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Abstract

We consider a simplified scalar model problem related to Mdlkequations, involving
wave transmission between media with opposite sign dredesnbd/or magnetic constants.
We build two variational formulations equivalent to the rebgroblem. We show that,
under some suitable conditions, both formulations are-p@tled since they fit into the
coercive plus compact framework. Advantages over previbugies is the validity of the
formulations in the general case of Lipschitz interfacedMeein the two media and>
dielectric and magnetic constants. An interesting feabfitbese formulations is that they
allow a simple finite element numerical implementation.

Key words: wave transmission problem, opposite sign dielectric @nist augmented
variational formulation

1 Introduction

Physical models describing the electromagnetic propedisome metamaterials,
semiconductors near plasmon resonance [6], plasmas updetron frequency
and superconductors (according to London’s phenomermlagproach) lead to
negative dielectric constant In recent years [8] metamaterials, modelled with si-
multaneously negative dielectric constaand magnetic permeabilify, have been
thorougly studied, due to their specific electromagnetitaveour and their wide
application range in modern electronics. For practicaliappons, it is therefore
important to be able to capture numerically the electroretigfield near interfaces
between classical dielectric media ¢ 0, 1 > 0), and superconductors & 0,

i > 0) or metamaterialse(< 0, p < 0).
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Mathematically however, due to the dielectric constanh slgift at the interface,
the natural variational formulation of such problems istim&i coercive nor coer-
cive plus compact, so it seems not possible to fit straigiwtiocdly the model into
a framework leading to a well-posed problem. In this paperfaeels on a sim-
plified scalar model problem related to Maxwell equationisiclv involves similar
interface discontinuities. Assume the domain is split io parts(2; and(,, with
dielectric constant called, positive on(2; ande, negative orf),, and consider the
following equation

div (%Vu) + Wi = f. (1)

This simplified model problem has already been studied ircéise of a piecewise
constant, such that; € R} ande; € R, . In [4] it has been shown, using integral
equations, that for a smooth interfate= 0; N 925, the model problem fits
into the Fredholm framework if the contrast:= ¢; /e, is not equal to—1. In
[7], using Dirichlet to Neumann operators, it has been shtvah the model fits
into the Fredholm framework ific| >> 1 or |x| << 1 (no required regularity of
the interfaceX). The effect of a geometrical singularity on the interfacel -est,
a non-smooth interface — has been investigated more pheaisg]. It has been
proved there that, for an interface with a right angle, therafor associated with
the non-coercive transmission problem is selfadjoint aaldompact resolvent if
k ¢ [—3,—1/3]; similar results can be derived for any angle.

Since it is very hard to generalize integral equation meshndhe case of a non-
smooth interface geometry or in the case of non-condiat ; », a variational
approach is adopted here. By extending a method employed],img introduce
two variational formulations allowing both a Lipschitz entace and variable,
ande,. To that aim, we introduce a new unknown, which is equal togitzelient
of u in one of the subdomains. The two-field formulation is vabdihterfaces be-
tween superconductor and dielectric medium. The thred-faeinulation is more
general: it is valid also for interfaces between metamaitand dielectric medium,
and further it allows to consider a vanishing frequency

For each formulation we derive conditions g and on the geometry, ensuring
that the considered formulation fits into the coercive plusipact framework. One
of the main interests of these formulations is that they aasdived numerically
with a standard finite element method. As we have mentionedalbhe three-field
formulation is more general, however it is also more expensbmputationally.

2 Regularity assumptions and the model problem

Let 2 be an open, bounded domainkf (d=2,3) with Lipschitz boundarg$2. Due
to the limited total number of pages, we present here onl\Bihease. Neverthe-
less, the results and proofs can be derived in the same wdy.in 2



It is assumed that the domaihcan be split in two simply connected sub-domains
Q; and(), with Lipschitz boundaries) = Q; U Q,, Q1 N Qs = 0. Moreover, if we

let X = 09 N0, be the interface, and defig = 0Q; \ %, itis assumed thdt,
andI', are connected.

Hereafter we adopt the notation, for all quantitiedefined ont2, v; := v, for
1 =1, 2. Furthermore, we use the notations

2

{ If v; > 0a. e.in;: v"* = sup,eq, vi(x), V""" = infyeq, vi(z).

If v; < 0a. e in: v =sup,cq, |vi(x)], v;i = infueq, [vi(z)|.

Finally, the outgoing normal frof®; (i=1,2) is calledn;.

¢From now on, we assume thdielongs tal.>° (1), that it is strictly positive orf2;
and strictly negative of2, and that—! € L>(0Q). Also, we assume that belongs
to L>°(€2).

By settinga := 1/e¢ and8 := w?u the scalar model problem (1) for any given
[ € L*(Q2), may be rewritten as:
findu € H'(Q) such that

div (aVu) 4+ pu=f in Q. (2)

We choose to apply, with no loss of generality, an homogesn8atchlet condition
ondS2: in other wordsysq = 0. In this case, the natural variational formulation of
(2) supplemented with this boundary condition is:

findu € Hy(Q) such that

Yv € H& (Q), (O{V'LL, VU)L2(Q) — (ﬁ u, 'U)LQ(Q) = —(f, ’U)LQ(Q).
As (aVu, Vv) 20y has no specific sign, its coercivity does not hold.

It is easy to prove that problem (2) is equivalent to:

find (u1,us2) € X7 x X, such that

+div (a1Vu1) + ﬁlul = fl in Ql

—div (|Oé2‘VUQ) + 521@ = fg in Qg

wilp, =0, i=1,2 , 3)

U1|z :UQ\E

(10p, u1 + |2|Op, uz)|s = 0 weakly



In what follows, we will also use the following Sobolev spackl, r,(curl; 2;),
iHyx(curl; Q;) and X ;, for i = 1,2, respectively defined by

Hr,(curl;Q;) :={p | curlp € Lz(Qi), pXn

r, = 0}
Hys(curl;Q;) == {p | curlp € L*(Q;), p x n|s = 0}
X = {p € H(div;Q) | curl(p/|ai|) € L*(), (p/|ov| x m)

r, =0},

The space$i, r, (curl;;), andH x(curl; (2;) are endowed with the usual norm
of H(curl;(Y;), whereasX, is endowed with the graph norm. And finally, -); ;
(resp.| - |l;;) denotes the usual scalar product (resp. normyfo(t?;). Duality

brackets orE are understood in the sense of the dualitl)* (X)) —He*(X).

3 Two-field variational formulation
3.1 Derivation of the formulation

As we will see in theorem 3.3, the formulation we are goingda\w fits into the
coercive plus compact framework when at least in one of tvialemains of?, the
ratio /3 is negative. The main idea behind the construction of alsleitavo-field
formulation is to replace, in the subdomain whegg g, < 0, the scalar unknown
uy, by the vector unknowm, := |a|Vuy.

In order to illustrate our approach, assume> 0, almost everywherein €,, and
setuy = |as|Vus (@an equivalent choice would be; := a3 Vu; provided that
1 < 0). Note that the condition, /3, < 0 is needed only for the well-posedness
of the formulation and not for its derivation.

To build the two-field formulation (4) let us successively

o take thelL2-scalar product of the first equation of (3) with a test fumati, € X,
integrate by parts, and use the second equality of traceéy:in (

(quuh VUl)o,l + <U2 Ny, U1>2 - (51 Uy, U1)0,1 = —(f1>U1)0,1~

e divide the second equation of (3) b; take theL>?-scalar product between
the result of the previous operation and the divergence @afctov test function
vy € X, integrate by parts, and use the first equality of traces)in (3

di
<£,’l)2> + (M,div v2> + (v Ny, uy)y = — <é,div ’l)g) )
|Oé2‘ 0,2 52 0,2 52 0,2

1 Sinceps, := w?us, this corresponds exactly to# 0 andy, > 0 a. e.



e sum the results obtained at points one and two.

Finally, to recover an augmented variational formulatispeoposed in [3], we may

add the tern<curl£, curl 2) , sincecurl 2 by construction.
\042| |Oéz\ L2(Q \042|
(Q2)
The overall result is the two-field formulation below:
find U = (u1,us) € X; x X, such that
VV = (v1,v9) € X1 x Xy, AU, V) = L(V), 4)

where the formsA and L are respectively defined by

di
AU, V) = ﬂ,vg + = uz,div vy | + curlﬂ, curl-22-
‘Oé2| 0,2 62 0,2 |O‘2‘ ‘Oé2| 0,2

+(vo - ny, ur)y + (U2 - nq,v1)y + (1 Vg, Vor)or — (B ur, v1)o,

and

fa o
L(V) = _(bel)O,l — <—2,le ()] .
/82 0’2
It is important to note that in the definition of the bilinearr A, the two boundary
terms(v, - nq, uq)y and(us - nq, vy )y are "homogeneous”, i. e. without any scaling
factor between the two.

N.B. We propose an augmented variational formulation, so trewéttor fields
can be discretized with the help of a continuous Galerkirhag{see [9]).

3.2 Equivalence with the initial problem

Proposition 3.2: The two-field formulation (4) is equivalent to problem (3).
Proof: To begin with, one finds that|, = 0 (« = 1, 2), according to the definition
of X; and X5s.

Then, let us take in (4) successively = 0 andwv, = 0: it is straightforward to
show that(u;, u) satisfy (5) and (6).

Vv, € Xo, (dw u2,div 'u2> + (curlﬂ,curl£> +
B 0,2 0,2 (5)

<£,’U2> +<’v2-n1,u1)g = — (é,dlv Vo
|| 0,2 2 0,2
Vv, € Xy, (alvub Vvl)o,l - (ﬁlul, 01)071 + (’UQ : n1,211>2 = —(fl, 01)071' (6)



First, we show that (5) impliesurl(us/|az|) = 0. To that aim, we choose divergence-
free test functions in (5). For this, giveh € L*(Q,), we introduce the auxiliary
problem (7):

find x € H x(curl; ;) such that

curl x

g

Note that suchy is unique and satisfies (according to the Proposition 3.6]dbf
the trace equality) both

curl <M> —Fxin, (M> < nlr, = 0.

\042\

,curl cp) =(f, ¢z (7)

0,2

Ve € Hyx(curl;$), (X, @)z + <

Thus, we can choos®, = curl x in (5) and integrate by parts to reach:

(curlﬂ, f) = 0.
|O‘2‘ 0,2

In other words, we get the desired propettyrl (u,/|as|) = 0in L*(s).

¢From (5), we now recover the second and fourth equatior®)of2{ being sim-
ply connected, there exists € H'(f,) such thatVu, = u,/|as|. Recall that
(us/|as| x m)|r, = 0 anday is strictly negative. Thud)'; being connected, we
obtain thatu,|r, is actually a constant. The scalar potentiabeing defined up to
a constant, let us choosg|r, = 0. If we integrate (5) by parts, we reach

(—dlv (\a2|VU2) — Ug + é,div ’Ug) + (’02 cNy, Uy — U2>E =0 (8)
I Do 0,2

We want to use in (83d hoctest functiona,. Given(p, s) € L*(Q) x (Hi (),
let us introduce the auxiliary problem (9):
find y € X, such that

Vz e Xy, (JaolVx, V2)o2 = (p, 2)o2 + (5,2)s. 9)

Problem (9) is well-posed. Its solutianis such thatliv |a,|Vx = —p and|as|Vx-
nsyls = s. So we can choose, = |ay|Vx in (8). Let us take first = 0, to recover
the second equation of (3), and thee- 0, to recover the fourth equation of (3).

In order to conclude the proof, we have to recover the firstthadast equations of
(3). One chooses simply in (6) test functions which spaf; ), and then functions,
which spanX; (the trace mapping’; — H&éQ(E) is onto.)

0



3.3 Finding a well-posed variational setting for the forin

Below, we build a splitting of the bilinear form in a two term sum, so that the first
term is coercive ovef X; x X,}?, and the second one is a compact perturbation
of the first one. Let us writel = A ., + Acomp, With

Acomp = —((B1 + "™y, v1)0,1.

Thanks to the compact imbedding &f (;) into L?(1), A.omyp is indeed a com-
pact perturbation ofi....,.. We then prove that the form....,. is coercive under some
suitable conditions (cf. theorem 3.3).

We introduce some constant, related to the lifting of thedraf scalar fields and of
the normal trace of vector fields. Let the constamt R} be such that (10) holds
optimally(i. e. the constant takes the smallest admissible value.)

V(vi,v2) € X1 x X, [(v2 - nq,v1)5] < c||va| m@aiv 00|01 ]]11- (10)

Theorem 3.3:Assume thatn, /3, < 0 a. e., and that

min + -1
@ 2 ) . Qg
> ¢”qmin | 1, 11
ay { ( 5§”>}

holds. Then, the forn..., is coercive ovef X; x X}

Proof: Sinceas/f; < 0 andas < 0, we haved, > 0 in . Thus, A, can be
bounded from below by

. ) 1 1
| Agoer(V, V)| > a’f””Hleil -+ min (@; —65”‘””> ’|U2H%J(div;92)
va |I?
2
+ [leurl—— —20||U2HH(div;Qz)||U1||171'
| 0,2

We have to control the term2c||va|| maiv ;0.) || v1 ||1,1 With (a fraction of) the others.
Let us recall that, givem; p € R andVz; y € R the following equality is true.

2 | 2 m + p? 2p R s, m=p
mz” +y~ — 2pxry = 5 x—m+p2y + 5 ¥ +m—|—p2y' 12)

We find that, if we identifyr := |[v1 |11, ¥ := ||v2|| maiv:0.) @and set

m =« min ¥ Amaz y P = C [Imin T maz i
' oz B az’ 3



the form A,,., is coercive as soon as > p2. By rewriting m andp as defined
above, this last inequality leads to (11).
O

Remark 3.3: The dependencies on geometrical conditions (shape anthrigu
of XJ) are implicitly included in the definition of the constant

Corollary 3.3: Assume thatv, /3> < 0 a. e., and that (11) holds. Then, the varia-
tional formulation (4) fits into the coercive plus compaetrfrework.

Evidently, the knowledge of the vector fietd, which solves (4) is enough to re-
cover the scalar field,, both theoretically and numerically.

If one goes back to the original dielectric and magnetic ipatars, (11) corre-
sponds precisely to

-1
1
€1 Wy €y

Inequality (13) is asufficientcondition. Moreover, it implies; /"™ > 2. In
accordance with the litterature we find that the model proldies into the coercive
plus compact framework in the case of small contrasts (rétat x := €, /e;.) To
recover a similar result in the case of large contrasts —igeovthat3; < 0 — one
could alternatively build a two-field formulation by choogiu, := a;Vu; and
using vector test functions iX ;.

4 Three field variational formulation

As we have already seen, for the two-field formulation to belyave had to as-
sume’ that at least over one of the two subdomains, we haye, < 0. Moreover,

in the case of vanishing we cannot build the two-field formulation. In order to re-
lax those constraints ofi, we derive a three-field variational formulation, which
allows to handle ang € L>(Q2).

4.1 Derivation of the formulation

In this paragraph we propose a more general formulationghwailows to handle
a wider set of conditions on the parameters andw: the three-field formulation.
This time, we keep both scalar unknownsandu,, and we add the vector unknown

2 Albeit this assumption may not be optimal.



uy. TO begin with, keeping botl; andu, leads to a reformulated definition of
H}(Q); we introduce

X ={(v,w) € X1 x Xy | v|]g = wl|x}.
Now, let us

o take thel?-scalar product of the first equation of (3) with a test fumeti, € X,
integrate by parts, and use the second equality of traceéy:in (

(a1 Vuy, Voy)oa + (ug - iy, v1)y — (B w1, v1)01 = —(f1, v1)0,1-

e take theL>-scalar product between the second equation of (3) andkeggince
of a vector test functiom, € X ,; multiply the resulting equality by a constant
factorp > 0.

p(le Uo, div ’1)2)0,2 — p(ﬂg Ua, div ’02)072 = —p(fg, div ’1)2)0,2.
e consider, for(vy, v2) € X5 x X, the two identities (recall that, = |as|Vus)
(|| Vug, Vug)g o + (div ug, v2)o2 + (U2 - M1, v9)y, = 0; (14)

(ug, div v3)g2 + <U2> —> + (vy -y, ug)y = 0. (15)

e replaceu,|s by v1 |5, and sum these two equalities with the results obtained fol-
lowing the first two items.

||’ |as|
to build an augmented variational formulation.

Finally add the tern<curl£ curl£> (cf. [3] or paragraph 3.1) in order
0,2

To summarize, we introduce the variational formulation)(16
find U = ((u1,u2),us) € X x X5 such that

YV = ((01,09),5) € X x Xo AP(U,V) = LP(V). (16)

The formsA?” and L are respectively defined by
AP(U, V) := p(div ug, div v3)g 2 + <curl£,curlﬂ> + <£,vg>
g || 0.2 | 0,2
+(|a2| Vug, Vug)g2 + (div ug, v2)0 + (uz, div v2)o2 — p(f g, div v2)g 2
+(a1Vug, Vor)or — (Brur, v1)oa + 2 (Ug - my, v1)s + (V2 - Ny, Ug)s,
and
Lo(V) = —=(f1,v1)01 — p(f2, div v2)oy2-



Again, it is important to note that in the definition of theibdar form.4”, the two
boundary termgv, - ny, u1)s and(u, - nq, v1)y remain "Thomogeneous”. In addi-
tion, we remark that this is true for any choice of the fagtowhich we will fit to
some optimal value when we establish the coercivitylof

N.B. Again, the use of an augmented variational formulatiorveslto use a con-
tinuous Galerkin discretisation of the vector fields (cf)[9

4.2 Equivalence with the initial problem

Proposition 4.2: The three-field formulation (16) is equivalent to problem (3
Proof: To begin with, one finds that, |, = us|x andu|r, = 0 (i = 1, 2), according
to the definition ofX’.

Then, one recovers the first equation (3), by choosing intgi Yunctions; which
spanD(£2), and(vs, v2) = (0,0).

Next, we have thaturl(us/|as|) = 0: this is achieved as in Proposition 3.2, by
taking (v1,v9) = (0,0) andvy = curl x, x being the solution to (7).

From there, we establish that = |ay|Vu, and that the second equation of (3) is
recovered. Unfortunately, it does not seem possible ty @arrthe proof "sequen-
tially”, so we proceed "in parallel”...

We introducer = Vus — uy/|as|, andn = —divuy + fous — fo, and prove
that both fields vanish ovél,. To start with, we know that € Hyr,(curl;),),
curlT = 0, and thaty € L%(,).

Choose first in (16)vy,v2) = (0,0), andv, € D(Qs)?, to reachpVn = 7 in
the sense of distributions ov8s. Thereforey belongs toH ! (€2,) and, in addition
(sincel’y is connected)y|r, = ¢z € R.

Then, let us prove that the tracemis actually equal te; over the whole boundary
0€),. For that, choose in (1)1, v2) = (0,0), andv, € X, and integrate by parts.
This yields

Yvg € XQ, <’Ug . n2,7]>392 =0. (17)
Consider then aad hoctest functionws,, built in the following way: solve problem
(9), withp = 0 ands = ¢, — n|x, which belongs td.?(X), and setr, = |as|Vy.
One getsliv v, = 0 andv; - na|s, = ¢o — n|s. We note that sincéiv v, = 0, there
holds in particulagv, - 9, 1)50, = 0. Using this vector field in (17) leads to

0= (v n2,n)e0, = (V2 N2,1 — C2)an, = (V2 M, — C2)x = —[[n — C2H%2(2)-

Thereforey)|sq, = o, SO thatr € Hy(curl; ;) (sincer = pVn.)

10



Next, choose in (16)v,,v2) = (0,0), andvy € D(€)y). One findsdiv |as|T = 0

in the sense of distributions ovék,. Thusn belongs toH'(£2,), and it satisfies
div ||V = 0 (sincepVn = 7) with a constant trace (z) over d<),. In other
words,n = ¢y over(y, andr = 0, so thatu, = |as|Vuy holds.

There remains to prove that = 0 to recover the second equation of (3). We choose
again in (16)vy,v2) = (0,0), andv, € X5, withoutintegrating by parts, to reach

Yvg € Xg, Cg(l,div’l)g)og =0. (18)

Since the range of the divergence froiy is exactlyL?((2,), there followsc, = 0,
our intended target.

In order to conclude the proof, we consider in (16),v;) € X andvy, = 0. By
integrating by parts and using the previous results, onghesaeasily

Vo € X1, ((010n,u1 + |aa|Op,us), v1)s = 0.

The last equation of (3) follows.

4.3 Finding a well-posed variational setting for the fortn

As for the two-field formulation, we splitl* as.A? = A? .+ A? . with

comp?

1 ) .
Aﬁomp = —;(Uz, V)02 — p(Paus, div v2)g2 + (div ws, v2)o2

+(ug, div va)g2 — ((51 + 04717”'”) uy, Ul)o,l

Thanks to the compact imbedding &f'(Q;) into L?(Q;), i = 1,2, A2, is a

comp

compact perturbation ofl”? . Let us prove that the forml? _ is coercive under

coer"* coer

some suitable conditions.

Theorem 4.3:Assume that

> 2¢2 (19

holds, withc defined by (10). Then, fgg > 1/a3, the form. A2 is coercive over
{X X X2}2.

11



Proof: Let us first compute the value of?

coer

(V, V),

2

Vo
curl——

Agoer(v7 V) - pHdIV v2||(2),2 +
|

v
+ <’l)2, —2> + (\a2|va, V’UQ)OQ
|O‘2‘ 0,2

0,2

+;||UQH3,2 + (a1 Vur, Vor)og + o (v1,v1)0.1 + 3 (02 - 1y, 01) .

Thus, introducing the real parametee [0, 3], | A2, (V. V)| may be bounded from
below by

V2
curl ——
|

p
‘Acoer

(V.V) = plldiv va[5, +

2
v
+ <’l)2, 2 ) + (\a2|va, vvg)og
0,2

0,2 |O‘2‘

+;||U2H3,2 + (@1 Vy, Voy o1 + o™ (v1, 0101
—(3=n) [(v2 - my, v1)z| = nl{vs - N2, v2)5].

The term|(vs - n1,v1)x]| is bounded as in (10), wheref®, - no, v2)x| is bounded

1/2

|(vs - Mg, v2)5| < |(/)1/2diV Vo, 0_1/2U2)0,2\ + \(\042\1/2VU2, laa|™ " v2)02]

< < [plldiv vall2, + o7 a2

+ (|az| Ve, Vug)g2 + (‘Oé2|_1’027 ’02)0,2} .

To get coercivity, it is advised to restrigtto [0, 2|... We deduce

A (VoY) 2 ol + (1= /20w ) el
2

—(3 = n)cllva|| Haiv;00) V111 (20)
2

1
+(1=n/2) l||‘042|1/2vv2||g,2 + ;HU2H3,2 :
0,2

Sincep > 1/a;3, one has actuallynin(1/a3, p) = 1/a4. In equation (12) let us
identify = = ||v1]]1.1, ¥y = ||v2|| x, and set

, 2 3—n
e min .+ R +
m.—al Oé—,p.—COé2

The formA”__is coercive whemn > p?, i. e.

coer

o™ ,(3—n)

(21)



Now, f : n+— (3 —mn)?/(4 — 2n) takes is minimal value oveb, 2[ atn = 1, and
f(1) = 2. For this optimal value, (21) reduces to (19).
0

Remark 4.3: If we considerp in |0, 1/«a3 [, the right-hand side of (19) changes to
2¢ /(a3 p).

Corollary 4.3: Assume that (19) holds. Then, the variational formulatib®) fits
into the coercive plus compact framework, fob 1/a; .

In the sudomairf2,, the numerical approximation ®mverdeterminedin the sense
that both the scalar field, and the vector fieldi, are computed.

If one goes back to the original dielectric and magnetic patars, (19) corre-
sponds precisely to

> 2¢%. (22)

The model problem thus fits into the coercive plus compaaohésaork in the case

of small contrasts. To derive a similar result in the casaufd contrasts one simply
builds a three-field formulation by choosing := «;Vu; and using vector test
functions inX ;.

5 Conclusion

In this paper we focused on solving a scalar wave transnmgsioblem between
media with opposite sign dielectric and/or magnetic carntstdor this, we derived
two- and three-field variational formulations. The follagitable summarizes, for
all possible transitions between the two media, which "$es{j formulation can
be chosen for solving this problem. Below, N. F., 2 F. and 3dRate respectively
the natural, the two- and the three-field variational foraiohs.
<0 ]| e<0]|e>0]e6>0
po <O | p2 >0 pe <0 | >0
e1<0; pup <0| N.F N.F. 2F. 3F.
e0<0; ur>0| N.F N.F. | 2F® | 2F.
6 >0; u1<0| 2F | 2F® | N.F N.F.

ee>0; 1py>0| 3F 2F N.F. N.F.

Nota Bene:As we saw in paragraph 3.1, the two-field formulation is valtden
at least over one of two subdomaifig, 2, we haveey < 0. In the case$” both
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€11 andeypu, are negative: we can build the two-field formulation by adyity
choosing where to introduce the vector unknown.

One possible continuation of the present work is to deal withnumerical im-

plementation of the formulations and their comparison.o0Ad$ interest is to try

and replace the volume vector unknown by an interface unknowhe three-field

formulation, and to derive a suitable Domain Decompositt®thod to solve the
original scalar problem. Finally, one can try and extenceyeroach followed here
to the static and/or harmonic Maxwell equations.
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