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Abstract. This paper is devoted to the solution of the time-dependent
Vlasov-Maxwell equations in singular geometries, i.e. when the boundary
includes reentrant corners or edges. Indeed, computing the electromag-
netic fields in this case is a challenge per se, as these geometrical singu-
larities generate very strong solutions in their neighborhood. Moreover,
they have also an influence over the solution of the Vlasov equation,
through the coupling. We propose here a method to solve this problem,
illustrated by numerical examples.

1 Introduction

The numerical simulation of charged particles beams or plasma physics phenom-
ena requires methods of solution for the time-dependent coupled Vlasov-Maxwell
system. Within this framework, we developed a numerical method (see [1]), with
continuous approximations of the electromagnetic field, which is recommended
in order to reduce spurious oscillations. In addition, the time-stepping numerical
scheme, which is explicit by construction, can be solved very efficiently. Finally,
the conditions on the divergence of the fields are considered as constraints, and
are dualized, using a Lagrange multiplier, which yields a saddle-point variational
formulation.

In practical examples, the boundary of the computational domain includes
reentrant corners and/or edges (called geometrical singularities) that generate
strong fields. Hence, they require a careful computation of the electromagnetic
field in their neighborhood.

We developed a method (see [2]), the so-called Singular Complement Method
(SCM hereafter), which consists in splitting the space of solutions into a two-
term sum. The first subspace is made of regular fields, and coincides with the
whole space of solutions, provided that the domain is either convex or regular.
So, one can compute the regular part of the solution with the help of an ad hoc
– classical – method [1]. The second one is called the subspace of singular fields,
and is computed with the help of specifically designed methods: they originate
from relations between the electromagnetic singularities and the singularities of
the Laplace operator.
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As a first attempt, the Singular Complement Method was constructed in a
divergence-free framework (cf. [2]). When the divergence of the electric field no
longer vanishes, div E = f(t), with f �= 0, a simple solution is to substract a
gradient, to reach the divergence-free field

Ẽ = E − gradφ.

Unfortunately, to determine φ, one has to solve the time-dependent (via the
data) problem

−Δφ = f(t) ,

which slows down drastically the numerical implementation.
To alleviate this drawback, we studied in detail different splittings of the elec-

tromagnetic space, which could be used for the SCM (cf. [3]). In addition to the
divergence-free splittings, we propose new splittings, direct and possibly orthog-
onal, with curl-free singular fields, or with singular fields with L2 divergence,
etc.

As an important application – actually, the origin of this study – we present
the computation of strong electromagnetic fields, via the numerical solution to
the coupled, non linear, Vlasov-Maxwell system of equations. In Section 2, we
recall Vlasov-Maxwell equations, and describe the SCM well-suited to this frame-
work. Section 3 is devoted to the numerical algorithms. Numerical experiments
of the coupled Vlasov-Maxwell are presented in Section 4.

2 Vlasov-Maxwell Equations

Let Ω be a bounded, open, polyhedral subset of R
3, and Γ its boundary. We

denote by n the unit outward normal to Γ . The Vlasov equation models the
transport of charged particles, under the influence of an electromagnetic field.
The Vlasov equation reads

∂f

∂t
+ v · ∇xf +

F
m

· ∇vf = 0 . (1)

Above, the unknown f is the distribution function of the particles, f(x,v, t), v
stands for the velocities of the particles, m is the mass of a particle, and

F = e(E + v × B) (2)

is the the well-known Lorentz force. The electric and magnetic fields E and B
are solution of the Maxwell equations in vacuum

∂E
∂t

− c2curl B = − 1
ε0

J , (3)

∂B
∂t

+ curl E = 0, (4)

div E =
ρ

ε0
, (5)

div B = 0, (6)
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where c, ε0 and μ0 are respectively the light velocity, the electric and magnetic
constants (ε0μ0c

2 = 1). The charge and current densities ρ and J have to verify
the charge conservation equation

∂ρ

∂t
+ div J = 0. (7)

Let us assume for simplicity that the boundary Γ is a perfect conductor, so we
have E × n = 0 and B · n = 0 on Γ . These equations are supplemented with
appropriate initial conditions. Remark that the coupling occurs on the one hand,
by the right-hand sides of Maxwell equations, ρ and J , which are computed from
the solution to the Vlasov equation f(x,v, t), thanks to the relations

ρ =
∫
v

f dv, J =
∫
v

f v dv ; (8)

on the other hand, the electromagnetic field (E , B) determines the forces that
act on the particles via the Lorentz force F.

Geometrical singularities have no effect per se on the regularity of the solution
to the Vlasov equation. Therefore, we resort to a particle method [4]: it consists
in approximating the distribution function f(x,v, t) by a linear combination of
Dirac masses in the phase space (x,v)

f(x,v, t) �
∑

k

wk δ(x − xk(t))δ(v − vk(t)), (9)

where each term of the sum can be identified with a macro-particle, characterized
by its weight wk, its position xk and its velocity vk. This distribution function
is a solution of the Vlasov equation (1) if and only if (xk,vk) is a solution of the
differential system:

dxk

dt
= vk , (10)

dvk

dt
= F(xk,vk) , (11)

which describes the time evolution of a macro-particle k, submitted to the elec-
tromagnetic force F.

The system (10-11) can be numerically solved by an explicit time discretiza-
tion algorithm. We used a leapfrog scheme which is well-adapted in this case.
Given a constant time step Δt, the particles positions are defined at time tn =
nΔt and the particle velocities are computed at time tn+1/2 = (n + 1/2)Δt. We
refer the reader to [5] for more details. It is a classical approach in Particle In
Cell (PIC) approach.

Even if geometrical singularities have no effect on the regularity of the solution
to the Vlasov equation, they have an influence over f , through the coupling,
i.e through the force F. Hence, the electromagnetic field must be computed
accurately. To this purpose, the SCM was introduced in [2], first for divergence-
free problems.
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Let us present here a way to generalize this approach to Vlasov-Maxwell
problems. As we are interested in non divergence-free solutions, we will only
present the electric formulation. Details on the magnetic counterpart can be
found in [6]. Let us recall the definitions of the following spaces

H(curl , Ω) = {u ∈ L2(Ω), curl u ∈ L2(Ω)}
H(div , Ω) = {u ∈ L2(Ω), div u ∈ L2(Ω)}

H1(Ω) = {u ∈ L2(Ω),gradu ∈ L2(Ω)} .

We define the space of electric fields E , called X,

X = {x ∈ H(curl , Ω) ∩ H(div , Ω) : x × n|Γ = 0} .

When the domain is convex, the spaces X is regular. That is not the case anymore
in a singular domain (see for instance [7]). Hence, one introduces the regular
subspace for electric fields (indexed with R)

XR = X ∩ H1(Ω) , (12)

which is actually closed in X (cf. [6]), so that one is able to consider its orthog-
onal, and then define a two-part, direct, and orthogonal sum of the space. The
orthogonal subspace is called singular subspacs (indexed with S). One can write

X = XR

⊥X⊕ XS (13)

Thus, one can split an element u of the space X into an orthogonal sum of a
regular part and of a singular part: u = uR + uS . We have now to characterize
the singular electric fields. Following [6], elements xS ∈ XS satisfy

ΔΔΔxS = 0 in Ω , (14)
xS×n|Γ = 0 . (15)

3 Numerical Algorithms

The numerical method consists in first computing numerically the basis of the
singular subspace. Then we solve the problem by coupling a classical method (to
compute the regular part of the solution) to the linear system, which allows to
compute the singular part of the solution.

To compute xS ∈ XS , we introduce its divergence- and curl-free parts vS and
lS, which verify the following Helmholtz decomposition

xS = vS + lS . (16)

We also introduce sN and sP , the non-vanishing (singular) solutions of

ΔsN = 0, ΔsP = 0 in Ω, (17)
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respectively with Neumann and Dirichlet homogeneous boundary condition. As-
sume that sN and sP are known, then one can use the singular mappings (see
[6]), to find φS and ψS such that

−ΔφS = sN , −ΔψS = sP in Ω, (18)

still with Neumann and Dirichlet homogeneous boundary condition. Finally, one
obtains the singular basis functions xS of XS by the aid of the relations

vS = curlφS , lS = grad ψS , (19)

together with relation (16). Hence, the keypoint is to compute sN or sP . To this
purpose, there exists several methods ([2], [8], etc.). We recall here briefly the
method we choose, the Principal Part Method (see [9] for details). Consider, for
simplicity reasons, a domain with one singularity. The Principal Part Method
consists in splitting sN in a regular part s̃N (which belongs to H1(Ω)) and a
known singular part sP

N

sN = sP
N + s̃N .

Above, sP
N belongs to L2(Ω) but not to H1(Ω), and verifies ΔsP

N = 0. One thus
computes, for instance by a P 1 finite element method, s̃N by solving

Δs̃N = 0 in Ω,
∂s̃N

∂ννν
= −∂sP

N

∂ννν
on Γ, (20)

avoiding thus mesh rafinement techniques.
One still uses singular mappings [6] to find the singular field φS ∈ H1(Ω) ∩

L2
0(Ω) such that

−ΔφS = sN in Ω,
∂φS

∂ννν
= 0 on Γ .

Again, one can split this field in a regular part φ̃S (which belongs to H2(Ω))
and a singular part φP

S

φS = φ̃S + CφφP
S ,

where Cφ is a constant to be determined. The principal parts φP
S is harmonic

and does not belong to H2(Ω). Its analytic expression is known. The regular
part φ̃S can be computed easily, by solving a standard variational formulation.
The singular function sP and the singular field ψS are computed in the same
way.

Then, using a final time the singular mappings, one can compute the singular
electromagnetic basis functions. To determine the basis vS (resp. lS), one simply
takes the curl of φS (resp. the gradient of ψS)

vS = curl φ̃S + CφcurlφP
S , (21)

lS = ∇ψ̃S + Cψ∇ψP
S , (22)
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and xS is easily obtained with (16). The singular constant Cφ can be computed
by using a formula derived from integration by parts (cf. [9]). As an example,
one gets

Cφ =
‖sN‖2∫

Γ

sN
∂φP

S

∂ννν
dΓ

.

Now, we have to modify a classical method by handling the decomposition (13).
We first write Ampère and Faraday’s laws as two second-order in time equations.
To enforce the divergence constraints on the electromagnetic field, we introduce
two Lagrange multipliers (say p for the electric field), to dualize Coulomb’s
and absence of free magnetic monopole’s laws. In this way, one builds a mixed
variational formulation (VF) of Maxwell equations. For the electric field (the
case of the magnetic field is handled similarly), this formulation reads
Find (E , p) ∈ X × L2(Ω) such that

d2

dt2

∫
Ω

E · F dx + c2
∫

Ω

curl E · curl F dx + c2
∫

Ω

div E div F dx +
∫

Ω

p div E dx

= − 1
ε0

d

dt

∫
Ω

J · F dx +
c2

ε0

∫
Ω

ρ div F dx , ∀F ∈ X, (23)
∫

Ω

div E q dx =
1
ε0

∫
Ω

ρ q dx ∀q ∈ L2(Ω) . (24)

To include the SCM in this formulation, the electric field E is split like E(t) =
ER(t)+ ES(t). The same splitting is used for the test functions of the variational
formulation, which is discretized in time, with the help of the leap-frog scheme.
From a practical point of view, we choose the Taylor-Hood, P2-iso-P1 Finite
Element. In addition to being well-suited for discretizing saddle-point problems,
it allows to build diagonal mass matrices, when suitable quadrature formulas are
used. Thus, the solution to the linear system, which involves the mass matrix,
is straightforward [1].

Then, one can write down the discrete singular part as a finite sum. Assuming
again that there is one singularity, and let (xS) be a given basis of the discrete
singular space. One has ES(t) = κ(t)xS , where κ is continous time-dependent
function. This results in a fully discretized VF:

MΩEn+1
R + MRSκn+1 + LΩpn+1 = Fn , (25)

M
T
RSEn+1

R + MSκn+1 + LSpn+1 = Gn , (26)

L
T
ΩEn+1

R + L
T
S κn+1 = Hn . (27)

Above MΩ denotes the usual mass matrix, and LΩ corresponds to the divergence
term involving xh

R and the discrete Lagrange multiplier ph(t). Then, MRS is a
rectangular matrix, which is obtained by taking L2 scalar products between reg-
ular and singular basis functions, MS is the ”singular” mass matrix, and finally,
LS corresponds to the divergence term involving xS and ph(t). To solve this sys-
tem, one first removes the unknown κn+1, so that the unknowns (En+1

R ,pn+1)
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can be obtained with the help of a Uzawa-type algorithm. Finally, one concludes
the time-stepping scheme by computing κn+1 with the help of (26).
For error estimates for the singular functions sN , sP and φS , ψS , we refer the
reader to [10] . As far as the electromagnetic sigular fields are concerned, error
estimates are provided in [3]. Let us briefly recall that, using the electric field
splitting

E(t) = ER(t) + ES(t) = ER(t) + κ(t)xS ,

one can prove, for a two-dimensional domain [11]

|κ − κh| ≤ Ch2α, ||E − Eh||X ≤ Ch2α−1−ε, ||E − Eh||2L ≤ Ch4α−2−ε,

where π/α denotes here the reentrant angle of the non-convex domain Ω.

4 Numerical Experiments

We consider an L-shaped domain Ω, and assume its boundary is entirely per-
fectly conducting. Initial conditions are uniformly set to zero. A bunch of par-
ticles – electrons – is emitted from the top-most part of the boundary, with an
initial velocity equal to v = vyey, with vy = −2.108 ms−1. The electromagnetic
field is therefore a self-consistent field. Particles are absorbed at the down-most
part of the boundary.

Fig. 1. electric field with (left) and without (right) SCM

As shown Figure 1 the electric field – Ex component – obtained after 500 time-
steps is very different, when it is computed with and without the SCM. Recall
that the electromagnetic field is the result of the motion of the charged particles
only. Therefore, differences are entirely due to the coupling between the Vlasov
and Maxwell equations.

5 Conclusion

In this paper, we proposed a new scheme for the time-dependent coupled Vlasov-
Maxwell system of equations, in domains with singular geometries. The numer-
ical experiments we have shown and their performance, make the study of such
physical configurations possible.
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