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Summary. Maxwell equations are easily resolved when the computational domain
is convex or with a smooth boundary, but if on the contrary it includes geometri-
cal singularities, the electromagnetic field is locally unbounded and globally hard
to compute. The challenge is to find out numerical methods which can capture the
EM field accurately. Numerically speaking, it is advised, while solving the coupled
Maxwell-Vlasov system, to compute a continuous approximation of the field. How-
ever, if the domain contains geometrical singularities, continuous finite elements span
a strict subset of all possible fields, which is made of the H1-regular fields. In order to
recover the total field, one can use additional ansatz functions or introduce a weight.
The first method, known as the singular complement method [4, 3, 14, 2, 9, 15, 16]
works well in 2D and 2D 1

2
geometries and the second method, known as the weight

regularization method [13] works in 2D and 3D. In this contribution, we exam-
ine some recent developments of the latter method to solve instationary Maxwell
equations and we provide numerical results.

1 Introduction and notations

Let Ω ⊂ R3 be a bounded polyhedron with a Lipschitz boundary ∂Ω. In order
to simplify the presentation, we suppose that Ω is simply connected and ∂Ω
is connected. Let n be the unit outward normal to ∂Ω. The boundary ∂Ω may
contain reentrant corners and/or edges, which are called geometrical singular-
ities later on. Let c, ε0 and µ0 be respectively the light velocity, the dielectric
permittivity and the magnetic permeability (c ≈ 3 .108 m.s-1, ε0µ0c

2 = 1).
Maxwell equations in vacuum read:

∂tE − c2
curlB = −J / ε0 , (1)

∂tB + curlE = 0 , (2)

divE = ρ / ε0 , (3)

divB = 0 . (4)
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Above, E and B are the electric field and magnetic induction respectively, ρ
and J are the charge and current densities which satisfy the charge conser-
vation equation:

divJ + ∂tρ = 0 . (5)

These quantities depend on the space variable x and on the time variable t.
The boundary is made up of two parts: ∂Ω = Γ C ∪ Γ A, where ΓC is a
perfectly conducting boundary, and ΓA an artificial boundary. Note that we
do not require that ∂ΓA ∩ ∂ΓC = ∅. On ΓC , we have:

E × n = 0 on ΓC , B · n = 0 on ΓC . (6)

Since the choice of the location of ΓA is free, it is located so that it does not cut
nor contains any geometrical singularity [8]. Therefore the tangential trace of E
and the normal trace of B are regular, and in addition the tangential trace E×n

and the normal trace B·n vanish near the geometrical singularities. We further
split the artificial boundary ΓA into Γ i

A and Γ a
A. On Γ i

A, we model incoming
plane waves, whereas we impose on Γ a

A an absorbing boundary condition.
Both can be modelled [1] as a Silver-Müller boundary condition on ΓA:

(cB + E × n) × n = cb× n on ΓA, where b is given. (7)

In order to solve equations (1-4), with boundary conditions (6) and (7), one
needs to define initial conditions (for instance at time t = 0):

E(·, 0) = E0 , B(·, 0) = B0, (8)

where the couple (E0,B0) depends only on the variable x.
If we derive (1) in time and inject curl of (2) in it, we get a vector wavelike
equation for E . We consider then the following equivalent problem (PE): Find
E such that

∂2
t E + c2

curlcurlE = −∂tJ /ε0, in Ω , t ∈]0, T [, (9)

divE = ρ/ε0, in Ω , t ∈]0, T [ , (10)

E × n|ΓC
= 0, and (cB + E × n) × n|ΓA

= cb × n|ΓA
, t ∈]0, T [ , (11)

E(., 0) = E0, in Ω, (12)

∂tE(., 0) = E1 := c2(curlB0 − µ0 J (., 0)), in Ω. (13)

The same procedure can be carried out on the magnetic field.

In addition to the usual Lebesgue and Sobolev spaces, the building of the ad
hoc variational formulations requires to introduce some non-standard func-
tional spaces [13, 8]. We suppose that Ω has Nre reentrant edges of dihedral
angles (Θe = π/αe)e=1,...,Nre

, with 1/2 < αe < 1. Let re denote the orthogo-
nal distance to the reentrant edge e, and r = min

e=1,...,Nre

re.
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Let L2(D) be the usual Lebesgue space of square integrable functions over D,
D ∈ {Ω, ∂Ω}, and L2

γ(Ω) be the following weighted space, with ||.||0,γ norm:

L2
γ(Ω) = {v ∈ D′(Ω) |

∫

Ω

w(r) v2 dΩ < ∞} , ||v||20,γ =

∫

ω

w(r) v2 dΩ.

Above, the weight w is a function of the distance to the reentrant edges,
namely w(r) = min(r2γ , 1), with for instance γ = 0.99 (one may choose γ ∈
[0, 1]). Notice that this definition is slightly different than the general one
given in [13]. H1(Ω) will denote the space of L2(Ω) functions with gradients
in L2(Ω)3. We now define variational spaces for vector fields, together with
the associated norms:

H(curl, Ω) := {F ∈ L2(Ω)3 | curlF ∈ L2(Ω)3}, ||F||20,curl
= || F ||20 + ||curlF||20 ,

H(div(γ), Ω) := {F ∈ L2(Ω)3 | divF ∈ L2
(γ)(Ω)}, ||F||20,div(γ)

= || F ||20 + ||divF||20(,γ) .

The index (γ) means that one can choose to use weights or not.
Under suitable data assumptions, E ∈ XA

E(,γ), with:

HA(curl, Ω) := {F ∈ H(curl, Ω) | F × n|∂Ω ∈ L2
t (∂Ω) , F × n|ΓC

= 0},
XA

E(,γ) := HA(curl, Ω) ∩H(div(γ), Ω),

where L2
t (∂Ω) := {u ∈ L2(∂Ω)3 |u · n = 0 a. e.}. When ΓC = ∂Ω, we write

simply X 0
E(,γ).

According to Costabel [12], and to Costabel-Dauge [13], the graph norm and
the semi-norm: ||F||2

X 0
E(,γ)

= ||curlF||20 + ||divF||20(,γ) are equivalent on X 0
E(,γ).

Note that, when there is a weight, this is true only if γ < 1. Moreover, ∃γmin ∈
]0, 1[ such that for all γ ∈]γmin, 1[, X 0

E,γ ∩ H1(Ω)3 is dense in X 0
E,γ .

2 Variational formulations and discretization

Starting from the second order system of eqs. (9-13), we obtain a series of
variational formulations, retracing the steps below:
- Multiply eq. (9) by F ∈ HA(curl, Ω), and integrate by parts over Ω. We
get the variational formulation (VF): Find E(t) ∈ HA(curl, Ω) such that
∀F ∈ HA(curl, Ω), ∀t,

(E ′′,F)0 + c2(curlE , curlF)0 + c

∫

ΓA

(E ′ × n).(F × n) dΓ

= −(J ′/ε0,F)0 +

∫

ΓA

(cb′ × n).F dΓ , (14)

- Add c2(divE , divF)0(,γ) on the LHS and c2(ρ/ε0, divF)0(,γ) on the RHS to
get the augmented VF (AVF): Find E(t) ∈ XA

E(,γ) such that

∀F ∈ XA
E(,γ), ∀t,
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(E ′′,F)0 + c2(E ,F)X 0
E(,γ)

+ c

∫

ΓA

(E ′ × n).(F × n) dΓ

= −(J ′/ε0,F)0 + c2(ρ/ε0, divF)0(,γ) +

∫

ΓA

(cb′ × n).F dΓ , (15)

- Add (p, divF)0(,γ) on the LHS and consider a constraint on the divergence
of E (cf. (17)). If p ∈ L2

(γ)(Ω) is the Lagrange multiplier, we reach the mixed

AVF (MAVF): Find (E(t), p(t)) ∈ XA
E(,γ) × L2

(γ)(Ω) such that

∀F ∈ XA
E(,γ), ∀t,

(E ′′,F)0 + c2(E ,F)X 0
E(,γ)

+ (p, divF)0(,γ) + c

∫

ΓA

(E ′ × n).(F × n) dΓ

= −(J ′/ε0,F)0 + c2(ρ/ε0, divF)0(,γ) +

∫

ΓA

(cb′ × n).F dΓ , (16)

and ∀q ∈ L2
(γ)(Ω), ∀t,

(divE , q)0(,γ) = (ρ/ε0, q)0(,γ) . (17)

The constraint (17) is added to reinforce Gauss’ law (3) and also to avoid
numerical instabilities when the discrete charge conservation equation is not
satisfied while solving the Maxwell-Vlasov system [5].

Theorem 1. Suppose that ∂tJ ∈ L2(0, T ; L2(Ω)3), ∂tρ ∈ L2(0, T ; L2
(γ)(Ω)), ρ

and J satisfying (5). Suppose that (E0, E1) ∈ XA
E(,γ)×L2(Ω)3. Then, equations

(16-17) are equivalent to problem (PE) and have a unique solution (E , p) such
that (E , ∂tE) ∈ C0(0, T ;XA

E(,γ)) × C0(0, T ; L2(Ω)3) and p = 0.

The proof can be found in [16]. Idem for the magnetic field.

To build a discretized (M)AVF, we use a leap-frog scheme in time, and ei-
ther the continuous Pk Lagrange FE (no Lagrange mutliplier) or the Pk+1-
Pk continuous Taylor-Hood FE in space. We choose an explicit scheme. Let
∆t be the time step and tn = n∆t, n ∈ N. u′′(., tn+1) is approximated by:
u′′(., tn+1) ≈ [u(., tn+1)−2u(., tn)+u(., tn−1)]/∆t2. Recall that for an explicit
scheme, one must satisfy a CFL-like condition. For the P1 FE, we must have:
∆t ≤ 0.5 c minl hl, where hl is the diameter of the lth tetrahedron. Let Nk

(resp. Nk+1) be the number of Pk (resp. Pk+1) degrees of freedom.
Let En ∈ (R3)Nk+1 be the discretized electric field and pn ∈ RNk be the dis-
cretized Lagrange multiplier at time tn. Let MΩ ∈ (R3×3)Nk+1×Nk+1 be the

mass matrix, and M
‖
ΓA

∈ (R3×3)Nk+1×Nk+1 be the boundary mass matrix on

ΓA. Let C ∈ (R1×3)Nk×Nk+1 be the constraint matrix. At a given time tn+1,
n ∈ N, we have to solve:

(MΩ + c∆tM
‖
ΓA

)En+1 + C
T pn+1 = RHSn+1 ,
CEn+1 = Gn+1 .

(18)
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Let M = MΩ + c∆tM
‖
ΓA

. The algorithm is the following:

Solve first MEn+1
0 = RHSn+1, then CM−1CT pn+1 = CEn+1

0 − Gn+1, and
finally MEn+1 = MEn+1

0 − CT pn+1. The Lagrange multiplier pn+1 may be
computed with the Uzawa algorithm. Note that when there is no coupling with
Vlasov equation, pn+1 remains small at all times, so that there is actually no
need to compute it at all times. To speed up the resolution, one can lump M

with P̃1 or P̃2 FE [11]. Both P̃k FE preserve accuracy, at the cost of increasing

the total number of degrees of freedom for the P̃2 FE.

3 Numerical results and conclusion

The numerical results are given for the following model problem (fig. 1):
Ω has a single reentrant edge of dihedral angle 2π/3, so that α = 2/3.
A current bar crosses the domain, with J = 10−5ω sin(πz/L) cos(ωt)z and
ρ = 10−5(π/L) cos(πz/L) sin(ωt), for ω = 2.5 GHz. There is no incoming
wave. The spatial wavelength associated to ω is of order 0.75 m, and the time
period is of order 2.5 ns. It is clear that the dimensions of our domain are not
realistic, however we made this choice in order to visualize oscillations. We
report the results of computations made with the P̃1 FE (discretization of the
AVF), and with 685 000 tetrahedra. We encoded the problem in Fortran 77.

Reentrant edge.

J

y

x

z

(0, 6, 0)

(6, 3, 0)

(9, 6, 0)

(9, 3, 0)

(0, 0, 0)
(6, 0, 0)

L = 4 m

ΓA: Artificial boundary.

Current.

Fig. 1. The model problem.

On figures 2 and 3 the space evolution of the x and y-components of the elec-
tric field are represented in the plane z = 2.5 m, at times T1 = 1 ns, T2 = 8 ns,
T3 = 15 ns, T4 = 20 ns. We can see that an electric wave is created by the
current, that it propagates into the cavity with wavelength ≈ 0.75 m, and is
reflected by the conductor as expected. At T3, we observe a growing peak of
intensity close to the reentrant corner.
On figure 4, we represented the space evolution of the z-component in the
plane z = 2.5 m, at times Ti, i = 1, 4. Again, we observe the propagation
of the wave with wavelength ≈ 0.75 m, and the reflections. Note that this
component has a regular behaviour, which is due to the fact that the only
geometrical singularity is along the z-axis [7, 9]. Moreover, it takes smaller



6 Patrick Ciarlet, Jr and Erell Jamelot

Fig. 2. E
eP1
x component at times Ti, i = 1 to 4, in plane z = 2, 5 m.

Fig. 3. E
eP1
y component at times Ti, i = 1 to 4, in plane z = 2, 5 m.

(absolute) values than the x and y-components.
On figures 2, 3 and 4, one can see spurious reflections on ΓA, due to the fact
that the Silver-Müller boundary condition is simply of first order: only plane
waves with normal incidence are absorbed, which is not our case. In addition,
the spurious reflections appear more important for Ex than for Ey, since its
values are more intense horizontally.
On figure 5, we present the time evolution of the x-component of the elec-
tric field at points M1 = (1, 1, 2), M2 = (5.5, 2.5, 2), M3 = (1, 1, 2), M4 =
(8, 5.5, 2). It remains equal to zero until the electric wave reaches the point
under consideration. Then the field oscillates with a period ≈ 2.5 ns, as ex-
pected.
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Fig. 4. E
eP1
z component at times Ti, i = 1 to 4, in plane z = 2, 5 m.
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Fig. 5. E
eP1
x component at points Mi, i = 1 to 4.

To the authors’ knowledge, this is the first time a 3D singular electric
field is computed with continuous Lagrange FE. According to M. Dauge (pri-
vate communication), the WRM can also be used to compute the magnetic
field, with similar assumptions on γ. In order to avoid spurious reflections, we
suggest to use perfectly matched layers [6]. For the resolution of 2D Maxwell
equations with continuous Galerkin finite elements, we refer the reader to [10].
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