

Available online at www.sciencedirect.com



C. R. Acad. Sci. Paris, Ser. I 344 (2007) 305-308



http://france.elsevier.com/direct/CRASS1/

# Functional Analysis/Mathematical Problems in Mechanics

# Characterization of the kernel of the operator CURL CURL

Philippe G. Ciarlet <sup>a</sup>, Patrick Ciarlet, Jr. <sup>b</sup>, Giuseppe Geymonat <sup>c</sup>, Françoise Krasucki <sup>c</sup>

<sup>a</sup> Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

<sup>b</sup> Laboratoire POEMS, UMR 2706 CNRS/ENSTA/INRIA, École nationale supérieure de techniques avancées,

32, boulevard Victor, 75739 Paris cedex 15, France

<sup>c</sup> Laboratoire de mécanique et de génie civil, UMR 5508, Université Montpellier II, place Eugène-Bataillon, 34695 Montpellier cedex 5, France

Received and accepted 22 December 2006

Available online 9 February 2007

Presented by Philippe G. Ciarlet

#### Abstract

In a simply-connected domain  $\Omega$  in  $\mathbb{R}^3$ , the kernel of the operator **CURL CURL** acting on symmetric matrix fields from  $\mathbb{L}^2_s(\Omega)$  to  $\mathbb{H}^{-2}_s(\Omega)$  coincides with the space of linearized strain tensor fields. For not simply-connected domains, Volterra has characterized this kernel for smooth fields. Here we extend this result for domains with a Lipschitz-continuous boundary for fields in  $\mathbb{L}^2_s(\Omega)$ . *To cite this article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344* (2007).

© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## Résumé

**Caractérisation du noyau de l'opérateur CURL CURL.** Dans un domaine simplement connexe  $\Omega$  de  $\mathbb{R}^3$ , le noyau de l'opérateur **CURL CURL** agissant sur des champs de matrices symétriques de  $\mathbb{L}^2_s(\Omega)$  dans  $\mathbb{H}^{-2}_s(\Omega)$ , coïncide avec l'espace des champs de tenseurs de déformation linéarisés. Dans le cas de domaines non simplement connexes, Volterra a caractérisé ce noyau pour des champs réguliers. Dans cette Note, nous étendons ce résultat pour un domaine à frontière lipschitzienne et pour des champs dans  $\mathbb{L}^2_s(\Omega)$ . *Pour citer cet article : P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).* © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

#### 1. Introduction

Let  $\Omega$  be a domain in  $\mathbb{R}^3$ , i.e., an open, connected and bounded subset of  $\mathbb{R}^3$  with a Lipschitz-continuous boundary  $\partial \Omega$ . The unit outward normal vector field to  $\partial \Omega$  is denoted by **n**. Latin indices range in the set {1, 2, 3}. The coordinates of a generic point  $\mathbf{x} \in \overline{\Omega}$  are denoted by  $x_i$ , the components of a vector field **v** by  $v_i$ , and the components of a  $3 \times 3$  matrix field **S** by  $S_{ij}$ . The summation convention with respect to repeated indices is used for Latin indices. Let **S** be a smooth symmetric matrix field. We denote by **CURLS** the tensor whose components are defined by (**CURLS**)<sub>*ij*</sub> =  $\epsilon_{ipk}S_{jk,p}$ . The commas stand for partial derivatives and  $\epsilon_{ipk}$  denote the components of the alternator tensor. Function spaces for scalar (respectively vector, or  $3 \times 3$  matrix) fields are denoted with italic (respectively boldface, or capital boldface) characters. For the latter, the index s indicates symmetric fields.

*E-mail addresses:* mapgc@cityu.edu.hk (P.G. Ciarlet), patrick.ciarlet@ensta.fr (P. Ciarlet, Jr.), geymonat@lmgc.univ-montp2.fr (G. Geymonat), krasucki@lmgc.univ-montp2.fr (F. Krasucki).

<sup>1631-073</sup>X/\$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.01.001

The operator **CURL CURL** is linear and continuous from  $\mathbb{H}^2_s(\Omega)$  into  $\mathbb{L}^2_s(\Omega)$ . Beltrami's completeness theorem [8] provides a characterization of the ranges **CURL CURL**( $\mathbb{H}^2_s(\Omega)$ ) and **CURL CURL**( $\mathbb{H}^2_{0,s}(\Omega)$ ). Note that the characterization given in [8] for **CURL CURL**( $\mathbb{H}^2_{0,s}(\Omega)$ ) is valid only for simply-connected domains. In the following, we study the operator **CURL CURL** from  $\mathbb{L}^2_s(\Omega)$  into  $\mathbb{H}^{-2}_s(\Omega)$ , and in particular, we provide a direct characterization of its kernel. Let us remark that in the simply-connected case, the kernel is actually equal to  $\nabla_s(\mathbf{H}^1(\Omega))$  according to [5] and [7]. Together, those results allow to characterize **CURL CURL**( $\mathbb{H}^2_{0,s}(\Omega)$ ) for general, not simply-connected, domains.

#### 2. Characterization of the kernel in the not simply-connected case

Since  $\text{CURL}(\text{CURL}(\nabla_s \mathbf{v}) = 0$  in the distribution sense [3], it is clear that  $\nabla_s(\mathbf{H}^1(\Omega))$  is a subset of the kernel. Therefore, we only have to study the intersection of the kernel with  $\Sigma_{ad}(\Omega) = (\nabla_s(\mathbf{H}^1(\Omega)))^{\perp}$ , where orthogonality is meant with respect to the usual  $\mathbb{L}^2_s$  scalar product. By direct inspection, one finds that  $\Sigma_{ad}(\Omega) = \{\mathbf{S} \in \mathbb{L}^2_s(\Omega); \operatorname{div} \mathbf{S} = 0 \text{ in } \Omega, \operatorname{Sn}_{|\partial\Omega} = \mathbf{0}\}$ . It thus follows that the appropriate space is

$$\mathbb{K} = \{ \mathbf{S} \in \mathbb{L}^2_s(\Omega) : \text{ CURL CURL } \mathbf{S} = \mathbf{0} \text{ and } \operatorname{div} \mathbf{S} = \mathbf{0} \text{ in } \Omega, \ \mathbf{Sn}_{|\partial\Omega} = \mathbf{0} \}.$$

As noted above, one has  $\mathbb{K} = \{0\}$  in the simply-connected case.

In order to obtain such a characterization, we need to specify the geometry of  $\Omega$ , as in [2]. We denote by  $\Gamma_q$  the connected components of  $\partial \Omega$ , q = 0, ..., Q. We assume that the domain  $\Omega$  can be reduced to a simply-connected domain  $\Omega^*$  by means of a finite number N of regular, non-intersecting, and oriented, cuts  $C_{\alpha}$ ,  $\alpha = 1, ..., N$ , such that the boundary of each cut  $C_{\alpha}$  is contained in  $\partial \Omega$ . We also assume that the cuts are such that the simply-connected domain  $\Omega^* = \Omega \setminus \bigcup_{\alpha=1}^N C_{\alpha}$  verifies the cone condition. Hence the usual Sobolev properties are satisfied [1,6].

Following an idea of Volterra [10], we introduce the following space of Volterra's dislocations:

$$\mathcal{V} = \left\{ \mathbf{v} \in \mathbf{H}^{1}(\Omega^{*}): \, [[\mathbf{v}]]_{\mathcal{C}_{\alpha}} \text{ is an infinitesimal rigid displacement, } \alpha = 1, \dots, N \right\},\tag{1}$$

where  $[[\mathbf{v}]]_{\mathcal{C}_{\alpha}}$  is the jump across the cut  $\mathcal{C}_{\alpha}$ . We recall that infinitesimal rigid displacements are of the form  $\mathbf{a}^{\alpha}(\mathbf{v}) + \mathbf{b}^{\alpha}(\mathbf{v}) \wedge \mathbf{id}_{\Omega}$  where  $\mathbf{a}^{\alpha}(\mathbf{v}) = a_{i}^{\alpha}(\mathbf{v})\mathbf{e}_{i}$  and  $\mathbf{b}^{\alpha}(\mathbf{v}) \wedge \mathbf{id}_{\Omega} = b_{i}^{\alpha}(\mathbf{v})\mathbf{P}_{i}$ , with  $\mathbf{P}_{i} = -\epsilon_{ijk}x_{k}\mathbf{e}_{j}$ .

We remark that, given  $\mathbf{v} \in \mathcal{V}$ , then by definition  $\nabla_s \mathbf{v} \in \mathbb{L}^2_s(\Omega^*)$ . Since  $\operatorname{meas}(\Omega) = \operatorname{meas}(\Omega^*)$ ,  $\mathbb{L}^2_s(\Omega^*)$  is isomorphic to  $\mathbb{L}^2_s(\Omega)$ . Hence one can associate with  $\nabla_s \mathbf{v} \in \mathbb{L}^2_s(\Omega^*)$  its extension  $\widetilde{\nabla_s \mathbf{v}} \in \mathbb{L}^2_s(\Omega)$  in a canonical way.

**Proposition 2.1.** For every  $\alpha = 1, ..., N$  and i = 1, 2, 3, there exist  $\mathbf{u}_i^{\alpha} \in \mathcal{V}$  and  $\mathbf{r}_i^{\alpha} \in \mathcal{V}$  such that:

$$\int_{\Omega^*} \nabla_s \mathbf{u}_i^{\alpha} : \nabla_s \mathbf{v} \, \mathrm{d}\Omega - a_i^{\alpha}(\mathbf{v}) = 0 \quad \text{for all } \mathbf{v} \in \mathcal{V}; \qquad \int_{\Omega^*} \nabla_s \mathbf{r}_i^{\alpha} : \nabla_s \mathbf{v} \, \mathrm{d}\Omega - b_i^{\alpha}(\mathbf{v}) = 0 \quad \text{for all } \mathbf{v} \in \mathcal{V}.$$
(2)

Moreover, the vector fields  $\mathbf{u}_i^{\alpha}$  and  $\mathbf{r}_i^{\alpha}$  are uniquely determined modulo a global infinitesimal rigid displacement on  $\Omega$ .

One notices that, according to (2), the 6*N* extensions  $(\widetilde{\nabla_s \mathbf{u}_i^{\alpha}})_{\alpha,i}$  and  $(\widetilde{\nabla_s \mathbf{r}_i^{\alpha}})_{\alpha,i}$  are linearly independent in  $\mathbb{L}^2_s(\Omega)$ .

**Theorem 2.1.** The extensions  $(\widetilde{\nabla_s \mathbf{u}_i^{\alpha}})_{\alpha,i}$  and  $(\widetilde{\nabla_s \mathbf{r}_i^{\alpha}})_{\alpha,i}$  belong to the space  $\mathbb{K}$ .

**Proof.** Since  $\mathbf{D}(\Omega) \subset \mathcal{V}$  it follows from (2) that, in the distribution sense,

$$\operatorname{div}\left(\widetilde{\nabla_{s} \mathbf{u}_{i}^{\alpha}}\right) = \mathbf{0} \quad \text{in } \Omega.$$

$$\tag{3}$$

Taking  $\mathbf{v} \in \mathbf{H}^1(\Omega) \subset \mathcal{V}$ , one then finds that:

$$\left(\overline{\nabla_{s} \mathbf{u}_{i}^{\alpha}}\right) \mathbf{n}_{\mid \partial \Omega} = \mathbf{0} \quad \text{in } \mathbf{H}^{-1/2}(\partial \Omega).$$

$$\tag{4}$$

Hence we conclude that  $\widetilde{\nabla_s \mathbf{u}_i^{\alpha}}$  belongs to  $\Sigma_{ad}(\Omega)$ . We only have to prove that, for all  $\mathbf{S} \in \mathbb{D}_s(\Omega)$ , one has

$$\langle \text{CURL CURL}(\widetilde{\nabla_s \mathbf{u}_i^{\alpha}}), \mathbf{S} \rangle = 0,$$
 (5)

where  $\langle \cdot, \cdot \rangle$  denotes the duality pairing between  $\mathbb{D}'_{s}(\Omega)$  and  $\mathbb{D}_{s}(\Omega)$ . This result is a consequence of the relation:

$$\langle \mathbf{CURL}\,\mathbf{CURL}\,(\widetilde{\nabla_s \mathbf{u}_i^{\alpha}}), \mathbf{S} \rangle = \int_{\Omega} \widetilde{\nabla_s \mathbf{u}_i^{\alpha}} : \mathbf{CURL}\,\mathbf{CURL}\,\mathbf{S}\,\mathrm{d}\Omega = \int_{\Omega^*} \nabla_s \mathbf{u}_i^{\alpha} : \mathbf{CURL}\,\mathbf{CURL}\,\mathbf{S}\,\mathrm{d}\Omega$$
$$= \int_{\partial\Omega^*} \mathbf{u}_i^{\alpha} \cdot (\mathbf{CURL}\,\mathbf{CURL}\,\mathbf{S})\mathbf{n}\,\mathrm{d}\Gamma = \sum_{\alpha} \int_{\mathcal{C}_{\alpha}} [\![\mathbf{u}_i^{\alpha}]\!] \cdot (\mathbf{CURL}\,\mathbf{CURL}\,\mathbf{S})\mathbf{n}\,\mathrm{d}\mathcal{C}$$
$$= \sum_{\alpha} \int_{\mathcal{C}_{\alpha}} \left(\mathbf{a}^{\alpha}(\mathbf{u}_i^{\alpha}) + \mathbf{b}^{\alpha}(\mathbf{u}_i^{\alpha}) \wedge \mathbf{id}_{\Omega}\right) \cdot (\mathbf{CURL}\,\mathbf{CURL}\,\mathbf{S})\mathbf{n}\,\mathrm{d}\mathcal{C} = 0.$$

The last equality follows from a localization argument around each cut. This allows one to consider each term separately, and one can perform the standard integration by parts. This expression vanishes since

div(CURL CURL S) = 0 and  $\nabla_s (\mathbf{a}^{\alpha}(\mathbf{u}_i^{\alpha}) + \mathbf{b}^{\alpha}(\mathbf{u}_i^{\alpha}) \wedge \mathbf{id}_{\Omega}) = 0.$ 

The same proof holds for  $\widetilde{\nabla_s \mathbf{r}_i^{\alpha}}$ .  $\Box$ 

We can now state the announced characterization, at least for a specific class of cuts:

**Theorem 2.2.** Assume that all the cuts  $C_{\alpha}$  are planar. Then the space  $\mathbb{K}$  is spanned by the matrix fields  $\widetilde{\nabla_s \mathbf{u}_i^{\alpha}}$  and  $\widetilde{\nabla_s \mathbf{r}_i^{\alpha}}$ ,  $\alpha = 1, \ldots, N, i = 1, 2, 3$ .

**Proof.** Given  $W \in \mathbb{K}$ , let **Z** be defined by:

$$\mathbf{Z} = \mathbf{W} - \sum_{\alpha=1}^{N} \{ \langle \mathbf{W} \mathbf{n}, \mathbf{e}_i \rangle_{\mathcal{C}_{\alpha}} \widetilde{\nabla_s \mathbf{u}_i^{\alpha}} \} - \sum_{\alpha=1}^{N} \{ \langle \mathbf{W} \mathbf{n}, \mathbf{P}_i \rangle_{\mathcal{C}_{\alpha}} \widetilde{\nabla_s \mathbf{r}_i^{\alpha}} \},$$

where  $\langle \cdot, \cdot \rangle_{\mathcal{C}_{\alpha}}$  denotes the duality pairing between  $\mathbf{H}^{-1/2}(\mathcal{C}_{\alpha})$  and  $\mathbf{H}^{1/2}(\mathcal{C}_{\alpha})$ . The assumption on  $\mathbf{W}$  implies that  $\mathbf{CURL}(\mathbf{CURL}(\mathbf{Z}_{|\Omega^*}) = 0$ . Because  $\Omega^*$  is simply-connected, there exists  $\hat{\mathbf{u}} \in \mathbf{H}^1(\Omega^*)$  such that  $\mathbf{Z}_{|\Omega^*} = \nabla_s \hat{\mathbf{u}}$  (see [5,8]). Using Green's formula in  $\Omega^*$  and Eqs. (2), one can prove that  $\int_{\Omega^*} \nabla_s \hat{\mathbf{u}} : \nabla_s \mathbf{v} d\Omega = 0$  for all  $\mathbf{v} \in \mathcal{V}$ . When the cuts are planar, one can prove directly, using integration by parts on each cut  $\mathcal{C}_{\alpha}$ , that  $[[\hat{\mathbf{u}}]]_{\mathcal{C}_{\alpha}}$  is actually an infinitesimal rigid displacement; hence  $\hat{\mathbf{u}}$  belongs to  $\mathcal{V}$ . It follows that  $\mathbf{Z}_{|\Omega^*} = \mathbf{0}$  and so  $\mathbf{Z} = \mathbf{0}$ .  $\Box$ 

Since the matrix fields  $(\widetilde{\nabla_s \mathbf{u}_i^{\alpha}})_{\alpha,i}$  and  $(\widetilde{\nabla_s \mathbf{r}_i^{\alpha}})_{\alpha,i}$  are linearly independent in  $\mathbb{L}^2_s(\Omega)$ , we also have:

**Corollary 2.1.** Assume that all the cuts  $C_{\alpha}$  are planar. Then the space  $\mathbb{K}$  is of dimension 6N.

Note that these results could be integrated in the definition of the de Rham complex for symmetric matrices, as in [4] for elasticity and [9] for magnetostatics.

**Corollary 2.2.** Assume that all the cuts  $C_{\alpha}$  are planar. Then  $\Sigma_{ad}(\Omega) = \mathbb{K} \bigoplus^{\perp} \mathbb{X}$  with

 $\mathbb{X} = \{ \mathbf{S} \in \Sigma_{ad}(\Omega) \colon \langle \mathbf{Sn}, \mathbf{e}_i \rangle_{\mathcal{C}_{\alpha}} = 0, \ \langle \mathbf{Sn}, \mathbf{P}_i \rangle_{\mathcal{C}_{\alpha}} = 0, \ \alpha = 1, \dots, N, \ i = 1, 2, 3 \}.$ 

Moreover, the definition of the space X is independent of the way the cuts are defined.

Using the above results, we generalize the second statement of Beltrami's completeness theorem given in [8] (Theorem 2.2(ii)), which is correct only in a simply-connected domain, to the case of a not simply-connected domain:

**Theorem 2.3.** Assume that all the cuts  $C_{\alpha}$  are planar. Then  $\text{CURL}(\mathbb{H}^2_{0,s}(\Omega)) = \mathbb{X}$ .

Finally, using the first statement of Beltrami's completeness theorem ([8] Theorem 2.2(i)), one can prove the following result:

**Theorem 2.4.** We have  $\mathbb{L}^2_s(\Omega) = \mathbf{CURL} \, \mathbf{CURL}(\mathbb{H}^2_s(\Omega)) \stackrel{\perp}{\oplus} \mathbb{Y}$ , with

$$\mathbb{Y} = \left\{ \mathbf{S} \in \mathbb{L}^2_s(\Omega) \colon \mathbf{S} = \nabla_s \mathbf{u}, \ \mathbf{u} \in \mathbf{H}^1(\Omega), \ \mathbf{u}_{|\Gamma_q|} = \mathbf{a}_q + \mathbf{b}_q \wedge \mathbf{id}_\Omega, \ q = 0, \dots, Q \right\}.$$

### Acknowledgements

This work was substantially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. 9041076, CityU 100105].

#### References

- [1] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, second ed., Academic Press, 2003.
- [2] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Meth. Appl. Sci. 21 (1998) 823–864.
- [3] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl. 86 (2006) 116–132.
- [4] D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006) 1–155.
- [5] P.G. Ciarlet, P. Ciarlet Jr., Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Meth. Appl. Sci. 15 (2005) 259–271.
- [6] M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, 1988.
- [7] G. Geymonat, F. Krasucki, Some remarks on the compatibility conditions in elasticity, Rend. Accad. Naz. Sci. XL 123 (2005) 175–182.
- [8] G. Geymonat, F. Krasucki, Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 359–363.
- [9] P.W. Gross, P.R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach, MSRI Publications Series, Cambridge University Press, Cambridge, 2004.
- [10] V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes, Annales Scientifiques de l'Ecole Normale Supérieure, 3ème Série 24 (1907) 401–517.