (curl u)−β curl f = −u−β curl u+ f = −w in Ω,

hence w ∈ W ∩ H(rot; Ω) ⊂ XT . It therefore satisfies the following homogeneous
problem 

w + β curlw = 0 in Ω,

div w = 0 in Ω,

w · n = 0 on ∂Ω.

(4.6)

Existence and uniqueness of such linear force-free fields is discussed in detail in Ref.
14 and we make use of some of the results in this reference, which are still valid for
fields in XT , to conclude on the existence — or the lack of it — of a solution to
problem (4.4). Keeping the notations of Theorem 1 of Ref. 14, we have the following
alternative (below, the (αi)i∈N belong to R, as proved in Ref. 33):
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• if − 1
β /∈ {αi, i ∈ N}, problem (4.6) admits the trivial solution as its unique

solution ;
• if − 1

β = αi, i ∈ N, problem (4.6) admits nontrivial solutions of the form w =
curlψ, where the field ψ verifies the following homogeneous problem

curl (curlψ) − αi curlψ = 0 in Ω,

div ψ = 0 in Ω,

ψ ∧ n = 0 on ∂Ω,

the solutions of which constitute a finite-dimensional vector space.

The conclusion on the original problem (4.4) is then as follows:

• if − 1
β /∈ {αi, i ∈ N}, the solution to problem (4.6) is w = 0, so that u is a

solution to problem (4.4): the existence property holds;
• if − 1

β = αi, i ∈ N, there exist right-hand sides such that problem (4.4) admits
no solution. Let us proceed again by contradiction. For instance, let f0 = curlψ,
with ψ a nonzero solution to the above problem. Then the solution u to problem
(4.4), if it exists, is not equal to zero, according to the uniqueness property.
But, it is also a solution to problem (4.5), the right side of which is zero, since
f0 + β curl f0 = 0! So, problem (4.4) admits no solution in this case. . . . The
existence property does not hold.

4.1.3. Solvability of the set of Maxwell’s equations

The operator Aβ being invertible on its domain (which is denoted by D from now
on) if β �= − 1

αi
, ∀ i ∈ N, we consider its inverse A−1

β from H to D (⊂ H) and
rewrite the evolution problem (4.3) in the following equivalent form: find E such
that 

dE

dt
+ A−1

β C E = A−1
β F,

E(0) = E0.

(4.7)

Following Ref. 29, we shall prove that this problem has a unique solution using
Lumer–Phillips’ theorem. We first show the

Lemma 4.1. The operators A−1
β C and −A−1

β C are maximal dissipative.

Proof. By definition, showing the dissipativeness of ±A−1
β C amounts to proving

that

Re
(
A−1

β C E, E
)

D
= 0, ∀ E ∈ D. (4.8)

Recall that D = (W ∩ H1
0 (Ω)3) × (W ∩ H1

0 (Ω)3). Owing to the remarks of Sec. 3
concerning equivalent norms, we can use the following scalar product on D((

ϕ1

ψ1

)
,

(
ϕ2

ψ2

))
D

=
∫

Ω

(
ε curlϕ1 · curlϕ2 + µ curlψ1 · curl ψ2

)
dx.
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There follows(
A−1

β B E, E
)

D
=
∫

Ω

(
curl a−1

β curlE · curl H̃− curl a−1
β curl H̃ · curlE

)
dx.

We prove then

Lemma 4.2. For all u of W ∩ H1
0 (Ω)3, there holds: aβ

−1curl u = curl aβ
−1u.

Proof. Let u be an element of W ∩H1
0 (Ω)3, and let v belong to W . With the help

of the density of W ∩ H1
0 (Ω)3 in W (see Theorem 2.8 of Ref. 23), we can consider

v ∈ W ∩ H1
0 (Ω)3 and get∫

Ω

a−1
β curl u · v dx =

∫
Ω

a−1
β

(
curl u +

1
β

u
)
· v dx −

∫
Ω

1
β

a−1
β u · v dx

=
∫

Ω

1
β

u · v dx −
∫

Ω

1
β

a−1
β u · v dx

=
∫

Ω

1
β

(I + β curl )a−1
β u · v dx −

∫
Ω

1
β

a−1
β u · v dx

=
∫

Ω

curl a−1
β u · v dx.

If the brackets 〈· , ·〉 stand for the duality product between H0(curl ; Ω) and its
dual, one finds, using Lemma 4.2,∫

Ω

curl a−1
β curl H̃ · curlE dx

=
〈
curl curlE, a−1

β curl H̃
〉

=
〈
curl curl E, a−1

β

(
curl H̃ +

1
β
H̃
)〉

−
〈
curl curlE,

1
β

a−1
β H̃

〉

=
〈
curl curl E,

1
β
H̃
〉
−
〈
curl curlE,

1
β

a−1
β H̃

〉

=
∫

Ω

1
β

curlE · curl H̃ dx −
∫

Ω

1
β

curlE · curl a−1
β H̃ dx

=
∫

Ω

1
β

curlE · curl H̃ dx −
∫

Ω

1
β

(
a−1

β curl E + β curl a−1
β curlE

)
· a−1

β curl H̃ dx

=
∫

Ω

1
β

curlE · curl H̃ dx −
∫

Ω

1
β

a−1
β curlE

·
(
a−1

β curl H̃ + β curl a−1
β curl H̃

)
dx
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=
∫

Ω

1
β

curlE · curl H̃ dx −
∫

Ω

1
β

a−1
β curlE · curl H̃ dx

=
∫

Ω

1
β

(
curlE − curl a−1

β E
)
· curl H̃ dx

=
〈
curl curl H̃,

1
β
E
〉
−
〈
curl curl H̃,

1
β

a−1
β E

〉

=
〈
curl curl H̃, a−1

β

(
curlE +

1
β
E
)〉

−
〈
curl curl H̃,

1
β

a−1
β E

〉
=
〈
curl curl H̃, a−1

β curlE
〉

=

∫
Ω curl H̃ · curl a−1

β curlE dx∫
Ω

curl H̃ · curl a−1
β curlE dx

.

Observe that the real part of this identity yields directly the relation (4.8). It
remains to prove the maximality of the operators ±A−1

β C, that is, for all
(

f
g

)
in

D, there exists
(ϕ

ψ

)
in D such that

(I ± A−1
β C)

(
ϕ

ψ

)
=
(

f
g

)
, (4.9)

or, equivalently,

ψ = g ∓ µ−1a−1
β curl ϕ, (4.10)

and

ϕ + c2a−1
β curl a−1

β curlϕ = f ± ε−1a−1
β curl g, (4.11)

where c = (εµ)−1/2 denotes the light velocity. Problem (4.11) has a unique solution
ϕ in W ∩ H1

0 (Ω)3. Indeed, it admits the following variational formulation: find
ϕ ∈ W ∩ H1

0 (Ω)3 such that(
ϕ, θ

)
L2(Ω)3

+ c2
(
a−1

β curlϕ, a−1
β curl θ

)
L2(Ω)3

=
(
f , θ
)
L2(Ω)3

± ε−1
(
a−1

β g, curl θ
)

L2(Ω)3
, ∀ θ ∈ W ∩ H1

0 (Ω)3,

which has a unique solution according to Lax–Milgram’s lemma, the sesquilinear
form defined above being coercive on W ∩H1

0 (Ω)3 by virtue of the injectivity of the
operator a−1

β on this space.
We have yet to show that the field ψ given by (4.10) belongs to W ∩ H1

0 (Ω)3.
We immediately deduce from this equality that ψ = 0 on ∂Ω and that div ψ = 0
in Ω. Using (4.11), we have also

a−1
β curlψ = ∓ε (f − ϕ) ,
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that is

curlψ = ∓ε (f − ϕ + β curl (f − ϕ)) ,

hence curlψ ∈ L2(Ω)3, since ϕ and f both belong to H1(Ω)3.
Lumer–Phillips’ theorem (see Ref. 30, Chap. 1, Theorem 4.3) then ensures that

the operator A−1
β C is the infinitesimal generator of a contraction C0-semigroup,

thus implying the existence of a solution (E,H) to the set of Maxwell’s equations
(3.1). This result is stated as follows:

Theorem 4.1. Assume that the chirality admittance β is in R\{−1/αi, i ∈ N}.
Consider a data set (E0,H0,J), such that

• E0 ∈ H1
0 (Ω)3 ∩ H(div 0; Ω), H0 ∈ H1(Ω)3 ∩ X0

T ∩ H(div 0; Ω);
• J is divergence-free, and there exists a lifting such that HJ ∧ n|∂Ω = J, with

regularity HJ ∈ C0
(
[0, +∞[, H1(Ω)3 ∩ X0

T ∩ H(div 0; Ω)
)
.

Then, there exists one, and only one, solution (E,H) to problem (3.1) such that

E ∈ C0
(
[0, +∞[, H1

0 (Ω)3 ∩ H(div 0; Ω)
)
,

H ∈ C0
(
[0, +∞[, H1(Ω)3 ∩ X0

T ∩ H(div 0; Ω)
)
.

4.2. General case

Recall5 that when the boundary ∂Ω is not C1,1 and when the domain Ω is non-
convex, one has X0

T �⊂ H1(Ω)3. Since the magnetic field is a priori only X0
T ∩

H(div 0; Ω)-regular, we introduce the operator Kβ = I + β curl , from W to W ,
with domain D(Kβ) = X0

T ∩H(div 0; Ω). In this way, the operator aβ can be viewed
as the restriction of Kβ to H1

0 (Ω)3 ∩ H(div 0; Ω).
In what follows, we postulate the existence of a lifting of the surface current

density J, and see that the theory of Sec. 4.1 is still useful. Establishing the existence
of such a lifting amounts to giving a full mathematical characterization of the space
of tangential traces on ∂Ω of elements of X0

T . We begin by formulating necessary
conditions for the existence, which can be expressed as requirements on the Hs(∂Ω)-
regularity of the surface field J. Then, we check whether or not these conditions
are sufficient.

4.2.1. Solvability of the set of Maxwell’s equations

To be more precise, to postulate that a lifting HJ of J exists, means that there exists
HJ ∈ X0

T such that HJ∧n = J on ∂Ω. The fact that it is automatically divergence-
free, stems again from Corollary 2.4 of Ref. 23: thus, HJ is in X0

T ∩H(div 0; Ω). We
remark then that the difference H̃ = H−HJ is actually, by construction, an element
of H1

0 (Ω)3 ∩ H(div 0; Ω), which satisfies the evolution problem (4.2). According to
the results of Sec. 4.1.2, we know that when β is not among {−1/αi, i ∈ N}, then
the restriction of the operator Kβ , i.e. aβ , is onto. Therefore, the field H̃ exists (and
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is unique). In this manner, we can build a solution to the set of Maxwell’s equations
(3.1), by adding the solution (E, H̃) to problem (4.2) to the lifting (0,HJ). Thus,
we can still solve the set of Maxwell’s equations in this more general setting, when
β �∈ {−1/αi, i ∈ N}, and so extend the range of Theorem 4.1 accordingly, by
relaxing the condition on the regularity of J, i.e. provided the lifting HJ exists in
X0

T ∩ H(div 0; Ω). To summarize, we have the

Theorem 4.2. Assume that the chirality admittance β is in R\{−1/αi, i ∈ N}.
Consider a data set (E0,H0,J), such that

• E0 ∈ H1
0 (Ω)3 ∩ H(div 0; Ω), H0 ∈ X0

T ∩ H(div 0; Ω);
• J is divergence-free, and there exists a lifting such that HJ ∧ n|∂Ω = J, with

regularity HJ ∈ C0
(
[0, +∞[, X0

T ∩ H(div 0; Ω)
)
.

Then, there exists one, and only one, solution (E,H) to problem (3.1) such that

E ∈ C0
(
[0, +∞[, H1

0 (Ω)3 ∩ H(div 0; Ω)
)
,

H ∈ C0
(
[0, +∞[, X0

T ∩ H(div 0; Ω)
)
.

What is more, we can also infer some interesting results about the operator
Kβ. As a matter of fact, one has KβHJ ∈ W , so there exists — as soon as β �∈
{−1/αi, i ∈ N} — a unique HR ∈ W ∩ H1

0 (Ω)3 such that aβHR = −KβHJ.
Setting H′

J = HJ +HR, one obtains the splitting H = (H̃−HR) + H′
J, where H′

J

satisfies 
H′

J + β curlH′
J = 0 in Ω,

div H′
J = 0 in Ω,

H′
J ∧ n = J on ∂Ω.

In particular, H′
J belongs to the kernel of Kβ. Thus, one reaches the decomposition

D(Kβ) = Ker(Kβ) ⊕ (H1
0 (Ω)3 ∩ H(div 0; Ω)

)
.

The sum is direct, since any element of the intersection is equal to zero, according
to the uniqueness property of Sec. 4.1.2.

4.2.2. Necessary regularity assumptions on the surface current density

We now address the question of the minimal regularity of the surface current den-
sity J with respect to the regularity of Ω. To begin with, recall that L2

T (∂Ω) ={
v ∈ L2(∂Ω)3 | v · n = 0 on ∂Ω a.e.

}
and let us introduce the scale of Sobolev

spaces, with 0 < s ≤ 1/2,

Hs
⊥(∂Ω) =

{
u ∈ L2

T (∂Ω) | ∃ v ∈ Hs+1/2(Ω)3, v ∧ n|∂Ω = u
}

. (4.12)

Then, one can categorize the regularity of the domain as follows (for instance):

(1) The boundary ∂Ω is C1,1, or Ω is convex.

• One has XT ⊂ H1(Ω)3: necessarily J ∈ H
1/2
⊥ (∂Ω).
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(2) The boundary ∂Ω is not C1,1 and Ω is non-convex.

• If the domain is a Lipschitz polyhedron, i.e. ∂Ω is Lipschitz and Ω is a
polyhedron (this class encompasses most polyhedra, with a few exceptions):
∃ η ∈ ]0, 1

2 [ such that XT ⊂ ∩ε>0H
1/2+η−ε(Ω)3, and XT �⊂ H1/2+η(Ω)3 (see

Remark 3.8 of Ref. 5). Then, one necessarily has J ∈ ∩ε>0H
η−ε
⊥ (∂Ω).

• If ∂Ω is only Lipschitz: ∀ u ∈ XT , u∧n|∂Ω ∈ L2
T (∂Ω) according to Theorem 2

of Ref. 18. Then, one necessarily has J ∈ L2
T (∂Ω).

These necessary regularity conditions have to be supplemented with the initial
divergence-free assumption, that is divτ J = 0 on ∂Ω. In all instances,17 there exists
a surface field λτ ∈ H1(∂Ω) such that J = curl τλτ .

4.2.3. Sufficient regularity assumptions on the surface current density

To check whether the necessary conditions of Sec. 4.2.2 are sufficient, let us consider
successively a domain with a C1,1-boundary, then a convex polyhedron, and finally
a non-convex (Lipschitz) polyhedron.

In the latter cases, we denote by (Fk)k the faces of ∂Ω, and by eij the edge
between the faces Fi and Fj , when it exists (in this case, τij is a unit vector parallel
to eij , and τi is such that (τi, τij ,n|Fi

) is an orthonormal basis of R
3). Elements

of H1/2(∂Ω) then satisfy compatibility conditions10,15 at edges between faces (see
Theorem 2.5 in Ref. 15). One can write:

f ∈ H1/2(∂Ω) ⇐⇒ f|Fk
∈ H1/2(Fk), ∀ k and f|Fi

1/2
= f|Fj

at eij , ∀ eij . (4.13)

One then characterizes the space H
1/2
⊥ (∂Ω) as (Ref. 15, Proposition 2.7):

H
1/2
⊥ (∂Ω) =

{
u ∈ L2

T (∂Ω) | u|Fk
∈ H1/2(Fk)3, ∀ k,

u|Fi
· τi

1/2
= u|Fj

· τj at eij , ∀ eij

}
.

(1) The boundary ∂Ω is C1,1.

• Since J is divergence-free, there exists a surface field λτ such that J =
curl τλτ . Moreover, as J belongs to H1/2(∂Ω) component by component
(cf. (4.12) with a “smooth” n), one has λτ ∈ H3/2(∂Ω). Now, it is common
knowledge that the trace mapping T0,1 : v �→ (v|∂Ω , ∂nv|∂Ω), is onto, when
considered from H2(Ω) to H3/2(∂Ω) × H1/2(∂Ω). Therefore, given (λτ , 0) ∈
H3/2(∂Ω) × H1/2(∂Ω), there exists v ∈ H2(Ω) such that T0,1v = (λτ , 0).
Then, v = ∇v is an admissible lifting, since v ∧ n|∂Ω = J, and it belongs
to X0

T by construction. One can then recover a divergence-free lifting by the
usual procedure.
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(2) The domain Ω is a convex polyhedron.

• Preliminarily, we note that given any v of XT , one has v · n|∂Ω = 0 ; this
implies that u = v|∂Ω is such that

u|Fi
· nj

1/2
= 0 and 0

1/2
= u|Fj

· ni at eij , ∀ eij .

The space of admissible surface current density fields J is a subset of a strict
(closed) subspace of H

1/2
⊥ (∂Ω), namely

J =
{
u ∈ H

1/2
⊥ (∂Ω) | u|Fi

· τij
1/2
= 0 and 0

1/2
= u|Fj

· τij at eij , ∀ eij

}
.

On the other hand, given J ∈ J , one can consider that the field u = n ∧ J
(with a vanishing normal component) belongs to H1/2(∂Ω)3, since all com-
patibility conditions of (4.13) are fulfilled for its three components. Therefore,
there exists v in H1(Ω)3 such that the trace of its tangential components is
equal to n ∧ (v ∧ n)|∂Ω = u, and v · n|∂Ω = 0, so that v belongs to X0

T . Evi-
dently, one has v ∧ n|∂Ω = J. Recovering the divergence-free lifting as usual,
one concludes that the space of admissible surface current density fields is
exactly J .

(3) The domain Ω is a non-convex (Lipschitz) polyhedron.

• Here, we shall use the previous result, together with a splitting of the space
X0

T . We need to introduce some notations. First, consider

Ψ =
{

ψ ∈ H1(Ω) | ∆ψ ∈ L2(Ω),
∂ψ

∂n

∣∣∣∣
∂Ω

= 0
}

.

According to Grisvard,24 Ψreg = Ψ∩H2(Ω) is a closed subspace of Ψ, so
one can write Ψ = Ψreg ⊕Ψsing (with a suitable subspace Ψsing). Then, con-
sider the (regular) subspace Xreg

T = XT ∩ H1(Ω)3 of XT and the continuous
splitting11 XT = Xreg

T + ∇Ψ: one infers that Xreg
T is closed in XT and the

splitting XT = Xreg
T ⊕∇Ψsing follows.12

In our case, we recall that we are interested in X0
T . Simply, we observe that,

for ψ ∈ Ψ, there holds divτ (∇τψ|∂Ω ∧n) = divτ (curl τψ|∂Ω) = 0. From this,
we infer the relevant splitting

X0
T = X0,reg

T ⊕∇Ψsing, (4.14)

with X0,reg
T = X0

T ∩H1(Ω)3. Finally, we introduce the trace space of Ψsing,
that is Λsing =

{
λ ∈ H1(∂Ω) | ∃ ψ ∈ Ψsing, λ = ψ|∂Ω

}
, and we define

J sing = J ⊕ curl τΛsing.

It turns out that J sing is exactly the space of admissible surface current
density fields in the case of a non-convex Lipschitz polyhedron. Indeed, it is
clear according to (4.14) that any surface current density belongs to J sing.
Conversely, given an element of J sing, one finds a suitable lifting, as the sum
of a regular part in X0,reg

T (we follow the same steps as in item (2)) and of
∇ψ, with ψ in Ψsing.
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5. On the Removal of the Divergence-Free Assumption

In this section, we have a second look at problem (3.1), this time without assuming
that the given surface current density J is divergence-free.

First, recall that, from Sec. 2.3, one has B · n = 0 on ∂Ω at all times as soon
as the initial condition B(·, 0) · n = 0 on ∂Ω is verified. This leads, using the
Drude–Born–Fedorov constitutive laws (2.6) and relation (2.8), to

H · n + β divτ (H ∧ n) = 0 on ∂Ω, t > 0, (5.1)

or equivalently,b using the prescribed boundary condition on the magnetic field,

H · n = −β divτ J on ∂Ω. (5.2)

Boundary condition (5.2) is no longer homogeneous. Hence, the magnetic field nat-
urally belongs to the space

X+
min = {v ∈ X | v · n + β divτ (v ∧ n) = 0 on ∂Ω} .

Classically, the surface current density is an element of the space of tangential traces
from H(curl, Ω), that is

H
−1/2
‖ (divτ ; ∂Ω) = {u | ∃ v ∈ H(curl; Ω), v ∧ n = u on ∂Ω} .

Then, in order to lift J, one has to solve: find HJ ∈ X+
min such that

HJ ∧ n = J and HJ · n = −β divτ J on ∂Ω.

Observe that, by integration by parts, we have∫
Ω

div HJ dx = 〈HJ · n, 1〉H−1/2(∂Ω),H1/2(∂Ω)

= −β 〈divτ J, 1〉H−1/2(∂Ω),H1/2(∂Ω) = 0,

so that divHJ ∈ L2
0(Ω), and HJ can be chosen to be divergence-free as usual.

Assuming HJ exists, the difference H̃ = H− HJ ∈ X+
min then satisfies

div H̃ = 0 in Ω, H̃ · n = 0 on ∂Ω and H̃ ∧ n = 0 on ∂Ω,

and therefore belongs to H(div 0; Ω) ∩ H1
0 (Ω)3.

Observe that a more “practical” functional setting can be obtained if one chooses
to add a supplementary regularity assumption by imposing that H ·n|∂Ω ∈ L2(∂Ω),
which amounts (see Ref. 18) to H ∧ n|∂Ω ∈ L2

T (∂Ω), and one sets instead the
problem for H in the space

X+ =
{
v ∈ X | v · n|∂Ω ∈ L2(∂Ω), v · n + β divτ (v ∧ n) = 0 on ∂Ω

}
,

with a datum J in L2
T (∂Ω) verifying divτ J ∈ L2(∂Ω).

bNote that constraint (5.1) and boundary condition (5.2) hold a priori in the H−1/2(∂Ω) sense,
since H always belongs to the space X. Indeed, recall that for any field v in H(div;Ω), one has v ·
n|∂Ω

∈ H−1/2(∂Ω). Fortunately, we find by application of Green’s formula that divτ
`
w ∧ n|∂Ω

´ ∈
H−1/2(∂Ω) for any field w in H(curl; Ω).
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The knowledge of divτ J on ∂Ω allows, using the initial conditions, to determine
the surface charge density σ from Eq. (2.9). As a consequence, it stems from the
condition D·n|∂Ω = −σ and relations (2.6) that E·n|∂Ω = −ε−1σ, where σ is known.

It remains to lift the normal trace of E to obtain a field in X0
T . We proceed

explicitly (i.e. without having to assume the lifting exists) as follows. We first define
the field Eσ = ∇φ, the function φ being the unique solution to the problem: find
φ ∈ H1(Ω)\R such that

∆φ = 0 in Ω,
∂φ

∂n
= −ε−1σ on ∂Ω.

Note again that the minimal regularity for the datum σ is H−1/2(∂Ω): it holds
according to the formula σ(·, t) = − ∫ t

0
divτ J(·, s) ds + σ(·, 0) (see (2.9)), provided

that σ(·, 0) ∈ H−1/2(∂Ω). The difference E′ = E− Eσ then verifies

curlE′ = curl E ∈ L2(Ω)3, div E′ = div E ∈ L2(Ω), E′ · n = −ε−1σ − ∂φ

∂n
= 0

on ∂Ω.

We also introduce Dσ = ε∇φ, which yields, for D′ = D − Dσ,

curlD′ = curlD ∈ L2(Ω)3, div D′ = 0 in Ω, D′ · n = −σ − ε
∂φ

∂n
= 0 on ∂Ω.

By subtraction, we moreover see that D′ = ε (E′ + β curlE′). We thus have curlE′·
n = divτ (E′ ∧ n) = 0 on ∂Ω, hence E′ belongs to X0

T . The trace E′ ∧n|∂Ω is equal
to −∇φ∧n|∂Ω and as such is known. In this way, we can apply the results of Sec. 4.2
and finally conclude that one is able to further extend the range of Theorem 4.1
to the case when the surface current density J is not divergence-free, provided the
lifting HJ exists in X+

min ∩ H(div 0; Ω). We state the final

Theorem 5.1. Assume that the chirality admittance β is in R\{−1/αi, i ∈ N}.
Consider a data set (E0,H0,J), such that

• E0 ∈ XN ∩ H(div 0; Ω), H0 ∈ X+
(min) ∩ H(div 0; Ω);

• there exists a lifting such that HJ ∧ n|∂Ω = J, with regularity HJ ∈
C0
(
[0, +∞[, X+

(min) ∩ H(div 0; Ω)
)
.

Then, there exists one, and only one, solution (E,H) to problem (3.1) such that

E ∈ C0 ([0, +∞[, XN ∩ H(div 0; Ω)) ,

H ∈ C0([0, +∞[, X+
(min) ∩ H(div 0; Ω)).

When σ = 0, the electric field E belongs to the smaller space XN ∩ XT ∩
H(div 0; Ω) = H1

0 (Ω)3 ∩ H(div 0; Ω) (cf. Theorems 4.1 and 4.2).

6. Other Choices of Boundary Conditions

We consider in this section all other possible sets of boundary conditions for the
problem, which seem apparently less restrictive than our initial choice. First, one
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may choose to impose

B · n = 0 on ∂Ω and H ∧ n = J on ∂Ω, t > 0.

Then, the normal trace of the magnetic field H can be recovered from both above
conditions and constitutive relations (2.6): H · n = −β divτ J on ∂Ω. However, as
already seen in Sec. 2, the first boundary condition allows to recover the tangential
trace of the electric field E only partially. Indeed, using the trace of the Maxwell–
Ampère equation (2.4), it yields curlE · n = divτ (E ∧ n) = 0 on ∂Ω. Introducing
the surface charge density σ that satisfies (2.9) along with the datum J and using
initial conditions, we have D · n = −σ on ∂Ω and subsequently recover, using the
Drude–Born–Fedorov equations (2.6), E ·n = −ε−1σ on ∂Ω. In order to completely
determine the tangential trace of E on the boundary, and according to the results16

on the Hodge decomposition of elements of H
−1/2
‖ (divτ ; ∂Ω), the rotational part

of E∧n on ∂Ω, determined by the value of curlτ
(
E ∧ n|∂Ω

)
, has to be provided as

well. From there, we consider the following scenarios:

(i) if divτ J = 0, then the density σ is zero and the electromagnetic field (E,H)
belongs to X0

T × X0
T , their tangential traces being known. Each of these fields

is then lifted as done in Sec. 4.2.
(ii) if divτ J �= 0, the density σ does not vanish anymore. In this case, the normal

traces of H, E and D on the boundary do not vanish either, but they are known
since they are related to the given datum J. We proceed as in Sec. 5.

Second, another possible choice of boundary conditions is the following:

E ∧ n = 0 on ∂Ω and D · n = −σ on ∂Ω, t > 0,

the datum being the surface charge density σ. Following the same procedure, one
sees that the rotational part of the tangential trace H∧n must be imposed in order
to completely recover this trace.

Third, the final choice is to consider

B · n = 0 on ∂Ω and D · n = −σ on ∂Ω, t > 0.

This set of boundary conditions needs to be supplemented by two additional con-
ditions on the rotational part of the tangential traces of E and H.

7. Miscellaneous Remarks

We end this paper by a number of remarks, of various scopes.

7.1. The topology of the domain

Up to now, we have assumed that the domain Ω was simply connected with a
connected boundary. It is, however, possible to extend all the previous results to
more complex geometries, by using the framework developed in Ref. 5.
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When the boundary ∂Ω is not connected, one has to provide the quantitiesc

〈E(·, t) · n, 1〉Γi
and 〈H(·, t) · n, 1〉Γi

, 1 ≤ i ≤ p, for any t > 0, which are easily
determined from the data. Indeed, for the electric field E, one has

εE(·, t) · n = σ(t) =
(∫ t

0

divτ J(·, s) ds − σ(·, 0)
)

on ∂Ω, t > 0,

hence

〈εE(·, t) · n, 1〉Γi
=
∫ t

0

〈divτ J(·, s), 1〉Γi
ds − 〈σ(·, 0), 1〉Γi

, t > 0, ∀ i ∈ {1, . . . , p}.

Likewise, for the magnetic field H, one gets

〈µH(·, t) · n, 1〉Γi
= −〈µβ divτ J(·, t), 1〉Γi

, t > 0, ∀ i ∈ {1, . . . , p}.

Thanks to the above, the orthogonal projections on H(e) of E and H are explicitly
known.

On the other hand, when the domain is non-simply connected, we check in Ref.
14 that the existence and uniqueness result used to solve problem (4.6) in Sec. 4.1.2
remains valid provided that the projection of the field w on H(m) is known (in our
case, zero). Indeed, the idea is that the “natural” space of right-hand sides f is now

W = H0(div 0; Ω) ∩H(m)⊥.

Then, if u belongs to the domain of the operator H1
0 (Ω)3∩W , its curl is orthogonal

to H(m), according to Theorem 3.17 of Ref. 5 (since in particular, one has u ∈
XN ∩ H(e)⊥). Thus w = u + β curl u − f belongs to W by construction, which
ensures uniqueness — by orthogonality — of the solution to problem (4.6).

7.2. Heterogeneous medium

The case of a heterogeneous electromagnetic chiral medium, with an electric per-
mittivity ε, a magnetic permeability µ and a chiral admittance β that depend on the
space variable x, leads to serious difficulties from the angle of the functional spaces
brought into play. For instance, one has to satisfy div D = 0 in Ω (from Eq. (2.4)),
that is, provided ε is smooth, div(ε(E+β curlE)) = div(εE) +∇ (εβ) · curlE = 0
in Ω. To impose that the electric field E belongs to a space such as H(div ε0; Ω)
is in no way sufficient to enforce this constraint (a strictly identical problem holds
for the magnetic field H). Moreover, the invertibility of the operator aβ in this case
(that is, with a nonconstant coefficient β) remains an open question. In particular,
the reader is referred to Ref. 13, in which existence, but not uniqueness, of nonlinear
force-free fields in a bounded open set of R

3, is proven.

cThese are simply the respective coefficients of the projections of E and H on H(e) in the basis
given in Ref. 5.



March 20, 2007 19:24 WSPC/103-M3AS 00199

Well-Posedness of the Drude–Born–Fedorov Model for Chiral Media 481

7.3. Boundary controllability of Maxwell’s equations

in chiral media

We deal in this subsection with the controllability of Maxwell’s equation in chiral
media by means of the Hilbert Uniqueness Method (HUM) introduced by Lions.28

We assume here that the domain Ω is simply connected with a connected boundary
and consider the following controllability problem: given the initial distribution
(E0,H0) in an appropriate functional space and a time T > 0, find (if possible) a
surface current density J in a suitable functional space such that the solution to
system (3.1) satisfies

E(·, T ) = H(·, T ) = 0 in Ω.

Computations are omitted below for the sake of brevity, but they are very similar
to those of Refs. 26 and 29. Following the principles of HUM theory, the control J
should be chosen in the special form J = −

(
ψ − µβ ∂ϕ

∂t

)
, where (ϕ, ψ) is a solution

to the homogeneous adjoint system

ε
∂

∂t
(ψ + β curlψ) + curlϕ = 0 in Ω, t > 0,

µ
∂

∂t
(ϕ + β curl ϕ) − curlψ = 0 in Ω, t > 0,

div ϕ = 0, div ψ = 0 in Ω, t > 0,(
ψ − µβ

∂ϕ

∂t

)
· n = 0 on ∂Ω, t > 0,

ϕ(·, 0) = ϕ0, ψ(·, 0) = ψ0 in Ω,

(7.1)

where (ϕ0, ψ0) is a prescribed suitable set of initial data.
Let (ϕ, ψ) be a solution to system (7.1). Then, forming the expression

0 =
∫ T

0

∫
Ω

((
∂D
∂s

− curlH
)
· ψ −

(
∂B
∂s

+ curlE
)
· ϕ
)

dx ds

and proceeding formally, we obtain, after integrating by parts with respect to both
time and space variables and if the system (3.1) is brought to rest at time T , that∫

Ω

(D0 · ψ0 − B0 · ϕ0) dx =
∫ T

0

∫
∂Ω

∣∣∣∣ψ − µβ
∂ϕ

∂s

∣∣∣∣2 dσ ds, (7.2)

where D0 = ε(E0 + β curlE0) and B0 = µ(H0 + β curlH0). The space to which
(D0,B0) belongs is H(div 0; Ω)×H0(div 0; Ω). The left-hand side of (7.2) can thus
be replaced by a duality product, and one can apply the theory. A sufficient and
necessary condition for exact controllability is that, for T large enough, the square
root of the right-hand side of (7.2) defines a norm on the set of initial data (ϕ0, ψ0).
However, our main result allows to show that this is not the case.
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Indeed, choosing the initial data ϕ0 and ψ0 as non-zero elements of H1
0 (Ω)3 ∩

H(div 0; Ω), we know, according to Theorem 4.1, that there exists a solution
(ϕ′, ψ′) to 

ε
∂

∂t
(ψ′ + β curlψ′) + curlϕ′ = 0 in Ω, t > 0,

µ
∂

∂t
(ϕ′ + β curlϕ′) − curlψ′ = 0 in Ω, t > 0,

div ϕ′ = 0, div ψ′ = 0 in Ω, t > 0,

ϕ′ = 0, ψ′ = 0 on ∂Ω, t > 0,

ϕ′(·, 0) = ϕ0, ψ′(·, 0) = ψ0 in Ω,

which obviously is also a solution to system (7.1). This solution verifies the prop-
erty

(
ψ − µβ ∂ϕ

∂t

)
|∂Ω

= 0 at all times, which yields a vanishing right-hand side

of (7.2). The system (7.1) is thus non-observable and we conclude that the above
controllability problem is insolvable, as proved independently in Ref. 19.
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28. J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Dis-
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