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Abstract

This paper is devoted to the solution of the instationary Maxwell equations with charges. The geometry of the domain can be singular,
in the sense that its boundary can include reentrant corners or edges. The difficulties arise from the fact that those geometrical singular-
ities generate, in their neighborhood, strong electromagnetic fields. The time-dependency of the divergence of the electric field, is
addressed. To tackle this problem, some new theoretical and practical results are presented, on curl-free singular fields, and on singular
fields with L2 (non-vanishing) divergence. The method, which allows to compute the instationary electromagnetic field, is based on a
splitting of the spaces of solutions into a two-term direct sum. First, the subspace of regular fields: it coincides with the whole space
of solutions, provided that the domain is either convex, or with a smooth boundary. Second, a singular subspace, defined and charac-
terized via the singularities of the Laplace operator. Several numerical examples are presented, to illustrate the mathematical framework.
This paper is the generalization of the singular complement method.
� 2006 Elsevier B.V. All rights reserved.
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0. Introduction

Many practical problems require the computation of
electromagnetic fields. They are usually based on Maxwell
equations. In a number of applications, such as plasma
physics or hyperfrequency devices, the right-hand sides of
those equations model charge and current densities, which
are also unknowns of the problem. These Maxwell right-
hand sides are computed by solving the Vlasov equation,
or one of its simplified models. Thus, the complete set of
unknowns – electromagnetic field, current and charge
densities – is the solution of the coupled Vlasov–Maxwell
equations.
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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Within this framework, we developed a numerical
method for solving the instationary Maxwell equations
(see [10]), with continuous approximations of the electro-
magnetic field. As a matter of fact, providing a continuous
approximation is recommended by Birdsall and Langdon
[14], in order to reduce spurious oscillations in the numerical
solution of the coupled Vlasov–Maxwell equations. In addi-
tion, the time-stepping numerical scheme, which is explicit
by construction, can be solved very efficiently. One does
not have to compute the solution of a linear system at each
time step: diagonal matrix-vector multiplications are suffi-
cient. Finally, in order to handle precisely the conditions
on the divergence of the fields, these are considered as con-
straints. They are dualized, using a Lagrange multiplier,
which yields a saddle-point variational formulation.

In practical examples, the boundary of the computa-
tional domain includes reentrant corners and/or edges.
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They are called geometrical singularities and, as far as elec-
tromagnetic fields are concerned, they generate strong
fields. Those singularities can be either active or passive.
Active, in the sense that they are included on purpose, to
generate strong fields. Passive, when they are the result of
exterior constraints, which can occur for instance in the
design of the device. In any case, the presence of these geo-
metrical singularities requires a careful computation of the
electromagnetic field in their neighborhood. Indeed, for an
instationary problem, the propagative nature of the solu-
tion magnifies the errors, including those generated near
the singularities.

Several approaches have been proposed in the literature,
for solving Maxwell equations in a domain with geometrical
singularities. To our knowledge, the first theoretical works
on this topic are those of Birman and Solomyak [15–17],
who studied the domain of the Maxwell operator, so that
it is self-adjoint in L2(X) (with X � R3). Then, and most
important for on own purposes, they proved a splitting of
the space of electromagnetic fields into a two-term simple

sum. First, the subspace of regular fields. Second, the sub-
space made of gradients of solutions to the Laplace problem.

During the 1990s, Costabel and Dauge [34,29–32]
provided new insight on the characterizations of the singu-
larities of the electromagnetic fields, called afterwards elec-
tromagnetic singularities. In addition, they proved density
results, and carried out a careful description of the Maxwell
operator in 2D and 3D. Recently [33], they proposed that the
electric field be fully taken into account – without any split-
ting – thanks to a technique which consists in introducing
suitable weights in the definition of functional spaces: it
allows to capture numerically strong electric fields.

We refer to the work of Bonnet-Ben Dhia et al. [18] and
Lohrengel [47], for solving the time-harmonic, divergence-
free Maxwell equations. They used a regularized formula-
tion, and proposed a numerical implementation relying
on a truncation function. But, in practice, this truncation
function generated a very slow numerical convergence, so
they introduced an alternative approach (cf. [43]), which
proved to be more efficient.

Finally, we mention comparisons of different existing
approaches for solving the 2D Maxwell equations in [42,45].

We developed a method, the so-called singular comple-

ment method (referred to as the SCM hereafter), which
consists in splitting the space of electric fields, X, into a
two-term, direct, possibly orthogonal sum. The first sub-
space, XR, is made of regular fields. The second one, XS,
is called the subspace of singular electric fields. The
subspace XR coincides with the whole space of solutions,
provided that the domain is either convex, or with a
smooth boundary. So, one can compute the regular part
of the solution with the help of an ad hoc – classical –
method [10]. The singular part is computed with the help
of specifically designed methods: they originate from
relations between the electromagnetic singularities and
the singularities of the Laplace operator. Note that the
same ideas carry over to the magnetic field.
The present paper can be viewed as a continuation of
this idea. We refer the interested reader to [9,8,2,7], dealing
with the 2D or 3D divergence-free Maxwell equations. We
also refer the reader to [23,46] for extensions of the SCM to
some 3D cases: in prismatic domains, or in domains invari-
ant by rotation.

When the divergence of the electric field no longer van-
ishes, divE ¼ f ðtÞ, with f 5 0, one can substract a gradient,
to reach the divergence-free field

eE ¼ E� grad/:

Still, to determine /, one has to solve the time-depen-
dent (via the data) problem

�D/ ¼ f ðtÞ;
which slows down drastically the numerical implementa-
tion. To alleviate this drawback, we study in detail different
splittings of the electromagnetic space, which could be used
for the SCM. Hence, we propose new splittings, direct and
possibly orthogonal, with curl-free singular fields, or with
singular fields with L2 divergence. The relations between
those different splittings allow to understand better the
structure of electromagnetic singularities. The main new
results can be summarized as follows:

• The introduction of new splittings, which are proven
to be equivalent, as far as the principal part of the sing-
ularities are concerned. It should be noted that those
splittings, although they yield comparable numerical
results, are not equally easy to implement. As a matter
of fact, for each splitting, the singular subspace is char-
acterized differently, which leads to (noticeable) differ-
ences in computing the regular and singular parts of
the field. Thus, the choice of the splitting will depend
mainly on the numerical implementation.

• The numerical algorithms for the computation of the
electromagnetic field in 3D domains. First, when the
geometrical singularities generate a finite dimensional
singular subspace. The chosen geometrical singularity
is called a sharp conical vertex (see [6] and references
therein). Second, we also describe how one can construct
algorithms to compute the field in 3D prismatic, or 3D
invariant by rotation, domains. In these domains, the
singular subspaces are usually infinite dimensional.

• As an important application – actually, the origin of this
study – we present the computation of strong electro-
magnetic fields, via the numerical solution to the cou-
pled, non-linear, Vlasov–Maxwell system of equations.

The paper is organized as follows. In Section 1, we recall
Maxwell equations, together with the functional frame-
work, which is then used to describe the singular comple-

ment method. We focus on regular/singular splittings, and
on mappings, which allow to characterize the singular elec-
tromagnetic fields with a non-vanishing divergence. Section
2 is devoted to the numerical algorithms. In particular, the
computation of singular basis functions is described,
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together with the discretization of the variational formula-
tions. Error estimates are provided in 2D. And finally, a
discussion of the 3D implementations is addressed. Numer-
ical experiments are presented in Section 3. First, the (non-)
influence of the different splittings is established numeri-
cally. Then, a numerical implementation of the coupled
Vlasov–Maxwell system is considered.

Instead of writing ‘‘in a convex domain, or in a domain
with a smooth boundary (of regularity at least C1,1)’’, we
simply write ‘‘in a convex domain’’. Correspondingly, ‘‘in
a non-convex domain’’ means ‘‘in a non-convex domain,
with a non-smooth boundary’’, that is in a domain with
geometrical singularities.
1. Theory

1.1. Instationary Maxwell equations

Let X be a bounded, open, polyhedral subset of R3. Let
C be its boundary, which we assume to be Lipschitz
continuous and connected. Then, denote by n the unit out-
ward normal to C. If we let c, e0 and l0 be respectively the
light velocity, the dielectric permittivity and the magnetic
permeability (e0l0c2 = 1), Maxwell equations in vacuum
read,

oE

ot
� c2curlB ¼ � 1

e0

J;

oB

ot
þ curlE ¼ 0;

divE ¼ q
e0

;

divB ¼ 0;

where E and H are the electric and magnetic fields, q and
J the charge and current densities. These quantities de-
pend on the space variable x and on the time variable t.
The charge conservation reads

oq
ot
þ divJ ¼ 0:

These equations are supplemented with appropriate
boundary conditions. For simplicity reasons, let us assume
first that the boundary C corresponds to the interface with
a perfectly conducting body. This results in the perfect
conducting boundary conditions

E� n ¼ 0 and B � n ¼ 0 on C:

In Section 1.4, the boundary C is split into two parts. A
perfect conducting boundary, and an artificial boundary,
on which a Silver–Müller absorbing boundary condition
is imposed. This allows to model either incoming plane
waves, or the absorption of outgoing waves. Finally, one
adds initial conditions, set at time t = 0,

Eð0Þ ¼ E0; Bð0Þ ¼ B0:
The electromagnetic field ðE0;B0Þ depends only on the
space variables, and it satisfies

divE0 ¼
qð0Þ
e0

; divB0 ¼ 0;

E0 � n ¼ 0 in C; B0 � n ¼ 0 in C:

It is also possible to write down Maxwell equations in 2D.
Assume that the problem is formally set in an infinite
cylinder X, and that the domain, the field and the data –
E;B;J; q;E0;B0 – are all independent of one of the three
space variables (x,y,z), let us say z. Then, one can consider
an equivalent problem, in a 2D section of X, perpendicular
to the axis Oz [3]. Let X? denote the 2D section, and let C?
be its boundary. Denote further by m the unit outward nor-
mal to C?, and by s the unit tangent vector such that (s,m) is
direct.

In R2, there exist two curl operators: the first one is sca-
lar and acts on vector fields, whereas the second one is vec-
tor and acts on scalar fields. We denote them respectively
by curl and curl?. The divergence and gradient are defined
classically.

For a 3D vector field U, let U? ¼ ðUx;UyÞ be the trans-
verse components. The above assumptions yield

curlU ¼
curl?Uz

curlU?

� �
and curlcurlU ¼

curl?curlU?
�DUz

� �
:

ð1Þ

Remark 1.1. We shall not consider invariance by rotation,
which corresponds to the axisymmetric case. Results are
somewhat similar, but the techniques of proof are very
different. We refer the reader to [5] and references therein.

In what follows, when we write results in 3D only, it is
understood that they carry out to 2D. When it is not the
case, we state both the 3D and 2D results.

1.2. The singular complement method

Let us define some functional spaces, which are used
throughout the paper. From the functional analysis point
of view, the electric and magnetic formulations are very
similar and present the same mathematical structure. As
we are interested in non-divergence-free solutions, espe-
cially in Vlasov–Maxwell equations, we only present the
electric formulation. Details on the magnetic counterpart
can be found in [36].

First, we introduce the space of electric fields E, called
X, and its divergence- or curl-free subspaces V and L,

X ¼ fx 2 Hðcurl;XÞ \Hðdiv;XÞ : x� njC ¼ 0g;
V ¼ fv 2 X; divv ¼ 0g; L ¼ fl 2 X; curl l ¼ 0g:

This definition of X assumes that the charge density q is
square integrable. Spaces of potentials are also useful, such
as the one which corresponds to the solutions to the
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Laplace problem with L2 right-hand side, and homoge-
neous Dirichlet boundary condition,

W ¼ fw 2 H 1
0ðXÞ; Dw 2 L2ðXÞg:

Above, H 1
0ðXÞ is the subspace of H1(X), the elements of

which have a vanishing trace.
All spaces are a priori equipped with the natural,

induced, norm, i.e. for X the norm of H(curl,X) \
H(div,X), for V the norm of H(curl;X), for L the norm
of H(div;X) etc.

Remark 1.2. In order to define precisely the traces on the
boundary, we refer the reader to [38].

With the help of Weber (cf. [52]) and Poincaré inequal-
ities, it is possible to define norms for those spaces, which
are actually equivalent to the natural norms. These equiv-
alent norms are obtained by removing the L2-part of
the natural norm. For instance, one can prove that the
mapping

u! ðkdivuk2
0 þ kcurluk2

0Þ
1=2

defines a norm on X, and furthermore that it is equivalent
to the norm of X

u! ðkuk2
0 þ kdivuk2

0 þ kcurl uk2
0Þ

1=2
:

It is denoted respectively by k Æ kX. One can proceed simi-
larly for the others spaces (cf. [36]). So, W is equipped with
the equivalent norm l! kDlk0, denoted by k Æ kW.

In what follows, unless otherwise stated, the functional
spaces are equipped with the equivalent norms. As far as
scalar products are concerned, we use the notation (Æ, Æ)0

for the usual one in L2(X) or L2(X), so that the scalar prod-
uct in X is (Æ, Æ)X = (curlÆ,curlÆ)0 + (divÆ,divÆ)0, and the scalar
product in W is (Æ, Æ)W = (DÆ,DÆ)0.

1.2.1. Helmholtz decompositions and mappings

The singular complement method is based on mappings,
which allow to link electromagnetic fields to:

• on the one hand, scalar or vector potentials, called pri-

mal fields;
• on the other hand, elements of the range of the Laplace

operator, called dual fields.

One uses first a Helmholtz decomposition, to split the
space of electromagnetic fields into two parts: a subspace
of divergence-free fields, and a subspace of curl-free fields.

Theorem 1.3. The following direct, and orthogonal,

Helmholtz decomposition holds:

X ¼ V �
?X

L:

Second, one defines one-to-one, and onto, mappings, to
link the electromagnetic subspaces to the primal or dual
spaces of the scalar or vector Laplace operator. We
summarize the results in the graphs below (see [36] for
details).
In general, results concerning the divergence operator
are valid in 2D and 3D. One has

As far as the curl operator is concerned, we refer the reader
to [9] for the 2D case. In 3D, the single curl operator is
linked to the vector Laplace operator by the relation
Du = � curlcurlu + $divu. So, the primal and dual fields
are vector fields in 3D. In order to characterize them, one
has to choose a gauge condition. This can be achieved by
introducing the functional spaces of primal fields

U ¼ f/ 2 Hðcurl;XÞ : div/ ¼ 0; D/ 2 L2ðXÞ;
/ � njC ¼ 0; ðcurl/Þ � njC ¼ 0g:

Since the gauge condition amounts to choosing divergence-
free primal fields, the vector Laplace operator reduces to
Du = �curlcurlu, for all primal fields u. The functional
space of dual fields is in this case

H0ðdiv0; XÞ ¼ fu 2 L2ðXÞ; div u ¼ 0; u � njC ¼ 0g:

One gets finally the graph

Now, one can rewrite the Helmholtz decompositions of
the space X to reach in 3D

X ¼ curlU �
?XrW:

With the help of these results, it is now possible to derive
splittings of the space of electromagnetic fields into a
two-part, direct, sum: a subspace of regular fields, and a
subspace of singular fields.

1.2.2. Regular/singular splittings

When the domain is convex, the space of electric fields
X, and its subspaces, are included in H1(X). Correspond-
ingly, the primal, scalar spaces W is included in H2(X),
and the primal, vector space U is included in

H1ðcurl;XÞ ¼ fu 2 H1ðXÞ; curl u 2 H1ðXÞg:

That is not the case anymore in a 2D, polygonal, non-
convex domain (see for instance [40]). Nevertheless, one
introduces the regular subspaces for electromagnetic fields
(indexed with R)

X ¼ X \H1ðXÞ; V ¼ V \H1ðXÞ; L ¼ L \H1ðXÞ:
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For the primal, scalar, fields, one proceeds similarly

WR ¼ W \ H 2ðXÞ:
Remark 1.4. In 3D, the situation is not so straightforward
for the primal, vector, fields, by considering the intersection
with the space H1(curl,X). As a matter of fact, one cannot
guarantee that the inverse image / 2 U of an element of
vR 2 VR belongs to H1(X). To address this difficulty, one
can nevertheless consider the regular subspace below:

UR ¼ f/R 2 U; curl/R 2 VRg:
Each regular subspace is actually closed in its space (proofs
can be found in [36]), so that one is able to consider the
orthogonal subspace, and then define a two-part, direct,
and orthogonal sum of the space. The orthogonal sub-
spaces are called singular subspaces (indexed with S). The
orthogonality condition is understood in the sense of the
scalar products of the equivalent norms. For the primal,
scalar, fields, one has

W ¼ WR �
?W

WS:

Whereas, for the electric field, one can write

X ¼ XR �
?X

XS; V ¼ VR �
?V

VS; L ¼ LR �
?L

LS:

The same property can be proven, for the spaces of dual
fields. The subspace DWR is closed in L2(X), so one can de-
fine the dual singular subspaces by orthogonality. Let SD

denote the singular subspace, associated to the range of
the scalar Laplace operator, with homogeneous Dirichlet
boundary condition. Similarly, let S0 denote the orthogo-
nal subspace of DUR in H0(div 0;X). These dual singular
subspaces can be characterized by (cf. [40] in 2D, or
[2,36,4] in 3D)

SD ¼ fsd 2 L2ðXÞ;Dsd ¼ 0 in X; sdjC ¼ 0g; ð2Þ

S0 ¼ s0 2H0ðdiv0;XÞ;Ds0 ¼ 0 in X;
os0

on

� �
� njC ¼ 0

� �
: ð3Þ

In the above definitions, the traces on the boundary are
understood in a very weak sense, and in general it is mean-
ingful not on C as a whole, but face by face only. One gets
the orthogonal decompositions of the dual spaces

L2ðXÞ ¼ DWR �
?0

SD; H0ðdiv0; XÞ ¼ DUR �
?0

S0:

Thus, one can split an element u of one of those spaces into
an orthogonal sum of a regular part and of a singular part:
u = uR + uS. Evidently, all mappings are valid when con-
sidered on the regular or singular subspaces (see [36]).

Let us conclude this preliminary study by a result, which
is very important as far as numerical computations are con-
cerned. As a matter of fact, one can also introduce direct,
but non-orthogonal, two-part sums of the space X. Follow-
ing [18,36], one can prove

X ¼ XR � VS; X ¼ XR � LS:
In this light, XS appears as the orthogonal projection of VS

or LS in X, with respect to XR. A comparative study of the
orthogonal decomposition, and of the two non-orthogonal
decompositions of X, is carried out in Section 3.

1.3. Characterizations of singular electromagnetic fields

Let us characterize the singular electromagnetic fields,
using the results on the dual singular subspaces, recalled
at (2) and (3). Following [36], elements xS 2 XS and curl-
free elements lS 2 LS respectively satisfy

DxS ¼ 0 in X; div lS 2 SD in X;

xS � njC ¼ 0; lS � njC ¼ 0:

We do not present characterizations of singular subspaces
made of divergence-free elements here, since we are inter-
ested in non-divergence-free solutions. Let us briefly recall
that one has to consider separately the 2D and 3D cases. In
the 2D case, one fundamentally uses the connections be-
tween the gradient and vector curl operators (cf. [9,36]).
On the contrary, in 3D, one has to proceed differently.
One gets for instance [7]

curl curl VS � rSD;

which is not very useful numerically. Under these condi-
tions, a non-orthogonal sum like X = XR � LS is all the
more interesting in 3D (see [36] for a numerical illustration,
concerning the electromagnetic generated around the tip of
a cone).

Remark 1.5. According to the Helmholtz decomposition
of X, and to the regular/singular splittings of L and V, one
notices that

X ¼ ðLR �
?X

LSÞ �
?XðVR �

?X

VSÞ ¼ XR �
?X

XS:

Since both LR and VR are closed subspaces of XR, one in-

fers that ðLR �
?X

VRÞ � XR, and also that XS � ðLS �
?X

VSÞ.
A priori, one might think that the reverse inclusions hold,
which is incorrect. For instance, in 2D, and can prove the
result

dimðXSÞ ¼ dimðLSÞ ¼ dimðVSÞ:

What happens is that elements of LS, VS and XS have the
same principal part, up to a (multiplicative) constant (cf.
Section 3.1).
1.4. Incoming plane waves

Now, let us consider that the boundary C is made up of
two parts: CC and CA, with CC the perfect conducting bound-

ary, and CA an artificial boundary. We further split the
artificial boundary CA into Ci

A and Ca
A. On Ci

A, we model
incoming plane waves, whereas we impose on Ca

A an ab-
sorbing boundary condition. One has
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ðE� cB� nÞ � n ¼ eH � n on CA; ð4Þ
or; equivalently;

ðcBþ E� nÞ � n ¼ cbH � n on CA: ð5Þ

The surface fields ew and bw are data. They either define the
characteristics of the incoming plane waves on Ci

A, or van-
ish on Ca

A. On Ci
A, these surface fields are always regular, in

the sense that they are the traces of smooth (in the sense of
[20]), incident, fields. On Ca

A, this boundary condition –
often called Silver–Müller boundary condition [49] – is a
first order absorbing boundary condition.

Without loss of generality, one can choose the location
of the artificial boundary CA, so that it does not intersect
with a geometrical singularity. What is more, one can also
choose a regular shape for CA, which means that there is no
geometrical singularity in CA. In this way, the electromag-
netic field is regular in a 3D neighborhood of the artificial
boundary, called XA. Indeed, outside the perfect conduct-
ing body, the electromagnetic field is strong only in the
neighborhood of geometrical singularities.

How1 can this be expressed mathematically? Let us split
the electric field like

E ¼ gAEþ ð1� gAÞE in X;

where gA is a smooth truncation function, which vanishes
outside of XA, and which is equal to one in a 3D neighbor-
hood of CA, called xA (xA � XA). By construction, there
holds

gAE 2 H1ðXÞ and ð1� gAÞE 2 X:

A priori, one has gAEjCA
6¼ 0 (whereas gAEjCC

¼ 0, since E
satisfies the perfect conducting boundary condition on
CC). In other words, one can split the electric field as a
two-term sum: the first one belongs to X, and the second
one belongs to XCA

R , where XCA
R is the subspace of regular

electric fields defined by

XCA
R ¼ fv 2 H1ðXÞ : v� njCC

¼ 0g:
Last, if one denotes by X the space of all possible electric
fields, one concludes that

X ¼ XCA
R þ X ¼ XCA

R þ ðXR � XSÞ ¼ XCA
R � XS;

since one has by definition XR � XCA
R .

Numerically, this splitting is interesting. On the one
hand, the subspace of singular electric fields is XS, as before
(it could also be LS, or VS). Thus, modelling incoming
plane waves, or imposing an absorbing boundary condition
as no impact, as far as the singular subspace is concerned.
On the other hand, as soon as Ci

A is not empty, one has to
add, in the variational formulation, terms on Ci

A. But, since
elements of XS have a vanishing tangential trace, no singu-
lar term has to be added.
1 Due to the locality of the geometrical singularities, one may think that
non-standard boundary condition imposed on a regular part of the
boundary can be treated easily. Unfortunately, as proved in [31], the effect
of geometrical singularities is non-local (i.e. they influence the solution in
the whole domain) and this problem must be investigated.
2. Numerical algorithms and error analysis

It is now possible to build numerical algorithms, based
on the results of the previous section. We call them singular

complement methods, or SCM. The general framework of
an SCM is sketched below:

1. Choose the best suited splitting into regular and singular
subspaces.

2. Compute numerically an approximation of the basis of
the singular subspace. Since this computation is inde-
pendent of the time variable, it is achieved at the initial-
ization stage.

3. Solve the problem by coupling a classical method, which
relies for instance on a continuous finite element approx-
imation and allows to compute the regular part of the
solution, to the linear system, which allows to compute
the singular part of the solution. In the case of finite
dimensional singular subspaces, this linear system pos-
sesses exactly the dimension of this subspace. In general,
the dimension is small, so one computes explicitly the
inverse of the matrix at the initialization stage.

Let U denote one of the spaces of electromagnetics fields
X, V, etc. One knows from the regular/singular splittings
that UR is not dense in U, as soon as its orthogonal US is
not reduced to {0}. Let u = uR + uS be the solution we seek
to approximate. If uh denotes the discrete solution, obtained
by a continuous approximation, and conforming in U, one
has uh 2 U \ H1(X) = UR. Therefore, one finds

ku� uhk2
U ¼ kuR � uhk2

U þ kuSk2
U P kuSk2

U:

In other words, as soon as US is not reduced to {0}, a con-
forming, continuous approximation fails to converge to the
true solution when h goes to 0. In particular, mesh refine-
ment techniques fail too! The idea behind the SCM is to
introduce a – conforming – approximation of the singular
part, which we denote by uh

S, so that one has

ku� ðuh þ uh
SÞk

2
U ¼ kuR � uhk2

U þ kuS � uh
Sk

2
U:

Thus, the aim is to find a ‘‘good’’ approximation technique
for the singular part of the solution, and also for the regu-
lar part of the solution, so that uh

S ! uS and uh! uR.

Remark 2.1. One achieves convergence with uh only, when
the solution u is itself smooth, i.e. u 2 UR. Unfortunately,
from a statistical point of view, this situation does not
occur in practice. However, the situation is different for
eigenvalue problems [31]: some electromagnetic eigen-
modes are smooth, and they do belong to UR.
2.1. Computation of the singular bases

There exist several methods, to compute the singular
basis functions (Dirichlet-to-Neumann techniques [9,8],
use of a truncation function [47,43], etc.). We recall here
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briefly the method we choose, the principal part method. We
refer the reader to [6] for a detailed presentation. The pre-
requisite, for using this method, is that the principal part –
the most singular part – of the primal and dual singular
fields in the neighborhood of the geometrical singularities,
must be known explicitly. In general, this is fairly straight-
forward for finite dimensional singular subspaces.

Consider, for simplicity reasons, a domain such that the
singular subspace is of dimension one. For instance, a 2D
domain with a single reentrant corner, or a 3D domain
with a single sharp conical vertex [39,6]. Let sP

N (respectively
sP

D) denote the principal part of the dual singular fields,
which belongs to the range of the scalar Laplace operator,
with homogeneous Neumann (respectively Dirichlet)
boundary condition.

The PPM consists in the following splitting of dual sin-
gular functions:

sN ¼ sP
N þ ~sN; sD ¼ sP

D þ ~sD: ð6Þ
Above, ~sN and ~sD belong to H1(X). The principal parts sP

N

and sP
D – which belong to L2(X) but not to H1(X) – are har-

monic. In addition, their trace on the boundary fulfills
locally, that is in the neighborhood of the geometrical singu-
larity, the homogeneous Neumann or Dirichlet boundary
condition.

One computes, for instance by a P1 finite element
method (see Section 2.4), the parts ~sN and ~sD by solving –
in H1(X) – for ~sN

Find ~sN 2 H 1ðXÞ \ L2
0ðXÞ such that D~sN ¼ 0 in X;

o~sN

om
¼ � osP

N

om
on C; ð7Þ

and for ~sD

Find ~sD 2 H 1ðXÞ such that D~sD ¼ 0 in X; ~sD ¼ �sP
D on C:

ð8Þ
In this way, it is possible to compute approximations of
the dual singular basis functions, without mesh refinement
techniques [48,25].

One then uses the singular mappings, to find the primal
singular fields

Find /S 2 H 1ðXÞ \ L2
0ðXÞ such that � D/S ¼ sN in X;

o/S

om
¼ 0 on C; ð9Þ

Find wS 2 H 1ðXÞ such that � DwS ¼ sD in X;

wS ¼ 0 on C: ð10Þ

One can split the primal fields like

/S ¼ ~/S þ C//P
S ; ð11Þ

wS ¼ ~wS þ CwwP
S : ð12Þ

Above, ~/S and ~wS belong to H2(X), and C/ and Cw are two
constants, to be determined. The principal parts /P

S and wP
S

are harmonic – do not belong to H2(X) – and fulfill locally
the ad hoc boundary condition. Their analytic expression is
known. The computation of the constants C/ and Cw is
presented in the next Subsection. The regular parts ~/S

and ~wS can be computed easily, by solving a standard var-
iational formulation (see Section 2.4).

Then, using the singular mappings, one can compute the
singular electromagnetic basis functions. To determine the
basis vS (respectively lS) of VS (respectively LS), one simply
takes the curl of /S (respectively the gradient of wS). It is
written

vS ¼ curl~/S þ C/curl/P
S ; ð13Þ

lS ¼ r~wS þ CwrwP
S: ð14Þ

The principal parts are C/curl/P
S and CwrwP

S, and the
regular parts are curl~/S and r~wS.

2.2. Singular constants

In (6), the principal part is equal to 1� sP
D or 1� sP

N.
One could choose other values, up to a non-zero multipli-
cative constant. Anyway, the principal part determines the
regularity of the dual singular fields, which is non-smooth
only at reentrant corners, as proved by Grisvard in [40].

Then, setting the constants to one in (6) prescribes the
values of the other constants, for instance of C/ in (11),
since singular fields are related to one another by one-to-
one mappings. Let us investigate now, how one can obtain
formulas to compute those constants. A possibility is to use
an integral equality, based on an integration by parts.
This type of formula is labeled ‘‘stress intensity factor’’ in
mechanics. For instance, for C/, one can integrate by parts
– with caution, see [2,4] – to reachZ

X
pDudX�

Z
X

uDp dX ¼ \

Z
C

p
ou
om

dC�
Z

C
u

op
om

dC":

Choosing p = sN and u ¼ ~/S ¼ /S � C//P
S, one gets

C/ ¼
ksNk2Z

C
sN

o/P
S

om
dC

: ð15Þ

An alternative is proved below, for the constant Cw of (12).
To that aim, one defines a neighborhood Ve of the geomet-
rical singularity by taking the intersection of the domain X
with the ball of radius e > 0 centered at the geometrical
singularity. Define Xe ¼ X nV� and Ce = oXenoC. There
holds

Proposition 2.2. The constant Cw can be expressed as

Cw ¼
ksDk2

lime!0

Z
Ce

osP
D

one
ðwP

SÞdC� lime!0

Z
Ce

oðwP
SÞ

one
sP

D dC

:

Proof. Following [50], one knows that wP
S belongs to

H2(Xe).

Let g be a truncation function defined on Rþ, equal to one
in a neighborhood of zero, and to zero in [1, +1[. Split wS as

wS ¼ ~wS þ Cwð1� gÞwP
S þ CwgwP

S :
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Since ðgwP
SÞjC ¼ 0, it is clear that ~wS þ Cwð1� gÞwP

S 2 WR.
Then, using the orthogonality in W, and the relation be-
tween primal and dual singular functions DwS = �sD, one
gets

ksDk2
0 ¼ �

Z
X

DwSsD dX ¼ �Cw

Z
X

DðgwP
SÞsD dX:

The right-hand side integral can be split asZ
X

DðgwP
SÞsD dX ¼

Z
X

DðgwP
SÞ~sD dXþ

Z
X

DðgwP
SÞsP

D dX:

The first term of the right-hand side vanishes after standard
integration by partsZ

X
DðgwP

SÞ~sD dX ¼
Z

X
ðgwP

SÞD~sD dXþ
Z

C
~sD

oðgwP
SÞ

om
dC

�
Z

C
ðgwP

SÞ
o~sD

om
dC:

As a matter of fact, one has D~sD ¼ 0 in X. Then, ~sDjC van-
ishes around the geometrical singularity, whereas omðgwP

SÞjC
vanishes on the remainder of the boundary. Finally,
ðgwP

SÞjC ¼ 0.
Standard integration by parts is not possible anymore

for the second term. So, one rewrites it as a limit, when e
goes to zero,Z

X
DðgwP

SÞsP
D dX ¼ lim

e!0

Z
Xe

DðgwP
SÞsP

D dX:

In Xe, the principal parts are sufficiently smooth, so that
one can use the usual integration by parts formulas, to
reachZ

X
DðgwP

SÞsP
D dX ¼ � lim

e!0

Z
Ce

osP
D

one
ðgwP

SÞdC

þ lim
e!0

Z
Ce

oðgwP
SÞ

one
sP

D dC:

Then, for sufficiently small e, g(z) = 1 for all z 2 Ce, and the
result follows. h

In practice, one uses this formula by plugging the expli-
cit dependence of the trace of the normal derivative on Ce,
with respect to the coordinates. For instance, in the local
polar or spherical coordinates, there holds one ¼ �or. An
example is given in Section 2.5.

Remark 2.3. To compute the singular electromagnetic
basis fields, one does not have to compute additional
multiplicative constants, since these fields are obtained
directly by differentiating (14).
2.3. Variational formulations and their discretizations

In this section, we recall some variational formulations,
or VF, which have been developed to solve the instationary
problem. We also introduce the discretization of these VFs.

Ampère’s and Faraday’s laws can be written equiva-
lently as two second-order in time equations, plus suitable
initial and boundary conditions. In this form, the electric
and magnetic fields are decoupled (up to the initial condi-
tions). For stability reasons (such as the control of the dis-
crete energy [3]), and to minimize the computational cost,
we prefer to discretize this set of equations, instead of the
first-order Maxwell equations.

What is more, to enforce the divergence constraints on
the electromagnetic field, we introduce two Lagrange mul-
tipliers. They are used to dualize Coulomb’s and absence of
free magnetic monopole’s laws, which are therefore consid-
ered as constraints of the second order in time equations.
In this way, one builds a mixed VF of Maxwell equations.
It is well posed, as soon as the well-known inf–sup (or Bab-
uska–Brezzi [12,19]) condition holds. In addition to begin
mixed, we use here augmented VFs , which results in a
mixed, augmented VF, or MAVF. To this end, one adds
to the bilinear form (curlÆ,curlÆ)0, the term (divÆ,divÆ)0. In
our case, the electric field belongs to X, or to X in the case
of incoming plane waves. Then, the correct Lagrange mul-
tiplier space is L2(X). Let p(t) be the Lagrange multiplier.

This MAVF has been developed in 2D (cartesian or axi-
symmetric geometries) and in 3D (see among others [10]).
We present here the case of the electric field, but the case
of the magnetic field is handled similarly. One has to
include the SCM in this formulation. After choosing the
most appropriate singular subspace – for instance X =
XR � XS – the electric field E is split like

EðtÞ ¼ ERðtÞ þ ESðtÞ: ð16Þ
(Above, we state explicitly the dependency with respect to
time.) The same splitting is used for test-fields. The MAVF
reads:

Find ðERðtÞ;ESðtÞ; pðtÞÞ 2 XR � XS � L2ðXÞ such that

d2

dt2
ðERðtÞ; xRÞ0 þ c2ðERðtÞ; xRÞX þ ðpðtÞ; divxRÞ0

¼ � 1

e0

d

dt
ðJðtÞ; xRÞ0 þ

c2

e0

ðqðtÞ; divxRÞ0

� d2

dt2
ðESðtÞ; xRÞ0 � c2ðESðtÞ; xRÞX 8xR 2 XR; ð17Þ

d2

dt2
ðESðtÞ; xSÞ0 þ c2ðESðtÞ; xSÞX þ ðpðtÞ; divxSÞ0

¼ � 1

e0

d

dt
ðJðtÞ; xSÞ0 þ

c2

e0

ðqðtÞ; divxSÞ0

� d2

dt2
ðERðtÞ; xSÞ0 � c2ðERðtÞ; xSÞX 8xS 2 XS; ð18Þ

ðdivERðtÞ; qÞ0 þ ðdivESðtÞ; qÞ0 ¼
1

e0

ðqðtÞ; qÞ0 8q 2 L2ðXÞ:

ð19Þ
Remark 2.4

1. In the case of an orthogonal splitting, one could omit
terms like ðESðtÞ; xRÞX, or ðERðtÞ; xSÞX, which vanish.
They are kept, in order to present a formulation valid
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in all cases. Analogously, one could use a non-orthogo-
nal splitting, with a singular subspace made of diver-
gence-free or curl-free fields – VS or LS – and therefore
omit the corresponding terms.

2. One can write similar formulations in V ¼ VR�
?

VS, and
in L ¼ LR�

?
LS (see [9,6]).

3. In practice, one can use a slightly modified formulation,
which is based on the following formula. Since both
ERðtÞ and xR belong to H1(X), it is possible to replace,
in (17), the scalar product ðERðtÞ; xRÞX by (cf. [10])

ðgradERðtÞ; gradxRÞ0 þ boundary terms:

4. What is added, when compared to the MAVF, posed in
a convex domain? First, Eq. (18). Second, additional
terms appear in (17) and (19), which express the cou-
pling between singular and regular parts. However,
these terms are independent of the time variable, so they
are computed once and for all, at the initialization stage.
This MAVF is first discretized in time, with the help of
the well-known leap-frog scheme. From a practical point of
view, one builds a space-discretized MAVF by choosing
discrete fields and test-functions, which fulfill a uniform,
discrete inf–sup boundary condition, to approximate the
regular part of the solution. We choose the Taylor–Hood,
P2-iso-P1 finite element [24]. In addition to being well-sui-
ted for discretizing saddle-point problems, it allows to
build diagonal mass matrices, when suitable quadrature
formulas are used. Thus, the solution to the linear system,
which involves the mass matrix, is straightforward [10].

To discretize the singular part, we assume that either the
singular subspace is finite dimensional, or the singular sub-
space is infinite dimensional, but it can be suitably approx-
imated with the help of a finite dimensional discrete space,
as in Section 2.5. In both situations, we write down the
discrete singular part as a finite sum. So, let ðxi

SÞi¼1;N be a
given basis of the discrete singular space, of dimension N.
(The superscript h is omitted.) One has

ESðtÞ ¼
XN

i¼1

jiðtÞxi
S; ð20Þ

where ðjiÞNi¼1 are continuous time-dependent functions
(cf. [3,37] for details).

This results in a fully discretized MAVF:

MX
~Enþ1

R þMRS~j
nþ1 þ LX~p

nþ1 ¼~Fn; ð21Þ

MT
RS
~Enþ1

R þMS~j
nþ1 þ LS~p

nþ1 ¼ ~Gn; ð22Þ

LT
X
~Enþ1

R þ LT
S~j

nþ1 ¼ ~Hn: ð23Þ

Above MX denotes the usual mass matrix, and LX corre-
sponds to the divergence term involving xh

R and ph(t). Then,
MRS is a rectangular matrix, which is obtained by taking
L2 scalar products between regular and singular basis
functions, MS is the ‘‘singular’’ mass matrix, and finally,
LS corresponds to the divergence term involving xi

S and
ph(t).
To solve this system, one removes the unknown ~jnþ1.
To that aim, replace Eq. (21) by ð21Þ �MRSM

�1
S ð22Þ,

and Eq. (23) by ð23Þ � LT
S M�1

S ð22Þ. In this modified system,
only the unknowns ð~Enþ1

R ;~pnþ1Þ appear. If one lets e stand
for the modified matrices and right-hand sides, it reads

fM~Enþ1
R þ eL~pnþ1 ¼ f~Fn ;

eLT~Enþ1
R � LT

S M�1
S LS~p

nþ1 ¼ f~Hn :

Its solution can be computed with the help of a Uzawa-
type algorithm (cf. [35]).

When compared to the case of a convex domain, the
additional computational effort is twofold. First, one has
to compute the solution to a linear system with matrix
M�1

S . However, since it is a symmetric positive-definite
matrix, and usually a low-dimensional one (often N = 1),
M�1

S is easily computed, once and for all. Second, the linear
system with matrix fM ¼MX �MRSM

�1
S MT

RS. Of help is
the formula (see [41] for a thorough study),

ðA�UVTÞ�1 ¼ A�1 þA�1UðI�VTA�1UÞ�1
VTA�1:

Indeed, in our case, A ¼MX is a diagonal matrix, thus
it is straightforward to invert. One has to compute once
and for all the N · N term ðI�VTA�1UÞ�1.

Finally, one concludes the time-stepping scheme by
computing ~jnþ1 with the help of (22).

2.4. Error estimates

Let us briefly recall some well-known results, on the
computation of the primal and dual singular functions
[25]. For the solution of the electro- and magneto-static
problems, we refer the reader to [3,43,45]. Let us consider
a 2D polygonal domain X, and call p/ak the angle at the
kth reentrant corner. Set a = minkak ða 2� 12 ; 1½Þ. Let us tri-
angulate the domain and assume that Th is a shape regular
triangulation, with a mesh size h, made of triangles (cf.
[21]). In this subsection, C is a non-negative constant,
which depends only on X. To simplify the notations, we
omit the exponent i, which varies from one to N (cf. (20)).

One starts with the approximation of sN, by sh
N ¼

~sh
N þ sP

N. Here, ~sh
N is the continuous, P1 Lagrange finite

element solution to the discretized variational formulation
associated to (7), which is conforming in H1(X). There
holds

ksN � sh
Nk0 6 Ch2a:

To approximate /S, one checks that the denominator of
(15) is equal to 2p, so that one infers

jC/ � Ch
/j 6 Ch2a:

Then, one considers the approximation /h
S ¼ ~/h

S þ Ch
//P

S.
Here, ~/h

S is the continuous, P1 Lagrange finite element solu-
tion to the discretized variational formulation associated to
(9). One reaches

k/S � /h
Sk1 6 Ch:



2 One could also use mesh refinement techniques. Indeed, on the one
hand, the error estimates (24)–(26) are based on regularity results on the
regular parts, respectively ~vS and ~xS. On the other hand, the error estimate
(26) stems from the extra-regularity of ER. Thus, using suitably graded
meshes (see for instance [44]), one could recover an O(h) error estimate.
This approach seems worth considering, when one is solving numerically
static or stationary problems. However, these techniques are not so
practical for the instationary case, since the stability condition would
impose much smaller time-steps, because of the grading near reentrant
corners.
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Remark 2.5. One can use the same techniques, and obtain
similar results, for sD, Cw and wS.

As far as the electromagnetic singular fields are con-
cerned, let us begin with the approximation of vS:
vh

S ¼ curl~/h
S þ Ch

/curl/P
S (i.e. the discretized version of

(13)). In this way, one builds, for the regular part, a – dis-
continuous – approximation, made of P0 Lagrange finite
elements, component by component. Then, one applies to
this approximation the discrete L2 projection, on the con-
tinuous, P1 Lagrange finite element space. This provides
an approximation of the regular part, conforming in
H1(X). This results in the discrete field vh

S;1 which is, in
practice easier to use than the discontinuous one. One
can prove easily the estimate [3]

kvS � vh
S;1k0 6 Ch:

However, one can prefer another approach, previously
described in [43]. It yields the following estimate:

8e > 0; 9Ce; kvS � vh
S;2kX 6 Ceh

2a�1�e

and kvS � vh
S;2k0 6 Ceh

4a�2�e: ð24Þ

With this approach, it is possible to control the whole norm
in X, but the exponent depends on the maximal reentrant
angle, through the value of a.

Remark 2.6. One can reach similar results for lS.

Then, by mixing those two approaches [45], one can
obtain an error estimate for the basis of XS, under the
form

8e > 0; 9Ce; kxS � xh
SkX 6 Ceh

2a�1�e

and kxS � xh
Sk0 6 Ceh

4a�2�e: ð25Þ

Once more, the result depends crucially on a.
As a conclusion, we recall some results, which concern

the quality of the effective approximation of the solution,
here the electric field. Its regular part is approximated by
continuous, P1 Lagrange finite elements, and is conforming
in H1(X). More precisely, following (16), one has

Eh ¼ Eh
R þ

XN

i¼1

ji;hxi;h
S :

Above, the singular part is assumed to belong to XS (see
(20)). Following [45], one proves

16 i6 N ; jji � ji;hj6 Ch2a;

8e> 0;9Ce; kE�EhkX 6 Ceh
2a�1�e and kE�Ehk0 6 Ceh

4a�2�e:

ð26Þ

For the last line of (26), it is required that the right-hand
sides belong to H2a�1�e(X). Then, one can prove extra-reg-
ularity results for ER, and so (26) follows from standard fi-
nite element theory.
Let us describe briefly two ideas2 to improve the error
estimates (24)–(26). For that, one has to assume more addi-
tional regularity on the right-hand sides.

The first one stems from Nazarov and Plamenevsky [50,
Chapter 2]. From their work on the primal fields, one can
infer techniques to compute the next principal part(s) of the
electric field, i.e. the part which belong(s) to H1(X), but not
to H2(X). This amounts to split further the H1-regular part
of the electric field. In [50, Chapter 2], explicit formulas are
built, to derive the coefficients associated to the next prin-
cipal part(s), for the Laplace operator. In this way, the
remaining part of the electric field now belongs to H2(X).
It can be thus computed with O(h) precision with the con-
tinuous, P1 Lagrange finite elements.

The second idea to improve the convergence rate is to
use Dirichlet-to-Neumann techniques in bounded domains,
cf. [9,8]. In these papers, one computes the solution with
high precision in the neighborhood of the reentrant cor-
ners. This technique could be extended easily, so that one
also computes the solution – with high accuracy – in a
neighborhood of the others corners. Near those corners,
the electric field belongs to H1(X), but not necessarily to
H2(X). Then, in the remaining ‘exterior’ domain (X minus
those neighborhoods), the solution is computed with a var-
iational formulation, with Dirichlet-to-Neumann operators
on the interfaces [9,8].

2.5. The singular complement method in 3D

In general 3D domains, the main difficulty of the SCM
is to take accurately into account singular subspaces. They
originate from geometrical singularities, such as reentrant
edges, that can meet at reentrant vertices. In addition
to generating infinite dimensional singular subspaces, the
challenge is to understand and resolve the links between
singular edges and singular vertex functions. Nevertheless,
one can proceed with the SCM in a number of 3D geome-
tries. We consider successively strong electromagnetic fields
around a sharp conical vertex, and then in a prismatic
domain, or in a domain, which is invariant by rotation.

2.5.1. Strong fields around a sharp conical vertex

See Fig. 1 for a sketch of a 3D sample domain. It is non-
convex, because of a single, sharp conical vertex on its
boundary. According to Grisvard [39], the subspace of
primal singular fields – with a Dirichlet boundary condi-
tion – is of dimension one. Therefore, the dimension of



Fig. 1. 3D sample domain with a sharp conical vertex.
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the electric singular subspaces XS, VS or LS is also one.
Compared to a 2D situation, the only novelty is how to
compute the singular basis function.

The space of electric fields X can be split in at least three
different direct sums. From a numerical point of view, the
choice is made with respect to the ease of implementation.
Here, the best choice is

X ¼ XR � LS:

With this choice, the singularities are easily inferred from
the primal singular functions (by taking their gradient). In-
deed, in 3D, a basis function of VS is expressed as the curl
of a primal singular vector field, i.e. a singular solution of
the vector Laplace problem. It is therefore much harder
to compute vS than lS.

The singular basis can also be computed by using the
principal part method. The first step consists of the determi-
nation of the principal parts of the dual and primal singu-
lar fields. Then, in a second step, one computes basis
functions of SD, WS and LS.

The geometrical singularity is locally invariant by rota-
tion, see Fig. 1. Let us thus consider the system of spherical
coordinates (r,h,u), centered at the tip of the cone. Let
Ccone be the part of the boundary which intersects the cone
of equation h = w0/2, with w0 the aperture angle of the
cone (a priori p < w0 6 2p).

As in (6) and (12), let us split sD – the basis function of
SD – and wS – the basis function of WS – into the sum of
principal and regular parts. It turns out that the principal
parts sP

D and wP
S can be expressed as a sum of separate var-

iable terms. More precisely, they can be written as a sum of
spherical harmonic functions, that is terms like

rlP lðcos hÞ sinðmuÞ and rkP kðcos hÞ sinðnuÞ:

Above, PÆ is a so-called generalized Legendre function
(cf. [1]). Mathematically, it is an eigenfunction of the
Laplace–Beltrami operator, related to the eigenvalue

�lðlþ 1Þ or � kðkþ 1Þ with l; k 2 R:
The indices m and n depend on the values of l and k respec-
tively. Several considerations have to be taken into account
to determine the ad hoc values of m, n, l and k:

• l must belong to the interval � � 3
2
;� 1

2
½, so that sP

D

belongs to L2(X), but not to H1(X).
• k must belong to the interval � � 1

2
; 1

2
½, so that wP

S belongs
to H1(X), but not to H2(X).

• Since the boundary Ccone is locally invariant by rotation,
the analyticity in u of both sP

D and wP
S requires that the

indices m and n be integers.
• To a l in the admissible interval of ls corresponds only

m = 0. Similarly, n = 0.
• In the system of spherical coordinates, recall that Ccone is

locally defined by h = w0/2. Then, k can be uniquely
determined (cf. [13,5]) by solving Pk(cos(w0/2)) = 0.
Using the relation Pk(cosh) = P�k�1(cosh), and in view
of the possible intervals for k and l, one infers that
l = �k � 1.

Finally, the principal parts read respectively

sP
D ¼ rlP lðcos hÞ ¼ r�k�1P kðcos hÞ and

wP
S ¼ rkP kðcos hÞ:

With the help of the Mathematica software, we computed
the behavior of k, as a function of the angle w0. For angles
lower than a value wreg, k is greater than 1/2, so that it
defines a spherical harmonic function of regularity at least
H2(X). Therefore, only sharp conical vertices, i.e. cones for
which the aperture is larger than wreg/2, generate a primal
singular function. This result is in accordance with the ones
obtained in invariant by rotation domains [5,13].

To compute Cw, one uses Proposition 2.2, together with
(27), to find

Cw ¼
ksDk2

2pð2kþ 1Þ
Z w0=2

0

P kðcos hÞ2 sin hdh

:

Whereas lP
S ð¼ rwP

SÞ’s analytical expression in spherical
coordinates is

lP
S ¼ krk�1

cos u
sin h

P kðcos hÞ � cos hP k�1ðcos hÞ½ �

sin u
sin h

P kðcos hÞ � cos hP k�1ðcos hÞ½ �

P k�1ðcos hÞ

0
BBBB@

1
CCCCA:

A numerical implementation is provided in [36].

2.5.2. Strong fields in prismatic, or invariant by rotation,

domains

Here, we describe how the SCM can be applied in 3D
prismatic domains (reentrant edges only), or in 3D, invari-
ant by rotation, domains (decoupled reentrant edges and
sharp conical vertices). In these cases, one can extend the
SCM by introducing the Fourier-singular complement
method (referred to as the FSCM).

We focus on the prismatic case: to explain the design
of the FSCM, let us follow [23] for the variational
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formulations, and [27] for the numerical algorithms. In a
3D, invariant by rotation, domain, one can actually pro-
ceed by superposing the techniques described before, since
one deals here with decoupled reentrant edges and sharp
conical vertices. One has to replace Refs. [23,27] respec-
tively by [46,28].

We thus solve Maxwell’s equations in the domain
X = X? · ]0, L[, where X? is a 2D polygon. The geometri-
cal singularities are exactly edges parallel to Oz, which cor-
respond to the reentrant corners of X?. Since we have to
distinguish between functional spaces defined on X or on
X?, we add explicitly the name of the geometrical domain
between parentheses.

Let us begin by an important result. On the one hand,
according to the splitting a la Birman and Solomyak

[15,16], there holds E ¼ ER þrw, with ER 2 XRðXÞ and
w 2 W(X), the splitting being moreover continuous. On
the other hand, it is simple to prove [27, Cor. 3.2] that
ozw 2 H1(X), for any element of W(X). One concludes that
Ez automatically belongs to H1(X), so it cannot be singular.
Thus, one has to concentrate on E? ¼ Ex~ex þ Ey~ey .

The second important property, in prismatic domains, is
more classical. The Fourier expansion in z can be used to
reduce the 3D problem – set in X – to a sequence of 2D
problems, set in X?. Basically, for u 2 L2(X), one writes
the usual Fourier expansion

u ¼
X
kP0

ukðx; yÞ sin
kpz
L

� �
or

u ¼
X
kP0

ukðx; yÞ cos
kpz
L

� �
with kuk2

0 ¼
L
2

X
kP0

kukk2
0;X?

:

Thanks to the boundary condition satisfied by E, one
chooses

Ex ¼
X
kP0

Ek
x sin

kpz
L

� �
; Ey ¼

X
kP0

Ek
y sin

kpz
L

� �
;

Ez ¼
X
kP0

Ek
z cos

kpz
L

� �
:

This allows (cf. [27]) to rewrite the original set of Maxwell’s
equations as an equivalent sequence (for k P 0) of 2D-
MAVFs, acting on

• Ek
? ¼ Ek

x~ex þ Ek
y~ey 2 XðX?Þ and Ek

z 2 H 1
0ðX?Þ.

• pk 2 L2(X?), with p ¼
P

kP0pk sinðkpz=LÞ the Lagrange
multiplier.

Now, there holds in 2D:

XðX?Þ ¼ XRðX?Þ �
?X

XSðX?Þ

with a finite dimensional subspace of singular fields.
In this way, one can use the 2D-SCM to compute each

Fourier mode Ek
?. It is combined to an approximation of

the Fourier sequence [44], i.e. by keeping only a finite num-
ber of modes, for 0 6 k 6 NF. This results in the Fourier-
singular complement method, where one computes
ENF;h ¼
Xk¼NF

k¼0

Ek;h
? sin

kpz
L

� �
þ Ek;h

z cos
kpz
L

� �
~ez

� �
;

pNF;h ¼
Xk¼NF

k¼0

pk;h sin
kpz
L

� �
:

Thanks to the finite dimensional character of XS(X?), one
has to compute a finite number of singular basis functions,
once and for all at the initialization stage.

Finally, one may derive error estimates by following the
framework developed in [27]. By analogy, provided the
data is smooth, using the convergence results of Section
2.4, together with the truncated sequence of Fourier
modes, one may reach

kE� ENF ;hkXðXÞ 6 C
1

N F

þ Ceh
2a�1�e;

where C and Ce are independent of NF and h, with Ce like
in (26). This estimate could be further improved, following
the end of Section 2.4.
3. Numerical experiments

In this section, we present numerical results in order
to illustrate the possibilities of the singular complement

method. In a first part, we compare the three possible
splittings of X (cf. Section 1.2.2), when an electromagnetic
wave propagates in a waveguide. In the last part, we pro-
pose an example for the coupled Vlasov–Maxwell system
of equations.

We do not present any numerical simulation of the sin-
gular basis functions. See [8] for the computation of basis
functions of VS with the help of a substructuring method
(and a Dirichlet-to-Neumann boundary operator). See
[43] for the computation of basis functions of VS using a
truncation function. And see [36] for the computation of
basis functions of XS and LS. Then, one can find in [6]
instances of similar computations in domains, which are
invariant by rotation, with the help of the principal part

method.
As previously mentioned, all computations related to

the singular parts – basis functions, matrices, etc. – are car-
ried out at the initialization stage, once and for all, to the
exception of the singular coefficients (20). Still, these coef-
ficients require only a constant number of operations to be
updated per time-step, as soon as N is fixed. Therefore, the
overhead of the MCS, in terms of the CPU time or in terms
of memory requirements, is very small.

3.1. A comparison of the different splittings

The aim of this subsection is to compare numerically the
results obtained with the three splittings of the space of
electric fields X, as below

X ¼ XR �
?X

XS; X ¼ XR � VS; X ¼ XR � LS:



Fig. 2. Singular basis (with their coefficients jx, jv, jl), regular parts and solutions (Ex component) obtained with the three splittings: XS (top), VS

(medium), LS (bottom).
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We consider the propagation of a transverse electric wave
(or TE mode), in a non-convex geometry.

Let us introduce a step waveguide, and assume that the
geometry and data are both independent of the space var-
iable z. The computational domain corresponds to the 2D
transverse section, and its geometrical singularities consist
of a single reentrant corner, of angle p/a (see Fig. 2). An
incoming wave enters the guide through the artificial
boundary Ci

A, the left-most part of C. The waves leaves
the guide through the artificial boundary Ca

A, the right-
most part of C. Elsewhere, the boundary is perfectly con-
ducting. As a model, one uses the 2D version of the
Silver–Müller absorbing boundary condition (4), that is

E? � sþ cBz ¼ g with g ¼ C sinðxtÞ on Ci
A and

g ¼ 0 on Ca
A:

Above, C is a constant, set to C = 104, and x is associated
to a frequency m = 5 · 109 Hz (x = 2pm). At time t = 0,
there is no electromagnetic field inside the domain. The
computation of the electromagnetic field, at times t > 0, is
achieved through three different expressions of its singular
part.

First, by taking the SCM with an orthogonal singular
part, i.e. with the splitting

E?ðtÞ ¼ E1
?RðtÞ þ jxðtÞxS with xS 2 XS n f0g:
Second, by taking the SCM with a divergence-free singular
part, i.e. with the splitting

E?ðtÞ ¼ E2
?RðtÞ þ jvðtÞvS with vS 2 VS n f0g:

Third, by taking the SCM with a curl-free singular part,
i.e. with the splitting

E?ðtÞ ¼ E3
?RðtÞ þ jlðtÞlS with lS 2 LS n f0g:

As we previously mentioned (see Remark 2.4), the regular
parts Ei

?RðtÞ; 1 6 i 6 3 are different, even though they all
belong to XR.

The meshsize is such that the 10-point rule is fulfilled, i.e.
they are roughly 10 discretization points per wavelength.

We compared the regular and singular parts of the solu-
tions, and the solutions themselves. These tests are conclu-
sive in several ways. We picture (cf. Fig. 2) the isovalues of
the regular and singular parts of the component Ex of the
electric field, for the three splittings, after 2.000 time-steps.
This corresponds to a real time of t = 2.0 · 10�9 s. One can
further check that the computed fields are very close from
one another, with variations of less than 1.5% in a neigh-
borhood of the reentrant corner. These experiments illus-
trate the good numerical behavior of the SCM in general,
and it also shows that the three methods yield very similar
results, although they are based on different splittings.
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This can be explained by the following argument. In the
neighborhood of a reentrant corner, one can provide an
expression of each basis function xS,vS, lS, in the form of
a series. Its first term, the principal part, which we denote
by pp, determines the regularity of the solution. In our case,
it belongs to L2(X), and not to H1(X). In [36], it has been
proven that the principal part is the same for all basis func-
tions, up to a multiplicative constant. In our example, it
reads

pp ¼ ra�1ðsinðahÞ~er þ cosðahÞ~ehÞ

with ð~er;~ehÞ the canonical basis associated to the polar
coordinates, centered at the reentrant corner. The principal
part is divergence- and curl-free. But it does not satisfies the
homogeneous tangential trace boundary condition, other-
wise it would be zero. One can then split each basis func-
tion like

1. xS = cx,pp + Fx, with Fx 2 H1(X). This field verifies
Fx � sjC ¼ �pp � sjC , and also enforces the orthogonality
condition (Fx,xR)X = 0, "xR 2 XR.

2. vS = cvpp + Fv, with Fv 2 H1(X). This field verifies
Fv � sjC ¼ �pp � sjC , and also enforces the orthogonality
condition (Fv,vR)X = 0, "vR 2 VR.

3. lS = clpp + Fl, with Fl 2 H1(X). This field verifies
Fl � sjC ¼ �pp � sjC , and also enforces the orthogonality
condition (Fl, lR)X = 0, "lR 2 LR.

In a neighborhood of the reentrant corner, the precision
of the numerical method depends essentially on the quality
of the approximation of the principal part. But according
to the error estimates on the constants, in Section 2.4, it
is very good in all cases. This explains why the basis func-
tions are accurately computed, at least in terms of their
principal part. What our experiments show in addition, is
that this initial precision is maintained over a large number
of time-steps, when the coefficients jx(t), jv(t) and jl(t) are
computed.

Remark 3.1

• For simplicity reasons, the electric field in the above
example is divergence-free. Nonetheless, one would
reach similar conclusions for an L2 divergence field.
We refer the reader to [36, Chapter 9].

• One might think that the splitting within the divergence-
free subspace V is better suited. The example shows
that it is not the case. As it happens, it is equivalent
to enforce divE2

?RðtÞ ¼ 0, divE1
?RðtÞ ¼ �j1ðtÞdivxS or

divE3
?RðtÞ ¼ �j3ðtÞdiv lS.

In conclusion, it appears that the three splittings provide
very similar numerical results. Therefore, the choice
between the three splittings ought to be made with respect
to the simpler variational formulation, and/or to the ease
of implementation.
3.2. A Vlasov–Maxwell implementation

We focus now on the numerical solution of the coupled
Vlasov–Maxwell system of equations. Recall that Vlasov
equation models the transport of charged particles, under
the influence of an electromagnetic field. The Vlasov equa-
tion reads

of
ot
þ v � rxf þ F

m
� rvf ¼ 0:

Above, the unknown f is the distribution function of the
particles, f(x,v, t), v stands for the velocities of the particles,
m is the mass of a particle, and F is the applied force. The
coupling occurs

• on the one hand, by the right-hand sides of Maxwell
equations, q and J, which are computed from the solu-
tion to the Vlasov equation f(x,v, t), thanks to the
relations

q ¼
Z

v

f dv; J ¼
Z

v

f vdv;

• on the other hand, the electromagnetic field ðE;BÞ
determines the forces that act on the particles in the
Vlasov model, via the well-known Lorentz force F

F ¼ eðEþ v�BÞ:

Geometrical singularities have no effect per se on the
regularity of the solution to the Vlasov equation (cf.
[51]). Therefore, the numerical methods, which are clas-
sically used, require marginal modifications. In our case,
we resort to a particle method [11], which consists in
approximating the distribution function f(x,v, t) by a lin-
ear combination of Dirac masses.

However, these geometrical singularities have an influ-
ence over f, through the coupling. In other words, the Lor-
entz force F must be computed accurately. Otherwise, the
trajectories of the charged particles are incorrect, as so
are their positions and velocities. Then, q and J are incor-
rect, and so there’s no chance to capture the true solution.
This is the reason why we compare once more the two
numerical implementations, with and without SCM.

We consider an L-shaped domain X, and assume its
boundary is entirely perfectly conducting. Initial conditions
are uniformly set to zero. At this time, a bunch of particles
– electrons – is emitted from the top-most part of the
boundary, with an initial velocity equal to v ¼ vy~ey , with
vy = �2 · 108 m s�1. The electromagnetic field is therefore
a self-consistent field. Particles are absorbed at the down-
most part of the boundary.

The SCM is implemented with the splitting X ¼
XR �

?X

XS.
As shown in Fig. 3a, the electric field – Ex component –

obtained after 500 time-steps is very different, when it is
computed with and without the SCM. Recall that the elec-
tromagnetic field is the result of the motion of the charged



Fig. 3. (a)Vlasov–Maxwell simulation. Computed solutions (Ex component) obtained with (left) and without (right) the SCM. (b) Vlasov–Maxwell
simulation. Distributions between vy and vx components of the particle velocities.
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particles only. Therefore, differences are entirely due to the
coupling between the Vlasov and Maxwell equations.

In parallel to these differences between the two com-
puted electromagnetic fields, one also observes an error,
in terms of the general trends of the motions of the parti-
cles. Without the SCM, the bunch is ‘flattened’ (wrt the
SCM implementation). See Fig. 3b, where the distributions
between vy and vx components of the velocities are repre-
sented, at the same time-step. Via the coupling, these dis-
crepancies have an impact on the trajectories of the
particles. The bunch is ‘widening’ too much over the time
iterations, and some particles are absorbed by the left
and right parts of the boundary. With the SCM, this
phenomenon does not occur.

4. Conclusion

In this paper, we considered the solution of the insta-
tionary Maxwell equations with charges, in domains with
singular geometries. This model actually stems from the
solution to the coupled Vlasov–Maxwell system of equa-
tions, for which, in essence, the electric field is not diver-
gence-free [10].

To that aim, we studied direct, and possibly orthogonal,
splittings of the space of electromagnetic fields, thus defin-
ing extensions of the singular complement method. In parti-
cular, we focused on singular electromagnetic fields with
a L2(X) non-vanishing divergence. The mappings, which
relate those singular fields to the primal and dual singular-
ities of the (vector) Laplace operator, have been very help-
ful for carrying out our analysis.

This paper is a generalization of previous works, aimed
at solving the divergence-free electromagnetic problems.
One of the foremost result is that all the splittings provide
the same principal part, which allows to choose between
them, from an implementation point of view.

As far as numerical experiments are concerned, we point
to the implementation of our original model, i.e. the Vla-
sov–Maxwell system of equations.

As we emphasized, the theory can be further applied to
the case of infinite dimensional singular subspaces, pro-
vided they originate from reentrant edges only [23], or from
decoupled reentrant edges and reentrant vertices [46]. How-
ever, one has still to propose a satisfactory extension of the
singular complement method to handle the most general 3D
case, that is when reentrant edges meet at a reentrant
vertex. In this respect, the functional frameworks devel-
oped in [33,22,26] are promising, in the sense that they
allow for a continuous approximation of the total electric
field.
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Maxwell, Technical Report ENSTA 349, ENSTA, Paris, France, 2002
(in French).

[4] F. Assous, P. Ciarlet Jr., E. Garcia, Singular electromagnetic fields:
inductive approach, C.R. Acad. Sci. Paris, Ser. I 341 (2005) 605–610.

[5] F. Assous, P. Ciarlet Jr., S. Labrunie, Solution of axisymmetric
Maxwell equations, Math. Methods Appl. Sci. 26 (2003) 861–896.

[6] F. Assous, P. Ciarlet Jr., S. Labrunie, J. Segré, Numerical solution to
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des équations de Maxwell dans des domaines non convexes, C.R.
Acad. Sci. Paris, Ser. I 334 (2002) 293–298.

[38] V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes
Equations, Series in Computational Mathematics, vol. 5, Springer-
Verlag, Berlin, 1986.

[39] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs
and Studies in Mathematics, vol. 24, Pitman, London, 1985.

[40] P. Grisvard, Singularities in Boundary Value Problems, vol. 22, RMA
Masson, Paris, 1992.

[41] W.W. Hager, Updating the inverse of a matrix, SIAM Rev. 31 (1989)
221–239.

[42] C. Hazard, Numerical simulation of corner singularities: a paradox in
Maxwell-like problems, C.R. Acad. Sci. Paris, Ser. IIb 330 (2002) 57–
68.

[43] C. Hazard, S. Lohrengel, A singular field method for Maxwell’s
equations: numerical aspects for 2D magnetostatics, SIAM J. Appl.
Math. 40 (2002) 1021–1040.

[44] B. Heinrich, The Fourier-finite element method for Poisson’s equa-
tion in axisymmetric domains with edges, SIAM J. Numer. Anal. 33
(1996) 1885–1911.

[45] E. Jamelot, A nodal finite element method for Maxwell’s equations,
C.R. Acad. Sci. Paris, Ser. I 339 (2004) 809–814.
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