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Abstract

In a simply-connected domain Ω in R3, the kernel of the operator CURL CURL acting on symmetric matrix fields from L2
s (Ω)

to H
−2
s (Ω) coincides with the space of linearized strain tensor fields. For not simply-connected domains, Volterra has characterized

this kernel for smooth fields. Here we extend this result for domains with a Lipschitz-continuous boundary for fields in L2
s (Ω). To
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Résumé

Caractérisation du noyau de l’opérateur CURL CURL. Dans un domaine simplement connexe Ω de R3, le noyau de l’opéra-
teur CURL CURL agissant sur des champs de matrices symétriques de L2

s (Ω) dans H
−2
s (Ω), coïncide avec l’espace des champs

de tenseurs de déformation linéarisés. Dans le cas de domaines non simplement connexes, Volterra a caractérisé ce noyau pour des
champs réguliers. Dans cette Note, nous étendons ce résultat pour un domaine à frontière lipschitzienne et pour des champs dans
L2

s (Ω). Pour citer cet article : P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω be a domain in R3, i.e., an open, connected and bounded subset of R3 with a Lipschitz-continuous boundary
∂Ω . The unit outward normal vector field to ∂Ω is denoted by n. Latin indices range in the set {1,2,3}. The coor-
dinates of a generic point x ∈ Ω are denoted by xi , the components of a vector field v by vi , and the components
of a 3 × 3 matrix field S by Sij . The summation convention with respect to repeated indices is used for Latin in-
dices. Let S be a smooth symmetric matrix field. We denote by CURL S the tensor whose components are defined by
(CURL S)ij = εipkSjk,p . The commas stand for partial derivatives and εipk denote the components of the alternator
tensor. Function spaces for scalar (respectively vector, or 3 × 3 matrix) fields are denoted with italic (respectively
boldface, or capital boldface) characters. For the latter, the index s indicates symmetric fields.
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The operator CURL CURL is linear and continuous from H2
s (Ω) into L2

s (Ω). Beltrami’s completeness theorem [8]
provides a characterization of the ranges CURL CURL(H2

s (Ω)) and CURL CURL(H2
0,s (Ω)). Note that the charac-

terization given in [8] for CURL CURL(H2
0,s (Ω)) is valid only for simply-connected domains. In the following, we

study the operator CURL CURL from L2
s (Ω) into H−2

s (Ω), and in particular, we provide a direct characterization of
its kernel. Let us remark that in the simply-connected case, the kernel is actually equal to ∇s(H1(Ω)) according to [5]
and [7]. Together, those results allow to characterize CURL CURL(H2

0,s (Ω)) for general, not simply-connected,
domains.

2. Characterization of the kernel in the not simply-connected case

Since CURL CURL(∇sv) = 0 in the distribution sense [3], it is clear that ∇s(H1(Ω)) is a subset of the ker-
nel. Therefore, we only have to study the intersection of the kernel with Σad(Ω) = (∇s(H1(Ω)))⊥, where or-
thogonality is meant with respect to the usual L2

s scalar product. By direct inspection, one finds that Σad(Ω) =
{S ∈ L2

s (Ω); div S = 0 in Ω, Sn|∂Ω = 0}. It thus follows that the appropriate space is

K = {
S ∈ L

2
s (Ω): CURL CURL S = 0 and div S = 0 in Ω, Sn|∂Ω = 0

}
.

As noted above, one has K = {0} in the simply-connected case.
In order to obtain such a characterization, we need to specify the geometry of Ω , as in [2]. We denote by Γq the

connected components of ∂Ω , q = 0, . . . ,Q. We assume that the domain Ω can be reduced to a simply-connected
domain Ω∗ by means of a finite number N of regular, non-intersecting, and oriented, cuts Cα , α = 1, . . . ,N , such
that the boundary of each cut Cα is contained in ∂Ω . We also assume that the cuts are such that the simply-connected
domain Ω∗ = Ω \ ⋃N

α=1 Cα verifies the cone condition. Hence the usual Sobolev properties are satisfied [1,6].
Following an idea of Volterra [10], we introduce the following space of Volterra’s dislocations:

V = {
v ∈ H1(Ω∗): [[v]]Cα

is an infinitesimal rigid displacement, α = 1, . . . ,N
}
, (1)

where [[v]]Cα
is the jump across the cut Cα . We recall that infinitesimal rigid displacements are of the form aα(v) +

bα(v) ∧ idΩ where aα(v) = aα
i (v)ei and bα(v) ∧ idΩ = bα

i (v)Pi , with Pi = −εijkxkej .
We remark that, given v ∈ V , then by definition ∇sv ∈ L2

s (Ω
∗). Since meas(Ω) = meas(Ω∗), L2

s (Ω
∗) is isomor-

phic to L2
s (Ω). Hence one can associate with ∇sv ∈ L2

s (Ω
∗) its extension ∇̃sv ∈ L2

s (Ω) in a canonical way.

Proposition 2.1. For every α = 1, . . . ,N and i = 1,2,3, there exist uα
i ∈ V and rα

i ∈ V such that:∫
Ω∗

∇suα
i : ∇sv dΩ − aα

i (v) = 0 for all v ∈ V;
∫

Ω∗
∇srα

i : ∇sv dΩ − bα
i (v) = 0 for all v ∈ V . (2)

Moreover, the vector fields uα
i and rα

i are uniquely determined modulo a global infinitesimal rigid displacement on Ω .

One notices that, according to (2), the 6N extensions (∇̃suα
i )α,i and (∇̃srα

i )α,i are linearly independent in L2
s (Ω).

Theorem 2.1. The extensions (∇̃suα
i )α,i and (∇̃srα

i )α,i belong to the space K.

Proof. Since D(Ω) ⊂ V it follows from (2) that, in the distribution sense,

div
(∇̃suα

i

) = 0 in Ω. (3)

Taking v ∈ H1(Ω) ⊂ V , one then finds that:(∇̃suα
i

)
n|∂Ω = 0 in H−1/2(∂Ω). (4)

Hence we conclude that ∇̃suα
i belongs to Σad(Ω). We only have to prove that, for all S ∈ Ds(Ω), one has〈

CURL CURL
(∇̃suα

i

)
,S

〉 = 0, (5)

where 〈· , ·〉 denotes the duality pairing between D′
s(Ω) and Ds(Ω). This result is a consequence of the relation:
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〈
CURL CURL

(∇̃suα
i

)
,S

〉 = ∫
Ω

∇̃suα
i : CURL CURL S dΩ =

∫
Ω∗

∇suα
i : CURL CURL S dΩ

=
∫

∂Ω∗
uα

i · (CURL CURL S)n dΓ =
∑
α

∫
Cα

[[uα
i ]] · (CURL CURL S)n dC

=
∑
α

∫
Cα

(
aα(uα

i ) + bα(uα
i ) ∧ idΩ

) · (CURL CURL S)n dC = 0.

The last equality follows from a localization argument around each cut. This allows one to consider each term
separately, and one can perform the standard integration by parts. This expression vanishes since

div(CURL CURL S) = 0 and ∇s

(
aα(uα

i ) + bα(uα
i ) ∧ idΩ

) = 0.

The same proof holds for ∇̃srα
i . �

We can now state the announced characterization, at least for a specific class of cuts:

Theorem 2.2. Assume that all the cuts Cα are planar. Then the space K is spanned by the matrix fields ∇̃suα
i and ∇̃srα

i ,
α = 1, . . . ,N , i = 1,2,3.

Proof. Given W ∈ K, let Z be defined by:

Z = W −
N∑

α=1

{〈Wn, ei〉Cα
∇̃suα

i

} −
N∑

α=1

{〈Wn,Pi〉Cα
∇̃srα

i

}
,

where 〈· , ·〉Cα
denotes the duality pairing between H−1/2(Cα) and H1/2(Cα). The assumption on W implies that

CURL CURL(Z|Ω∗) = 0. Because Ω∗ is simply-connected, there exists û ∈ H1(Ω∗) such that Z|Ω∗ = ∇s û
(see [5,8]). Using Green’s formula in Ω∗ and Eqs. (2), one can prove that

∫
Ω∗ ∇s û : ∇sv dΩ = 0 for all v ∈ V .

When the cuts are planar, one can prove directly, using integration by parts on each cut Cα , that [[û]]Cα
is actually an

infinitesimal rigid displacement; hence û belongs to V . It follows that Z|Ω∗ = 0 and so Z = 0. �
Since the matrix fields (∇̃suα

i )α,i and (∇̃srα
i )α,i are linearly independent in L2

s (Ω), we also have:

Corollary 2.1. Assume that all the cuts Cα are planar. Then the space K is of dimension 6N .

Note that these results could be integrated in the definition of the de Rham complex for symmetric matrices, as
in [4] for elasticity and [9] for magnetostatics.

Corollary 2.2. Assume that all the cuts Cα are planar. Then Σad(Ω) = K
⊥⊕ X with

X = {
S ∈ Σad(Ω): 〈Sn, ei〉Cα

= 0, 〈Sn,Pi〉Cα
= 0, α = 1, . . . ,N, i = 1,2,3

}
.

Moreover, the definition of the space X is independent of the way the cuts are defined.

Using the above results, we generalize the second statement of Beltrami’s completeness theorem given in [8]
(Theorem 2.2(ii)), which is correct only in a simply-connected domain, to the case of a not simply-connected domain:

Theorem 2.3. Assume that all the cuts Cα are planar. Then CURL CURL(H2
0,s (Ω)) = X.

Finally, using the first statement of Beltrami’s completeness theorem ([8] Theorem 2.2(i)), one can prove the
following result:
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Theorem 2.4. We have L2
s (Ω) = CURL CURL(H2

s (Ω))
⊥⊕ Y, with

Y = {
S ∈ L

2
s (Ω): S = ∇su, u ∈ H1(Ω), u|Γq = aq + bq ∧ idΩ, q = 0, . . . ,Q

}
.
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